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Abstract:

 Large time behavior of solutions to abstract differential equations is studied. The results give sufficient condition for the global existence of a solution to an abstract dynamical system (evolution problem), for this solution to be bounded, and for this solution to have a finite limit as [image: there is no content], in particular, sufficient conditions for this limit to be zero. The evolution problem is:


u˙=A(t)u+F(t,u)+b(t),t≥0;u(0)=[image: there is no content].(*)








Here [image: there is no content], [image: there is no content], H is a Hilbert space, [image: there is no content], [image: there is no content] is a linear dissipative operator: Re[image: there is no content], where [image: there is no content] is a nonlinear operator, [image: there is no content], [image: there is no content], [image: there is no content] and p are positive constants, [image: there is no content] and [image: there is no content] is a continuous function. The basic technical tool in this work are nonlinear differential inequalities. The non-classical case [image: there is no content] is also treated.
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1. Introduction

A classical area of study is stability of solutions to evolution problems. We identify an evolution problem with an abstract dynamical system. An evolution problem is described by an equation



u˙(t)=[image: there is no content](t,u),u(0)=[image: there is no content]



(1)




Here [image: there is no content] is a nonlinear operator in a Banach space X, [image: there is no content]. Quite often it is convenient to assume X to be a Hilbert space H, because the energy is often interpreted as a quantity [image: there is no content] in a suitable Hilbert space. Suppose that [image: there is no content] and [image: there is no content]. Then [image: there is no content] is a solution to Equation (1). A. M. Lyapunov in 1892 published a classical work on stability of motion, where he studied Equation (1) in the case [image: there is no content] and [image: there is no content] analytic function of u. If [image: there is no content], and [image: there is no content] is twice Fréchet differentiable, then one can write [image: there is no content](t,u)=A(t)u+F(t,u), where [image: there is no content] is a linear operator in X and ∥F(t,u)∥=O(∥u∥2),∥u∥→0. This representation is a linearization of [image: there is no content] around the point [image: there is no content]. Lyapunov defined the notion of stability (Lyapunov stability) of the equilibrium solution [image: there is no content] towards small perturbations of the data [image: there is no content]. He calls this solution stable (Lyapunov stable), if for any [image: there is no content] there is a [image: there is no content] such that if inequality ∥[image: there is no content]∥<δ holds then [image: there is no content]. Note that this definition implies the global existence of the solution to problem (1) for all [image: there is no content] in the ball ∥[image: there is no content]∥<δ.
The equilibrium solution [image: there is no content] is called unstable if it is not Lyapunov stable. This means that there is an [image: there is no content] such that for any [image: there is no content] there is a [image: there is no content], ∥[image: there is no content]∥<δ, and a [image: there is no content] such that [image: there is no content].

One can give similar definitions for stability and instability of a solution to problem (1) with [image: there is no content]≠0. In this case one calls the solution u=u(t;[image: there is no content]) stable if all the solutions [image: there is no content] to problem (1), with [image: there is no content] in place of [image: there is no content], exist for all [image: there is no content] and satisfy the inequality sup[image: there is no content]∥u(t;[image: there is no content])-u(t;[image: there is no content])∥<ϵ provided that ∥[image: there is no content]-[image: there is no content]∥<δ.

A solution u(t;[image: there is no content]) is called asymptotically stable if it is stable and there is a [image: there is no content] such that all the solutions [image: there is no content] with ∥[image: there is no content]-[image: there is no content]∥<δ satisfy the relation lim[image: there is no content]∥u(t;[image: there is no content])-u(t;[image: there is no content])∥=0.

The equilibrium solution [image: there is no content] is asymptotically stable if it is stable and there is a [image: there is no content] such that all the solutions u(t;[image: there is no content]) with ∥[image: there is no content]∥<δ satisfy the relation lim[image: there is no content]∥u(t;[image: there is no content])∥=0.

Consider problem (1) with [image: there is no content](t,u)+ϕ(t,u) in place of [image: there is no content](t,u). The term [image: there is no content] is called persistently acting perturbations. The equilibrium solution [image: there is no content] is called stable with respect to persistently acting perturbations if for any [image: there is no content] there exists a [image: there is no content] such that if [image: there is no content] and ∥[image: there is no content]∥<δ, then sup[image: there is no content]∥u(t;[image: there is no content])∥<ϵ.

Stability of the solutions and their behavior as [image: there is no content] are of interest in a study of dynamical systems. For example, if the equilibrium solution is asymptotically stable, then it does not have chaotic behavior.

If [image: there is no content] is independent of time and [image: there is no content], then Lyapunov obtained classical results on the stability of the equilibrium solution to problem (1). He assumed that F is analytic with respect to [image: there is no content], that [image: there is no content] in a neighborhood of the origin, and [image: there is no content] is a constant. Lyapunov has proved that if the spectrum [image: there is no content]of A lies in the half-plane Re[image: there is no content], then the equilibrium solution [image: there is no content]is asymptotically stable, and if at least one eigenvalue of A lies in the half-plane Re[image: there is no content], then the equilibrium solution is unstable.

If some of the eigenvalues of A lie on the imaginary axis and [image: there is no content], so that problem (1) is linear, and if all the Jordan cells of the Jordan canonical form of the matrix, corresponding to the operator A in [image: there is no content] consist of just one element, then the equilibrium solution is stable. Otherwise it is unstable.

Thus, a necessary and sufficient condition for Lyapunov stability of the equilibrium solution of the linear equation [image: there is no content] in [image: there is no content] is known: the spectrum of A has to lie in the left complex half-plane: [image: there is no content], and the Jordan cells corresponding to purely imaginary eigenvalues of A have to consist of just one element.

If [image: there is no content], then, in general, when the spectrum of A lies in the left half plane of the complex plane, and some eigenvalues of A lie on the imaginary axis, the stability cannot be decided by the linearized part A of [image: there is no content] only. One can give examples of A such that the nonlinear part F can be chosen so that the equilibrium solution [image: there is no content] is stable, and F can also be chosen so that this solution is unstable. For instance, consider [image: there is no content], where [image: there is no content]. This equation can be solved analytically by separation of variables. The result is [image: there is no content]. Therefore, if [image: there is no content] and [image: there is no content], [image: there is no content], then the solution exists for all [image: there is no content], and is asymptotically stable. But if [image: there is no content], then the solution blows up at a finite time [image: there is no content], the blow-up time, and [image: there is no content]=[2cu2(0)]-1. In this case the zero solution is unstable.

If [image: there is no content] the stability theory is more complicated. The case of periodic [image: there is no content] was studied much due to its importance in many applications (see [1,2]).

The stability theory in infinite-dimensional spaces, for example, in Hilbert and Banach spaces, was developed in the second half of the 20-th century, see [3] and references therein. Again, the location of the spectrum of [image: there is no content] plays an important role in this theory.

The basic novel points of the theory presented below include sufficient conditions for the stability and asymptotic stability of the equilibrium solution to abstract evolution problem (1) in a Hilbert space when [image: there is no content] may lie in the right half-plane for some or all moments of time [image: there is no content], but [image: there is no content] as [image: there is no content]. Therefore, our results are new even in the finite-dimensional spaces.

The technical tool, on which our study is based, is a new nonlinear differential inequality. The results are stated in several theorems and illustrated by several examples. These results are taken from the cited papers by the author (see [4,5,6,7,8,9,10,11]), and, especially, from paper [4]. In the joint papers by the author’s student N. S.Hoang and the author one can find various additional results on nonlinear inequalities (see [12,13,14,15,16,17]). Some versions of this inequality has been used in the monographs [18,19], where the Dynamical Systems Method (DSM) for solving operator equations was developed.

The literature on stability of solutions to evolution problems and their behavior at large times is enormous, and we refer the reader mainly to the papers and books directly related to the novel points mentioned above.

Consider an abstract nonlinear evolution problem



u˙=A(t)u+F(t,u)+b(t),u˙:=dudt



(2)






u(0)=[image: there is no content]



(3)




where [image: there is no content] is a function with values in a Hilbert space H, [image: there is no content] is a linear bounded dissipative operator in H, which satisfies inequality


Re(A(t)u,u)≤-γ(t)∥u∥2,t≥0;∀u∈H



(4)




where [image: there is no content] is a nonlinear map in H,


∥F(t,u)∥≤[image: there is no content]∥u(t)∥p,p>1



(5)






[image: there is no content]



(6)




[image: there is no content] and [image: there is no content] are continuous real-valued functions, defined on all of [image: there is no content], [image: there is no content]>0 and [image: there is no content] are constants.
Recall that a linear operator A in a Hilbert space is called dissipative if Re[image: there is no content] for all [image: there is no content], where [image: there is no content] is the domain of definition of A. Dissipative operators are important because they describe systems in which energy is dissipating, for example, due to friction or other physical reasons. Passive nonlinear networks can be described by Equation (2) with a dissipative linear operator [image: there is no content], see [5,20], Chapter 3, and [21].

Let [image: there is no content] denote the spectrum of the linear operator [image: there is no content], [image: there is no content], [image: there is no content], and [image: there is no content] denote the distance between sets σ and ℓ. We assume that



[image: there is no content]



(7)




but we allow lim[image: there is no content]ρ(σ,ℓ)=0. This is the basic novel point in our theory. The usual assumption in stability theory (see, e.g., [3]) is [image: there is no content], where [image: there is no content]. For example, if [image: there is no content], where [image: there is no content] is the adjoint operator, and if the spectrum of [image: there is no content] consists of eigenvalues [image: there is no content], [image: there is no content], then, we allow lim[image: there is no content]λ1(t)=0. This is in contrast with the usual theory, where the assumption is [image: there is no content], [image: there is no content] is a constant, is used.
Moreover, our results cover the case, apparently not considered earlier in the literature, when Re[image: there is no content] with [image: there is no content], lim[image: there is no content]γ(t)=0. This means that the spectrum of [image: there is no content] may be located in the half-plane Re[image: there is no content], where [image: there is no content], but lim[image: there is no content]γ(t)=0.

Our goal is to give sufficient conditions for the existence and uniqueness of the solution to problem (2) and (3) for all [image: there is no content], that is, for global existence of [image: there is no content], for boundedness of sup[image: there is no content]∥u(t)∥<∞, or to the relation lim[image: there is no content]∥u(t)∥=0.

If [image: there is no content] in Equation (2), then [image: there is no content] solves Equation (2) and [image: there is no content]. This equation is called zero solution to Equation (2) with [image: there is no content].

If [image: there is no content], then one says that Equation (2) and (3) is the problem with persistently acting perturbations. The zero solution is called Lyapunov stable for problem (2) and (3) with persistently acting perturbations if for any [image: there is no content], however small, one can find a [image: there is no content], such that if ∥[image: there is no content]∥≤δ, and sup[image: there is no content]∥b(t)∥≤δ, then the solution to Cauchy problem (2) and (3) satisfies the estimate sup[image: there is no content]∥u(t)∥≤ϵ.

We do not discuss here the method of Lyapunov functions for a study of stability (see, for example [22,23]).

The approach, developed in this work, consists of reducing the stability problems to some nonlinear differential inequality and estimating the solutions to this inequality.

In Section 2 the formulation and a proof of two theorems, containing the result concerning this inequality and its discrete analog, are given. In Section 3 some results concerning Lyapunov stability of zero solution to Equation (2) are obtained. In Section 4 we derive stability results in the case when [image: there is no content] in formula (4). This means that the linear operator [image: there is no content] in Equation (2) may have spectrum in the half-plane Re[image: there is no content].

Our results are closely related to the Dynamical Systems Method (DSM), see [6,7,12,13,18,19]. Recently these results were applied to biological problems ([24]) and to evolution equations with delay ([8]).

In the theory of chaos one of the reasons for the chaotic behavior of a solution to an evolution problem to appear is the lack of stability of solutions to this problem ([25,26]). The results presented in Section 3 can be considered as sufficient conditions for chaotic behavior not to appear in the evolution system described by problem (2) and (3).



2. A Differential Inequality

In this Section an essentially self-contained proof is given of an estimate for non-negative solutions of a nonlinear inequality



[image: there is no content](t)≤-γ(t)g(t)+α(t,g(t))+β(t),t≥0;g(0)=[image: there is no content];[image: there is no content]:=dgdt



(8)




In Section 3 some of the many possible applications of this estimate (see estimate (12) below) are demonstrated.
It is not assumed a priori that solutions [image: there is no content] to inequality (8) are defined on all of [image: there is no content], that is, that these solutions exist globally. In Theorem 1 we give sufficient conditions for the global existence of [image: there is no content]. Moreover, under these conditions a bound on [image: there is no content] is given, see estimate (12) in Theorem 1. This bound yields the relation lim[image: there is no content]g(t)=0 if lim[image: there is no content]μ(t)=∞ in Equation (12).

Let us formulate our assumptions. We assume that [image: there is no content]. We do not assume that the functions [image: there is no content] and β are non-negative. However, in many applications the functions α and β are bounds on some norms, and then these functions are non-negative. The function [image: there is no content] is often (but not always) non-negative. For example, this happens if [image: there is no content] comes from an estimate of the type [image: there is no content]. If the functions α and β are bounds from above on some norms, then one may assume without loss of generality that these functions are smooth, because one can approximate a non-smooth function with an arbitrary accuracy by an infinitely smooth function, and choose this smooth function to be greater than the function it approximates.

AssumptionA1. We assume that the function [image: there is no content] is defined on some interval [image: there is no content], has a bounded derivative [image: there is no content] from the right at any point of this interval, and [image: there is no content] satisfies inequality (8) at all t at which [image: there is no content] is defined. The functions [image: there is no content], and [image: there is no content], are real-valued, defined on all of [image: there is no content] and continuous there. The function [image: there is no content] is continuous on [image: there is no content]×[image: there is no content] and locally Lipschitz with respect to g. This means that



[image: there is no content]



(9)




if [image: there is no content], [image: there is no content] and [image: there is no content]. Here [image: there is no content] and [image: there is no content] is a constant independent of g, h, and t.
AssumptionA2. There exists a C1([image: there is no content]) function [image: there is no content], such that



αt,1[image: there is no content]+β(t)≤1[image: there is no content]γ(t)-μ˙(t)[image: there is no content],∀t≥0



(10)




and


[image: there is no content]



(11)




One can replace the initial point [image: there is no content] by some point [image: there is no content], and assume that the interval of time is [image: there is no content], and that inequalities hold for [image: there is no content], rather than for [image: there is no content]. The proofs and the conclusions remain unchanged.

Theorem 11. If Assumptions A1 and A2 hold, then any solution [image: there is no content]to inequality (8) exists on all of [image: there is no content], i.e., [image: there is no content], and satisfies the following estimate:



0≤g(t)≤1[image: there is no content]∀t∈[image: there is no content]



(12)




If [image: there is no content], then 0≤g(t)<1[image: there is no content]∀t∈[image: there is no content].
Remark 1. Iflim[image: there is no content]μ(t)=∞, then lim[image: there is no content]g(t)=0.

Proof of Theorem 1. Let us rewrite inequality for μ as follows:



[image: there is no content]



(13)




Let [image: there is no content] solve the following Cauchy problem:



ϕ˙(t)=-γ(t)ϕ(t)+α(t,ϕ(t))+β(t),t≥0;ϕ(0)=ϕ0



(14)




The assumption that [image: there is no content] is locally Lipschitz with respect to g guarantees local existence and uniqueness of the solution [image: there is no content] to problem (14). From the comparison result (see A Comparison Lemma proved below) it follows that


ϕ(t)≤μ-1(t)∀t≥0



(15)




provided that [image: there is no content], where [image: there is no content] is the unique solution to problem (15). Let us take [image: there is no content]. Then [image: there is no content] by the assumption, and an inequality, similar to Equation (15), implies that


g(t)≤ϕ(t)t∈[0,T)



(16)




Inequalities [image: there is no content], Equation (15) and (16) imply


g(t)≤ϕ(t)≤μ-1(t),t∈[image: there is no content]



(17)




By the assumption, the function [image: there is no content] is defined for all [image: there is no content] and is bounded on any compact subinterval of the set [image: there is no content]. Consequently, the functions [image: there is no content] and [image: there is no content] are defined for all [image: there is no content], and estimate (12) is established.
If [image: there is no content], then one obtains by a similar argument the strict inequality g(t)<μ-1(t),t≥0.

Theorem 1 is proved.□

Let us now prove the comparison result that was used above, see, for example [27], Theorem III.4.1.

A Comparison Lemma. Let



ϕ˙(t)=f(t,ϕ),ϕ(0)=ϕ0,(*)








and


ψ˙(t)=g(t,ψ),ψ(0)=ψ0.(**)








Assume [image: there is no content], and


g(t,x)≥f(t,x)(***)








for any t and x for which both f and g are defined. Assume that f and g are continuous functions in a set [image: there is no content], [image: there is no content], ψ is the maximal solution to (**) and ϕ is any solution to (*). Then [image: there is no content]on the maximal interval [image: there is no content]of the existence of both ϕ and ψ.
Proof of the Comparison Lemma. First, let us assume for simplicity that problems (*) and (**) have a unique solution. Later we will discard this simplifying assumption. If f and g satisfy a local Lipschitz condition with respect to ϕ, respectively, ψ, then our simplifying assumption holds. Assume secondly, also for simplicity, that [image: there is no content]. Under this simplifying assumption it is easy to prove the conclusion of the Lemma, because the graph of ψ must lie above the graph of ψ for [image: there is no content]. Indeed, in a small neighborhood [image: there is no content], where [image: there is no content] is sufficiently small, the graph of ψ lies above the graph of ϕ. This is obviously true if [image: there is no content], because of the continuity of ϕ and ψ. If [image: there is no content], then the graph of ψ lies above the graph of ϕ because [image: there is no content] due to the assumption [image: there is no content]. To check the last claim assume that there is a point t1∈[image: there is no content] such that [image: there is no content], and [image: there is no content] for [image: there is no content]. Then [image: there is no content]. Divide this inequality by [image: there is no content] and get



[image: there is no content]








Pass to the limit [image: there is no content], [image: there is no content], in the above inequality, use the differential equations for ϕ and ψ and the equality [image: there is no content], and obtain the following relation:


[image: there is no content]








This relation contradicts the assumption [image: there is no content]. This contradiction proves the conclusion of the Comparison Lemma under the additional assumption [image: there is no content].
To prove the Comparison Lemma under the original assumption [image: there is no content], let us consider problem (*) with f replaced by [image: there is no content]. Let [image: there is no content] solve problem (*) with f replaced by [image: there is no content], and with the same initial condition as in (*). Since [image: there is no content](t,x)<g(t,x), then, by what we have just proved, it follows that [image: there is no content](t)≤ψ(t) on the common interval [image: there is no content] of the existence of [image: there is no content] and ψ. By the standard result about continuous dependence of the solution to (*) on a parameter, one concludes that [image: there is no content] and lim[image: there is no content][image: there is no content](t)=ϕ(t) for any [image: there is no content]. Therefore, passing to the limit [image: there is no content] in the inequality [image: there is no content](t)≤ψ(t) one gets the conclusion of the Comparison Lemma under the original assumption [image: there is no content].

If the simplifying assumption concerning uniqueness of the solutions to (*) and (**) is dropped, then (*) and (**) may have many solutions. The limit of the solution [image: there is no content] is the minimal solution to (*). If one considers problem (**) with g replaced by [image: there is no content], and denotes by [image: there is no content] the corresponding solution, then the limit lim[image: there is no content][image: there is no content](t)=ψ(t) is the maximal solution to (**). In this case the above argument yields the conclusion of the Lemma with [image: there is no content] being the maximal solution to (**), and [image: there is no content] being any solution to (*). The Comparison Lemma is proved. □

Remark 2. If [image: there is no content]is bounded from below for all [image: there is no content], so that [image: there is no content]for all [image: there is no content], and [image: there is no content]exists globally, that is, for all [image: there is no content], then the inequality [image: there is no content]and the continuity of [image: there is no content]on the set [image: there is no content]imply that any solution ϕ to (*) exists globally. Indeed, if it would exist only on a finite interval [image: there is no content]then it has to tend to infinity as [image: there is no content], but this is impossible because the bound [image: there is no content]and the global existence and continuity of ψ do not allow [image: there is no content]to grow to infinity as [image: there is no content].

Let us formulate and prove a discrete version of Theorem 1.

Theorem 2. Assume that [image: there is no content], [image: there is no content]



gn+1≤(1-hnγn)gn+hnα(n,gn)+hnβn;hn>0,0<hnγn<1



(18)




and [image: there is no content]if [image: there is no content]. If there exists a sequence [image: there is no content]such that


[image: there is no content]



(19)




and


[image: there is no content]



(20)




then


0≤gn≤1μn,∀n≥0



(21)




Proof. For [image: there is no content] inequality Equation (21) holds because of Equation (20). Assume that it holds for all [image: there is no content] and let us check that then it holds for [image: there is no content]. If this is done, Theorem 2 is proved. □
Using the inductive assumption, one gets:



[image: there is no content]








This and inequality (19) imply:


gm+1≤(1-hmγm)1μm+hm1μm(γm-μm+1-μmhmμm)=μm-1-μm+1-μmμm2≤μm+1-1








The last inequality is obvious since it can be written as


[image: there is no content]








Theorem 2 is proved.
Theorem 2 was formulated in [14] and proved in [15]. We included for completeness a proof, which is shorter than the one in [15].

Let us give a few simple examples of applications of Theorem 1.

Example 1. Consider the inequality



[image: there is no content]



(22)




Assume [image: there is no content]. Choose [image: there is no content]. Then inequality (10) holds if


[image: there is no content]








and [image: there is no content]. Thus, inequality (10) holds if


[image: there is no content]








This inequality holds obviously. Therefore, any [image: there is no content], that satifies inequalities (22) and [image: there is no content], exists for all [image: there is no content] and satisfies the estimate


[image: there is no content]








In this example the linearized problem



[image: there is no content](t)=tg-2(t+1)-2,g(0)=[image: there is no content]








has a unique solution


[image: there is no content]








This solution tends to infinity as [image: there is no content].
Example 2. Consider a classical problem



u˙(t)=A(t)u+F(t,u),u(0)=[image: there is no content]



(23)




where [image: there is no content] is a linear operator in [image: there is no content] and F is a nonlinear operator. Assume that [image: there is no content], where [image: there is no content], and [image: there is no content], [image: there is no content], [image: there is no content], and [image: there is no content] is the norm of a vector in [image: there is no content]. We also assume that Equation (23) has the following property:
Property P: If a solution to Equation (23) is defined on the maximal interval of its existence [image: there is no content]and [image: there is no content], then [image: there is no content].

It is known (see, for example [27]), that Property P holds if [image: there is no content] is a continuous function on [0,T]×[image: there is no content].

By Peano’s theorem the Cauchy problem



u˙(t)=f(t,u),u(0)=[image: there is no content]



(24)




where [image: there is no content], has a local solution on an interval [image: there is no content], provided that f is a continuous function on [0,T]×D([image: there is no content]), where [image: there is no content] and D([image: there is no content]) is a neighborhood of [image: there is no content]. This solution is non-unique, in general. One can give an explicit estimate of the length a of the interval on which the solution does exist. Namely, [image: there is no content], where M:=max|u-[image: there is no content]|≤b,t∈[0,T]|f(t,u)|, and the neighborhood D([image: there is no content]) is taken to be the set {u:|u-[image: there is no content]|≤b}.
It is known that in every infinite-dimensional Banach space the Peano theorem fails. Therefore, in an infinite-dimensional Banach space we assume that problems (23) and (24) have a solution, and if [image: there is no content] is the maximal interval of the existence of the solution, then Property P holds. This happens, for example, if [image: there is no content] satisfies a local Lipschitz condition with respect to u and is continuous with respect to [image: there is no content]. Indeed, if a local Lipschitz condition holds, then the local interval of the existence of the solution to the Cauchy problem (24) is of the length [image: there is no content], provided that f is continuous with respect to t and satisfies the estimates [image: there is no content], [image: there is no content], in the region [0,T]×B([image: there is no content],R), B([image: there is no content],R):={u:||u-[image: there is no content]||≤R}. Under these assumptions the solution to problem (24) is unique and stays in the ball B([image: there is no content],R) for [image: there is no content].

To see that Property P holds for problem (24) if f satisfies a local Lipschitz condition with respect to u, assume that the solution to Equation (24) does not exist for [image: there is no content]. Under our assumptions, if the solution u of problem (24) satisfies the inequality [image: there is no content], then the constants [image: there is no content] and R are finite. Therefore [image: there is no content]. Take the initial point [image: there is no content]. By the local existence theorem the solution [image: there is no content] exists on the interval [image: there is no content]. This is a contradiction, since we have assumed that this solution does not exist for [image: there is no content]. This contradiction proves that Property P holds for problem (24) if f satisfies a local Lipschitz condition.

Let us use Theorem 1 to prove asymptotic stability of the zero solution to Equation (23) and to illustrate the application of our general method for a study of stability of solutions to abstract evolution problems, the method that we develop below.

Let [image: there is no content], where the norm is taken in [image: there is no content]. Take a dot product of Equation (23) with u, then take the real part of both sides of the resulting equation and get



[image: there is no content]








Since [image: there is no content], one obtains from the above inequality an inequality of the type Equation (8), namely,


[image: there is no content](t)≤-γg(t)+cgp(t),p=const>1








where γ and c are positive constants. Choose


[image: there is no content]








where [image: there is no content], [image: there is no content]. Note that a can be chosen arbitrarily close to γ. We choose λ later. Denote [image: there is no content]. Then inequality (11) holds for any [image: there is no content] if [image: there is no content] is sufficiently small. Inequality (10) holds if


[image: there is no content]








Since [image: there is no content] this inequality holds if [image: there is no content]. In turn, the last inequality holds for an arbitrary fixed [image: there is no content] and an arbitrary small fixed [image: there is no content] provided that [image: there is no content] is sufficiently large.
One concludes that for any initial data [image: there is no content]the solution to Equation (23) exists globally and admits an estimate [image: there is no content], where the positive constant [image: there is no content]can be chosen arbitrarily close to γ if the positive constant c is sufficiently small.

The above argument remains valid also for unbounded, closed, densely defined linear operators [image: there is no content], provided that Property P holds.

If [image: there is no content] is a generator of a [image: there is no content] semigroup [image: there is no content], and F satisfies a local Lipschitz condition, then problem (23) is equivalent to the equation [image: there is no content], and this equation may be useful for a study of the global existence of the solution to problem (23) (see [28]).

Example 3. Consider an example in which the solution blows up in a finite time, so it does not exist globally. Consider the problem



u˙-Δu=u2in[image: there is no content]×D⊂[image: there is no content];uN=0;u(0,x)=[image: there is no content](x)



(25)




Here D is a bounded domain with a smooth boundary S, N is an outer unit normal to S, [image: there is no content]>0 is a smooth function. Let


[image: there is no content]:=∫D[image: there is no content](x)dx,g(t):=∫Du(t,x)dx








Integrate Equation (25) over D and get [image: there is no content]. Use the inequality


[image: there is no content]








where [image: there is no content], and get [image: there is no content]. Integrating this inequality, one obtains [image: there is no content]. Since [image: there is no content] and [image: there is no content] it follows that


limt→[image: there is no content]g(t)=∞








where [image: there is no content]:=1c[image: there is no content] is the blow-up time, and t<[image: there is no content]. Consequently, for any initial data with [image: there is no content]the solution to Equation (25) does not exist globally.
Example 4. Consider the following equation



u˙+A(t)u+ϕ(u)-ψ(t,u)=f(t,u),u(0,x)=[image: there is no content](x)



(26)




where [image: there is no content], ϕ and [image: there is no content] are smooth functions growing to infinity as [image: there is no content]. Let us assume that


uϕ(u)≥0,uψ(t,u)≥0∀t≥0








and


uψ(t,u)≤α(t)|u|3,|uf(t,u)|≤β(t)|u|








where [image: there is no content] and [image: there is no content] are continuous functions, x∈D⊂[image: there is no content], D is a bounded domain,


Re(Au,u)≥γ(u,u)∀u∈D(A),γ=const>0








A is an operator in a Hilbert space [image: there is no content], the domain of definition of A, [image: there is no content], is a dense in H linear set, [image: there is no content] is an inner product in H, ||u||2=[image: there is no content]. An example of A is [image: there is no content] the Laplacean with the Dirichlet boundary condition on S, the boundary of D. Denote [image: there is no content]. We want to estimate the large time behavior of the solution u to Equation (26).
Take the inner product in H of Equation (26) and u, then take real part of both sides of the resulting equation and get



[image: there is no content]








Since [image: there is no content] one obtains an inequality of the type Equation (8), namely


[image: there is no content]








Now it is possible to use Theorem 1.
Choose [image: there is no content], where λ and k are positive constants, [image: there is no content]. Assume that [image: there is no content], where [image: there is no content]:=||[image: there is no content](x)||. Then inequality (11) holds for any initial data [image: there is no content], that is, for any [image: there is no content], if λ is sufficiently small. Inequality (10) holds if



[image: there is no content]








One can easily impose various conditions on α and β so that the above inequality hold. For example, assume that α decays monotonically as t grows, [image: there is no content], and [image: there is no content], where [image: there is no content], [image: there is no content], [image: there is no content] is a constant, [image: there is no content]. Then inequality (10) holds, and it implies that


[image: there is no content]








so that the exponential decay of [image: there is no content] as [image: there is no content] is established.
In Section 3 and Section 4 some stability results for abstract evolution problems are presented in detail. These results are formulated in four theorems. The basic ideas are similar to the ones discussed in examples in this Section, but new assumptions and new technical tools are used.



3. Stability Results

In this Section we develop a method for a study of stability of solutions to the evolution problems described by the Cauchy problem (2) and (3) for abstract differential equations with a dissipative bounded linear operator [image: there is no content] and a nonlinearity [image: there is no content] satisfying inequality (5). Condition (5) means that for sufficiently small [image: there is no content] the nonlinearity is of the higher order of smallness than [image: there is no content]. We also study the large time behavior of the solution to problem (2) and (3) with persistently acting perturbations [image: there is no content].

In this paper we assume that [image: there is no content] is a bounded linear dissipative operator, but our methods are valid also for unbounded linear dissipative operators [image: there is no content], for which one can prove global existence of the solution to problem (2) and (3). We do not go into further detail in this paper.

Let us formulate the first stability result.

Theorem 3. Assume that Re[image: there is no content][image: there is no content], [image: there is no content], and inequality (4) holds with [image: there is no content]. Then the solution to problem (2) and (3) with [image: there is no content]satisfies an esimate [image: there is no content]as [image: there is no content]. Here [image: there is no content]can be chosen arbitrarily small if ∥[image: there is no content]∥is sufficiently small.

This theorem implies asymptotic stability in the sense of Lyapunov of the zero solution to Equation (2) with [image: there is no content]. Our proof of Theorem 3 is new and very short.

Proof of Theorem 3. Multiply Equation (2) (in which [image: there is no content] is assumed) by u, denote [image: there is no content], take the real part, and use assumption (4) with [image: there is no content], to get



g[image: there is no content]≤-kg2+[image: there is no content]gp+1,p>1



(27)




If [image: there is no content] then the derivative [image: there is no content] does exist, and


[image: there is no content](t)=Reu˙(t),[image: there is no content][image: there is no content]








as one can check. If [image: there is no content] on an open subset of [image: there is no content], then the derivative [image: there is no content] does exist on this subset and [image: there is no content](t)=0 on this subset. If [image: there is no content] but in in any neighborhood [image: there is no content] there are points at which g does not vanish, then by [image: there is no content] we understand the derivative from the right, that is,


[image: there is no content](t):=lims→+0g(t+s)-g(t)s=lims→+0g(t+s)s








This limit does exist and is equal to [image: there is no content]. Indeed, the function [image: there is no content] is continuously differentiable, so


[image: there is no content]








The assumption about the existence of the bounded derivative [image: there is no content](t) from the right in Theorem 3 was made because the function [image: there is no content] does not have, in general, the derivative in the usual sense at the points t at which [image: there is no content], no matter how smooth the function [image: there is no content] is at the point τ. Indeed,


[image: there is no content]








because [image: there is no content]. Consequently, the right and left derivatives of [image: there is no content] at the point t at which [image: there is no content] do exist, but are different. Therefore, the derivative of [image: there is no content] at the point t at which [image: there is no content] does not exist in the usual sense.
However, as we have proved above, the derivative [image: there is no content](t) from the right does exist always, provided that [image: there is no content] is continuously differentiable at the point t.

Since [image: there is no content], inequality (27) yields inequality (8) with [image: there is no content], [image: there is no content], and α(t,g)=[image: there is no content]gp, [image: there is no content]. Inequality (10) takes the form



[image: there is no content]μp(t)≤1[image: there is no content]k-μ˙(t)[image: there is no content],∀t≥0



(28)




Let


μ(t)=λebt,λ,b=const>0



(29)




We choose the constants λ and b later. Inequality (10), with μ defined in Equation (29), takes the form


[image: there is no content]λp-1e(p-1)bt+b≤k,∀t≥0



(30)




This inequality holds if it holds at [image: there is no content], that is, if


[image: there is no content]λp-1+b≤k



(31)




Let [image: there is no content] be arbitrary small number. Choose [image: there is no content]. Then Equation (31) holds if


λ≥[image: there is no content]ϵ1p-1



(32)




Condition (11) holds if


∥[image: there is no content]∥=g(0)≤1λ



(33)




We choose λ and b so that inequalities (32) and (33) hold. This is always possible if [image: there is no content] and ∥[image: there is no content]∥ is sufficiently small.
By Theorem 1, if inequalities (31)–(33) hold, then one gets estimate (12):



0≤g(t)=∥u(t)∥≤e-(k-ϵ)tλ,∀t≥0



(34)




Theorem 3 is proved. □
Remark 3. One can formulate the result differently. Namely, choose λ=∥[image: there is no content]∥-1. Then inequality (33) holds, and becomes an equality. Substitute this λ into Equation (31) and get



[image: there is no content]∥[image: there is no content]∥p-1+b≤k








Since the choice of the constant [image: there is no content]is at our disposal, this inequality can always be satisfied if [image: there is no content]∥[image: there is no content]∥p-1<k. Therefore, condition


[image: there is no content]∥[image: there is no content]∥p-1<k








is a sufficient condition for the estimate


∥u(t)∥≤∥[image: there is no content]∥e-(k-[image: there is no content]∥[image: there is no content]∥p-1)t








to hold (assuming that [image: there is no content]∥[image: there is no content]∥p-1<k).
Let us formulate the second stability result.

Theorem 4. Assume that inequalities (4)–(6) hold and



γ(t)=[image: there is no content](1+t)q1,q1≤1;[image: there is no content],q1=const>0



(35)




Suppose that [image: there is no content]is an arbitrary small fixed number,


λ≥[image: there is no content]ϵ1/(p-1)and∥u(0)∥≤1λ








Then the unique solution to (2) and (3) with [image: there is no content]exists on all of [image: there is no content]and


0≤∥u(t)∥≤1λ(1+t)[image: there is no content],∀t≥0



(36)




Theorem 4 gives the size of the initial data, namely, [image: there is no content], for which estimate (36) holds. For a fixed nonlinearity [image: there is no content], that is, for a fixed constant [image: there is no content] from assumption (5), the maximal size of [image: there is no content] is determined by the minimal size of λ.

The minimal size of λ is determined by the inequality λ≥[image: there is no content]ϵ1/(p-1), that is, by the maximal size of [image: there is no content]. If [image: there is no content] and [image: there is no content] is very small, then λ>[image: there is no content]:=[image: there is no content][image: there is no content]1/(p-1) and λ can be chosen very close to [image: there is no content].

Proof of Theorem 4. Let



μ(t)=λ(1+t)ν,λ,ν=const>0



(37)




We will choose the constants λ and ν later. Inequality (10) (with [image: there is no content]) holds if


[image: there is no content]λp-1(1+t)(p-1)ν+ν1+t≤[image: there is no content](1+t)q1,∀t≥0



(38)




If


q1≤1and(p-1)ν≥q1



(39)




then inequality (38) holds if


[image: there is no content]λp-1+ν≤[image: there is no content]



(40)




Let [image: there is no content] be an arbitrary small number. Choose


[image: there is no content]



(41)




Then inequality (40) holds if inequality (32) holds. Inequality (11) holds because we have assumed in Theorem 4 that [image: there is no content]. Combining inequalities (32), (33) and (12), one obtains the desired estimate:


0≤∥u(t)∥=g(t)≤1λ(1+t)[image: there is no content],∀t≥0



(42)




Condition (32) holds for any fixed small [image: there is no content] if λ is sufficiently large. Condition (33) holds for any fixed large λ if ∥[image: there is no content]∥ is sufficiently small.
Theorem 4 is proved. □

Let us formulate a stability result in which we assume that [image: there is no content]. The function [image: there is no content] has physical meaning of persistently acting perturbations.

Theorem 5. Let [image: there is no content], conditions (4)– (6) and (35) hold, and



[image: there is no content]



(43)




where [image: there is no content]and [image: there is no content]are constants. Assume that


q1≤min{1,q2-ν,ν(p-1)},∥u(0)∥≤λ0-1



(44)




where [image: there is no content]is a constant defined in Equation (51), and


[image: there is no content]



(45)




Then problem (2) and (3) has a unique global solution [image: there is no content], and the following estimate holds:


∥u(t)∥≤1[image: there is no content](1+t)ν,∀t≥0



(46)




Proof of Theorem 5. Let [image: there is no content]. As in the proof of Theorem 4, multiply (2) by u, take the real part, use the assumptions of Theorem 5, and get the inequality:



[image: there is no content]≤-[image: there is no content](1+t)q1g+[image: there is no content]gp+[image: there is no content](1+t)q2



(47)




Choose [image: there is no content] by formula (37). Apply Theorem 1 to inequality (47). Condition (10) takes now the form


[image: there is no content]λp-1(1+t)(p-1)ν+λ[image: there is no content](1+t)q2-ν+ν1+t≤[image: there is no content](1+t)q1∀t≥0



(48)




If assumption (44) holds, then inequality (48) holds provided that it holds for [image: there is no content], that is, provided that


[image: there is no content]λp-1+λ[image: there is no content]+ν≤[image: there is no content]



(49)




Condition (11) holds if


[image: there is no content]



(50)




The function h(λ):=[image: there is no content]λp-1+λ[image: there is no content] attains its global minimum in the interval [image: there is no content] at the value


λ=[image: there is no content]:=(p-1)[image: there is no content][image: there is no content]1/p



(51)




and this minimum is equal to


[image: there is no content]








Thus, substituting [image: there is no content] in formula (49), one concludes that inequality (49) holds if the following inequality holds:


[image: there is no content]



(52)




while inequality (50) holds if


[image: there is no content]



(53)




Therefore, by Theorem 1, if conditions (52)–(53) hold, then estimate (12) yields


∥u(t)∥≤1[image: there is no content](1+t)ν,∀t≥0



(54)




where [image: there is no content] is defined in Equation (51).
Theorem 5 is proved. □



4. Stability Results under Non-classical Assumptions

Let us assume that Re[image: there is no content], where [image: there is no content]. This corresponds to the case when the linear operator [image: there is no content] may have spectrum in the right half-plane Re[image: there is no content]. Our goal is to derive under this assumption sufficient conditions on [image: there is no content], [image: there is no content], and [image: there is no content], under which the solution to problem (2) is bounded as [image: there is no content], and stable. We want to demonstrate new methodology, based on Theorem 1. By this reason we restrict ourselves to a derivation of the simplest results under simplifying assumptions. However, our derivation illustrates the method applicable in many other problems.

Our assumptions in this Section are:



β(t)=0,γ(t)=[image: there is no content](1+t)-m1,α(t,g)=[image: there is no content](1+t)-m2gp,p>1








Let us choose


[image: there is no content]








The constants [image: there is no content] are assumed positive.
We want to show that a suitable choice of these parameters allows one to check that basic inequality (10) for μ is satisfied, and, therefore, to obtain inequality (12) for [image: there is no content]. This inequality allows one to derive global boundedness of the solution to Equation (2), and the Lyapunov stability of the zero solution to Equation (2) (with [image: there is no content]). Note that under our assumptions [image: there is no content], lim[image: there is no content]μ(t)=d. We choose [image: there is no content]. Then [image: there is no content] for all [image: there is no content]. The basic inequality (10) takes the form



[image: there is no content]



(55)




and


[image: there is no content](d+λ)≤1



(56)




Since we have chosen [image: there is no content], condition (56) is satisfied if


d=(2[image: there is no content])-1



(57)




Choose n so that


[image: there is no content]



(58)




Then (55) holds if


[image: there is no content]



(59)




Inequality (59) is satisfied if [image: there is no content] and [image: there is no content] are sufficiently small. Let us formulate our result, which folows from Theorem 1.
Theorem 6. If inequalities (59) and (58) hold, then



0≤g(t)≤[d+λ(1+t)-n]-1≤d-1,∀t≥0



(60)




Estimate (60) proves global boundedness of the solution [image: there is no content], and implies Lyapunov stability of the zero solution to problem (2) with [image: there is no content] and [image: there is no content].
Indeed, by the definition of Lyapunov stability of the zero solution, one should check that for an arbitrary small fixed [image: there is no content] estimate sup[image: there is no content]∥u(t)∥≤ϵ holds provided that [image: there is no content] is sufficiently small. Let ∥u(0)∥=[image: there is no content]=δ. Then estimate (60) yields sup[image: there is no content]∥u(t)∥≤d-1, and (57) implies sup[image: there is no content]∥u(t)∥≤2δ. So, [image: there is no content], and the Lyapunov stability is proved. □
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