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Abstract: This perspective article is concerned with the question of how proteomics, which is a core
technique of systems biology that is deeply embedded in the multi-omics field of modern bioresearch,
can help us better understand the molecular pathogenesis of complex diseases. As an illustrative ex-
ample of a monogenetic disorder that primarily affects the neuromuscular system but is characterized
by a plethora of multi-system pathophysiological alterations, the muscle-wasting disease Duchenne
muscular dystrophy was examined. Recent achievements in the field of dystrophinopathy research
are described with special reference to the proteome-wide complexity of neuromuscular changes and
body-wide alterations/adaptations. Based on a description of the current applications of top-down
versus bottom-up proteomic approaches and their technical challenges, future systems biological
approaches are outlined. The envisaged holistic and integromic bioanalysis would encompass the
integration of diverse omics-type studies including inter- and intra-proteomics as the core disciplines
for systematic protein evaluations, with sophisticated biomolecular analyses, including physiology,
molecular biology, biochemistry and histochemistry. Integrated proteomic findings promise to be
instrumental in improving our detailed knowledge of pathogenic mechanisms and multi-system
dysfunction, widening the available biomarker signature of dystrophinopathy for improved diag-
nostic/prognostic procedures, and advancing the identification of novel therapeutic targets to treat
Duchenne muscular dystrophy.

Keywords: dystrophin; dystrophinopathy; integromics; mass spectrometry; multi-omics; muscle
proteomics; myofiber; myology; neuromuscular disease; omics

1. Introduction

The extraordinary cellular complexity and molecular heterogeneity of biological sys-
tems are formidable bioanalytical challenges for the systematic survey of dynamic processes
during physiological adaptations under healthy conditions versus pathophysiological al-
terations in a diseased state. The multi-cellular organization of the average human body is
estimated to contain over 400 different cell types that form a network of over 36 trillion cells,
which in turn display trillions of molecules per average cellular unit, including diverse
species of nucleic acids, proteins, carbohydrates, lipids, minerals and metabolites [1–4].
A meta-analysis of protein abundance distribution suggests that the average eukaryotic
cell contains approximately 43 million proteins [5], making the systematic cataloging and
differential analysis of all protein species in health and disease a daunting task in modern
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proteomics [6–8]. At the level of the hierarchical biological organization of highly complex
biomolecular systems, the number of protein-coding genes has been determined to be
approximately 20,000 individual human genes [9–11], which probably generate over a
million dynamic proteoforms [12–14] due to extensive genomic variations, alternative RNA
splicing and extensive post-translational modifications of protein products [15–17]. Proteo-
forms can be defined as the expressed variants of the protein products that are encoded by
a single gene, whereby the different molecular forms are generated by genetic variations
such as alternative promoter usage, alternative splicing of RNA transcripts due to mech-
anisms such as exon skipping, and extensive post-translational modifications, including
proteolysis, phosphorylation and glycosylation [12].

This perspective article reviews and discusses the means by which proteomics can be
employed in an optimum way to identify and characterize the individual proteoforms that
are present in the technically accessible skeletal muscle proteome [18–20]. The main focus
is on the proteomic survey of the molecular and cellular pathogenesis of a multi-system
neuromuscular disorder [21,22], i.e., X-linked Duchenne muscular dystrophy (DMD) [23,24].
The abnormal expression of the full-length Dp427-M isoform of the membrane cytoskeletal
protein dystrophin [25] that is encoded by one of the largest genes in the human genome,
the DMD gene [26], is the underlying cause of this devastating disorder [27]. Although this
monogenetic disease can be classified as a primary muscle-wasting disorder with a main
defect in the membrane cytoskeleton [28], the progressive decline of contractile strength
in Duchenne patients is accompanied by body-wide alterations [29–31] and multi-system
dysfunction [32–34]. This review briefly summarizes key results from systematic proteomic
studies with special reference to muscular dystrophy research. A description of the routine
usage of top-down proteomics versus bottom-up proteomics in basic and applied myology,
including a discussion of bioanalytical advantages versus technical challenges, is provided.
Besides studying the molecular pathogenesis of dystrophinopathy and being an irreplicable
tool for biomarker discovery, proteomics is also highly suitable for the identification of
novel therapeutic targets and the elucidation of drug mechanisms [34].

Based on the high-throughput and large-scale methodology that is currently avail-
able for proteomic applications, a future systems biological approach is outlined for the
holistic characterization of dystrophinopathy. This would include the amalgamation of
findings from multi-omics studies, using mass spectrometry (MS)-based proteomics as the
core discipline for conducting protein biochemical surveys, to achieve a high degree of
integromic data handling [35]. A key bioanalytical aspect would be to assess pathophysio-
logical crosstalk between individual organ proteomes in muscular dystrophy that could
include the evaluation of the role of muscle–bone interactions, brain–muscle signaling,
the metabolic liver–fat–muscle axis, the influence of muscular alterations on the kidneys,
gastrointestinal tract and the cardio-respiratory system, as well as the linkage of muscle
changes to immune responses. Verification studies to evaluate the validity of multi-omics-
based networks and their involvement in disease processes would be carried out by robust
and standardized physiological, molecular biological, biochemical, immunochemical and
histological assays. In the long term, integrated proteomics could form the scientific basis
for developing a more complex understanding of neuromuscular pathogenesis and asso-
ciated multi-system dysregulation, as well as be helpful in identifying novel biomarker
candidates for the improved diagnosis, prognosis and therapeutic monitoring of muscle
diseases and their body-wide complications.

2. Mass Spectrometry-Based Proteomics: Top-Down versus Middle-Up/Down versus
Bottom-Up Approaches

Proteomics can be used for the biochemical identification of individual protein species,
the detailed characterization of peptides and proteins and their post-translational mod-
ifications, and the systematic cataloging of entire proteomes, as well as for comparative
studies of complex protein mixtures [36–38]. Mass spectrometric surveys of proteins were
initiated in the late 1990s [39–41] and have been greatly refined over recent decades to the
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current state of single-cell resolution [42–44]. Current proteomic analysis pipelines, which
generally consist of sample preparation, protein extraction, efficient protein separation,
different degrees of controlled protein fragmentation, mass spectrometric analysis, bioinfor-
matic assessment and independent verification studies, can be categorized into two main
types of approaches, i.e., top-down proteomics [45] versus bottom-up proteomics [46], plus
an additional third category in the form of middle-up/down proteomics [47]. Figure 1
provides an overview of the major steps that are involved in routine proteomic analyses of
proteins and their specific proteoforms.
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Figure 1. Outline of the main proteomic approaches that are routinely utilized to isolate, identify and
characterize proteins and their individual proteoforms. Abbreviations used: 1D, one-dimensional; 2D,
two-dimensional; BN-PAGE, blue native polyacrylamide gel electrophoresis; CBB, Coomassie Brilliant
Blue; DC, differential centrifugation; DDA, data-dependent acquisition; DIA, data-independent acqui-
sition; DIGE, difference gel electrophoresis; eFASP, enhanced filter-aided sample preparation; ELISA,
enzyme-linked immunosorbent assay; EM, electron microscopy; ESI, electrospray ionization; FASP,
filter-aided sample preparation; FT, Fourier-transform ion cyclotron resonance; GE, gel electrophore-
sis; GeLC, gel electrophoresis–liquid chromatography; IB, immunoblotting; ICAT, isotope-coded
affinity tags; ICPL, isotope-coded protein labeling; IFM, immunofluorescence microscopy; IHC, im-
munohistochemistry; iST, In-StageTip; LC, liquid chromatography; IMAC, immobilized metal affinity
chromatography; iTRAQ, isobaric tagging for relative and absolute quantitation; LFQ, label-free
quantification; MALDI, matrix-assisted laser desorption/ionization; MS, mass spectrometry; Mud-
PIT; multi-dimensional protein identification technology; PRM, parallel reaction monitoring; PTMs,
post-translational modifications; SCP, single-cell proteomics; SILAC, stable isotope labeling by amino
acids in cell culture; SiMoA, Simoa bead-based immunoassay; SP3, single-pot solid-phase-enhanced
sample preparation; SRM/MRM, selected/multiple reaction monitoring; S-Trap, suspension trap-
ping; SWATH, Sequential Window Acquisition of all Theoretical Mass Spectra; TDA, targeted data
acquisition; TMT, isobaric tandem mass tagging; ToF, time-of-flight; USP3, universal solid-phase
protein preparation; XL, cross-linking.
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The most frequently employed methods in skeletal muscle proteomics have recently
been reviewed, including top-down approaches, bottom-up techniques, comparative stud-
ies and membrane protein analyses [48–50]. The main procedures are briefly summarized
in the below subsections, which outline the basic rationale of top-down versus bottom-up
proteomics, protein separation, sample handling, the importance of optimized protein
digestion, mass spectrometric techniques and data acquisition. Detailed descriptions of
the key techniques employed in MS-based proteomics are beyond the scope of this per-
spective article that instead focuses on the actual application of proteomics for a more
in-depth understanding of the pathobiochemical aspects of the multi-system pathology of
dystrophinopathy. Excellent reviews are available that provide a comprehensive and critical
examination of the main analysis pipelines and most frequently applied methodologies in
the field of proteomics research [45–47,51–54].

2.1. Top-Down Proteomic Approaches

Although liquid chromatography (LC) is currently the most frequently used method
for large-scale and high-throughput protein separation prior to MS-based analysis, gel
electrophoresis (GE) represents an excellent technique for the efficient preparation of
isolated and intact proteoforms [55–58]. Within the portfolio of GE methodology, two-
dimensional gel electrophoresis (2D-GE) is a significant and well-established technical
platform [15,59–61] that allows users to perform a comprehensive top-down proteomic
analysis [62–64]. Two-dimensional gel electrophoresis that uses isoelectric focusing (IEF) in
the first dimension and standard sodium dodecyl sulfate polyacrylamide gel electrophoresis
(SDS-PAGE) in the second dimension [65] enables the separation of complex proteomes
from a variety of samples based on the unique combination of the isoelectric point (pI) and
molecular mass of individual protein species [66]. These key parameters are then used to
generate a map of proteins, representing changes in protein abundance levels of distinct
proteoforms [15], and in some examples, post-translational modifications (PTMs) [67–69].
Two-dimensional gel electrophoresis facilitates the separation of hundreds to thousands of
proteins on one gel [63], with some research groups having established protocols that allow
for over 4000 proteins to be precisely separated with high accuracy [61,70]. Importantly,
2D-GE has been optimized to separate the skeletal muscle proteome [59,60,71].

A number of specialized gel stains are available, including SYPRO Ruby, Deep Purple,
silver stain and Coomassie Brilliant Blue (CBB) for protein labeling [72–76], as well as
protein species-selective procedures for the detection of glycoproteins, such as Pro-Q
Emerald gel stain [77,78], or phosphoproteins, such as Pro-Q Diamond gel stain [79,80].
SYPRO Ruby is a highly sensitive (~1 ng) fluorescent stain that can accurately quantitate
protein expression levels. Silver stain and CBB [72] are robust staining methods facilitating
the quick visualization of results [73], while Pro-Q Emerald and Pro-Q Diamond are
specific to glycosylated and phosphorylated proteins, respectively, conferring a degree of
specialization with this approach. Trypsin is the gold standard for protein digestion [81];
however, alternative proteases, such as endoproteinase Glu-C, endoproteinase Asp-N or
chymotrypsin, can help increase amino acid sequence coverage by generating unique
peptides that are complementary to tryptic peptides [82–85].

The development of the differential imaging gel electrophoresis technique for in-
creased sensitivity and reproducibility using fluorescent dyes proved to be a significant
addition to sample analysis using 2D-GE [86–88]. Following optimized sample prepara-
tion [89], fluorescence two-dimensional difference gel electrophoresis (2D-DIGE) is based
on labeling of protein within a sample with a different fluorophore (CyDye3, CyDye5
or CyDye2) that binds covalently with the epsilon amino group of lysine residues for
minimal labeling [90]. Typically, the internal control is a combination of all samples that
will be analyzed within a single experiment and is labeled with CyDye2. The CyDye3- and
CyDye5-labeled samples can then be normalized to CyDye2 for the identification of protein
spots with different abundance levels when comparing samples [91–93]. Software packages
including DeCyder, SameSpots and Dymension 3 can be incorporated into the workflow to
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aid in the identification of significant proteins [94,95]. Saturation labeling using CyDye3
and CyDye5 fluorophores with maleimide chemistry can be employed to label all cysteine
residues within the sample of interest [96], enhancing sensitivity compared to the mini-
mal approach [90]. As an alternative to gel-based protein separation, multi-dimensional
protein identification technology (MudPIT) [97] can be employed, which is based on
two-dimensional liquid chromatography (2D-LC) followed by MS-based analysis [98].
Extremely large proteins, such as the class of giant muscle proteins (e.g., titin, nebulin,
obscurin, plectin, dystrophin and the ryanodine receptor Ca2+-release channel) [99], which
do not properly enter the second dimension of conventional 2D gels due to their high
molecular mass, can be separated by agarose 2D-GE [100–102] or one-dimensional gradient
gel electrophoresis–liquid chromatography (GeLC) [103–105]. Recently, Melby et al. [106]
described a highly sensitive top-down proteomic approach for the characterization of
single myofiber heterogeneity using a one-pot protein extraction and sample processing
strategy. The fraction with extracted muscle proteins was separated by a low-flow capillary
LC method, which was coupled to a microflow multi-emitter nanoelectrospray source for
optimum ionization efficiency prior to the MS-based analysis of intact proteoforms [106].

2.2. Bottom-Up Proteomic Approaches

Bottom-up proteomics refers to the characterization of proteins by analysis of peptides
created from the protein through proteolysis [46,107]. An important initial consideration is
whether fractionation is necessary or whether a more global analysis is the best approach.
Many strategies are available to fractionate samples from relatively small quantities of
cells/tissues in a short period of time, generating cytoplasmic, plasma membrane, nuclear,
mitochondrial and cytoskeletal fractions as an example of subproteomics [108–110]. Col-
umn chromatography is also a successful approach, separating proteins based on size,
charge or affinity. Isolation of single cells for MS-based analysis has the ability to iden-
tify the emergence of cellular heterogeneity and distinct cellular mechanisms underlying
pathophysiological processes [111] and has been successfully applied to the study of single
myofibers [112].

For bottom-up proteomic approaches, both in-solution and filter-based approaches
are routinely used for sample preparation [113,114]. The filter-aided sample preparation
(FASP) technique [115] and the suspension trapping (S-Trap) method [116] are popular for
peptide generation. Enrichment strategies can be used to isolate and enrich sub-populations
of peptides based on specific chemical properties [117,118]. A description of the analy-
sis pipelines for investigating PTMs specific to skeletal muscle cell biology has recently
been collated [48]. Phosphoproteomics has become one of the most active research areas
in proteomic studies with phosphopeptide enrichment being a critical step in the analy-
sis [119,120]. In addition to dedicated antibodies (pTyr antibody), phosphopeptides are
enriched by their selective interaction with metals in the form of chelated metal ions or
metal oxides (ferric nitrilotriacetate/Fe-NTA and TiO2 immobilized resins) [121]. Protein
ubiquitination is a dynamic multifaceted PTM involved in many key processes of physiol-
ogy and pathophysiology. The enrichment of ubiquitinated peptides containing ubiquitin
remnants can be achieved by antibody-based approaches that specifically recognize the
di-glycine motive remaining after digestion with trypsin [122]. In bottom-up proteomics,
1D to 3D LC methods are routinely used approaches in separating peptides prior to MS
analysis [123].

2.3. Mass Spectrometric Analysis and Data Acquisition Techniques

Untargeted label-free quantitation (LFQ) of proteins aims to determine the relative
abundance of peptides/proteins when comparing multiple biological samples [124–126].
LFQ has been successfully integrated into single-cell proteomic workflows [127]. For LFQ,
two major approaches are routinely used, i.e., spectral counting and measuring MS1 signal
intensities. In contrast to LFQ-based analyses, quantitative label-based techniques [128]
are carried out with isobaric tagging for relative and absolute quantitation (iTRAQ) [129],
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stable isotope labeling by amino acids in cell culture (SILAC) [130], isobaric tandem mass
tagging (TMT) [131], isotope-coded protein labeling (ICPL) [132] and isotope-coded affinity
tags (ICAT) [133]. With SILAC experiments, proteins are metabolically labeled by culturing
cells in media containing normal and heavy isotope amino acids, which are distinguishable
by MS when samples are mixed together in equal ratios prior to analysis [130]. Alterna-
tively, in vivo SILAC can be used to study whole organisms, such as mouse models of
dystrophinopathy [134]. Multiplexed quantitative proteomics using the TMT technique is
an unbiased quantification approach that can be adopted when evaluating peptide/protein
abundance levels in a multitude of sample types [135].

Within the MS instrument, fragmentation approaches include the use of collision-
induced dissociation (CID), higher-energy collisional dissociation (HCD) and/or electron
transfer dissociation (ETD), depending on the specific application [136]. CID has become
a routine approach for the fragmentation of peptides for protocols involving LFQ, while
ETD is seen as the method of choice for peptides carrying labile PTMs [137].

A number of data acquisition techniques are available when using MS analyses, the
two most widely used are data-independent acquisition (DIA) [138] and data-dependent
acquisition (DDA) [139]. During MS/MS analysis, MS2 spectra are produced from the
fragmentation of a product ion in a particular m/z range, following the operation of
MS1 in scan mode. In DIA, effectively all peptides are fragmented together, resulting in
complex MS2 spectra, but the values are comprehensive across the run time. Spectral
libraries are employed to extract information from the wide-ranging data, facilitating
quantification at the MS2 level. Sequential Window Acquisition of all Theoretical Mass
Spectra (SWATH) [140] is a specific variant of the DIA approach [141], facilitating a deep
proteome analysis, where all ionized peptides that exist within a specified mass range are
fragmented in a systematic manner [142].

Table 1 lists major proteomic techniques, as well as a variety of biochemical, immuno-
chemical and cell biological methods that can be used to independently verify the MS-based
identification of specific proteoforms or the findings of changes in protein abundance from
comparative proteomic studies. These methods are frequently employed to study cell or
tissue specimens derived from normal versus diseased skeletal muscles, including the
following:

• Two-dimensional gel electrophoresis (2D-GE) [55–66,71];
• Differential imaging gel electrophoresis (2D-DIGE) [86–93];
• Specialized gel-based methods for studying specific protein species [67–69,77–80];
• Gel electrophoresis–liquid chromatography methods (GeLC) [103–105];
• Protein microarrays [143–146];
• Sample preparation for proteomic analysis [89,113–116];
• Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spec-

trometry [70,147,148];
• Surface-enhanced laser desorption/ionization time-of-flight (SELDI-TOF) mass spec-

trometry [149,150];
• Liquid chromatography–tandem mass spectrometry (LC-MS/MS) [54,151,152];
• Label-free quantification (LFQ) mass spectrometry [124–127];
• Isobaric tandem mass tagging (TMT) [128,131];
• Stable isotope labeling by amino acids in cell culture (SILAC) [130,134];
• Isobaric tagging for relative and absolute quantitation (iTRAQ) [128,129];
• Native mass spectrometry [153–155];
• Microproteomics using laser capture microdissection [156–158];
• Single-fiber proteomics [112,159];
• Enzyme-linked immunosorbent assay (ELISA) [160–162];
• Immunoblot analysis [163–165];
• Simoa bead-based immunoassay (SiMoA) [166–168];
• Microscopical analysis [169–172] including imaging mass cytometry (IMC) that utilizes

metal-labeled antibodies [173–175];
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• Flow cytometry [176–178];
• Protein interaction assays [179–181];
• Enzyme assays [182–184].

Table 1. Overview of key proteomic and biochemical techniques that are commonly used to study
skeletal muscles in health and disease.

Approach Bioanalytical Advantages Disadvantages/Limitations References

Two-dimensional gel electrophoresis
(2D-GE)

Two-dimensional gel electrophoresis has the ability
to separate intact proteoforms. Preset conditions,
such as pH ranges, size of the 2D gel and staining
methods, can be adjusted to increase resolution.

Straightforward to interface with many powerful
biochemistry techniques including

immunoblotting. Two-dimensional gels can be
imaged using stains or fluorescent dyes, including

labeling of PTMs.

Two-dimensional gel electrophoresis exhibits a
narrower dynamic range as compared to certain

LC-based separation methods. Difficult to resolve
very acidic or very basic proteins. Problematic

analysis of very low- or extremely
high-molecular-weight proteins.

[55–66,71]

Differential imaging gel
electrophoresis using fluorescence

two-dimensional difference gel
electrophoresis (2D-DIGE)

Two-dimensional difference gel electrophoresis
allows the simultaneous investigation and

comparison of three different samples on one
two-dimensional gel, thus reducing gel-to-gel

variability. Normalization within an experiment
can be carried out via the inclusion of an internal

control (such as CyDye2) in all sample sets.

A significant number of steps are involved, taking
multiple days to complete. Multiple phenotype

comparison is still a challenge using the
2D-DIGE technique.

[86–93]

Gel electrophoresis–liquid
chromatography (GeLC) methods

The initial 1D-GE step using the GeLC-MS/MS
technique allows for the efficient separation of
extremely large proteins that do not properly

separate in conventional 2D gels.

GeLC-based methods are based on crowded 1D gel
bands with the limited resolution of individual

protein species.
[103–105]

Protein microarrays

Microarray technology allows high throughput of
samples. Different formats are available for general

and targeted custom screening approaches.
Systems can be arrayed as semi-quantitative or

quantitative formats.

High-quality antibodies are not available for all
targets. Microarrays require two specific antibodies
for each target from the specific sample of interest.

[143–146]

Matrix-assisted laser
desorption/ionization time-of-flight

(MALDI-ToF) mass spectrometry

MALDI-ToF MS is characterized by a simple
operation mode and good mass accuracy, as well

as high resolution and sensitivity for peptide mass
fingerprinting (PMF). The method can be used for
profiling and imaging of proteins directly using

thin tissue sections (MALDI-IMS; imaging
mass spectrometry)

The sequence information provided by
MALDI-ToF MS is generally not as comprehensive
as that generated by LC-MS/MS. The method has
reduced success rates for identifying proteins that

are not in databases.

[70,147,148]

Surface-enhanced laser
desorption/ionization time-of-flight

(SELDI-ToF) mass spectrometry

SELDI-ToF MS allows for high-throughput
analyses. The preanalytical sample preparation is
rapid and streamlined due to the ability to achieve

chromatographic separation using a variety of
protein-chip surfaces.

Results are generally based on peptides and
smaller proteins (<30 kDa). Additional effort is
required to identify peaks of interest. Relatively
low resolution of MS scans and low sensitivity.

[149,150]

Label-free quantification (LFQ) mass
spectrometry

LFQ MS analysis does not require expensive
chemicals or metabolic tags, making it a

cost-effective proteomic method. The time needed
for sample preparation is significantly reduced due

to a straightforward workflow as compared to
labeling techniques.

Factors such as the peptide or spectral count have
limitations. Considerably more LC-MS time is
needed for sample analysis. Low-abundance

peptides may be underrepresented.

[124–127]

Isobaric tandem mass tagging (TMT)

The TMT method makes it possible to analyze a
significant number of samples that can be labeled

(18-plex). Specifically linked protocols, such as
synchronous precursor selection (SPS), can be

helpful in identifying and quantifying
low-abundance proteins.

During TMT experiments, replication in labeling
procedures and batch effects cannot be completely
uniform. The method is associated with a high cost

of reagents.

[128,131]

Stable isotope labeling by amino acids
in cell culture (SILAC)

For the SILAC approach, no in vitro labeling steps
are necessary in the experimental procedures.
Heavy and light amino acids share the same

physico-chemical properties.

SILAC has limited sample multiplexing
capabilities and can only be carried out using cell

culture or labeling of whole organisms.
[130,134]

Multiplex enzyme-linked
immunosorbent assay (ELISA)

The ELISA method can be conveniently used for
the verification of the proteomic identification of

distinct protein species. Multiplex ELISA
techniques use fewer wells and/or plates for

sample handling and have increased throughput
capabilities and the ability to develop

custom panels.

Identifying antibodies with high specificity is a
challenge due to issues with cross-reactivity.

Proteins that are present at different abundance
levels make linearity over a wide range of

concentrations difficult.

[160–162]
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Table 1. Cont.

Approach Bioanalytical Advantages Disadvantages/Limitations References

Microscopical analysis

Histological, histochemical and
immunofluorescence microscopical studies can be

employed to confirm proteomic results.
Verification analyses can be carried out with both

freshly dissected or frozen tissue samples for
single-cell analysis. The techniques allow the

subcellular localization of protein expression levels
in a tissue sample with a fast turn-around time to

achieve meaningful results. Of note, the recent
development of imaging mass cytometry using

metal-labeled antibodies has greatly improved the
scope of microscopical investigations.

Although these techniques provide data on the
single-cell level, the optimization and quantifying

results can be difficult. Immuno-histological
studies can be subject to human error. Often, a

highly trained histopathologist is needed for the
proper interpretation of results. Imaging mass

cytometry is associated with high costs due to the
production of special antibodies.

[169–175]

Flow cytometry (FC)

FC allows simultaneous cell biological analysis
with multiple parameters. The method identifies

small populations of cells within complex samples
and allows for the quantification of

fluorescence intensities.

For a successful analysis, the method requires the
careful choosing of a suitable combination of

fluorochrome conjugates. Complex instruments
are prone to analytical problems.

[176–178]

3. Skeletal Muscle Heterogeneity and Muscle Proteomics

Skeletal muscle heterogeneity, cellular complexity and multi-systems crosstalk present
serious bioanalytical challenges for systematic proteomic and biochemical studies in basic
and applied myology. The skeletal muscle proteome can be defined as the totality of all
protein species, i.e., proteoforms and their dynamic PTMs, that are produced at a given
time by the muscle-specific expression profile of the genome [185]. It is crucial to keep in
mind that skeletal muscle tissues are markedly heterogeneous in their cellular composition.
This cell biological fact has to be taken into account during omics-type analyses, including
comparative skeletal muscle tissue proteomics [18]. Proteoform heterogeneity due to
genomic, post-transcriptional and post-translational effects has a profound influence on
skeletal muscle proteome diversity [19,186].

3.1. Tissue Heterogeneity and Cellular Complexity of Skeletal Muscles

Multi-nucleated myofibers contribute to 47% of the biomass in the average human
body [4] and are involved in diverse biological functions, such as voluntary movements,
posture, bioenergetic and metabolic integration, muscle–skeletal balance, bodily protection,
the regulation of thermogenesis, respiration, communication and the provision of an
abundant protein reservoir during extended periods of starvation [187–189]. The proper
physiological functioning of the voluntary contractile system is based on highly coordinated
interactions between the central and peripheral nervous systems on the one hand and the
various subtypes of skeletal muscles that are associated with a network of capillaries,
elaborate layers of extracellular matrix (ECM) and embedded satellite cell populations on
the other hand [188]. Individual muscles usually contain a mixture of slow and fast fiber
populations plus hybrid fibers. The main biological features that can be used to differentiate
between the main myofiber types are histological, physiological, biophysical, metabolic
and biochemical properties [190].

Slow-oxidative type I fibers are characterized by small-size motor neurons, relatively
small cell diameter, high capillary density, prominent mitochondrial density, slow con-
traction time with low levels of force production, aerobic activity with high oxidative
capacity based on fatty acid oxidation, and low glycolytic metabolism, which is associated
with high resistance to fatigue [191]. In contrast, faster-contracting type II fibers exhibit
larger-size motor neurons, larger cell diameter, lower capillary density, lower mitochondrial
density, fast contraction time with high levels of force production, predominantly anaerobic
activity with low-to-intermediate oxidative capacity, and high glycolytic activity based
on the metabolization of glucose/glycogen, which is associated with low resistance to
fatigue [191]. Type II fibers can be further subdivided into fast-oxidative/glycolytic type
IIa and fast-glycolytic type IIx myofibers in mature human muscles [192]. The category
of hybrids ranges from type I/IIa to type IIa/IIx myofibers. In small rodents, which are
frequently used as animal models in muscular dystrophy research [193], a third subtype of
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extremely fast-twitching myofibers is present in their musculature, which is classified as
type IIb [191].

3.2. Protein Markers of Myofiber Specification

Reliable biochemical/proteomic markers for the different myofiber types are repre-
sented by the isoforms of the contractile protein myosin II. Myosin heavy chains (MyHC)
of the types MyHC-1/beta (MYH7 gene), MyHC-2a (MYH2 gene), MyHC-2x (MYH1 gene)
and MyHC-2b (MYH4 gene) are superb indicators of the main fiber types I, IIa, IIx and
IIb, respectively [190–192]. Developing and specialized types of skeletal muscles are also
associated with particular myosin isoforms, such as MyHC-embryonic (MYH3 gene) and
MyHC-neonatal (MYH8 gene) during myogenesis [194,195] and MyHC-eom (MYH13 gene)
and MyHC-15 (MYH15 gene) in extraocular muscles [196,197]. A detailed review has
recently outlined myosin isoform diversity in the contractile apparatus of skeletal mus-
cles [49]. Fiber type specification is highly plastic, and together with the overall regulation
of muscle tissue mass, is heavily influenced by neuromuscular activity levels, load bearing,
diverse hormonal effects and nutritional supply [198–200]. A variety of histological, histo-
chemical, immunofluorescence microscopical and biochemical methods is routinely used
for fiber typing [169–172,201] but has recently been superseded by more sophisticated and
high-throughput proteomic methodology [106,112,202,203].

3.3. Cellular Complexity of the Muscle Environment

The cellular environment of contractile fibers is highly complex and contains myo-
genic stem cells (MuSCs), mesenchymal stromal cells (MSCs), such as fibro/adipogenic
progenitors (FAPs), and resident macrophages [204–206]. Muscle-specific satellite cells
are positioned between the sarcolemma membrane and basal lamina. Following physical
injury or disease, the MuSC pool is activated [207]. High levels of cellular proliferation are
involved in the self-renewal of the satellite cell population, and differentiation produces
myogenic precursor cells for repair mechanisms [208]. Biochemical markers of inactive
satellite cells, activated myogenic cells, myoblasts and fused myotubes are differential
expression patterns of CD34 and the transcription factors Pax7, Foxo, MyoG/myogenin,
MyoD1 and Myf5 [209–211].

The complex cellular arrangement of the mature neuromuscular system creates a
protected, regeneratable and highly flexible pool of motor units per individual skeletal
muscle. The extrafusal myofiber population that forms a distinct motor unit usually receives
its innervating signals from the axonal branches of a single α-motoneuron. Thus, the crucial
muscle–nerve connections regulate the patterns of excitation–contraction–relaxation cycles.
Coordinated contractions depend on the joined forces that are generated by all motor
units forming a physiological motor pool within a single skeletal muscle [212]. Therefore,
crude extracts from muscle biopsies are heterogeneous in composition. Of note, due to the
specific nature of muscle tissues, which are characterized by large and elongated myofibers,
a high abundance of sarcomeric structures and several layers of ECM, in combination with
associated issues of subcellular fractionation and protein extraction procedures, only a
near-to-complete coverage of the skeletal muscle proteome is currently possible [213].

3.4. Multi-System Interactions of Skeletal Muscles and the Muscle Secretome

Crucial physiological parameters of contractile muscle tissues are multi-systemic inter-
actions that are provided by body-wide skeletal muscle signaling involving myokines [214],
in combination with a diverse array of cytokines, hormones, osteokines, adipokines and
growth factors [215–217]. Myokines can be defined as peptides or proteins that are re-
leased or secreted by skeletal muscles into the circulatory system and exert autocrine,
paracrine and endocrine effects. Hence, these muscle-derived signaling factors influence
the muscle itself at the local level, as well as trigger changes in short- or long-term distant
cells/tissues/organs [214]. The secretome of skeletal muscles has been characterized by
MS-based proteomics [218] and a large number of myokines have been identified in de-
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veloping, regenerating and matured muscles [219–221]. Major patterns of organ crosstalk
and signaling axes are summarized in Figure 2, including the brain, skeletal muscle, heart,
bone, liver, gut and fatty tissue [214–217].
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Figure 2. Body-wide signaling axes that involve the neuromuscular system. Shown are major patterns
of organ crosstalk that involve voluntary muscles, the central nervous system, bone, liver, kidneys,
the gastrointestinal tract, fatty tissue, the immune system, the lungs and the heart. At the level of
the neuromuscular system, intensive signaling events occur between matured myofibers and their
innervating motoneuron, as well as between contractile fibers and their environment consisting of
the extracellular matrix and stem cells that can be activated to form myogenic precursors during
repair processes. Major signaling factors that are involved in muscle adaptations, myofiber repair,
muscle–bone interactions, activation of the muscle-associated immune response, metabolic regulation
and bioenergetic processes include myokines, which constitute the dynamic skeletal muscle secretome,
as well as a variety of hormones, growth factors, cytokines, osteokines and adipokines.

An excellent example of how crosstalk between skeletal muscles and other organ
systems can trigger severe pathophysiological changes is muscle-associated rhabdomy-
olysis. This disorder can be triggered by diverse initiators, such as crush injury, sepsis,
drug overdose or extreme physical exertion [222], as well as being based on genetic ab-
normalities [223]. During an episode of rhabdomyolysis, the disintegration of skeletal
muscles releases a large number of proteins and electrolytes into the circulatory system,
causing downstream dysfunction that may lead to kidney failure and heart fibrillation.
Renal abnormalities are often linked to aggregates of large amounts of released muscle
myoglobin and cardiac issues are associated with elevated levels of K+ ions in the circula-
tory system [224]. The abnormal brownish staining of urine due to the massive release of
muscle proteins is a key diagnostic indicator of rhabdomyolysis. Therefore, the proteomic
profiling of urine suggests itself as an ideal non-invasive diagnostic tool to monitor the
extent of body-wide effects due to the release of muscle-associated proteins during an acute
episode of rhabdomyolysis [225], which can be life-threatening [222].

3.5. Skeletal Muscle Proteomics

The proteomic profiling of skeletal muscles is concerned with both the detailed intra-
proteomic analysis of the heterogenous cell types that are present within the neuromuscular
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system and inter-proteomic surveys focusing on the crosstalk between skeletal muscles
and other organs via the circulatory system. Based on the dynamic nature of proteoforms
as the basic units of the proteome [12–15], skeletal muscle proteomics attempts to increase
our biochemical and pathophysiological knowledge of protein changes in health and dis-
ease [18–20,48]. However, since skeletal muscle tissues are heterogeneous in their cellular
composition, this biological fact is reflected by the diverse constitution of the accessible
muscle proteome [185]. Skeletal muscles contain both tissues that are difficult to homoge-
nize and comprise a large amount of sarcomeric proteins, membrane-associated proteins
and relatively insoluble proteins of the ECM, making the proteomic analysis of total extracts
a difficult task. Proteome-wide effects on skeletal muscles are routinely studied using cul-
tured muscle cells, human biopsy specimens and muscles derived from animal models [48].
The collection of mass spectrometrically identified and muscle-associated proteins consists
of over 10,000 individual species. The members of the core muscle proteome have been
established by the systematic survey of various skeletal muscle types [226–232] and focused
analyses of slow versus fast subtypes of myofiber populations [233–242]. The MS-based
analysis of skeletal muscle specimens is routinely carried out with crude total extracts or
subcellular fractions using sophisticated biochemical separation methodology. Figure 3
summarizes the subdisciplines involved in the integrative proteomic analysis of the skeletal
muscle system.
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Figure 3. Overview of the main approaches used in integrative proteomics. Listed are organ-specific
proteomics that focuses on the analysis of individual skeletal muscles, system-specific proteomics
for the in-depth analysis of the nerve–muscle connection and motor units, and subproteomics that
centers on the mass spectrometric characterization of distinct organelles and supramolecular protein
assemblies. Organ-crosstalk proteomics is concerned with the analysis of the circulatory biofluid
proteome and how the release of myokines affects other organ systems in the body.

It is important to stress that changes in non-muscle phenotypes in muscular dystro-
phies are most likely due to a combination of both organ crosstalk via the circulatory system
and intrinsic changes within individual tissues/organs. This is especially relevant to DMD,
as it is known that the DMD gene contains several promoters that produce eight different
tissue-specific dystrophin isoforms, as outlined in the below section on the genetic basis
of dystrophinopathy. The tissue-specific expression of dystrophins can be differentially
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affected by various mutations in the DMD gene. Thus, not all non-muscle effects are due to
organ crosstalk but can be based on mutation-specific alterations in non-muscle tissues.

The isolation of distinct muscle fractions most frequently involves the microdissec-
tion of cellular structures or optimized tissue homogenization followed by differential
centrifugation, density gradient ultracentrifugation and/or biochemical affinity isolation
approaches [48–50]. Affinity purification can be carried out with pharmacological agents,
immobilized lectins or suitable antibodies. The most intensively studied subcellular frac-
tions derived from myofibers are the sarcolemma, transverse tubules, sarcoplasmic retic-
ulum (longitudinal tubules and terminal cisternae region), triad junctions, mitochondria
(outer membrane, contact sites, inner membrane and matrix), nuclei, ribosomes, Golgi
apparatus, lysosomes, peroxisomes, proteasome, sarcosol, the sarcomeric acto-myosin
apparatus, the auxiliary titin and nebulin filament structures, the intracellular cytoskeletal
network, costameres, and the various layers of the ECM, including the basal lamina, en-
domysium, perimysium and epimysium [213]. Single-myofiber proteomics, which presents
a specialized form of single-cell proteomics [44] that is applied to the MS-based analysis
of contractile fibers, is becoming increasingly important in the field of basic and applied
myology [112,202,203,237–239].

4. The Pathoproteomic Profiling of Duchenne Muscular Dystrophy
4.1. The Genetic Basis of Dystrophinopathy

Primary abnormalities in the DMD gene are the underlying cause of dystrophinopathies [28],
a group of progressive muscle-wasting diseases that include the severe Duchenne type of muscu-
lar dystrophy in early childhood [23,24] and the more benign and later-onset Becker’s muscular
dystrophy [243]. This classifies dystrophinopathies as monogenetic diseases that are charac-
terized primarily by chronic muscle wasting due to a main cellular defect in the membrane
cytoskeleton. The degeneration of muscle fibers affects almost exclusively males due to the loca-
tion of the defective gene within the Xp21.2 region on the short arm of the X-chromosome [26].
Diverse types of genetic abnormalities were shown to be associated with dystrophinopathies,
including splice site mutations, nonsense point mutations, missense point mutations and mid-
intronic mutations, as well as small and large insertions, small and large deletions and large
duplications [244–246].

The almost complete loss of the full-length dystrophin isoform Dp427-M is the initial
trigger that causes progressive myofiber degeneration. However, the 79-exon-spanning
DMD gene with its 2.4 million bases has a highly complex genomic organization consisting
of several promoter regions that are involved in the production of eight different and
tissue-specific dystrophins [23]. Dystrophin proteins are represented by the full-length
versions Dp427-M (muscle), Dp427-B (brain) and Dp427-P (Purkinje cells) and the shorter
isoforms Dp260-R (retina), Dp140-B/K (brain/kidney), Dp116-S (Schwann cells), Dp71-G
(ubiquitous) and Dp45 (nervous system) [247]. This diversity of tissue-specific dystrophin
isoforms, which are affected differentially by particular mutations in the DMD gene, and
secondary effects of muscle disintegration on other organs cause body-wide alterations in
muscular dystrophy [29–31] and multi-system dysfunction [32–34], as discussed in detail
in the below sections.

4.2. Pathoproteomics of Chronic Muscle Wasting in Dystrophinopathy

In skeletal muscle, the almost complete deficiency in the full-length dystrophin protein
triggers an unstable membrane cytoskeleton and the collapse of the dystrophin-associated
glycoprotein (DGC) complex, consisting of dystroglycans, sarcoglycans, sarcospan, dys-
trobrevins and syntrophins [248–251]. The disturbed trans-sarcolemmal linkage, which is
usually provided by tight dystrophin/dystroglycan interactions within the DGC [252–254]
causes the loss of the organizing dystrophin node [254]. In healthy muscles, the dystrophin-
containing node of the sarcolemma is defined as the integrating structure of the intracellular
cytoskeleton, the central provider of lateral force transmission, the plasmalemmal hub
of fiber stabilization and a key point for cellular signaling mechanisms at the myofiber
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periphery. In muscular dystrophy, the collapse of the dystrophin node results in impaired
sarcolemmal integrity, reduced lateral force transmission at weakened costamere structures,
and pathophysiological Ca2+ influx into the sarcosol, which in turn triggers an increase
in proteolytic degradation of muscle proteins [255–257]. The main feature of the cellular
pathogenesis of DMD is progressive myonecrosis, which is accompanied by chronic in-
flammation, reactive myofibrosis and an impaired regenerative capacity due to satellite
cell dysfunction, as recently reviewed [258]. Skeletal muscles are characterized by the
presence of extremely large proteins, i.e., giant proteins such as titin and nebulin [99], as
well as many distinctly hydrophobic membrane proteins [50] and complex layers of mostly
insoluble ECM components [259]. This makes proteomic studies of total tissue extracts
technically challenging. The extensive listings of proteome-wide changes in dystrophic
muscles have previously been published in extensive reviews. These articles have summa-
rized the findings from systematic proteomic surveys using both patient biopsy material
and various animal models of dystrophinopathy [260–265].

Individual studies have confirmed complex proteomic changes due to myonecrosis
and myofibrosis, including altered expression levels of proteins involved in the orga-
nization of the cytoskeleton, maintenance of the ECM, energy metabolism, the cellular
stress response and the excitation–contraction–relaxation cycle [260,263]. Bioanalytical
approaches have employed both top-down proteomics and bottom-up proteomics with
crude extracts and select subcellular fractions. The main methods used for the screening of
dystrophic muscle specimens included 2D-GE, 2D-DIGE, immuno-precipitation, affinity
purification, chemical cross-linking, liquid chromatography, ICAT, SILAC, iTRAQ, MudPIT,
MALDI-ToF MS and LC-MS/MS analysis [172,264,265]. Please see the above section on
proteomic technology for details on these methods and their analytical advantages versus
technical limitations. Proteins with a significant change in abundance were identified in
a variety of skeletal muscle types [264]. The most prominent and reproducibly identified
proteins include the adenylate kinase isoform AK1, annexins, small heat shock proteins,
desmin, vimentin, tubulins, collagens, calsequestrin, B-type lamin, myoferlin, dysferlin,
ferritin, carbonic anhydrase isoform CA3, the fatty acid-binding protein FABP3 and various
contractile proteins [134,148,180,232,266–292]. Independent verification analyses using
comparative immunoblotting, enzyme assays, histochemistry and immunofluorescence
microscopy were employed to confirm proteome-wide changes in dystrophic skeletal
muscles [172].

4.3. Pathoproteomics of Multi-System Dysfunction in Dystrophinopathy

Besides chronic skeletal muscle wasting [23,24] and impaired neuromuscular trans-
mission [293], Duchenne patients suffer from multi-system dysfunction [29–31] involving
a variety of tissue and organ systems [32–34]. These body-wide abnormalities include
cardiomyopathy [294–296], respiratory failure [297–300], liver atrophy [301,302], renal fail-
ure [303–306], bladder dysfunction [307–310] and gastrointestinal complications [311–313],
as well as bone fragility [314] and scoliosis [315–317]. A subset of Duchenne patients
suffers from neurological deficiencies that manifest themselves as neurodevelopmental
delays, emotional disturbances, mental retardation and behavioral problems [318–322].
The main non-skeletal muscle organ systems that are affected in dystrophinopathy include
the following:

• Central nervous system: cognitive impairments, attention deficit, altered emotions,
impaired language, memory deficiencies and altered coordination;

• Peripheral nervous system: abnormal transmission at nerve–muscle connections;
• Cardio-respiratory system: late-onset cardiomyopathy, cardio-respiratory syndrome,

respiratory insufficiency;
• Liver: enlargement, steatosis, fibrosis, atrophy and ectopic fat deposition;
• Renal system: kidney failure, cardio-renal syndrome, hyperfiltration, hypertension

and ectopic fat deposition;
• Bladder: dysfunction of the urinary tract and bladder;
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• Bone: increased risk of bone fragility;
• Spine: high risk of development of scoliosis;
• Gastrointestinal system: delayed gastric emptying and pancreatic dysregulation;
• Immune system: hyperactivity causing chronic inflammation, spleen adaptations.

Although the detailed proteomic analysis of multi-system dysfunction in dystrophinopa-
thy clearly lags behind the exhaustive MS-based analysis of dystrophic skeletal mus-
cles [260–265], a small number of studies have been initiated to establish a more compre-
hensive picture of whole-body effects due to dystrophin deficiency. The pathophysiological
status of non-skeletal muscle tissues has been mostly studied with the help of established
animal models of dystrophinopathy and has included the investigation of the heart, liver,
kidney, stomach/pancreas interface, spleen and brain.

Proteomic surveys of dystrophin-deficient hearts have been carried out by both top-
down/gel-based proteomics and bottom-up proteomics [323–325]. Cardioproteomics is an
established field within the systems biological multi-omics approach to determine the un-
derlying mechanisms of heart disease [326–329]. Focusing on X-linked muscular dystrophy,
biochemical, physiological and proteomic studies have revealed substantial changes in key
components of the contractile apparatus, ion-regulatory elements, proteins involved in the
maintenance of the cytoskeleton, components that are central to the stabilization of the basal
lamina, molecular chaperones that mediate the cellular stress response, and proteins that are as-
sociated with oxidative and glycolytic energy metabolism in cardiomyocytes [95,330–338]. These
alterations in the cardiac protein constellation agree with the cardiomyopathic complications
seen in dystrophic patients [294–296]. In contrast to skeletal muscles, the DGC is not restricted
to the sarcolemma in the heart but also localizes to the transverse tubular membrane system in
cardiomyocytes [339]. These cell biological differences are reflected on the biochemical level by
a slightly different composition of the dystrophin complexome in voluntary myofibers versus
myocardial contractile cells [333,340]. This might explain why laminin is not majorly affected in
dystrophic skeletal muscles but was found to be reduced in the basal lamina of dystrophic heart
cells [335]. Protein perturbations in the dystrophin-lacking heart can be linked to muscle cell
degradation, interstitial fibrosis and inflammation [323]. Importantly, the dystrophinopathy-
related dysregulation of the heart and adaptations in the cardiovascular system are probably
linked to detrimental changes in the overall circulatory system [30].

A late-onset pathophysiological effect of poor circulation due to a chronically weak-
ened heart could trigger a lack of sufficient oxygen and nutritional supply to organs such
as the liver and kidneys [32–34]. The proteomic screening of the liver from the mdx-4cv
model of dystrophinopathy revealed changes in proteins involved in the metabolism of
carbohydrates, fatty acids and amino acids, as well as components that are associated
with the cellular stress response, the regulation of ion homeostasis and biotransforma-
tion [341]. This agrees with the observed liver abnormalities in Duchenne patients [301,302].
A striking finding was the MS-based demonstration of elevated levels of FABP5, a major
member of the large family of fatty acid-binding proteins [342]. Increased expression of the
FAPB5 isoform was confirmed by immunoblot analysis and confocal microscopy. Of note,
Sudan Black staining labeled fatty deposits in the liver of dystrophic mice. These cellular
changes in mdx-4cv hepatocytes agree with high levels of FABP5 and suggest the occurrence
of altered patterns of fatty acid transportation and ectopic fat deposition in the liver in
DMD [341]. In analogy to hepatic tissue, the proteomic analysis of serum from the same
dystrophic mouse mutant was characterized by a high concentration of FABP5 [343,344],
making it a potential serum biomarker candidate for the monitoring of hepatic alterations
in association with dystrophinopathy [264,265,345].

In addition, the renal system can be severely impaired in some patients suffering
from DMD and this might also be linked to abnormal circulation [303–306]. The proteomic
analysis of mdx-4cv kidneys showed similar findings as already described for the liver in
dystrophic mice, i.e., elevated levels of distinct fatty acid-binding proteins [346,347]. In the
case of the kidneys, the FABP1 isoform was identified by MS-based analysis in association
with ectopic fat deposits [346]. These results on the liver FABP5 and kidney FABP1 isoforms
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do not directly demonstrate a pathophysiological link between the increase in FABP levels
and the accumulation of intracellular fat deposits. However, they agree with the disturbed
fat metabolism in DMD. The FABP3 isoform is present at high levels in the heart and
skeletal muscles, and proteomics has identified it as a robust biomarker of aerobic capacity
in muscle [231]. Dystrophic skeletal and cardiac muscle tissues exhibit a drastically reduced
concentration of FABP3 [232,274–279,290,335], which is mirrored by elevated FABP3 levels
in the serum of Duchenne patients and mdx-type mouse models [348–351]. Hence, the
analysis of serum FABP3, FAPB5 and FABP1 isoforms can be useful for evaluating the
shedding or release of excess fatty acid-binding proteins from muscle tissues, the liver and
kidneys, respectively, in the dystrophic phenotype [342]. Proteomic biomarker discovery
for multi-system changes in dystrophinopathy is discussed in more detail in the below
section.

An extensive immune response is observed in X-linked muscular dystrophy, causing
chronic inflammation in the skeletal musculature [352–354] which presents an excellent
opportunity for therapeutic interventions [355–358]. Both, the innate immune system
and adaptive immune responses intermingle in a complex relationship in dystrophinopa-
thy [359]. Besides activation of resident macrophages within the skeletal muscular system,
cellular invasion by immune cells includes the movement of regulatory T cells, CD4+
T cells, CD8+ T cells, natural killer cells, eosinophils and monocytes into degenerating
myofibers as a response to muscular dystrophy [360–363]. In muscular dystrophy, splenic
abnormalities include morphological alterations to lymph nodes in the white pulp region
of the spleen and adapted pools of splenic inflammatory monocytes, which are associated
with drastically elevated levels of immune cell migration from the splenic reservoir to
damaged muscles [364,365]. Since the spleen represents a key secondary lymphoid organ
whose biological functions are involved in antigen detection, antibody production and the
efficient removal of abnormal erythrocytes [366,367], splenic abnormalities may have body-
wide consequences. The linkage between dystrophic skeletal muscles and the lymphoid
system was assessed by proteomics [124,368]. Significant changes in the mdx-4cv spleen
were identified in proteins that participate in cellular signaling, metabolic pathways and
cytoarchitecture [368]. The spleen is probably involved in a pathophysiological crosstalk
with dystrophin-deficient myofibers [34].

Gastrointestinal dysfunction in muscular dystrophy [29,311–313] was evaluated by an
MS-based study focusing on proteome-wide changes at the interface between the pancreas
and the muscular stomach wall of the mdx-4cv model of DMD. Lower levels of dystrophin
and its associated glycoproteins, as well as laminin, filamin and titin, suggested a loss of
cytoskeletal integrity leading to abnormal smooth muscle function in the gut [369]. The
below section lists promising biomarker candidates of the above-discussed non-skeletal
muscle tissues in X-linked muscular dystrophy.

Psychosocial and psychological care is an integral part of the management of Duchenne
patients [31]. Since a sub-group of dystrophic children is afflicted by complex neurodevel-
opmental and neurological deficiencies, it was of interest to study potential changes in the
dystrophin-deficient brain proteome. The mouse brain is frequently used in biochemical,
proteomic and cell biological studies in order to characterize the potential involvement of
the central nervous system in neuromuscular diseases [370]. Proteomic screening of the
mdx-4cv brain revealed a decreased abundance of syntaxin-1B and the syntaxin-binding
protein STXBP1, which are involved in synaptic vesicle docking mechanisms at the pre-
synaptic membrane and the regulation of neurotransmitter release from neurons [371,372].
Key brain proteins with an increased abundance were identified as the glial fibrillary
acidic protein (GFAP), the annexin isoform ANXA5, the neuron-specific enzyme ubiquitin
carboxyl-terminal hydrolase isozyme L1 and the neuronal cytomatrix protein bassoon.
GFAP is a member of the intermediate filament system and is tightly associated with
astrocytes in the central nervous system [373–375]. Thus, increased levels of GFAP in the
mdx-4cv brain, which were demonstrated by proteomics, comparative immunoblotting
and immunofluorescence microscopy [371], strongly suggest the presence of astrogliosis
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being part of the neurodegenerative process in DMD [34]. However, astrogliosis appears to
be a frequent occurrence in the brain in response to general tissue damage [373], as was
recently shown by the proteomic analysis of the wobbler mouse model of amyotrophic lat-
eral sclerosis [376]. This reduces the diagnostic usefulness of GFAP as a specific biomarker
of muscular dystrophy-related changes in the central nervous system but does not limit
its general suitability as an astrogliosis marker protein. Proteomics suggests neverthe-
less that neuronal disturbances and reactive astrogliosis might play a central role in the
molecular pathogenesis of brain abnormalities in dystrophinopathy [371] that may lead to
mental retardation, behavioral problems, cognitive impairments, emotional disturbances,
attention deficit, impaired language, memory deficiencies and altered coordination in
DMD [377–379].

Figure 4 gives an overview of the complexity of the multi-system pathology of dys-
trophinopathy [34] and how MS-based analyses can be used for interproteomic profiling.
A crucial aspect of future muscular dystrophy research should be the establishment of
a more comprehensive picture of pathophysiological inter-organ crosstalk between the
various bodily systems in dystrophic patients. Combing findings from organ proteomics
with biofluid proteomics could help us better understand the involvement of (i) skeletal
muscle–bone interactions, (ii) the brain–muscle signaling axis, (iii) metabolic integration at
the level of liver, fat and muscle, (iv) muscle disintegration in the context of renal dysfunc-
tion and gastrointestinal problems, (v) the cardio-respiratory system, and (vi) the immune
system. The prediction of the severity of the disease phenotype in individual Duchenne
patients and potential effects on the whole body based on specific mutations would be
an important future tool for clinical work [380]. The relevance of proteomic analyses is
summarized in Figure 4. Interproteomic profiling should lead to a better comprehension
of the pathophysiological complexity of muscle-associated changes in combination with
multi-system effects for biomarker discovery, as further discussed in the below section.
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Figure 4. The pathoproteomic profile of multi-system changes in Duchenne muscular dystrophy. The
diagram outlines the complexity of body-wide alterations due to dystrophin deficiency and illustrates
how the systematic application of a comprehensive interproteomic profiling approach could help us
better understand the multi-system dysfunction in dystrophinopathy.

4.4. Proteomic Biomarkers of Muscular and Multi-System Changes in Dystrophinopathy

Besides testing novel pharmacological strategies [257,381–384] and immunomodu-
latory interventions [355–358,364], a variety of innovative therapeutic approaches are
currently evaluated in the field of muscular dystrophy [385–389], including exon skip-
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ping [148,390–393], genomic editing [394–396], codon read-through [397], gene replace-
ment with the help of adeno-associated viral vectors [398–402], dystrophin substitution
with its autosomal homolog utrophin [403–405], and muscle stem cell therapy [406–409].
Hence, for the optimum pre-clinical testing of new therapies, the clinical evaluation of
diverse patient cohorts during the various phases of clinal studies/trials, and long-term
therapeutic monitoring, robust and specific biomarkers for the routine screening of the
status of dystrophic patients are required [144,264,265,410,411]. Ideal protein biomarkers
would be measurable in a non-invasive, or at least minimally invasive, way and be suitable
for repeated sampling procedures [325,345,410–412].

Importantly, biomarker detection should not be overly influenced by age, gender,
ethnicity, circadian rhythm, seasonal impact, co-morbidities and supportive treatments.
Of note, the determination of biomarkers should not be susceptible to the generation of
high levels of false positives and false negatives. The assay system should be optimized
for a proper balance between specificity and sensitivity to measure the biomolecule of
interest. The clinical application of a biomarker signature, rather than the usage of a single
and often not completely reliable marker molecule, can be advantageous to cover more
than one particular aspect of a complex pathophysiological process that may considerably
change over time [413]. Thus, biomarkers that are highly suitable for initial screening and
differential diagnostic purposes might not be ideal for prognosis, the testing of potentially
adverse side effects and extended periods of therapeutic monitoring.

The main subtypes of proteomic biomarkers include the following:

• Susceptibility markers: for risk assessment of potential disease initiation;
• Diagnostic markers: for initial detection of a specific disease process;
• Prognostic markers: for envisaging disease progression and adverse clinical events;
• Predictive markers: for differential patient screening and individual sensitivities;
• Pharmacodynamic markers: for assessing the body’s response to a specific treatment;
• Therapeutic monitoring markers: for the repeated assessment of disease status follow-

ing therapeutic intervention;
• Safety-related biomarkers: for determining potential adverse side effects.

Of special interest are biofluid markers that can be easily accessed in a simple, cost-
effective, safe, non-invasive and pain-free way, such as biomolecules that are present in
sufficient abundance in urine or saliva, or at least be testable in a minimally invasive
procedure using serum/plasma-associated biomarkers. The routine usage of these types of
disease markers would have several advantages over invasive muscle biopsy procedures.
Although the histological and histochemical analysis of muscle tissue biopsies is highly
useful for determining the various cell biological aspects of pathological changes, the poten-
tial occurrence of fiber type shifting, reactive mechanisms such as fibrosis and alterations
in cellular components of interest [169–172], needle or open biopsy procedures are often
associated with higher costs, more complex harvesting and handling of tissue specimens,
patient anxiety, tissue damage triggering inflammatory responses, potential infection and
usually a lack of capacity for repeated sampling approaches [414–417].

Routinely used general muscle damage markers, assayed alone or in combination,
include the muscle-specific isoform of creatine kinase, the carbonic anhydrase isoform
CA3, troponin subunit TnI, myosin light chain MLC1, fatty acid-binding protein FABP3,
myoglobin, aspartate transaminase, enolase, aldolase, lactate dehydrogenase, alanine
aminotransaminase and hydroxybutyrate dehydrogenase [413,418–420]. An altered concen-
tration of these types of proteins is often observed after crush injury or strenuous physical
exercise but also in association with a variety of neuromuscular diseases, autoimmune
disorders, toxic insults, body-wide inflammation, infectious diseases, sepsis, alcoholism
and drug abuse. It is therefore imperative to identify more specific biomarkers of dys-
trophinopathy that are not changed by other types of physiological or pathobiochemical
challenges to the neuromuscular system.

Figure 5 summarizes the findings from major biochemical and proteomic studies
aimed at the identification of biomarker candidates that are characteristic of both tissue-
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related changes and the extent of the release of muscle proteins from dystrophic myofibers
and their surrounding tissues and extracellular environment. The full names of abbrevi-
ated protein species are listed in the figure legend. The upper part of the diagram lists
skeletal muscle tissue markers related to (i) the disintegration of sarcolemmal integrity
and initiation of myonecrosis (members of the dystrophin complex, such as dystrophin,
dystroglycans and sarcoglycans), (ii) abnormal Ca2+ homeostasis triggered by the influx of
ions into the sarcosol through the damaged sarcolemma membrane and impaired luminal
Ca2+ buffering (Ca2+-binding proteins calsequestrin and sarcalumenin), (iii) cycles of tissue
regeneration and muscle repair (myoferlin, dysferlin, annexins, CD34 and cadherin-13),
(iv) intracellular compensation of dystrophin deficiency by up-regulation of other types of
cytoskeletal components (vimentin, desmin, and tubulin chains alpha-1B, alpha-1C, alpha-8
and beta-2A), (v) macrophage invasion and the triggering of chronic inflammation (cathep-
sin B, secreted phosphoprotein SPP1 and lysozyme), (vi) an increase in the cellular stress
response by elevation of the abundance of small heat shock proteins (αB-crystallin/HspB5
and cardiovascular cvHsp/HspB7) and (vii) extensive reactive myofibrosis (matricellular
protein periostin, collagens such as COL6, fibronectin, dermatopontin, biglycan, lumican
and asporin).
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Figure 5. Overview of biomarker candidates of dystrophinopathy as determined by biochemical
screening and mass spectrometry-based proteomics. Listed are both tissue-associated changes and
biofluid-related alterations in specific protein species. Skeletal muscle tissue markers are categorized
according to their involvement in myofiber degeneration, abnormal calcium handling, regeneration
and repair mechanisms, compensatory processes, chronic inflammation and macrophage invasion,
the cellular stress response and reactive myofibrosis. Individual muscle-derived biofluid markers
were identified as intact proteins or fragments, as in the case of the giant protein titin. Non-skeletal
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muscle markers are listed for proteomic changes in the brain, heart, liver, kidney, stomach and spleen.
Non-muscle biofluid markers are described for the differential analysis of changes in skeletal muscle
versus the heart, the analysis of the liver and functional evaluation of the kidneys. Increases versus de-
creases in biomarkers are marked by green and red arrows, respectively. Abbreviations used: ACSM,
acyl-CoA synthetase medium chain; ADAM, disintegrin and metalloproteinase domain-containing
protein; AGER, advanced glycosylation end-product specific receptor; AK, adenylate kinase; ALT,
alanine aminotransaminase; ANGP, angiopoietin; ASPN, asporin; AST, aspartate transaminase;
ANXA, annexin A; BNG, biglycan; BOC, brother of CDO (CAM-related/down-regulated by onco-
genes); C5-b-C6, complement components; CA, carbonic anhydrase; CALU, calumenin; CAMK,
Ca2+/calmodulin-dependent protein kinase; CCL, C-C motif chemokine ligand; CD34, hematopoietic
progenitor cell antigen CD34; CF, coagulation factor; CDH, cadherin; CKM, creatine kinase, muscle
type; CNS, central nervous system; GLUD1, glutamate dehydrogenase; CNTN, contactin; COL,
collagen; CSQ, calsequestrin; CSRP, cysteine- and glycine-rich protein; CST, cystatin; cTNI, cardiac
troponin I; CTSB, cathepsin B; CXCL, C-X-C motif chemokine ligand; DES, desmin; DG, dystrogly-
can; Dp427, dystrophin; DPT, dermatopontin; DYSF, dysferlin; ETFA, electron transfer flavoprotein
subunit alpha; FABP, fatty acid-binding protein; FGG, fibrinogen gamma chain; FN, fibronectin; FTH,
ferritin heavy chain; GDF, growth differentiation factor; GFAP, glial fibrillary acidic protein; GP, gly-
coprotein; HP, haptoglobin; Hsp, heat shock protein; IL, interleukin; KLK, kallikrein; LAM, laminin;
LAMP, lysosomal-associated membrane protein; LEP, leptin; LDH, lactate dehydrogenase; LUM,
lumican; LYZ, lysozyme; MAPK, mitogen-activated protein kinase; MB, myoglobin; MDH, malate
dehydrogenase; MLC, myosin light chain; MMP, matrix metallo-proteinase; MSTN, myoststin; MTTP,
microsomal triglyceride transfer protein; MYOM, myomesin; MYOF, myoferlin; OMD, osteomodulin;
POSTN, periostin; RPTN, repetin; SAR, sarcalumenin; SG, sarcoglycan; SPP, secreted phosphoprotein;
ST, suppression of tumorigenicity; TGF, transforming growth factor; TGM, transglutaminase; TIMP,
tissue inhibitor of metalloproteinase; TNNI, troponin subunit I; TNFR, tumor necrosis factor receptor;
TTN, titin; TUBA/B, tubulin chains A and B; UMOD, uromodulin; VIM, vimentin.

Biochemical and proteomic studies have identified a large panel of potential muscle-
derived biofluid markers, both as intact proteins or peptide fragments [421–426]. As listed
in the lower panel of Figure 5, the myomesin isoform MYOM3, a marker component of
the M-line in sarcomeres, was identified in the form of peptide fragments in serum sam-
ples [427] and various titin fragments were clearly detected in urine from both Duchenne
patients and animal models of dystrophinpathy [428–432]. The half-sarcomere spanning
protein titin of 3.8 MDa is the largest known protein in skeletal muscles [99] and its detec-
tion in urine indicates a massive disintegration of the auxiliary filaments of the sarcomere
structure in dystrophinopathy [431]. The list of biofluid markers ranges from metabolic
and modulating enzymes (adenylate kinase, creatine kinase, carbonic anhydrase, matrix
metallo-proteinases, aspartate transaminase, alanine aminotransaminase, lactate dehy-
drogenase, malate dehydrogenase), metabolite transporters (fatty acid-binding proteins,
myoglobin), sarcomeric proteins (troponins, myomesin, myosin light chains, titin frag-
ments), signaling molecules (interleukins) to ECM proteins (fibronectin) (Figure 5). The
passive shedding of large numbers of skeletal muscle proteins into the circulatory sys-
tems is indicative of the extent of sarcolemmal disintegration due to the collapse of the
DGC. The overall changes in these biomarkers demonstrate the complexity of the cellular
pathogenesis that is triggered by dystrophin deficiency and causes myofiber degeneration
and loss of sarcolemmal integrity, followed by chronic inflammation and massive fibrosis
of dystrophic muscles [422]. In our opinion, the most suitable minimally invasive and
biofluid-associated biomarkers of DMD are represented by amino-terminal and carboxy-
terminal TTN fragments of titin in urine, kallikrein KLK1 in saliva and the combination of
CA3/FABP3/MYOM3/MDH2 in plasma/serum samples.

Multi-system changes in DMD are reflected by both proteomic changes in particu-
lar organs other than skeletal muscles and in biofluid markers that are characteristic of
alterations in the heart, liver and kidneys. As already outlined above, striking proteomic
changes in the brain included an increase in GFAP, an established marker of astrogliosis, as
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well as annexins and vimentin [371]. In contrast to dystrophic skeletal muscles that exhib-
ited no major changes in laminin, this major component of the basal lamina was shown
to be drastically reduced in a dystrophin-deficient heart [335]. The proteomic screening
of the liver and kidney showed ectopic fat deposition in conjunction with elevated levels
of the fatty acid-binding proteins FABP5 [341,342] and FABP1 [342,346], respectively. The
analysis of the dystrophin-lacking stomach/pancreas interface revealed changes in the
ECM protein repetin [369]. The proteome of the spleen was found to show increased levels
of MMP9 and TGM2 in the dystrophic phenotype [368]. Figure 5 lists non-muscle biofluid
markers that can be useful in screening dystrophinopathy-associated changes in the liver
(glutamate dehydrogenase isoform GLUD1 and haptoglobin) and the heart (cardiac tro-
ponin subunit cTnI), as well as in carrying out the functional evaluation of the kidneys
(cystatin-C/CST3 and uromodulin). Measurement of the serum carbonic anhydrase iso-
form CA3 alone versus the ratio of serum myoglobin to CA3 can be used to determine
the loss of integrity of dystrophic skeletal muscles versus dystrophin-deficient heart mus-
cle [423]. An interesting new source of non-invasive biomarkers is represented by the saliva
proteome [412], whose analysis showed elevated levels of the kallikrein isoform Klk1 in the
mdx-4cv model of DMD [344,433]. How future multi-omics research initiatives can build on
these proteomic findings and establish a more comprehensive pathophysiological picture
of dystrophinopathy is briefly outlined in the below section.

4.5. Integromics: Systems Biological Multi-Omics Analysis of Dystrophinopathy

For the future advancement of precision medicine and individualized patient treat-
ments, the implementation of multi-omics biomarker signatures would be an advantage
for the detailed evaluation of complex human disease initiation and progression [434].
Ideally, a wide range of multi-modal omics markers at the levels of the genome, tran-
scriptome, epigenome, proteome, metabolome and cytome would be used in combination
to decisively enhance the accuracy of diagnostic, prognostic and therapeutic monitoring
procedures [435]. The cytome can be defined as the entire collection of dynamic cellular
processes, incorporating both structural and functional parameters, that form the basis of all
biochemical and physiological processes in the body [436–438]. In the field of neurological
and neuromuscular disorders, this would be a strategic step forward to evolve evidence-
based medicine to the next level of stratified approaches and establish personalized medical
therapies via translational neuroscience [439].

In relation to studying the downstream effects of dystrophin deficiency, a holistic systems
biological analysis of the complex pathogenesis of DMD would greatly enhance our insights
into organ crosstalk and encompass an integrative multi-omics approach. This integromics
strategy would ideally consist of genomics [440–442], transcriptomics [443–445], top-down
proteomics [17,59–61], bottom-up proteomics [46,107], subproteomics [108–110,213], the pro-
teomic evaluation of PTMs [117,291,446,447], metabolomics [448,449],
lipidomics [450–452], glycomics [453], immunomics [454], secretomics [218–221,455] and
high-throughput cytomics [158,172,456,457], as summarized in Figure 6.

Importantly, the integration of proteomic data sets from both bottom-up and top-
down approaches would be extremely helpful in identifying and characterizing specific
proteoforms in highly complex tissue systems [458,459]. This could especially help us
better understand the enormous complexity of aberrant cellular signaling events that
occur in DMD [460]. The wider application of spatial single-myofiber MS analysis would
be extremely helpful with protein biochemical studies using techniques such as deep
visual proteomics [461]. This method integrates high-content imaging with laser micro-
dissection and multiplexed MS-based analyses at the single-cell level and has therefore
been termed ‘single-cell Deep Visual Proteomics’ (scDVP) [462]. Besides metagenomics, an
additional field of interest for studying the genome is epigenomics [463], which focuses
on the systematic analysis of molecular modifications at the level of DNA that may alter
the regulation of gene activity but are mitotically stable and are independent of the DNA
sequence [464–466]. The determination of histone modifications, DNA methylation and



Proteomes 2024, 12, 4 21 of 41

the generation of modulatory non-coding RNAs can generate crucial proteogenomic data
with considerable relevance to skeletal muscle development, repair and physiological
functioning [467–469] and the treatment of muscular dystrophy [470–472].
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Figure 6. Integromic analysis of dysfunctions in Duchenne muscular dystrophy. Multi-omics-based
investigations are envisaged to generate a more comprehensive understanding of the molecular and
cellular complexity of the pathogenic mechanisms that are involved in dystrophinopathy.

Multi-omics approaches have a great potential to improve our understanding of com-
plex human disease mechanisms [473] and establish systems biological concepts [474],
including the systems biology of skeletal muscles [475]. The application of multi-omics has
already been used to study crucial aspects of skeletal muscle cell biology in health and dis-
ease [476–479] and been applied to certain aspects of the field of dystrophinopathy research,
including the integrative screening of dystrophic animal models [277,480–482], the evalua-
tion of immune responses in muscular dystrophy [483], myogenic remodeling by human
pluripotent stem cells [484], astrocyte-related abnormalities [485] and dystrophinopathy-
associated cardiomyopathy [324,331]. The main techniques used for proteomics-centric
and multi-omics studies have been recently reviewed by Rajczewski et al. [486]. Com-
bining findings from these types of molecular and cellular analyses will be extremely
helpful in predicting the trajectory of disease progression in clinical subtypes of DMD and
determining the potential influence of environmental factors and lifestyle. To achieve a
maximum yield of data from integrative analyses [35], multi-omics approaches will be
assisted by employing big data analytic tools and using optimized machine learning and
artificial intelligence approaches [487–491]. A crucial aspect of the development of novel
therapies to treat dystrophinopathies is the elucidation of the underlying mechanisms
that generate mild forms of DMD [492] or naturally protective phenotypes, such as the
spared muscular systems of the tongue, intrinsic laryngeal muscles and extraocular mus-
cles [196,493,494]. Multi-omics analyses of these specialized skeletal muscles that are only
mildly affected, despite the fact of dystrophin deficiency, might identify novel targets for
therapeutic intervention.
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5. Conclusions

In this perspective article, we have attempted to address the question of how MS-
based proteomic analyses can be employed to better comprehend the pathophysiological
complexity and multi-systems involvement of DMD. Integrating findings from top-down
proteomics, bottom-up proteomics and subproteomics could be used to establish a more
precise picture of the molecular and cellular pathogenesis of this monogenetic disease of
the neuromuscular system. Current limitations of MS-based studies of skeletal muscles
are based on the fact that only the technically accessible proteome can be studied. Thus,
the expansion of the measurable part of the total muscle proteome through improved
tissue extraction and protein separation methodology would decisively widen the scope
of muscular dystrophy research. Importantly, proteomics represents an essential method
of modern systems biology, which is central to the multi-modal omics analysis of com-
plex pathobiochemical mechanisms. The integration of data generation from traditional
biological disciplines, such as histochemistry, physiology, biochemistry and molecular
biology, with findings from high-throughput and large-scale bioanalytical approaches,
including genomics, transcriptomics, proteomics and metabolomics, promises a genuine
systems biological understanding of dystrophinopathies. In the future, multi-omics will be
instrumental for a more detailed determination of the pathogenic mechanisms and multi-
system dysfunction due to dystrophin deficiency. The establishment of a broad and reliable
biomarker signature at all levels of biological organization, ranging from the genome to the
physiome, will improve screening procedures, differential diagnostics and prognostic pre-
dictions, as well as expand the systematic identification of new therapeutic targets to treat
dystrophinopathy. In the long term, if integrated proteomics and multi-omics approaches
are properly established for studying detailed mechanisms of DMD and biomarkers are
verified for their clinical suitability, this biomedical information can be consolidated to
have a considerable clinical impact.
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