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Abstract: Large time behavior of solutions to abstract differential equations is studied. The
results give sufficient condition for the global existence of a solution to an abstract dynamical
system (evolution problem), for this solution to be bounded, and for this solution to have a
finite limit as t → ∞, in particular, sufficient conditions for this limit to be zero. The
evolution problem is:

u̇ = A(t)u+ F (t, u) + b(t), t ≥ 0; u(0) = u0. (∗)

Here u̇ := du
dt

, u = u(t) ∈ H , H is a Hilbert space, t ∈ R+ := [0,∞), A(t) is
a linear dissipative operator: Re(A(t)u, u) ≤ −γ(t)(u, u), where F (t, u) is a nonlinear
operator, ‖F (t, u)‖ ≤ c0‖u‖p, p > 1, c0 and p are positive constants, ‖b(t)‖ ≤ β(t), and
β(t) ≥ 0 is a continuous function. The basic technical tool in this work are nonlinear
differential inequalities. The non-classical case γ(t) ≤ 0 is also treated.
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1. Introduction

A classical area of study is stability of solutions to evolution problems. We identify an evolution
problem with an abstract dynamical system. An evolution problem is described by an equation

u̇(t) = F1(t, u), u(0) = u0 (1)
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Here F1 : X → X is a nonlinear operator in a Banach space X , u̇ = u̇(t) = du
dt

. Quite often it is
convenient to assume X to be a Hilbert space H , because the energy is often interpreted as a quantity
(u, u) in a suitable Hilbert space. Suppose that F1(t, 0) = 0 and u0 = 0. Then u = 0 is a solution
to Equation (1). A. M. Lyapunov in 1892 published a classical work on stability of motion, where he
studied Equation (1) in the case X = Rn and F1 analytic function of u. If F1(t, 0) = 0, and F1 is twice
Fréchet differentiable, then one can write F1(t, u) = A(t)u + F (t, u), where A(t) is a linear operator
in X and ‖F (t, u)‖ = O(‖u‖2), ‖u‖ → 0. This representation is a linearization of F1 around the point
u = 0. Lyapunov defined the notion of stability (Lyapunov stability) of the equilibrium solution u = 0

towards small perturbations of the data u0. He calls this solution stable (Lyapunov stable), if for any
ε > 0 there is a δ = δ(ε) > 0 such that if inequality ‖u0‖ < δ holds then supt≥0 ‖u(t)‖ < ε. Note that
this definition implies the global existence of the solution to problem (1) for all u0 in the ball ‖u0‖ < δ.

The equilibrium solution u = 0 is called unstable if it is not Lyapunov stable. This means that there
is an ε > 0 such that for any δ > 0 there is a u0, ‖u0‖ < δ, and a tδ > 0 such that ‖u(tδ)‖ ≥ ε.

One can give similar definitions for stability and instability of a solution to problem (1) with u0 6= 0.
In this case one calls the solution u = u(t;u0) stable if all the solutions u(t;w0) to problem (1), with w0

in place of u0, exist for all t ≥ 0 and satisfy the inequality supt≥0 ‖u(t;u0) − u(t;w0)‖ < ε provided
that ‖u0 − w0‖ < δ.

A solution u(t;u0) is called asymptotically stable if it is stable and there is a δ > 0 such that all the
solutions u(t;w0) with ‖u0 − w0‖ < δ satisfy the relation limt→∞ ‖u(t;u0)− u(t;w0)‖ = 0.

The equilibrium solution u = 0 is asymptotically stable if it is stable and there is a δ > 0 such that all
the solutions u(t;u0) with ‖u0‖ < δ satisfy the relation limt→∞ ‖u(t;u0)‖ = 0.

Consider problem (1) with F1(t, u)+φ(t, u) in place of F1(t, u). The term φ(t, u) is called persistently
acting perturbations. The equilibrium solution u = 0 is called stable with respect to persistently acting
perturbations if for any ε > 0 there exists a δ = δ(ε) > 0 such that if ‖φ(t, u)‖ < δ and ‖u0‖ < δ, then
supt≥0 ‖u(t;u0)‖ < ε.

Stability of the solutions and their behavior as t→∞ are of interest in a study of dynamical systems.
For example, if the equilibrium solution is asymptotically stable, then it does not have chaotic behavior.

If A(t) = A is independent of time and X = Rn, then Lyapunov obtained classical results on the
stability of the equilibrium solution to problem (1). He assumed that F is analytic with respect to u ∈ Rn,
that |F (t, u)| ≤ c|u|2 in a neighborhood of the origin, and c > 0 is a constant. Lyapunov has proved
that if the spectrum σ(A) of A lies in the half-plane Rez < 0, then the equilibrium solution u = 0

is asymptotically stable, and if at least one eigenvalue of A lies in the half-plane Rez > 0, then the
equilibrium solution is unstable.

If some of the eigenvalues of A lie on the imaginary axis and F = 0, so that problem (1) is linear, and
if all the Jordan cells of the Jordan canonical form of the matrix, corresponding to the operator A in Rn

consist of just one element, then the equilibrium solution is stable. Otherwise it is unstable.
Thus, a necessary and sufficient condition for Lyapunov stability of the equilibrium solution of the

linear equation u̇ = Au in Rn is known: the spectrum of A has to lie in the left complex half-plane:
σ ⊂ {z : Rez ≤ 0}, and the Jordan cells corresponding to purely imaginary eigenvalues of A have to
consist of just one element.
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If F 6≡ 0, then, in general, when the spectrum of A lies in the left half plane of the complex plane,
and some eigenvalues of A lie on the imaginary axis, the stability cannot be decided by the linearized
part A of F1 only. One can give examples of A such that the nonlinear part F can be chosen so that
the equilibrium solution u = 0 is stable, and F can also be chosen so that this solution is unstable. For
instance, consider u̇ = cu3, where c = const. This equation can be solved analytically by separation of
variables. The result is u(t) = [u−2(0) − 2ct]−0.5. Therefore, if c < 0 and |u(0)| ≤ δ, δ > 0, then the
solution exists for all t ≥ 0, and is asymptotically stable. But if c > 0, then the solution blows up at a
finite time tb, the blow-up time, and tb = [2cu2(0)]−1. In this case the zero solution is unstable.

If A = A(t) the stability theory is more complicated. The case of periodic A(t) was studied much
due to its importance in many applications (see [1,2]).

The stability theory in infinite-dimensional spaces, for example, in Hilbert and Banach spaces, was
developed in the second half of the 20-th century, see [3] and references therein. Again, the location of
the spectrum of A(t) plays an important role in this theory.

The basic novel points of the theory presented below include sufficient conditions for the stability and
asymptotic stability of the equilibrium solution to abstract evolution problem (1) in a Hilbert space when
σ(A(t)) may lie in the right half-plane for some or all moments of time t > 0, but supσ(ReA(t)) → 0

as t→∞. Therefore, our results are new even in the finite-dimensional spaces.
The technical tool, on which our study is based, is a new nonlinear differential inequality. The results

are stated in several theorems and illustrated by several examples. These results are taken from the cited
papers by the author (see [4–11]), and, especially, from paper [4]. In the joint papers by the author’s
student N. S.Hoang and the author one can find various additional results on nonlinear inequalities
(see [12–17]). Some versions of this inequality has been used in the monographs [18,19], where the
Dynamical Systems Method (DSM) for solving operator equations was developed.

The literature on stability of solutions to evolution problems and their behavior at large times is
enormous, and we refer the reader mainly to the papers and books directly related to the novel points
mentioned above.

Consider an abstract nonlinear evolution problem

u̇ = A(t)u+ F (t, u) + b(t), u̇ :=
du

dt
(2)

u(0) = u0 (3)

where u(t) is a function with values in a Hilbert space H , A(t) is a linear bounded dissipative operator
in H , which satisfies inequality

Re(A(t)u, u) ≤ −γ(t)‖u‖2, t ≥ 0; ∀u ∈ H (4)

where F (t, u) is a nonlinear map in H ,

‖F (t, u)‖ ≤ c0‖u(t)‖p, p > 1 (5)

‖b(t)‖ ≤ β(t) (6)

γ(t) and β(t) ≥ 0 are continuous real-valued functions, defined on all of R+ := [0,∞), c0 > 0 and
p > 1 are constants.
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Recall that a linear operator A in a Hilbert space is called dissipative if Re(Au, u) ≤ 0 for all u ∈
D(A), where D(A) is the domain of definition of A. Dissipative operators are important because they
describe systems in which energy is dissipating, for example, due to friction or other physical reasons.
Passive nonlinear networks can be described by Equation (2) with a dissipative linear operator A(t),
see [5,20], Chapter 3, and [21].

Let σ := σ(A(t)) denote the spectrum of the linear operator A(t), Π := {z : Rez < 0}, ` := {z :

Rez = 0}, and ρ(σ, `) denote the distance between sets σ and `. We assume that

σ ⊂ Π (7)

but we allow limt→∞ ρ(σ, `) = 0. This is the basic novel point in our theory. The usual assumption
in stability theory (see, e.g., [3]) is supz∈σ Rez ≤ −γ0, where γ0 = const > 0. For example, if
A(t) = A∗(t), where A∗ is the adjoint operator, and if the spectrum of A(t) consists of eigenvalues
λj(t), 0 ≥ λj(t) ≥ λj+1(t), then, we allow limt→∞ λ1(t) = 0. This is in contrast with the usual theory,
where the assumption is λ1(t) ≤ −γ0, γ0 > 0 is a constant, is used.

Moreover, our results cover the case, apparently not considered earlier in the literature, when
Re(A(t)u, u) ≤ γ(t)||u||2 with γ(t) > 0, limt→∞ γ(t) = 0. This means that the spectrum of A(t)

may be located in the half-plane Rez ≤ γ(t), where γ(t) > 0, but limt→∞ γ(t) = 0.
Our goal is to give sufficient conditions for the existence and uniqueness of the solution to problem

(2) and (3) for all t ≥ 0, that is, for global existence of u(t), for boundedness of supt≥0 ‖u(t)‖ <∞, or
to the relation limt→∞ ‖u(t)‖ = 0.

If b(t) = 0 in Equation (2), then u(t) = 0 solves Equation (2) and u(0) = 0. This equation is called
zero solution to Equation (2) with b(t) = 0.

If b(t) 6≡ 0, then one says that Equations (2) and (3) is the problem with persistently acting
perturbations. The zero solution is called Lyapunov stable for problem (2) and (3) with persistently
acting perturbations if for any ε > 0, however small, one can find a δ = δ(ε) > 0, such that if
‖u0‖ ≤ δ, and supt≥0 ‖b(t)‖ ≤ δ, then the solution to Cauchy problem (2) and (3) satisfies the estimate
supt≥0 ‖u(t)‖ ≤ ε.

We do not discuss here the method of Lyapunov functions for a study of stability (see, for
example [22,23]).

The approach, developed in this work, consists of reducing the stability problems to some nonlinear
differential inequality and estimating the solutions to this inequality.

In Section 2 the formulation and a proof of two theorems, containing the result concerning this
inequality and its discrete analog, are given. In Section 3 some results concerning Lyapunov stability
of zero solution to Equation (2) are obtained. In Section 4 we derive stability results in the case when
γ(t) < 0 in formula (4). This means that the linear operator A(t) in Equation (2) may have spectrum in
the half-plane Rez > 0.

Our results are closely related to the Dynamical Systems Method (DSM), see [6,7,12,13,18,19].
Recently these results were applied to biological problems ([24]) and to evolution equations with delay
([8]).

In the theory of chaos one of the reasons for the chaotic behavior of a solution to an evolution problem
to appear is the lack of stability of solutions to this problem ([25,26]). The results presented in Section 3
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can be considered as sufficient conditions for chaotic behavior not to appear in the evolution system
described by problem (2) and (3).

2. A Differential Inequality

In this Section an essentially self-contained proof is given of an estimate for non-negative solutions
of a nonlinear inequality

ġ(t) ≤ −γ(t)g(t) + α(t, g(t)) + β(t), t ≥ 0; g(0) = g0; ġ :=
dg

dt
(8)

In Section 3 some of the many possible applications of this estimate (see estimate (12) below)
are demonstrated.

It is not assumed a priori that solutions g(t) ≥ 0 to inequality (8) are defined on all of R+, that is,
that these solutions exist globally. In Theorem 1 we give sufficient conditions for the global existence of
g(t). Moreover, under these conditions a bound on g(t) is given, see estimate (12) in Theorem 1. This
bound yields the relation limt→∞ g(t) = 0 if limt→∞ µ(t) =∞ in Equation (12).

Let us formulate our assumptions. We assume that g(t) ≥ 0. We do not assume that the functions
γ, α and β are non-negative. However, in many applications the functions α and β are bounds on
some norms, and then these functions are non-negative. The function γ(t) is often (but not always)
non-negative. For example, this happens if γ(t) comes from an estimate of the type (Au, u) ≥ γ(u, u).
If the functions α and β are bounds from above on some norms, then one may assume without loss of
generality that these functions are smooth, because one can approximate a non-smooth function with an
arbitrary accuracy by an infinitely smooth function, and choose this smooth function to be greater than
the function it approximates.
Assumption A1. We assume that the function g(t) ≥ 0 is defined on some interval [0, T ), has a
bounded derivative ġ(t) := lims→+0

g(t+s)−g(t)
s

from the right at any point of this interval, and g(t)

satisfies inequality (8) at all t at which g(t) is defined. The functions γ(t), and β(t), are real-valued,
defined on all of R+ and continuous there. The function α(t, g) is continuous on R+ × R+ and locally
Lipschitz with respect to g. This means that

|α(t, g)− α(t, h)| ≤ L(T,M)|g − h| (9)

if t ∈ [0, T ], |g| ≤ M and |h| ≤ M . Here M = const > 0 and L(T,M) > 0 is a constant independent
of g, h, and t.
Assumption A2. There exists a C1(R+) function µ(t) > 0, such that

α

(
t,

1

µ(t)

)
+ β(t) ≤ 1

µ(t)

(
γ(t)− µ̇(t)

µ(t)

)
, ∀t ≥ 0 (10)

and
µ(0)g(0) ≤ 1 (11)

One can replace the initial point t = 0 by some point t0 ∈ R, and assume that the interval of time is
[t0, t0 + T ), and that inequalities hold for t ≥ t0, rather than for t ≥ 0. The proofs and the conclusions
remain unchanged.
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Theorem 1. If Assumptions A1 ) and A2 ) hold, then any solution g(t) ≥ 0 to inequality (8) exists on
all of R+, i.e., T =∞, and satisfies the following estimate:

0 ≤ g(t) ≤ 1

µ(t)
∀t ∈ R+ (12)

If µ(0)g(0) < 1, then 0 ≤ g(t) < 1
µ(t)

∀t ∈ R+.

Remark 1. If limt→∞ µ(t) =∞, then limt→∞ g(t) = 0.

Proof of Theorem 1. Let us rewrite inequality for µ as follows:

− γ(t)µ−1(t) + α(t, µ−1(t)) + β(t) ≤ dµ−1(t)

dt
(13)

Let φ(t) solve the following Cauchy problem:

φ̇(t) = −γ(t)φ(t) + α(t, φ(t)) + β(t), t ≥ 0; φ(0) = φ0 (14)

The assumption that α(t, g) is locally Lipschitz with respect to g guarantees local existence and
uniqueness of the solution φ(t) to problem (14). From the comparison result (see A Comparison
Lemma proved below) it follows that

φ(t) ≤ µ−1(t) ∀t ≥ 0 (15)

provided that φ(0) ≤ µ−1(0), where φ(t) is the unique solution to problem (15). Let us take φ(0) = g(0).
Then φ(0) ≤ µ−1(0) by the assumption, and an inequality, similar to Equation (15), implies that

g(t) ≤ φ(t) t ∈ [0, T ) (16)

Inequalities φ(0) ≤ µ−1(0), Equations (15) and (16) imply

g(t) ≤ φ(t) ≤ µ−1(t), t ∈ [0, T ) (17)

By the assumption, the function µ(t) is defined for all t ≥ 0 and is bounded on any compact subinterval
of the set [0,∞). Consequently, the functions φ(t) and g(t) ≥ 0 are defined for all t ≥ 0, and estimate
(12) is established.

If g(0) < µ−1(0), then one obtains by a similar argument the strict inequality g(t) < µ−1(t), t ≥ 0.
Theorem 1 is proved. 2

Let us now prove the comparison result that was used above, see, for example [27], Theorem III.4.1.
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A Comparison Lemma. Let

φ̇(t) = f(t, φ), φ(0) = φ0, (∗)

and
ψ̇(t) = g(t, ψ), ψ(0) = ψ0. (∗∗)

Assume ψ0 ≥ φ0, and
g(t, x) ≥ f(t, x) (∗ ∗ ∗)

for any t and x for which both f and g are defined. Assume that f and g are continuous functions in
a set [0, s) × (a, b), φ0 ∈ (a, b), ψ is the maximal solution to (**) and φ is any solution to (*). Then
φ(t) ≤ ψ(t) on the maximal interval [0, T ) of the existence of both φ and ψ.

Proof of the Comparison Lemma. First, let us assume for simplicity that problems (*) and (**) have
a unique solution. Later we will discard this simplifying assumption. If f and g satisfy a local Lipschitz
condition with respect to φ, respectively, ψ, then our simplifying assumption holds. Assume secondly,
also for simplicity, that g(t, x) > f(t, x). Under this simplifying assumption it is easy to prove the
conclusion of the Lemma, because the graph of ψ must lie above the graph of ψ for t > 0. Indeed, in a
small neighborhood [0, δ), where δ > 0 is sufficiently small, the graph of ψ lies above the graph of φ.
This is obviously true if φ0 < ψ0, because of the continuity of φ and ψ. If φ0 = ψ0, then the graph of
ψ lies above the graph of φ because φ̇(0) < ψ̇(0) due to the assumption f(0, φ0) < g(0, φ0) = g(0, ψ0).
To check the last claim assume that there is a point t1 ∈ [0, T ) such that φ(t1) = ψ(t1), and φ(t) < ψ(t)

for t ∈ (0, t1). Then φ(t)− φ(t1) < ψ(t)− ψ(t1). Divide this inequality by t− t1 < 0 and get

φ(t)− φ(t1)

t− t1
>
ψ(t)− ψ(t1)

t− t1

Pass to the limit t → t1, t < t1, in the above inequality, use the differential equations for φ and ψ and
the equality φ(t1) = ψ(t1), and obtain the following relation:

f(t1, φ(t1)) = φ̇(t1) ≥ ψ̇(t1) = g(t1, ψ(t1)) = g(t1, φ(t1))

This relation contradicts the assumption f(t, x) < g(t, x). This contradiction proves the conclusion of
the Comparison Lemma under the additional assumption f(t, x) < g(t, x).

To prove the Comparison Lemma under the original assumption f(t, x) ≤ g(t, x), let us consider
problem (*) with f replaced by fn := f − 1

n
< f . Let φn solve problem (*) with f replaced by fn,

and with the same initial condition as in (*). Since fn(t, x) < g(t, x), then, by what we have just
proved, it follows that φn(t) ≤ ψ(t) on the common interval [0, Tn) of the existence of φn and ψ. By the
standard result about continuous dependence of the solution to (*) on a parameter, one concludes that
limn→∞ Tn = T and limn→∞ φn(t) = φ(t) for any t ∈ [0, T ). Therefore, passing to the limit n → ∞
in the inequality φn(t) ≤ ψ(t) one gets the conclusion of the Comparison Lemma under the original
assumption f(t, x) ≤ g(t, x).

If the simplifying assumption concerning uniqueness of the solutions to (*) and (**) is dropped, then
(*) and (**) may have many solutions. The limit of the solution φn is the minimal solution to (*). If
one considers problem (**) with g replaced by gn := g + 1

n
> g, and denotes by ψn the corresponding
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solution, then the limit limn→∞ ψn(t) = ψ(t) is the maximal solution to (**). In this case the above
argument yields the conclusion of the Lemma with ψ(t) being the maximal solution to (**), and φ(t)

being any solution to (*). The Comparison Lemma is proved. 2

Remark 2. If φ(t) is bounded from below for all t ≥ 0, so that c ≤ φ(t) for all t ≥ 0, and ψ(t)

exists globally, that is, for all t ≥ 0, then the inequality c ≤ φ(t) ≤ ψ(t) and the continuity of f(t, x)

on the set [0,∞) × R imply that any solution φ to (*) exists globally. Indeed, if it would exist only on
a finite interval [0, T ) then it has to tend to infinity as t → T , but this is impossible because the bound
c ≤ φ(t) ≤ ψ(t) and the global existence and continuity of ψ do not allow φ(t) to grow to infinity as
t→ T .

Let us formulate and prove a discrete version of Theorem 1.

Theorem 2. Assume that gn ≥ 0, α(n, gn) ≥ 0,

gn+1 ≤ (1− hnγn)gn + hnα(n, gn) + hnβn; hn > 0, 0 < hnγn < 1 (18)

and α(n, gn) ≥ α(n, pn) if gn ≥ pn. If there exists a sequence µn > 0 such that

α(n,
1

µn
) + βn ≤

1

µn
(γn −

µn+1 − µn
hnµn

) (19)

and
g0 ≤

1

µ0

(20)

then
0 ≤ gn ≤

1

µn
, ∀n ≥ 0 (21)

Proof. For n = 0 inequality (21) holds because of Equation (20). Assume that it holds for all n ≤ m

and let us check that then it holds for n = m+ 1. If this is done, Theorem 2 is proved. 2

Using the inductive assumption, one gets:

gm+1 ≤ (1− hmγm)
1

µm
+ hmα(m,

1

µm
) + hmβm

This and inequality (19) imply:

gm+1 ≤ (1− hmγm)
1

µm
+ hm

1

µm
(γm −

µm+1 − µm
hmµm

)

= µ−1
m −

µm+1 − µm
µ2
m

≤ µ−1
m+1

The last inequality is obvious since it can be written as

−(µm − µm+1)
2 ≤ 0

Theorem 2 is proved.

Theorem 2 was formulated in [14] and proved in [15]. We included for completeness a proof, which
is shorter than the one in [15].

Let us give a few simple examples of applications of Theorem 1.
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Example 1. Consider the inequality

ġ(t) ≤ tg − (t+ 1)2g2 − 2(t+ 1)−2 (22)

Assume g ≥ 0. Choose µ(t) = t+ 1. Then inequality (10) holds if

(t+ 1)[−(t+ 1)2(t+ 1)−2 − 2(t+ 1)−2] ≤ −t− (t+ 1)−1

and g(0) ≤ 1. Thus, inequality (10) holds if

−t− 1− 2(t+ 1)−1 ≤ −t− (t+ 1)−1

This inequality holds obviously. Therefore, any g ≥ 0, that satifies inequalities (22) and g(0) ≤ 1, exists
for all t ≥ 0 and satisfies the estimate

0 ≤ g(t) ≤ 1

t+ 1

In this example the linearized problem

ġ(t) = tg − 2(t+ 1)−2, g(0) = g0

has a unique solution

g(t) = et
2/2[g(0)− 2

∫ t

0

e−
s2

2 (s+ 1)−2ds]

This solution tends to infinity as t→∞.
Example 2. Consider a classical problem

u̇(t) = A(t)u+ F (t, u), u(0) = u0 (23)

where A(t) is a linear operator in Rn and F is a nonlinear operator. Assume that Re(A(t)u, u) ≤
−γ(u, u), where γ = const > 0, and ||F (t, u)|| ≤ c||u||p, p = const > 1, c = const > 0, and || · || is
the norm of a vector in Rn. We also assume that Equation (23) has the following property:

Property P: If a solution to Equation (23) is defined on the maximal interval of its existence [0, T )

and T <∞, then limt→T−0 ||u(t)|| =∞.
It is known (see, for example [27]), that Property P holds if F (t, u) is a continuous function on

[0, T ]× Rn.
By Peano’s theorem the Cauchy problem

u̇(t) = f(t, u), u(0) = u0 (24)

where u ∈ Rn, has a local solution on an interval [0, a), provided that f is a continuous function on
[0, T ] × D(u0), where a ∈ (0, T ) and D(u0) is a neighborhood of u0. This solution is non-unique, in
general. One can give an explicit estimate of the length a of the interval on which the solution does exist.
Namely, a = min(T, b

M
), whereM := max|u−u0|≤b,t∈[0,T ]|f(t, u)|, and the neighborhoodD(u0) is taken

to be the set {u : |u− u0| ≤ b}.
It is known that in every infinite-dimensional Banach space the Peano theorem fails. Therefore, in

an infinite-dimensional Banach space we assume that problems (23) and (24) have a solution, and if
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[0, T ) is the maximal interval of the existence of the solution, then Property P holds. This happens, for
example, if f(t, u) satisfies a local Lipschitz condition with respect to u and is continuous with respect
to t ∈ [0, T ]. Indeed, if a local Lipschitz condition holds, then the local interval of the existence of the
solution to the Cauchy problem (24) is of the length b = min(RM−1, L), provided that f is continuous
with respect to t and satisfies the estimates ||f(t, u)|| ≤ M , ||f(t, u) − f(t, v)|| ≤ L||u − v||, in the
region [0, T ] × B(u0, R), B(u0, R) := {u : ||u − u0|| ≤ R}. Under these assumptions the solution to
problem (24) is unique and stays in the ball B(u0, R) for t ∈ [0, b].

To see that Property P holds for problem (24) if f satisfies a local Lipschitz condition with respect
to u, assume that the solution to Equation (24) does not exist for t > T . Under our assumptions, if the
solution u of problem (24) satisfies the inequality sup0≤t<T ||u(t)|| < ∞, then the constants M,L and
R are finite. Therefore b > 0. Take the initial point t0 = T − 0.5b. By the local existence theorem
the solution u(t) exists on the interval [T − 0.5b, T + 0.5b]. This is a contradiction, since we have
assumed that this solution does not exist for t > T . This contradiction proves that Property P holds for
problem (24) if f satisfies a local Lipschitz condition.

Let us use Theorem 1 to prove asymptotic stability of the zero solution to Equation (23) and to
illustrate the application of our general method for a study of stability of solutions to abstract evolution
problems, the method that we develop below.

Let g(t) := ||u(t)||, where the norm is taken in Rn. Take a dot product of Equation (23) with u, then
take the real part of both sides of the resulting equation and get

Re(u̇, u) = gġ = Re(Au, u) + Re(F (t, u), u) ≤ −γg2 + cgp+1

Since g ≥ 0, one obtains from the above inequality an inequality of the type Equation (8), namely,

ġ(t) ≤ −γg(t) + cgp(t), p = const > 1

where γ and c are positive constants. Choose

µ(t) = λeat

where λ = const > 0, a = const ∈ (0, γ). Note that a can be chosen arbitrarily close to γ. We choose
λ later. Denote b := γ − a > 0. Then inequality (11) holds for any g(0) if c > 0 is sufficiently small.
Inequality (10) holds if

cλ−(p−1)e−(p−1)at ≤ γ − a = b

Since p > 1 this inequality holds if cλ−(p−1) ≤ b. In turn, the last inequality holds for an arbitrary fixed
c > 0 and an arbitrary small fixed b > provided that λ > 0 is sufficiently large.

One concludes that for any initial data u0 the solution to Equation (23) exists globally and admits an
estimate ||u(t)|| ≤ λ−1e−at, where the positive constant a < γ can be chosen arbitrarily close to γ if the
positive constant c is sufficiently small.

The above argument remains valid also for unbounded, closed, densely defined linear operators A(t),
provided that Property P holds.

If A(t) is a generator of a C0 semigroup T (t), and F satisfies a local Lipschitz condition, then
problem (23) is equivalent to the equation u = T (t)F (t, u), and this equation may be useful for a
study of the global existence of the solution to problem (23) (see [28]).
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Example 3. Consider an example in which the solution blows up in a finite time, so it does not exist
globally. Consider the problem

u̇−∆u = u2 in [0,∞)×D ⊂ Rn; uN = 0; u(0, x) = u0(x) (25)

Here D is a bounded domain with a smooth boundary S, N is an outer unit normal to S, u0 > 0 is a
smooth function. Let

g0 :=

∫
D

u0(x)dx, g(t) :=

∫
D

u(t, x)dx

Integrate Equation (25) over D and get ġ(t) =
∫
D
u2dx. Use the inequality

( ∫
D

udt
)2 ≤ c

∫
D

u2dx

where c = c(D) = const > 0, and get ġ ≥ g2/c. Integrating this inequality, one obtains g(t) ≥
[ 1
g0
− ct]−1. Since c > 0 and g0 > 0 it follows that

lim
t→tb

g(t) =∞

where tb := 1
cg0

is the blow-up time, and t < tb. Consequently, for any initial data with g0 > 0 the
solution to Equation (25) does not exist globally.

Example 4. Consider the following equation

u̇+ A(t)u+ φ(u)− ψ(t, u) = f(t, u), u(0, x) = u0(x) (26)

where u = u(t, x), φ and ψ(t, u) are smooth functions growing to infinity as |u| → ∞. Let us assume
that

uφ(u) ≥ 0, uψ(t, u) ≥ 0 ∀t ≥ 0

and
uψ(t, u) ≤ α(t)|u|3, |uf(t, u)| ≤ β(t)|u|

where α(t) > 0 and β(t) > 0 are continuous functions, x ∈ D ⊂ Rn, D is a bounded domain,

Re(Au, u) ≥ γ(u, u) ∀u ∈ D(A), γ = const > 0

A is an operator in a Hilbert space H = L2(D), the domain of definition of A, D(A), is a dense in H
linear set, (u, v) is an inner product in H , ||u||2 = (u, u). An example of A is A = −∆, the Laplacean
with the Dirichlet boundary condition on S, the boundary of D. Denote g(t) := ||u(t)||. We want to
estimate the large time behavior of the solution u to Equation (26).

Take the inner product in H of Equation (26) and u, then take real part of both sides of the resulting
equation and get

gġ ≤ −γg2 + αg3 + βg

Since g ≥ 0 one obtains an inequality of the type Equation (8), namely

ġ ≤ −γg + α(t)g2 + β
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Now it is possible to use Theorem 1.
Choose µ(t) = λekt, where λ and k are positive constants, k < γ. Assume that λg0 ≤ 1, where

g0 := ||u0(x)||. Then inequality (11) holds for any initial data u0, that is, for any g0, if λ is sufficiently
small. Inequality (10) holds if

α(t)e−kt

λ
+ λektβ(t) ≤ γ − k

One can easily impose various conditions on α and β so that the above inequality hold. For example,
assume that α decays monotonically as t grows, α(0)

λ
< (γ − k)/2, and β(t) ≤ νe−k

′t, where k′ > k,
k′ = const, ν > 0 is a constant, λν ≤ (γ − k)/2. Then inequality (10) holds, and it implies that

||u(t)|| ≤ e−kt

λ

so that the exponential decay of ||u(t)|| as t→∞ is established.
In Sections 3 and 4 some stability results for abstract evolution problems are presented in detail. These

results are formulated in four theorems. The basic ideas are similar to the ones discussed in examples in
this Section, but new assumptions and new technical tools are used.

3. Stability Results

In this Section we develop a method for a study of stability of solutions to the evolution problems
described by the Cauchy problem (2) and (3) for abstract differential equations with a dissipative
bounded linear operator A(t) and a nonlinearity F (t, u) satisfying inequality (5). Condition (5) means
that for sufficiently small ‖u(t)‖ the nonlinearity is of the higher order of smallness than ‖u(t)‖.
We also study the large time behavior of the solution to problem (2) and (3) with persistently acting
perturbations b(t).

In this paper we assume that A(t) is a bounded linear dissipative operator, but our methods are valid
also for unbounded linear dissipative operators A(t), for which one can prove global existence of the
solution to problem (2) and (3). We do not go into further detail in this paper.

Let us formulate the first stability result.
Theorem 3. Assume that Re(Au, u) ≤ −k‖u‖2 ∀u ∈ H , k = const > 0, and inequality (4) holds

with γ(t) = k. Then the solution to problem (2) and (3) with b(t) = 0 satisfies an esimate ‖u(t)‖ =

O(e−(k−ε)t) as t→∞. Here 0 < ε < k can be chosen arbitrarily small if ‖u0‖ is sufficiently small.
This theorem implies asymptotic stability in the sense of Lyapunov of the zero solution to Equation (2)

with b(t) = 0. Our proof of Theorem 3 is new and very short.
Proof of Theorem 3. Multiply Equation (2) (in which b(t) = 0 is assumed) by u, denote g = g(t) :=

‖u(t)‖, take the real part, and use assumption (4) with γ(t) = k > 0, to get

gġ ≤ −kg2 + c0g
p+1, p > 1 (27)

If g(t) > 0 then the derivative ġ does exist, and

ġ(t) = Re

(
u̇(t),

u(t)

‖u(t)‖

)
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as one can check. If g(t) = 0 on an open subset of R+, then the derivative ġ does exist on this subset and
ġ(t) = 0 on this subset. If g(t) = 0 but in in any neighborhood (t− δ, t+ δ) there are points at which g
does not vanish, then by ġ we understand the derivative from the right, that is,

ġ(t) := lim
s→+0

g(t+ s)− g(t)

s
= lim

s→+0

g(t+ s)

s

This limit does exist and is equal to ‖u̇(t)‖. Indeed, the function u(t) is continuously differentiable, so

lim
s→+0

‖u(t+ s)‖
s

= lim
s→+0

‖su̇(t) + o(s)‖
s

= ‖u̇(t)‖

The assumption about the existence of the bounded derivative ġ(t) from the right in Theorem 3 was made
because the function ‖u(t)‖ does not have, in general, the derivative in the usual sense at the points t at
which ‖u(t)‖ = 0, no matter how smooth the function u(t) is at the point τ . Indeed,

lim
s→−0

‖u(t+ s)‖
s

= lim
s→−0

‖su̇(t) + o(s)‖
s

= −‖u̇(t)‖

because lims→−0
|s|
s

= −1. Consequently, the right and left derivatives of ‖u(t)‖ at the point t at which
‖u(t)‖ = 0 do exist, but are different. Therefore, the derivative of ‖u(t)‖ at the point t at which
‖u(t)‖ = 0 does not exist in the usual sense.

However, as we have proved above, the derivative ġ(t) from the right does exist always, provided that
u(t) is continuously differentiable at the point t.

Since g ≥ 0, inequality (27) yields inequality (8) with γ(t) = k > 0, β(t) = 0, and α(t, g) = c0g
p,

p > 1. Inequality (10) takes the form

c0
µp(t)

≤ 1

µ(t)

(
k − µ̇(t)

µ(t)

)
, ∀t ≥ 0 (28)

Let
µ(t) = λebt, λ, b = const > 0 (29)

We choose the constants λ and b later. Inequality (10), with µ defined in Equation (29), takes the form

c0
λp−1e(p−1)bt

+ b ≤ k, ∀t ≥ 0 (30)

This inequality holds if it holds at t = 0, that is, if

c0
λp−1

+ b ≤ k (31)

Let ε > 0 be arbitrary small number. Choose b = k − ε > 0. Then Equation (31) holds if

λ ≥
(c0
ε

) 1
p−1 (32)

Condition (11) holds if

‖u0‖ = g(0) ≤ 1

λ
(33)

We choose λ and b so that inequalities (32) and (33) hold. This is always possible if b < k and ‖u0‖ is
sufficiently small.
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By Theorem 1, if inequalities (31)–(33) hold, then one gets estimate (12):

0 ≤ g(t) = ‖u(t)‖ ≤ e−(k−ε)t

λ
, ∀t ≥ 0 (34)

Theorem 3 is proved. 2

Remark 3. One can formulate the result differently. Namely, choose λ = ‖u0‖−1. Then
inequality (33) holds, and becomes an equality. Substitute this λ into Equation (31) and get

c0‖u0‖p−1 + b ≤ k

Since the choice of the constant b > 0 is at our disposal, this inequality can always be satisfied if
c0‖u0‖p−1 < k. Therefore, condition

c0‖u0‖p−1 < k

is a sufficient condition for the estimate

‖u(t)‖ ≤ ‖u0‖e−(k−c0‖u0‖p−1)t

to hold (assuming that c0‖u0‖p−1 < k).
Let us formulate the second stability result.
Theorem 4. Assume that inequalities (4)–(6) hold and

γ(t) =
c1

(1 + t)q1
, q1 ≤ 1; c1, q1 = const > 0 (35)

Suppose that ε ∈ (0, c1) is an arbitrary small fixed number,

λ ≥
(c0
ε

)1/(p−1)

and ‖u(0)‖ ≤ 1

λ

Then the unique solution to (2) and (3) with b(t) = 0 exists on all of R+ and

0 ≤ ‖u(t)‖ ≤ 1

λ(1 + t)c1−ε
, ∀t ≥ 0 (36)

Theorem 4 gives the size of the initial data, namely, ‖u(0)‖ ≤ 1
λ

, for which estimate (36) holds. For
a fixed nonlinearity F (t, u), that is, for a fixed constant c0 from assumption (5), the maximal size of
‖u(0)‖ is determined by the minimal size of λ.

The minimal size of λ is determined by the inequality λ ≥
(
c0
ε

)1/(p−1), that is, by the maximal size of

ε ∈ (0, c1). If ε < c1 and c1 − ε is very small, then λ > λmin :=
(
c0
c1

)1/(p−1)

and λ can be chosen very
close to λmin.

Proof of Theorem 4. Let

µ(t) = λ(1 + t)ν , λ, ν = const > 0 (37)

We will choose the constants λ and ν later. Inequality (10) (with β(t) = 0) holds if

c0
λp−1(1 + t)(p−1)ν

+
ν

1 + t
≤ c1

(1 + t)q1
, ∀t ≥ 0 (38)



Mathematics 2013, 1 60

If
q1 ≤ 1 and (p− 1)ν ≥ q1 (39)

then inequality (38) holds if
c0
λp−1

+ ν ≤ c1 (40)

Let ε > 0 be an arbitrary small number. Choose

ν = c1 − ε (41)

Then inequality (40) holds if inequality (32) holds. Inequality (11) holds because we have assumed
in Theorem 4 that ‖u(0)‖ ≤ 1

λ
. Combining inequalities (32), (33) and (12), one obtains the desired

estimate:
0 ≤ ‖u(t)‖ = g(t) ≤ 1

λ(1 + t)c1−ε
, ∀t ≥ 0 (42)

Condition (32) holds for any fixed small ε > 0 if λ is sufficiently large. Condition (33) holds for any
fixed large λ if ‖u0‖ is sufficiently small.

Theorem 4 is proved. 2

Let us formulate a stability result in which we assume that b(t) 6≡ 0. The function b(t) has physical
meaning of persistently acting perturbations.

Theorem 5. Let b(t) 6≡ 0, conditions (4)– (6) and (35) hold, and

β(t) ≤ c2
(1 + t)q2

(43)

where c2 > 0 and q2 > 0 are constants. Assume that

q1 ≤ min{1, q2 − ν, ν(p− 1)}, ‖u(0)‖ ≤ λ−1
0 (44)

where λ0 > 0 is a constant defined in Equation (51), and

c
1− 1

p

2 c
1
p

0 (p− 1)
1
p

p

p− 1
+ ν ≤ c1 (45)

Then problem (2) and (3) has a unique global solution u(t), and the following estimate holds:

‖u(t)‖ ≤ 1

λ0(1 + t)ν
, ∀t ≥ 0 (46)

Proof of Theorem 5. Let g(t) := ‖u(t)‖. As in the proof of Theorem 4, multiply (2) by u, take the
real part, use the assumptions of Theorem 5, and get the inequality:

ġ ≤ − c1
(1 + t)q1

g + c0g
p +

c2
(1 + t)q2

(47)

Choose µ(t) by formula (37). Apply Theorem 1 to inequality (47). Condition (10) takes now the form

c0
λp−1(1 + t)(p−1)ν

+
λc2

(1 + t)q2−ν
+

ν

1 + t
≤ c1

(1 + t)q1
∀t ≥ 0 (48)



Mathematics 2013, 1 61

If assumption (44) holds, then inequality (48) holds provided that it holds for t = 0, that is, provided that

c0
λp−1

+ λc2 + ν ≤ c1 (49)

Condition (11) holds if

g(0) ≤ 1

λ
(50)

The function h(λ) := c0
λp−1 + λc2 attains its global minimum in the interval [0,∞) at the value

λ = λ0 :=

(
(p− 1)c0

c2

)1/p

(51)

and this minimum is equal to

hmin = c
1
p

0 c
1− 1

p

2 (p− 1)
1
p

p

p− 1

Thus, substituting λ = λ0 in formula (49), one concludes that inequality (49) holds if the following
inequality holds:

c
1
p

0 c
1− 1

p

2 (p− 1)
1
p

p

p− 1
+ ν ≤ c1 (52)

while inequality (50) holds if

‖u(0)‖ ≤ 1

λ0

(53)

Therefore, by Theorem 1, if conditions (52)–(53) hold, then estimate (12) yields

‖u(t)‖ ≤ 1

λ0(1 + t)ν
, ∀t ≥ 0 (54)

where λ0 is defined in Equation (51).
Theorem 5 is proved. 2

4. Stability Results under Non-classical Assumptions

Let us assume that Re(A(t)u, u) ≤ γ(t)‖u‖2, where γ(t) > 0. This corresponds to the case when
the linear operator A(t) may have spectrum in the right half-plane Rez > 0. Our goal is to derive under
this assumption sufficient conditions on γ(t), α(t, g), and β(t), under which the solution to problem (2)
is bounded as t → ∞, and stable. We want to demonstrate new methodology, based on Theorem 1. By
this reason we restrict ourselves to a derivation of the simplest results under simplifying assumptions.
However, our derivation illustrates the method applicable in many other problems.

Our assumptions in this Section are:

β(t) = 0, γ(t) = c1(1 + t)−m1 , α(t, g) = c2(1 + t)−m2gp, p > 1

Let us choose
µ(t) = d+ λ(1 + t)−n

The constants cj,mj, λ, d, n, are assumed positive.
We want to show that a suitable choice of these parameters allows one to check that basic

inequality (10) for µ is satisfied, and, therefore, to obtain inequality (12) for g(t). This inequality allows
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one to derive global boundedness of the solution to Equation (2), and the Lyapunov stability of the zero
solution to Equation (2) (with u0 = 0). Note that under our assumptions µ̇ < 0, limt→∞ µ(t) = d. We
choose λ = d. Then (2d)−1 ≤ µ−1(t) ≤ d−1 for all t ≥ 0. The basic inequality (10) takes the form

c1(1 + t)−m1 + c2(1 + t)−m2 [d+ λ(1 + t)−n]−p+1 ≤ nλ(1 + t)−n−1[d+ λ(1 + t)−n]−1 (55)

and
g0(d+ λ) ≤ 1 (56)

Since we have chosen λ = d, condition (56) is satisfied if

d = (2g0)
−1 (57)

Choose n so that
n+ 1 ≤ min{m1,m2} (58)

Then (55) holds if
c1 + c2d

−p+1 ≤ nλd−1 (59)

Inequality (59) is satisfied if c1 and c2 are sufficiently small. Let us formulate our result, which folows
from Theorem 1.

Theorem 6. If inequalities (59) and (58) hold, then

0 ≤ g(t) ≤ [d+ λ(1 + t)−n]−1 ≤ d−1, ∀t ≥ 0 (60)

Estimate (60) proves global boundedness of the solution u(t), and implies Lyapunov stability of the zero
solution to problem (2) with b(t) = 0 and u0 = 0.

Indeed, by the definition of Lyapunov stability of the zero solution, one should check that for an
arbitrary small fixed ε > 0 estimate supt≥0 ‖u(t)‖ ≤ ε holds provided that ‖u(0)‖ is sufficiently small.
Let ‖u(0)‖ = g0 = δ. Then estimate (60) yields supt≥0 ‖u(t)‖ ≤ d−1, and (57) implies supt≥0 ‖u(t)‖ ≤
2δ. So, ε = 2δ, and the Lyapunov stability is proved. 2
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