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Abstract: In this note, we propose a novel classification approach by introducing a new clustering
method, which is used as an intermediate step to discover the structure of a data set. The proposed
clustering algorithm uses similarities and the concept of a clique to obtain clusters, which can be
used with different strategies for classification. This approach also reduces the size of the training
data set. In this study, we apply support vector machines (SVMs) after obtaining clusters with the
proposed clustering algorithm. The proposed clustering algorithm is applied with different strategies
for applying SVMs. The results for several real data sets show that the performance is comparable
with the standard SVM while reducing the size of the training data set and also the number of
support vectors.
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1. Introduction

In order to meet people’s demands, such as searching from the internet, taking high-
quality pictures and videos, undergoing medical tests, widespread emails, producing
multimedia contents, etc., there is a tremendous and continuous advancement in technology
regarding data. Such interests require large digital storage with high-dimensional data sets.
The data sets include both meaningful and irrelevant data, which is why ‘’data analysis”
and ‘’data classification” topics are gaining more attention in recent years. Data analysis,
providing predictions based on the training data, gave birth to machine learning.

Machine learning (ML) is a mega-trend in various fields and can be seen as a collection
of computer algorithms that make life easier by predicting outcomes. Fundamentally, ML
is based on algorithms (so-called “machines”) to automatically learn from observations
(so-called “training data”) and to use the results for future decisions without explicit
programming. ML algorithms have applications in almost all areas.

ML is generally categorized as either unsupervised learning (e.g., clustering), supervised
learning (e.g., classification), or reinforcement learning (e.g., dynamic programming). In recent
years, a new approach has been introduced: semi-supervised learning, which is a mixture of
supervised learning and unsupervised learning. For semi-supervised learning, similarity-
based approaches have also gained significant popularity in recent years (see, [1–4]).

In this paper, we propose a clustering algorithm that uses similarities between exam-
ples by associating weights to each attribute (according to their ability to separate classes)
to reduce the size of the data set by combining the data as they form a so-called “clique”.
The cliques have been heavily used in random matrix theory, and recently, this concept
is being used in clustering algorithms (see, for example, [5–7]). More detail is given in
Section 2.
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Another important topic in ML is classification. Classification is a task for the predic-
tive modeling problem. The aim of classification is to assign a class label for a given input
data. There are several types of classification algorithms. Some well-known and widely
used classification algorithms are Naive Bayes, Decision Trees, k-Nearest Neighbours,
Logistic Regression, and Support Vector Machines.

Support vector machines (SVMs) are state-of-the-art classification methods used in
various fields ([8–10]). There are many studies on extensions and improvements for SVMs.
In some of these studies, SVMs are used with different clustering algorithms. For example,
Wang et al., in [11], proposed KMSVM, which combines k-means clustering with SVMs.
Chen et al., in [12], extend a least-squares twin support vector machine to a multiple-birth
least-squares support vector machine for multi-class classification. Cheng et al., in [13],
study local support vector machines for classification with nonlinear decision surfaces.
Arslan et al. proposed a new clustering algorithm to discover the structure of the data set
and then used these clusters with SVM in [2]. Another recent study [14] used the CURE
clustering algorithm with SVMs. All these studies claim to obtain comparable performance
with reduced training data set size and less support vectors. A brief introduction to SVMs
is given in Section 3.

Motivated by these recent studies, we propose a new clustering algorithm based on
cliques, named Clique Clustering Algorithm (CC-Algorithm). In Section 4, the CC-Algorithm
is given. The algorithm is also demonstrated by an example in detail.

The main idea of using this clustering algorithm is to reduce the number of training
data in the data set that will be used with SVMs (Section 5). There are three different
algorithms proposed in this study: Centers of Cliques-SVM (CC-SVM), Homogeneous Cliques
Removed-SVM (HOM-R-SVM), and Heterogeneous Cliques Removed-SVM (HET-R-SVM). Each
proposed algorithm demonstrates different characteristics in terms of accuracy, perfor-
mance, and data reduction ability.

2. Cliques and Clustering

As data sets become larger in size and complexity, data analysis has become the hit
research topic in recent years. One of the main goals of clustering is to understand and
analyze the data by splitting it into groups of similar items. Each group is named a cluster,
and the method is focused on covering the data with a fewer number of clusters (details
can be found from [15]). Although there is no significant definition for clusters since
each method has clusters with its own shape, size, and density, it is extensively used in
applications, such as web analysis [16], marketing [17], computational biology [18], data
mining [19], machine learning [20], and many others.

Generating clusters is generally regarded as unsupervised learning because clustering
does not use category labels, whereas classification is regarded as supervised learning. A
new approach as a combination of unsupervised and supervised learning showed up in
2006 by Chapelle et al. [21], which is called semi-supervised learning. Most hybrid learning
methods use various distance concepts for similarity functions. Similarity functions are
generally defined by using Euclidean distance, Chebyshev distance, Jaccard distance,
Mahalanobis distance, etc. Different distance functions result in different algorithms. For
example, some graph-based approaches can be found in articles [4,22,23]. In [4], the data
set represents a weighted graph that each data element is shown as a vertex and linking
the vertices by the edges using a similarity value. However, Chen et al., in [22], proposed a
partially observed unweighted graph. Ames et al. [6], on the other hand, considered the
k-disjoint-clique optimization problem as a way to express the clustering problem with
graphs and cliques. They claimed to solve this NP-hard optimization problem by using
convex optimization.

A clique is a complete subgraph of an undirected graph, i.e., there is an edge between
any pair of vertices. It was first used by Luce and Perry (1949) [24] in social networks and
has many different applications in many areas other than graph theory.
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In this study, we consider yet another approach for clustering, which is aimed at pro-
viding information from the data set that can be used with various classification strategies.
We use cliques to obtain clusters. In our approach, the cliques and, therefore, the clusters
are obtained with a heuristic algorithm. Instead of solving a problem like the densest
k-disjoint-clique optimization problem, the proposed Algorithm 1 obtains dense cliques in
a natural way by considering similarities between examples and by using a threshold value.

To achieve this, we subdivide the data into a number of disjoint cliques that maximize
the sum of the weights of the edges inside of it. At first sight, the clique idea may look
similar to the one in [6] where Euclidean distance is used for the weights of the edges.
However, in this current study, the edge weight is calculated by using a similarity function
that is totally different from the distance function. To the best of our knowledge, this is the
first algorithm using cliques without using any distance function.

Definition 1. The similarity value between two examples xi, xj ∈ U with respect to an attribute
a ∈ A, where A is the set of attributes and U is a finite set of objects, is defined as

sima(xi, xj) = 1−
| f (xi, a)− f (xj, a)|
max(a)−min(a)

for a numerical attribute a, where max(a) = max
xi∈U

f (xi, a), min(a) = min
xi∈U

f (xi, a), and f (x, a)

is a total function for each a ∈ A and x ∈ U and named the information function.

Remark 1. f (xi, a) denotes the value of attribute a for the example xi of the data set U.

The similarity value defined above calculates the similarity between two vertices for a
single attribute. In order to consider the total similarity with respect to a set of attributes, we
use the similarity definition below, which is obtained by summing individual similarities
using special weights.

Definition 2. The similarity value between two examples xi, xj ∈ U with respect to an attribute
set B ⊆ A is defined as

simB(xi, xj) = ∑
a∈B

wasima(xi, xj) (1)

where wa corresponds to the weight for an attribute a ∈ B.

As mentioned in the introduction, weights for attributes are calculated according to
their performances for separating the classes. The detailed calculation of the weight for an
attribute a is given as:

wa =

n

∑
i=1

s(Bi(a))

s(U)
(2)

where s(X) denotes the number of elements in the set X, and Bi’s are defined as below:

Bi(a) = Ai(a) \
n⋃

j=1(i 6=j)

Aj(a),

Ai(a) = {x ∈ U|min(Ci(a)) ≤ f (x, a) ≤ max(Ci(a))},

where Ci(a) is the set of values for an attribute a belonging to class i, 1 ≤ i ≤ n, and n is
the number of classes in a data set. Equations (1) and (2) were introduced in [25], and we
direct the reader to there for more details.
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3. Support Vector Machines and Classification

Support vector machines (SVMs) were introduced by Vapnik and Chervenenkis in 1974
(see [26]). SVMs are one of the most popular methods used in ML (indeed, for supervised
ML) with the aim of classifying given data by using so-called “training data”. For an
introduction to the general theory of SVMs, we direct the reader to the sources [8,10,27–29]
and to the papers [30–33] for recent developments, to name a few.

Basically, SVM is an algorithm for finding a separating hyperplane between two classes
so that the margin between two classes is maximized. Suppose that the data set is given
as {(xi, yi) | xi ∈ Rn, yi = ±1, for i = 1, 2, · · · , `}, where yi denotes either of two possible
classes {−1, 1}, for simplicity. In order to find the optimal hyperplane whose normal vector
is w and given by Equation x ·w + b = 0, one should consider the constraints:

xi ·w + b ≥ 1 if yi = 1,

xi ·w + b ≤ −1 if yi = −1,

which can be combined together as

yi(xi ·w + b)− 1 ≥ 0 for i = 1, 2, · · · , `.

By requiring (if necessary, after rescaling w and b) that there are some points satisfying the
two inequalities as an equality (such points are called “support vectors”), the margin be-
tween two classes turns out to be 2/||w||. Hence, in order to find the hyperplane providing
the maximum margin between two classes, it is enough to minimize ||w|| or equivalently
and more simply ||w||2. By using Lagrange multipliers, λi for i = 1, · · · , `, one obtains
the Lagrangian

F(w, b, λ1, · · · , λ`) =
1
2
||w||2 −

`

∑
i=1

λiyi(xi ·w + b) +
`

∑
i=1

λi.

We direct the reader to [8] for a comprehensive and complete account of the remaining
convex optimization.

If there is no feasible solution to this optimization problem, i.e., when the data are
not separable by a hyperplane, then by introducing extra positive slack variables, ξi,
representing the error (when ξi > 1), the above constraints can be rewritten as:

xi ·w + b ≥ 1− ξi if yi = 1,

xi ·w + b ≤ −1 + ξi if yi = −1,

ξi ≥ 0.

In this case, the objective function to be minimized is also changed from

||w||2
2

to
||w||2

2
+ C

`

∑
i=1

ξi,

where C is a cost parameter for the sum of error terms.
For data sets where classes are non-linearly separated (i.e., when they are separated by

some hypersurface), one can use the kernel trick and transform the data set into a higher
dimensional Euclidean space by using an appropriate kernel function K(xi, xj). The most
common used kernel functions for real-life data in pattern recognition are listed in Table 1
(see [34] for details):
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Table 1. Common kernel functions.

Kernel Name Kernel Function

Linear (k = 1): K(xi, xj) = xi · xj

Gaussian Radial Basis (k = 2): K(xi, xj) = e−||xi−xj ||2/2σ2

Polynomial (k = 3): K(xi, xj) = (γxi · xj + δ)p

Sigmoid (k = 4): K(xi, xj) = tanh(γxi · xj + δ)

In this study, all kernel functions above are tested for each data set, and the best fitted
results are chosen with respect to the Standard SVM without reducing any of the data, as
will be later explained in Section 5. Among the 10 data sets used in this study, the best
performance is obtained with a linear kernel for 3 of them and with a radial basis kernel for
7 of them. The details are summarized in the Table 3.

4. A Clique Clustering Algorithm

In this section, the “Clique Clustering Algorithm” (CC-Algorithm) is introduced in
Algorithm 1, and a detailed example is given for demonstrating the steps of the algorithm.
We note here that the proposed CC-Algorithm starts with the most similar pair of examples
to construct the cliques. Thus, the cliques obtained naturally represent highly dense cliques.

Notation 1. The following notations and assumptions are being used in the algorithm below, with
some conventions to simplify the algorithm and its implementation. Let C denote the set of all
attributes for the given data set.

B is a list of index pairs ordered in the decreasing order with respect to the similarity function
simC(xi, xj), such that, for k < `,

either, simC(xk1 , xk2) > simC(x`1 , x`2),

or, simC(xk1 , xk2) = simC(x`1 , x`2), and k1 > l1
or, simC(xk1 , xk2) = simC(x`1 , x`2), k1 = l1, and l2 > k2

where B[k] = (k1, k2) and B[`] = (l1, l2), and B[m] denotes the m-th element of the ordered list,
B. Hence, for example, B[1] denotes the index (i, j), where simC(xi, xj) is the largest. The same
ordering is also used for sorting the list A in Step 2.(c) of the algorithm.

Moreover, to avoid repetitions, we assume without loss of generality that i < j for any
(i, j) ∈ B. Furthermore, empty list is denoted by [ ].

The clique clustering algorithm is presented below. Algorithm 1.
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Algorithm 1: Clique Clustering (CC) Algorithm.

Input: B, t, simC(xi, xj).
Output: List of Cliques, L.
1. Let B denote the ordered list set of all pairs (i, j) with sim(xi, xj) ≥ t for a given threshold t, and this list is

ordered by the similarity values from largest to smallest.
2. Set L := [ ] and B0 := B.

Repeat until B0 = [ ]
\# The below sub-algorithm will repeat until all pairs in the list B have been considered. #\
(a) Let (i, j) = B0[1] be the first element.

\# I.e., the pair (i, j) such that sim(xi, xj) is the largest value. #\
(b) Consider the index sets Ai = {k | (i, k) ∈ B0 or (k, i) ∈ B0} and Aj similarly, and then form a list from

intersection of Ai and Aj; A = [k : k ∈ Ai ∩ Aj].
\# Ai is the index set of vertices xk where there is an edge between xi and xk; similarly, Aj is the index
set of vertices xk where there is an edge between xj and xk,, and hence, A is the list of indices k
such that {xi, xj, xk} forms a clique. #\

(c) Sort A as an ordered list by similarity values from largest to smallest according to sim(xi, xk) for
i < j and k ∈ A.
\# In order to obtain the densest cliques, we will check each element of A one by one, after checking
whether the remaining elements are included in the clique or not. #\

(d) Set A0 := A
Repeat until A0 = [ ]
\# The below sub-routine will repeat until all indices in the list A0 have been considered. #\
• Let k = A0[1] be the first element.
\# Densest clique construction: As conducted before, k ∈ A0 with largest similarity value of
sim(xi, xk). #\

• A0 := Remove(A0, [k]).
• Ak := {` ∈ A | (k, `) ∈ B0 or (`, k) ∈ B0}.
\# Find all vertices x`, ` ∈ A0, such that sim(xk, x`) ≥ t. Recall that B0 is the set of index pairs
(k, `) for which sim(xk, x`) ≥ t. Hence, either (k, `) ∈ B0 or (`, k) ∈ B0. #\

• Find, if any, vertices x` such that there is no edge between xk and x`.
D := [` : ` ∈ A ∧ ` 6∈ Ak]
\# If there exists such ` ∈ D, any set of vertices containing {xk, x`} cannot form a clique.
Thus, we should remove such elements from A for the clique under construction. #\

• Update A and A0 as A := Remove(A, D) and A0 := Remove(A0, D).
\# The set A is reduced by removing some elements. In order to check the remaining
elements for forming a clique, we also remove them from the iteration set A0 and repeat with the
next element. #\

• Next \# until A0 = [ ] #\.
(e) L := Append(L, [A]) update the list L.

\# A clique is obtained, A, and added to the list of cliques. Now, we will remove from B0 any
pair associated with clique vertices. #\

(f) For each k ∈ A, set
Rk = {(k, `) | (k, `) ∈ B0} ∪ {(`, k) | (`, k) ∈ B0}.

(g) R = ∪k∈ARk.
(h) B0 := Remove(B0, [` : ` ∈ R]).
(i) Next \# until B0 = [ ] #\.

3. Return L.

An Example

The following sample data were obtained from the Iris data set, selecting 60 rows, 20
from each class, randomly. Moreover, in order to demonstrate the clique algorithm above,
only the first two attributes were used, see Figure 1.



Mathematics 2022, 10, 128 7 of 19

For chosen attributes, a1, a2, the weights of each attribute are calculated from the
sample and represented as a vector w = (0.7419, 0.2581), as described in Section 2. Then,
according to this weight vector, the similarities are calculated:

Figure 1. Sample data for demonstration.

Seq. Sim. i j
[1] 1.0000 38 52
[2] 1.0000 36 56
[3] 1.0000 33 58

...
[1768] 0.2065 14 48
[1769] 0.1865 14 44
[1770] 0.1865 14 45

After choosing a threshold, in this example, t = 0.90, we obtain only the first 255 rows
from the above table:

Seq. Sim. i j
...

[253] 0.9001 29 39
[254] 0.9001 27 30
[255] 0.9001 8 23

Performing the CC-Algorithm described above, we obtain the cliques;

Clq. i1 i2 i3 i4 i5 i6 i7 i8
[1] 38 52 30 34 51 60
[2] 36 56 25 28 35 39 40 43
[3] 33 58 22 26 32 55 57 59
...

...
[10] 23 41
[11] 42 50
[12] 3 12

Among 60 examples, 55 are listed in the first 255 rows above. With the clique algorithm,
these 55 example are separated into 12 disjoint subsets. Among 12 cliques, 7 of them are



Mathematics 2022, 10, 128 8 of 19

homogeneous, i.e., all examples belonging to a clique have the same class type. The
remaining five cliques are heterogeneous, all having examples exactly from two different
classes. In Figure 2, all 12 cliques are shown with different colors, and the remaining 5 data
(55 out of 60 are already in cliques) are marked as Clique 0 for completeness and simplicity.

Figure 2. Clusters for sample data.

5. The Proposed Classification Algorithms

The idea of using clustering as an intermediate step before applying learning algo-
rithms is an active research topic. For example, [11] proposed KMSVM, which combines
k-means clustering with SVMs. In [14], a well-known clustering algorithm (CURE) is
applied to discover the structure of the training data set before applying SVMs. In this
study, we propose yet another approach by using the proposed CC-Algorithm. Different
from the previous studies in the literature, the proposed approach uses the concept of
complete cliques to obtain clusters of the training data set.

The main idea of the proposed classification algorithms is to discover structural
information of the data by using the proposed clique clustering approach. We expect
that this will reduce the training data set size while at the same time improving the
classification algorithm.

Although one may consider different strategies to achieve this goal, in this study, we
considered three basic strategies. In the first strategy, the centers of the cliques are used for
training the SVM. This algorithm will be called the Centers of Cliques-SVM (CC-SVM). In
the second strategy, cliques contain only one class category, i.e., homogeneous cliques are
removed and heterogeneous cliques are replaced with their centers before applying SVM.
This approach will be called the Homogeneous Cliques Removed-SVM (HOM-R-SVM). In the
third strategy, cliques contain more than one class category, i.e., heterogeneous cliques are
removed and homogeneous cliques are replaced with their centers before applying SVM.
This approach will be called the Heterogeneous Cliques Removed-SVM (HET-R-SVM).

All three approaches will reduce the original training data set size by some amount.
This will also affect the selection of support vectors. It is expected that this will result in
avoiding some of the over-fitting problems that may be encountered.

After applying the clique-clustering algorithm, the training set will be partitioned
into two parts: the cliques denoted by C and the remaining elements denoted by F .
Assuming that there are l cliques and r remaining elements, we have C = {C1, C2, . . . , Cl}
and F = {x1, x2, . . . , xr}, where xj ∈ Rd.
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5.1. Centers of Cliques (CC-SVM) Algorithm

The basic idea in this approach is to use the cliques to reduce the data set by replacing
each clique with its center. The main steps of this approach are as follows:

1. Apply the Clique Clustering Algorithm (CC-Algorithm in Section 4).
2. Find centers for each class category in each clique.

(a) For homogeneous cliques, only one center is calculated.
(b) For heterogeneous cliques, we further identify all classes appearing in the clique

and calculate the centers of data having the same class label. Thus, we obtain a
minimum of two centers for each clique.

(c) Elements in F are also considered centers of cliques of size one.

3. Apply the SVM algorithm.

If we analyze our previous sample example, the number of examples is reduced to
5 + 7 + 2× 5 = 22 data, corresponding to 5 data from F ; 7 data from homogeneous cliques,
each clique is replaced with its center; and 10 data, 2 from each of the 5 heterogeneous
cliques containing examples from two classes and within each such clique, and centers are
calculated for each group of data that has the same class labels. All details are illustrated in
Figure 3, where all orange arrows show a reduction within homogeneous cliques belonging
to “setosa” class, and most green and blue arrows show a reduction within heterogeneous
cliques; however, there is one homogeneous green clique and there are two homogeneous
blue cliques. With 22 data, we obtain a better accuracy level when compared with the
standard SVM using all 60 data.

Figure 3. Flowchart of CC-SVM.
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5.2. Homogeneous Cliques Removed (HOM-R-SVM) Algorithm

The basic idea of this approach is to reduce the data set by removing homogeneous
cliques and replacing each heterogeneous clique with their centers. The main steps of this
approach are as follows:

1. Apply the CC-Algorithm.
2. Remove cliques that contain only one class category.

(a) Remove all data in homogeneous cliques.
(b) For heterogeneous cliques, replace heterogeneous cliques with their centers. As

in CC-SVM, calculate the centers of the data that have the same class labels.
(c) The elements in F are also considered as the training data set.

3. Apply SVM algorithm.

For our sample example, the number of examples is reduced to 5 + 2× 5 = 15 data
only. All details are illustrated in Figure 4. Then, the standard SVM is applied only to these
15 data. The resulting accuracy level is comparable to the accuracy of the standard SVM
with fewer examples.

Figure 4. Flowchart of HOM-R-SVM.
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5.3. Heterogeneous Cliques Removed (HET-R-SVM) Algorithm

The basic idea of this approach is to reduce the data set by removing heterogeneous
cliques and replacing each homogeneous clique with its center. The main steps of this
approach are as follows:

1. Apply the CC-Algorithm.
2. Remove cliques that contain more than one class categories.

(a) For homogeneous cliques, replace any clique with its center.
(b) For heterogeneous cliques, remove all data lying inside a clique that has more

than one class category.
(c) Elements in F are also considered as centers of cliques of size one.

3. Apply SVM algorithm.

Finally, for the sample example, the number of examples is reduced to 5 + 7 = 12 data.
All details are illustrated in Figure 5. The result is the same as the standard SVM with fewer
examples.

Figure 5. Flowchart of HET-R-SVM.

6. Application to Real Data Sets and Performance

In order to analyze the performance of the proposed classifiers, we considered 10
data sets that have also been used in some other studies (see, for example, [2,14,25]). We
note that all data sets have numerical attributes only. The data sets represent different
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application areas and various properties. Some of them have a relatively large number of
class categories, whereas some have a relatively large number of examples, see Table 2.

Table 2. Summary of Data Sets.

Data Set n a c Area

Iris 150 4 3 Life

Wine 178 13 3 Physical

Glass 214 9 7 Physical

Connectionist Bench 208 60 2 Physical(Sonar_All)

Statlog (Vehicle) 846 18 4 Physical

Ionosphere 351 33 2 Physical

Blood Transfusion 748 4 2 Business

Ecoli 336 6 8 Life

Haberman’s Survival 306 3 2 Life

Breast Cancer Wisconsin 683 9 2 Life

A few of the data sets needed some slight changes or adjustment before applying the
algorithms. For example, 16 rows from “Breast Cancer Wisconsin” have missing values in
one attribute, so for consistency, all these 16 rows have been deleted. For the “Ionosphere”
data set, the second attribute is constant for all instances, so this attribute is completely
removed before using the data. For the “Ecoli” data set, the fourth attribute (presence of
charge) is almost constant, and all the columns are equal to 0.5, except for one row with
a value of 1. Since train and test data are randomly chosen, for the cases where the data
with the exceptional value of 1 for this attribute belong to test data, the SVM will report an
error. For this reason, the fourth attribute is completely removed from this data set before
running simulations.

Figure 6 shows the performance of all three proposed algorithms in terms of accuracy.
In general, it is clear from the figure that the proposed classification algorithms achieve
similar accuracy results as for the standard SVM with a reduced training data set size and
fewer support vectors. For the Ecoli, Glass, and Blood Transfusion data sets a decrease in
accuracy is observed. The degree of decrease depends on the particular algorithm. For
example, for the Ecoli and Glass data sets, there is quite a decrease in accuracy for the
HET-R-SVM algorithm. On the other hand, for the Blood Transfusion data set, the worst
performance is obtained with the HOM-R-SVM algorithm. Finally, one can also see that
the CC-SVM algorithm shows a more robust behavior compared to the other proposed
SVM algorithms.

Instead of comparing the accuracy values of the test data for each data set, we provide
detailed analysis of the results in Table 3. In this table, k denotes the kernel as given in
Table 1, t denotes the threshold used in the clique algorithm in Section 4, n denotes the
number of the training data set for “Std. SVM” and the average number of reduced data of
the corresponding SVM for five runs, whereas ns similarly denotes the number of support
vectors for each SVM, and finally, “Acc.” denotes the accuracy of the classification of the
test data obtained for each SVM.
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Figure 6. Best Accuracy chart for proposed SVMs.

The results in Table 3 show that, overall, the proposed algorithms achieve the same
accuracy with a smaller training data set size and fewer support vectors. Only for the
Wine and Sonar_All data sets, the reduction may be negligible, but this is indeed to
achieve the best performance. For example, for the Wine data set, instead of t = 0.95,
if t = 0.90 is considered, then nt = 30.6, ns = 28, Acc. = 0.868 for HOM-R-SVM; and
nt = 59.4, ns = 39.6, Acc. = 0.981 for HET-R-SVM; and nt = 61, ns = 41.2, Acc. = 0.981 for
CC-SVM. Similarly, for Sonar_All data set, instead of t = 0.95, if t = 0.85 is considered, then
nt = 58.6, ns = 57.4, Acc. = 0.761 for HOM-R-SVM; and nt = 59.2, ns = 55.2, Acc. = 0.797
for HET-R-SVM; and nt = 77.2, ns = 73, Acc. = 0.816 for CC-SVM.

For the Transfusion data set, we decided to report two different threshold values,
t = 0.85 and t = 0.95, because, for the former one, HOM-R-SVM and CC-SVM have
better accuracy values for the test data; however, for the later one, HET-R-SVM performs
much better.

In addition to the accuracy rates given in Table 3, Table 4 shows the true positive
(TP) rate, false positive (FP) rate, and ROC areas for the data sets considered in this study.
These results were calculated using the WEKA software [35] after obtaining the clique
clusters with the proposed clustering algorithm. The results confirm the analysis given for
Table 3. In general, almost the same performance as the standard SVM is obtained with the
proposed algorithms using reduced training data sets in terms of TP and FP rates as well as
ROC area.

The reduction in training size and number of support vectors is very high for most of
the data sets. In addition, one can observe that the CC-SVM algorithm achieves comparable
(sometimes even better) accuracy for all data sets compared to the standard SVM. On the
other hand, HOM-R-SVM achieves the best results for the Iris and Breast Cancer Wisconsin
data sets, whereas HET-R-SVM achieves the best results for the Vehicle and Haberman’s
Survival data sets. Details about the amount of reduction is given in Figures 7–9 for each
algorithm separately for the data ratio versus accuracy ratio. In these charts, the following
ratios are represented:

Data ratio =
nt for the proposed SVM
n for the standard SVM

,

and
Accuracy ratio =

Accuracy of test data for the proposed SVM
Accuracy of test data for the standard SVM

.
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Table 3. The summary of SVM algorithms’ simulations.

Data Set k t
Std. SVM HOM-R-SVM HET-R-SVM CC-SVM

n ns Acc. nt ns Acc. nt ns Acc. nt ns Acc.

Iris 1 0.95 105 22.8 0.956 20 12.6 0.947 38 14 0.956 41.2 16.6 0.956

Wine 2 0.95 125 61.8 0.985 112.6 59.2 0.985 118.8 60.4 0.985 118.8 60.4 0.985

Glass 2 0.95 150 132 0.681 39 38.8 0.509 23.4 22.2 0.391 46 44.6 0.525

Sonar_All 2 0.95 146 117 0.829 135.2 111.6 0.826 140.2 114.2 0.832 140.2 114.2 0.832

Vehicle 1 0.95 592 322 0.808 314.8 218.8 0.749 248.6 147.2 0.785 401.6 252.8 0.787

Ionosphere 2 0.95 246 100 0.933 132.2 82.8 0.916 158 83.6 0.935 162 88 0.935

Transfusion 2 0.85 524 266.8 0.777 15.6 15.6 0.662 3.2 2.4 0.462 17.6 17.2 0.671
0.95 63.2 59.8 0.621 22.6 16.2 0.719 74.6 65.4 0.661

Ecoli 1 0.90 235 94.4 0.822 15.2 14.4 0.766 4.8 4.0 0.410 15.6 14.4 0.760

Haberman’s Survival 2 0.95 214 121.8 0.748 75.8 71.2 0.609 41.4 31.8 0.752 90.6 81.2 0.759

Breast Cancer Wisconsin 2 0.95 478 74.2 0.966 189.8 63.2 0.967 216.4 62.4 0.967 216.8 63.2 0.967

Table 4. TP rates, FP rates and AUC analysis.

Data Set k t
Std. SVM HOM-R-SVM HET-R-SVM CC-SVM

TP Rate FP Rate ROC Area TP Rate FP Rate ROC Area TP Rate FP Rate ROC Area TP Rate FP Rate ROC Area

Iris 1 0.95 0.978 0.009 0.984 0.956 0.018 0.969 0.956 0.018 0.969 0.978 0.009 0.984

Wine 2 0.95 0.981 0.011 0.985 0.981 0.011 0.985 0.981 0.011 0.985 0.981 0.011 0.985

Glass 2 0.95 0.625 0.143 0.741 0.516 0.127 0.694 0.422 0.219 0.601 0.531 0.141 0.695

Sonar_All 2 0.95 0.629 0.450 0.589 0.548 0.548 0.500 0.597 0.490 0.554 0.597 0.49 0.554

Vehicle 1 0.95 0.780 0.074 0.853 0.720 0.094 0.813 0.728 0.091 0.819 0.756 0.082 0.837

Ionosphere 2 0.95 0.924 0.146 0.889 0.914 0.098 0.908 0.924 0.146 0.889 0.924 0.146 0.889

Transfusion 1 0.95 0.790 0.754 0.518 0.714 0.472 0.621 0.692 0.539 0.577 0.580 0.372 0.604

Ecoli 1 0.94 0.788 0.072 0.858 0.768 0.054 0.855 0.712 0.154 0.735 0.663 0.082 0.790

Haberman’s Survival 2 0.95 0.739 0.699 0.520 0.641 0.660 0.490 0.728 0.728 0.500 0.707 0.661 0.523

Breast Cancer Wisconsin 2 0.95 0.946 0.026 0.960 0.937 0.031 0.953 0.937 0.031 0.953 0.937 0.031 0.953
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Figure 7 shows that, overall, CC-SVM achieves almost the same performance as the
standard SVM with a reduced training data set. Only for the Glass data set a significant de-
crease in accuracy is observed, which is still the best among the three proposed algorithms.
In addition, for the Ecoli, Iris, and Blood Transfusion data sets, the data reduction is very
high with ratios of less than 8%.

Figure 7. Performance of CC-SVM: data ratio vs. accuracy ratio.

Figure 8 shows that overall HOM-R-SVM achieves comparable performance to the
standard SVM with a reduced training data set. Only for the Glass data set a significant
decrease in accuracy is observed. In addition, for the Ecoli and Transfusion data sets, the
data reduction is very high with ratios of less than 7%.

Figure 8. Performance of HOM-R-SVM: data ratio vs. accuracy ratio.

Figure 9 shows that, overall, HET-R-SVM achieves almost the same performance as
the standard SVM with a reduced training data set, except for the Ecoli and Glass data sets.
For these two data sets, a significant decrease in accuracy is observed. In addition, for the
Ecoli, Haberman, and Transfusion data sets, the data reduction is very high with ratios of
less than 6%.

Figure 9. Performance of HET-R-SVM: data ratio vs. accuracy ratio.



Mathematics 2022, 10, 128 16 of 19

These results also show that all three algorithms actually capture some different
aspects of the data sets. For example, although the best performance (with an accuracy
ratio of 1.02 and data reduction ratio of 0.42) for the Haberman data set is obtained with
the CC-SVM algorithm, the HET-R-SVM shows a similar performance (with an accuracy
ratio of 0.97) with only a fraction of 6% of the original training data set.

7. Discussion

The results show that for most of the data sets, the three algorithms show similar
performances. For example, for the BC-Wisconsin and Wine data sets, all three algorithm
show a similar performance and data reduction behavior. In contrast, for the Ecoli, Glass,
and Transfusion data sets, the algorithms show some clear differences. For example, for
the Ecoli data set, only the HET-R-SVM shows a significant decrease in accuracy compared
to the standard SVM. For the Glass data set, all three algorithms achieve less accuracy
compared to the standard SVM. For this data set, the best accuracy is achieved with the
CC-SVM algorithm. For the Transfusion data set, the best accuracy is achieved with the
HET-R-SVM algorithm.

In summary, one can see that for some data sets, all three algorithms show similar
performances. Conversely, for some data sets, one of the algorithms shows the best
performance. Thus, for some of the data sets, as expected, either HOM-R-SVM or HET-
R-SVM may perform better than the usual scenario where CC-SVM performs better. The
choice of the corresponding algorithms depends on the user’s needs and the structure of
the data set or classes.

For a detailed analysis, we run another set of simulations from t = 0.80 to t = 0.99
with a step size of 0.01. In all data sets, CC-SVM is the most consistent algorithm. Two
graphs below show how a SVM algorithm may fluctuate according to the data set.

For the Iris data set, HET-R-SVM and CC-SVM are consistent for 0.80 ≤ t ≤ 0.99, but
HOM-R-SVM gives reasonable accuracy for larger values of t. With larger values of t, the
ratio nt/n also increases (see Figure 10).

This behavior, “fluctuating”, is not specific to HOM-R-SVM, as the Transfusion data
set shows in Figure 10. HET-R-SVM does not give consistent accuracy values for t < 0.90,
even though HET-R-SVM gives the best accuracy for t ≥ 0.94. On the other hand, both
HOM-R-SVM and CC-SVM are consistent for all values of 0.80 ≤ t ≤ 0.99. Even though,
the accuracy rates differ, as expected, the ratio nt

t is almost typical.
Both Figures 10 and 11 show that for smaller values of t, the number of examples used

in SVM reduces significantly, whereas for larger values of t, more data are being used in
SVM. Furthermore, depending on the distribution of the data, as seen for Transfusion data
set in Figure 11, even for larger values of t, there is still a reduction in the size of data before
using SVM. This is also similar for the number of support vectors.

In conclusion, we proposed a new clustering algorithm based on cliques that can be
used to discover relevant information for classification algorithms. Three different strategies
for using the information obtained by the clique clustering algorithm were investigated.
The results based on 10 real data sets obtained from the UCI repository [36] show that
comparable accuracy performance can be obtained by these proposed algorithms with a
smaller training data set size and fewer support vectors. In addition, the results indicate
that each proposed classification algorithm can capture different aspects of the training
data sets.
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Figure 10. Analysis for accuracy values of Iris and Transfusion data sets.

Figure 11. Analysis for ratio of reduction for Iris and Transfusion data sets.
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It is known that SVMs can have some problems with large data sets. For example, the
performance of SVMs decrease significantly when the number of examples in the training
data set increases ([37]). The results of this study show that the proposed classification
algorithms are of potential use for investigating new classification strategies based on SVMs
that can be used with large data sets.
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