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optimal solution and the generalized robust Slater constraint qualification (GRSCQ). These Karush-
Kuhn-Tucker type robust necessary conditions are shown to be sufficient optimality conditions
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1. Introduction

Robust optimization has become a prominent predetermined framework for investi-
gating multi-objective optimization problems with data uncertainty. Robust optimization
is a relatively new field of research that allows academicians to solve a wide range of
optimization problems, particularly when challenged with real-life situations where the
data input for a multi-objective linear semi-infinite program is frequently noisy or uncertain
due to prediction or measurement inaccuracies, as well as in industrial settings. Under this
framework, the objective and constraint functions are only considered to belong to “uncer-
tainty sets” in function space. For single-objective optimization problems, Soyster [1] was
the first researcher to study robust optimization problem. Quality products are necessary
in sectors as the engineering environment grows increasingly competitive. Variations in
various engineering procedures generate unexpected deviations from the function that
a designer intended for. The goal of robust design is to avoid such occurrences. In in-
dustrial engineering, robust design has been developed to improve product quality and
reliability. “Robustness is defined as the capacity of a technology, product, or process to
work with little sensitivity to elements that cause unpredictability (in the manufacturing
or user environment) and ageing while maintaining the lowest unit manufacturing cost.”
explained Taguchi [2], the pioneer of robust design. For more recent developments on
robust optimization problems, the readers are advised to refer to [3–8]. Lee et al. [9] and
Oksanen et al. [10] used robustness for transforming data to prognostic information and
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open platform communications technology for agricultural machinery telemetry respec-
tively. Lie et al. [11] used robustness in electrical machines which greatly increased motor
performance and diminished computational cost. Further, robust optimization has several
real life applications, readers are advised to refer to [12–15].

An interval-valued optimization problem is based on interval coefficients with closed
intervals. Interval-valued optimization problems can contribute a more useful alternative
for evaluating the uncertainty therein. In recent years, interval-valued optimization has
become a major topic in applied mathematics. This is due to the fact that, in many cir-
cumstances, the theory regarding the parameters of a physical world system is unknown.
Hence, these parameters cannot be accurately evaluated. Many developments in the theory
of interval-valued optimization problems have been carefully investigated, readers are ad-
vised to refer [16–20]. Interval-based models have a wide range of real-world applications
such as inventory [21], genetic algorithm [22] and engineering applications [23].

There are numerous mathematical models that are employed in applied mathematics,
economics, engineering, stochastics management and decision sciences for which convexity
is no longer sufficient. Various expansions of convex functions have been proposed in the
literature. Many of these functions provide more than one property resulting in models
that are better adaptable to real-world conditions than convex models. Beginning with the
pioneering work of Arrow and Enthoven [24], efforts were formed to cripple the convexity
assumption and thus investigate the application of optimality conditions. In this attempt,
Hanson [25] introduced a new category of functions which are applicable to optimization
theory, which was termed as the category of invex functions by Craven [26]. Some of
the recent advances related to generalized convexity with applications to group dynamic
problems, portfolio and location theory were analysed in detail, readers are advised to refer
to [27–29].

The basic purpose of multi-objective optimization research is to identify the best possi-
ble objective values by finding the global Pareto efficient solution. In practice, users may
be less interested in discovering so-called global best solutions, especially if they are ex-
tremely sensitive to variable perturbations, which are unavoidable in practice. Practitioners
are interested in building robust solutions that are less vulnerable to minor alterations
in these situations. Hence, in this paper we emphasis the robustness for a nonsmooth
interval-valued optimization problem.

The general problem dealing with minimizing (or maximizing) functions that are
generally not differentiable at their minimizers (or maximizers) refers to nonsmooth opti-
mization. Nonsmooth calculus, an extension of differential calculus, has recently become
a key advancement in mathematical sciences, particularly in the fields of mathematics,
operations research and engineering. Suneja et al. [30] used Clarke’s generalized gradients
to develop generalized convexity and optimality conditions related to vector optimization
problem along with duality results in Mond-Weir type problems. Chen et al. [31] employed
a modified objective function approach to examine the optimality conditions which are
applicable to multi-objective fractional programming problems and a family of nonsmooth
multi-objective optimization problems with cone constraints. In [32], Lee and Son explored
the necessary optimality theorem for a nonsmooth optimization problem in the presence
of data uncertainty. In the face of data uncertainty, Lee and Lee [33] have interpreted
nonsmooth optimality theorems for weakly and properly robust efficient solutions to a
nonsmooth multi-objective problem with more than two locally Lipschitz objective and
constraint functions. In [34], Chuong studied optimality conditions for robust (weakly)
pareto-optimal solutions which are in terms of limiting subdifferentials and multipliers.
The primal and its robust dual problem (strictly) with generalized convexity assumptions
were investigated further for weak/strong duality relations. There are no results on ro-
bust LU -optimal solution of nonsmooth/nonconvex uncertain constrained interval-valued
optimization problem (UCIVOP), that we are aware of.

Guided by the above works, this paper uses a robust methodology to analyse a nons-
mooth/nonconvex uncertain constrained interval-valued optimization problem (UCIVOP).
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The details of the manuscript are given as follows. Section 2 recalls some preliminary defi-
nitions and basic results. Section 3 establishes robust optimality conditions for (UCIVOP),
based on the assumptions of generalized convexity. Sections 4 and 5 are concerned with
the formulation of Wolfe and Mond-Weir type robust dual problems over cones involv-
ing generalized convexity assumptions, followed by the development of duality results.
Section 6 deals with the conclusion.

2. Preliminaries

Let Rn and Rn
+ denote respectively n-dimensional Euclidean space and its non-

negative orthant. Let I be the set of all closed bounded intervals in R. Suppose
I1 = [ιL, ιU ], I2 = [ςL, ςU ] ∈ I, then

(i) I1 + I2 = {ι + ς : ι ∈ I1 and ς ∈ I2} = [ιL + ςL, ιU + ςU ],
(ii) I1 = {−ι : ι ∈ I1} = [−ιU ,−ιL],
(iii) I1 − I2 = I1 + (−I2) = [ιL − ςU , ιU − ςL],
(iv) c + I1 = {c + ι : ι ∈ I1} = [c + ιL, c + ιU ],

(v) cI1 = {cι : ι ∈ I1} =
{

[cιL, cιU ], if c ≥ 0,
[cιU , cιL], if c < 0,

where c ∈ R.
For I1 = [ιL, ιU ] and I2 = [ςL, ςU ], the partial ordering≤LU on I is defined as I1 ≤LU I2

if and only if ιL ≤ ςL and ιU ≤ ςU . Moreover, we represent I1 <LU I2 if and only if
I1 ≤LU I2 along with I1 6= I2. In other words, I1 <LU I2 if and only if

ιL < ςL, ιU < ςU ,

or ιL ≤ ςL, ιU < ςU ,

or ιL < ςL, ιU ≤ ςU .

A nonempty subset L of Rn is a convex cone if L + L ⊆ L and lL ⊆ L for all l > 0.
A proper, closed and convex cone with nonempty interior is denoted by C ⊂ R. Let Φj0
be a nonempty, convex and compact subset ofRnj0 , for j0 = 1, 2, . . . , m0 and ∑m0

j0=1 nj0 = p.

Let Ψ = [ΨL, ΨU ] : Rn → I and ϕ = (ϕ1, ϕ2, . . . , ϕm0)
T : Rn ×Rp → Rm0 be an interval-

valued and vector-valued mappings and ϕj0 : Rn ×Rnj0 → R for j0 = 1, 2, . . . , m0, where
the transpose T is the superscript. IntC stands for the interior of C. C∗ = {η ∈ R+ : ηTϑ0 ≥
0, ∀ϑ0 ∈ C} = C is the dual cone of C.

In this article, we consider the subsequent uncertain constrained interval-valued
optimization problem (UCIVOP):

(UCIVOP) min
ϑ0∈Rn

Ψ(ϑ0) = [ΨL(ϑ0), ΨU (ϑ0)]

subject to

−ϕ(ϑ0, $) ∈ S ,

where S ⊂ Rm0 is a proper, closed and convex cone, $ = ($1, $2, ..., $m0)
T ∈ Rp is the

vector of uncertain parameter with $j0 ∈ Φj0 , j0 = 1, 2, ..., m0 and ϑ0 ∈ Rn is the vector of
decision variable. The uncertainty set-valued function Φ : J ⇒ Rp is given by Φ(j0) = $j0 ,
∀ j0 ∈ J. For the sake of convenience, we set Φ = ∏m0

j0=1 Φj0 . As Φj0 are nonempty, convex
and compact sets for all j0 = 1, 2, ..., m0, Φ is a nonempty, convex and compact subset of
Rp. We assume S = Rm0

+ and C = R+ without losing generality throughout this study.
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In this study, we use a robust methodology to explore (UCIVOP). The robust counter-
part of (UCIVOP) is as follows:

(RIVOP) min
ϑ0∈Rn

Ψ(ϑ0) = [ΨL(ϑ0), ΨU (ϑ0)]

subject to

−ϕ(ϑ0, $) ∈ S , ∀$ ∈ Φ.

A vector ϑ0 is a feasible solution of (RIVOP), it is said to be a robust feasible solution
of (UCIVOP). The collection of all robust feasible solutions of (UCIVOP) is denoted by H
where H = {ϑ0 ∈ Rn : −ϕ(ϑ0, $) ∈ S , ∀$ ∈ Φ}.

Definition 1. The robust feasible point ϑ̄0 is refered to as a robust LU -optimal solution of
(UCIVOP), if there is no robust feasible solution ϑ0 of (UCIVOP) such that Ψ(ϑ0) <LU Ψ(ϑ̄0).

We offer numerous specific scenarios to emphasise the generality of our interval-
valued robust optimization problems (IVROPs).

Case (i). If ΨL(ϑ0) = ΨU (ϑ0) for all ϑ0 ∈ Rn, then (UCIVOP) reduces to the subse-
quent problem:

(ROP) min
ϑ0∈Rn

Ψ(ϑ0)

subject to

−ϕ(ϑ0, $) ∈ S , ∀$ ∈ Φ.

which is the robust optimization problem (ROP). Many researchers [35–37] have examined
the Karush-Kuhn-Tucker type necessary optimality conditions for (ROP).

Case (ii). If the constraint functions are independent of the uncertainty parameter
$j0 , for each j0 = 1, 2, . . . , m0 then (UCIVOP) reduces to the subsequent interval-valued
optimization problem:

(IVOP) min
ϑ0∈Rn

Ψ(ϑ0) = [ΨL(ϑ0), ΨU (ϑ0)]

subject to

−ϕ(ϑ0) ∈ S .

Ishibuchi and Tanaka [38], Inuiguchi and Kume [39] and Wu [40,41] investigated the
Karush-Kuhn-Tucker necessary optimality conditions of the interval-valued optimization
problems based on the assumption that each of the constraints are convex and continu-
ously differentiable.

Definition 2. (See, Chen et al. [42]) A real-valued function h : Rn → R is a locally Lipschitz if
and only if, for any v ∈ Rn, there exist a positive constant τ and a neighborhood V of v such that,
for any ϑ0, v0 ∈ V ,

|h(ϑ0)− h(v0)| ≤ τ||ϑ0 −v0||,

where ||.|| stands for any norm inRn.

The Clarke’s generalized subgradient (See, Clarke [43]) of h at v is ∂h(v) = {ζ ∈ Rn :
h0(v; z) ≥ ζTz, ∀z ∈ Rn}, where

h0(v; z) = lim sup
v0→v

t↓0

h(v0 + tz)− h(v0)

t
,
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clearly,
h0(v; z) = max{〈ζ, z〉 : ζ ∈ ∂h(v)}.

It is generally known that if h : Rn → R is a locally Lipschitz function, then the
Clarke’s generalized subgradient ∂h : Rn ⇒ Rn is nonempty and compact-valued function
as well as upper semicontinuous onRn i.e., for any sequences (ϑn) and (vn) ofRn with
ϑn → ϑ0 ∈ Rn and vn ∈ ∂h(ϑn), ∀n ∈ N, there exists a subsequence (vnk )→ v0 ∈ ∂h(ϑ0).
An interval-valued function Ψ = [ΨL, ΨU ] : Rn → I is said to be locally Lipschitz on
Rn if and only if ΨL, ΨU are locally Lipschitz on Rn. Throughout this paper, we will
always presume that ΨL, ΨU are locally Lipschitz functions on Rn and that ϕ is locally
Lipschitz function onRn with respect to the first argument and its components are upper
semicontinuous with respect to the second argument.

Definition 3. Let (ΨL, ΨU , ϕ) be type II (C,C,Rm0
+ )-generalized convex at ϑ̄0 ∈ Rn. If for each

ϑ0 ∈ H and AL ∈ ∂ΨL(ϑ̄0), AU ∈ ∂ΨU (ϑ̄0), B ∈ ∂ϑ0 ϕ(ϑ̄0, $), $ ∈ Φ, there exists ξ ∈ R
such that

ΨL(ϑ0)−ΨL(ϑ̄0)− ALξ ∈ C,

ΨU(ϑ0)−ΨU(ϑ̄0)− AUξ ∈ C,

−ϕ(ϑ̄0, $)− Bξ ∈ Rm0
+ .

Definition 4. (i). f : Rn → I is pseudo convex at ϑ̄0 ∈ Rn, if for any ϑ0 ∈ Rn and µ ∈ C∗ \ {0}
the following holds:

µT f (ϑ0) < µT f (ϑ̄0)⇒ AT(ϑ0 − ϑ̄0) < 0, ∀A ∈ ∂(µT f )(ϑ̄0).

(ii). f : Rn → I is strictly pseudo convex at ϑ̄0 ∈ Rn, if for any ϑ0 ∈ Rn \ {ϑ̄0} and µ ∈ C∗ \ {0}
the subsequent equation holds:

µT f (ϑ0) ≤ µT f (ϑ̄0)⇒ AT(ϑ0 − ϑ̄0) < 0, ∀A ∈ ∂(µT f )(ϑ̄0).

(iii). G : Rn ×Rp → Rm0 is generalized quasi convex at ϑ̄0 ∈ Rn, if for any ϑ0 ∈ Rn and $ ∈ Φ
the following holds:

G(ϑ0, $) ≤ G(ϑ̄0, $)⇒ BT(ϑ0 − ϑ̄0) ≤ 0, ∀B ∈ ∂ϑ0G(ϑ̄0, $).

Definition 5. (ΨL, ΨU , ϕ) is type I (C,C,Rm0
+ )-pseudo convex at ϑ̄0 ∈ Rn, if ΨL, ΨU are pseudo

convex functions and ϕ is generalized quasi convex at ϑ̄0 ∈ Rn.

Definition 6. (ΨL, ΨU , ϕ) is type II (C,C,Rm0
+ )-pseudo convex at ϑ̄0 ∈ Rn, if ΨL, ΨU are

strictly pseudo convex functions and ϕ is generalized quasi convex at ϑ̄0 ∈ Rn.

Remark 1. It is noted that the Definitions 4–6 are properly wider than convex functions (see [44],
Example 2.2 and [34], Example 3.10).

Definition 7. (See, Chen et al. [42]) Let X0 be a nonempty subset of Rn. f : X0 → R is said to
be C-convexlike if the set f (X0) + C is convex.

Definition 8. (See, Chen et al. [42]) The generalized robust Slater constraint qualification
(GRSCQ) is satisfied if there exists z0 ∈ Rn such that −ϕ(z0, $) ∈ intRm0

+ , ∀$ ∈ Φ.

Lemma 1. (See, Chen et al. [42]) Let C ⊆ R be a closed convex cone with intC 6= ∅. Then,
v0 ∈ intC⇔ uTv0 > 0, ∀u ∈ C∗ \ {0}.
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The following is always denoted by Assumption D (See, Chen et al. [42]) in the rest of
this work.

(B1): With respect to the first argument, ϕ is locally Lipschitz and uniformly on Φ with
respect to the second argument i.e., for each ϑ0 ∈ Rn, there is a positive constant K and an
open neighborhood V of ϑ0 such that

||ϕ(v0, $)− ϕ(ϑ0, $)|| ≤ K||v0 − ϑ0||, ∀v0, ϑ0 ∈ V , $ ∈ Φ.

(B2): For each j0 ∈ {1, 2, . . . , m0}, the function $j0 7−→ ϕj0(., $j0) is concave on Φj0 .
We define a family of real-valued functions φ, φj0 : Rn → R, for each j0 ∈ {1, 2, . . . , m0}
as follows:

φj0(ϑ0) = max
$j0∈Φj0

ϕj0(ϑ0, $j0) (1)

φ(ϑ0) = max
j0∈{1,2,...,m0}

φj0(ϑ0) (2)

Since ϕj0 is upper semicontinuous and Φj0 is nonempty, convex and compact for each
j0 ∈ {1, 2, . . . , m0}, φj0 is clearly defined. By the auxiliary function (1), the following is an
equivalent description of the set H of robust feasible solutions.

H = {ϑ0 ∈ Rn : φj0(ϑ0) ≤ 0, j0 = 1, 2, . . . , m0} = {ϑ0 ∈ Rn : φ(ϑ0) ≤ 0}.

3. Karush-Kuhn-Tucker Robust LU -Optimality Conditions

Chen et al. [42] established the Karush-Kuhn-Tucker robust necessary optimality
conditions for weakly robust efficient solution for a robust non-smooth multi-objective
optimization problem. In perspective of Chen et al. [42], if we take into account k = 2 then
we arrive at the subsequent Karush-Kuhn-Tucker robust necessary optimality conditions
for robust LU optimal solution.

Theorem 1 (Kuhn-Tucker-type robust necessary LU -optimality conditions). Let ϕ satisfy
the Assumption D, φ is R+-convexlike, ΨL, ΨU be C-convexlike and (GRSCQ) holds at ϑ̄0. If ϑ̄0 is
a robust LU -optimal solution, then there exist µ̄L, µ̄U ∈ C∗ \ {0}, γ̄ ∈ Rm0

+ and $̄ ∈ Φ such that

0 ∈
{

∂ΨL(ϑ̄0)
T µ̄L + ∂ΨU (ϑ̄0)

T µ̄U + ∂ϑ0 ϕ(ϑ̄0, $̄)
T

γ̄

}
,

γ̄T ϕ(ϑ̄0, $̄) = 0.

(3)

Now, we establish Karush-Kuhn-Tucker-type robust sufficient LU -optimality condi-
tions for (UCIVOP).

Theorem 2 (Sufficient LU -optimality conditions). Let (ΨL, ΨU , ϕ) be type II (C,C,Rm0
+ )-

generalized convex at ϑ̄0 ∈ H. Assume that there exist µ̄L, µ̄U ∈ C∗ \ {0}, γ̄ ∈ Rm0
+ and $̄ ∈ Φ

such that

0 ∈
{

∂ΨL(ϑ̄0)
T µ̄L + ∂ΨU (ϑ̄0)

T µ̄U + ∂ϑ0 ϕ(ϑ̄0, $̄)
T

γ̄

}
, (4)

γ̄T ϕ(ϑ̄0, $̄) = 0. (5)

Then ϑ̄0 is a robust LU -optimal solution.

Proof. Suppose ϑ̄0 is not a robust LU -optimal solution of (UCIVOP), then there exists
ϑ̂0 ∈ H such that

Ψ(ϑ̂0) <LU Ψ(ϑ̄0).

That is,
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ΨL(ϑ̂0) < ΨL(ϑ̄0)

ΨU (ϑ̂0) < ΨU (ϑ̄0),

or

ΨL(ϑ̂0) ≤ ΨL(ϑ̄0)

ΨU (ϑ̂0) < ΨU (ϑ̄0),

or

ΨL(ϑ̂0) < ΨL(ϑ̄0)

ΨU (ϑ̂0) ≤ ΨU (ϑ̄0).

Since µ̄L ≥ 0, µ̄U ≥ 0, then the preceeding inequalities together yield

µ̄L[ΨL(ϑ̂0)−ΨL(ϑ̄0)] + µ̄U [ΨU (ϑ̂0)−ΨU (ϑ̄0)] < 0. (6)

Since (ΨL, ΨU , ϕ) is type II (C,C,Rm0
+ )-generalized convex at ϑ̄0, then there exists

ξ ∈ R such that

ΨL(ϑ̂0)−ΨL(ϑ̄0)− ALξ ∈ C, ∀AL ∈ ∂ΨL(ϑ̄0),

ΨU (ϑ̂0)−ΨU (ϑ̄0)− AU ξ ∈ C, ∀AU ∈ ∂ΨU(ϑ̄0),

−ϕ(ϑ̄0, $̄)− Bξ ∈ Rm0
+ , ∀B ∈ ∂ϑ0 ϕ(ϑ̄0, $̄).

From the above inequalities, one has

µ̄L[ΨL(ϑ̂0)−ΨL(ϑ̄0)− ALξ] ≥ 0, ∀AL ∈ ∂ΨL(ϑ̄0),

µ̄U [ΨU (ϑ̂0)−ΨU (ϑ̄0)− AU ξ] ≥ 0, ∀AU ∈ ∂ΨU (ϑ̄0),

γ̄T [−ϕ(ϑ̄0, $̄)− Bξ] ≥ 0, ∀B ∈ ∂ϑ0 ϕ(ϑ̄0, $̄).

Combining the above inequalities, we get

[µ̄LAL + µ̄UAU + γ̄T B]ξ

≤ µ̄L[ΨL(ϑ̂0)−ΨL(ϑ̄0)] + µ̄U [ΨU (ϑ̂0)−ΨU (ϑ̄0)]− γ̄T ϕ(ϑ̄0, $̄). (7)

By using (5), the inequality (7) gives

[µ̄LAL + µ̄UAU + γ̄T B]ξ ≤ µ̄L[ΨL(ϑ̂0)−ΨL(ϑ̄0)] + µ̄U [ΨU (ϑ̂0)−ΨU (ϑ̄0)]. (8)

By using (6), the inequality (8) implies

[µ̄LAL + µ̄UAU + γ̄T B]ξ < 0,

which contradicts (4) and hence the theorem.

The subsequent example demonstrates Theorem 2.

Example 1. Now we examine the uncertain constrained interval-valued optimization problem.

(UCIVOP-1) min
ϑ1,ϑ2∈R

Ψ(ϑ1, ϑ2) = [ΨL(ϑ1, ϑ2), ΨU (ϑ1, ϑ2)]

subject to

−ϕ(ϑ1, ϑ2, $) ∈ R2
+, where $ ∈ Φ.
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The robust counterpart of (UCIVOP-1) is defined as given below:

(RIVOP-1) min
ϑ1,ϑ2∈R

Ψ(ϑ1, ϑ2) = ([1, 1]ϑ1 + [1, 1]ϑ2
2 + [4, 5])

subject to{
− ϑ1

2 + 2ϑ1 + 3− ln(1 + $1), ϑ2 + |$2|
}T

∈ R2
+, ∀$ ∈ Φ,

where $ = ($1, $2) ∈ Φ = Φ1 ×Φ2.
Let Φ1 = [−0.5, 0], Φ2 = [−1, 1] and C = R+. Let ΨL, ΨU : R2 → R and ϕ :

R2 × R2 → R2. One can validate that the robust feasible set is H = [−1, 1] × R+. Then,

∂ψL(ϑ1, ϑ2)
T =

1

1

 = ∂ψU (ϑ1, ϑ2)
T and ∂ϑ0 ϕ(ϑ̄1, ϑ̄2, $̄) =

(
−4 0
0 −1

)
. One can easily

verify that (ΨL, ΨU , ϕ) is type II (C, C, Rm0
+ )-generalized convex at ϑ̄0 = (ϑ̄1, ϑ̄2) = (−1, 0).

Moreover, there exists µ̄L = 1/2 = µ̄U , where µ̄L, µ̄U ∈ C∗ \ {0} and γ̄ = (1/4, 1)T ∈ R2
+,

$̄ = 0 ∈ Φ. It can be easily verified that

0 ∈
{

∂ΨL(ϑ̄1, ϑ̄2)
T µ̄L + ∂ΨU (ϑ̄1, ϑ̄2)

T µ̄U + ∂ϑ0 ϕ(ϑ̄1, ϑ̄2, $̄)Tγ̄

}
,

γ̄T ϕ(ϑ̄1, ϑ̄2, $̄) = 0.

Then ϑ̄ = (−1, 0) ∈ H is a robust LU -optimal solution of (UCIVOP-1) (See Figure 1) .

Figure 1. Graphical view of the objective functions ΨL(ϑ1, ϑ2) and ΨU (ϑ1, ϑ2) of the prob-
lem (UCIVOP-1).

Theorem 3 (Sufficient LU -optimality conditions). Assume that there exist µ̄L, µ̄U ∈ C∗ \ {0},
γ̄ ∈ Rm0

+ and $̄ ∈ Φ such that

0 ∈
{

∂ΨL(ϑ̄0)
T µ̄L + ∂ΨU (ϑ̄0)

T µ̄U + ∂ϑ0 ϕ(ϑ̄0, $̄)
T

γ̄

}
, (9)

γ̄T ϕ(ϑ̄0, $̄) = 0. (10)
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(i). If (ΨL, ΨU , ϕ) is type I (C,C,Rm0
+ )-pseudo convex at ϑ̄0 ∈ H, then ϑ̄0 is a robust LU -

optimal solution.
(ii). If (ΨL, ΨU , ϕ) is type II (C,C,Rm0

+ )-pseudo convex at ϑ̄0 ∈ H, then ϑ̄0 is a robust LU -
optimal solution.

Proof. Firstly we validate (i).
Suppose ϑ̄0 is not a robust LU -optimal solution of (UCIVOP), then there exists ϑ̂0 ∈ H

such that
Ψ(ϑ̂0) <LU Ψ(ϑ̄0).

That is,

ΨL(ϑ̂0) < ΨL(ϑ̄0)

ΨU (ϑ̂0) < ΨU (ϑ̄0),

or

ΨL(ϑ̂0) ≤ ΨL(ϑ̄0)

ΨU (ϑ̂0) < ΨU (ϑ̄0),

or

ΨL(ϑ̂0) < ΨL(ϑ̄0)

ΨU (ϑ̂0) ≤ ΨU (ϑ̄0).

Since µ̄L ≥ 0, µ̄U ≥ 0, then the preceeding inequalities together yield

µ̄L[ΨL(ϑ̂0)−ΨL(ϑ̄0)] + µ̄U [ΨU (ϑ̂0)−ΨU (ϑ̄0)] < 0. (11)

By virtue of (9), there exist ϑ1 ∈ ∂(µ̄LΨL)(ϑ̄0), ϑ2 ∈ ∂(µ̄UΨU )(ϑ̄0), v1 ∈ ∂ϑ0 ϕ(ϑ̄0, $̄)Tγ̄
such that

ϑ1 + ϑ2 + v1 = 0. (12)

Since (ΨL, ΨU , ϕ) is type I (C,C,Rm0
+ )-pseudo convex at ϑ̄0, for any ϑ̂0 and µ̄L,

µ̄U ∈ C∗ \ {0} the following hold:

µ̄LΨL(ϑ̂0) < µ̄LΨL(ϑ̄0)⇒ AL(ϑ̂0 − ϑ̄0) < 0, ∀AL ∈ ∂(µ̄LΨL)(ϑ̄0). (13)

µ̄UΨU (ϑ̂0) < µ̄UΨU (ϑ̄0)⇒ AU (ϑ̂0 − ϑ̄0) < 0, ∀AU ∈ ∂(µ̄UΨU )(ϑ̄0). (14)

ϕ(ϑ̂0, $̄) ≤ ϕ(ϑ̄0, $̄)⇒ BT(ϑ̂0 − ϑ̄0) ≤ 0, ∀B ∈ ∂ϑ0 ϕ(ϑ̄0, $̄). (15)

By using the inequalities (11), (13) and (14), we get

[AL + AU ](ϑ̂0 − ϑ̄0) < 0. (16)

The inequality (16) along with (12) gives

−v1(ϑ̂0 − ϑ̄0) < 0. (17)

Since v1 ∈ ∂ϑ0 ϕ(ϑ̄0, $̄)
T

γ̄, we get v1 = BT
0 γ̄, for some B0 ∈ ∂ϑ0 ϕ(ϑ̄0, $̄). Thus,

− BT
0 γ̄(ϑ̂0 − ϑ̄0) < 0, for some B0 ∈ ∂ϑ0 ϕ(ϑ̄0, $̄). (18)

Since ϑ̄0 ∈ H and using (10) in the inequality (15) with γ̄ ∈ Rm0
+ , we obtain

BTγ̄(ϑ̂0 − ϑ̄0) ≤ 0, ∀B ∈ ∂ϑ0 ϕ(ϑ̄0, $̄).
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This is a contradiction to (18).
Assertion (ii) is proved similar to part (i) by using the type II pseudo convexity of

(ΨL, ΨU , ϕ) at ϑ̄0.

4. Wolfe Type Robust Dual Problem

Let us examine the subsequent Wolfe type robust dual problem for (UCIVOP).

(WIRD) max
(v0,$,µL ,µU ,γ)

(
Ψ(v0) + γT ϕ(v0, $)

)
=

{
[ΨL(v0), ΨU (v0)] + γT ϕ(v0, $)

}
subject to

0 ∈
{

∂ΨL(v0)
TµL + ∂ΨU (v0)

TµU + ∂ϑ0 ϕ(v0, $)Tγ

}
,

$ ∈ Φ, µL + µU = 1, µL, µU ∈ C∗ \ {0}, γ ∈ Rm0
+ .

The robust feasible set of (WIRD) is represented as HW
D , which is the set of all points

of the form (v0, $, µL, µU , γ) ∈ Rn × Φ × C∗ \ {0} × C∗ \ {0} × R(m0)
+ that satisfies the

constraints of (WIRD).

Remark 2. (i). If ΨL(v0) = ΨU (v0) for all v0 ∈ Rn, then (WIRD) model reduces to Wolfe type
dual model (WRD) of Chen et al. [42].
(ii). In the absence of uncertain parameter ρ in the constraints, the (WIRD) model reduces to (WD)
model of Singh et al. [45].

Definition 9. The robust feasible point (v̄0, $̄, µ̄L, µ̄U , γ̄) ∈ HW
D is called a robust LU -optimal

solution of (WIRD), if there does not exist a robust feasible solution (v0, $, µL, µU , γ) of (WIRD)
such that Ψ(v̄0) + γ̄T ϕ(v̄0, $̄) <LU Ψ(v0) + γT ϕ(v0, $).

The following section describes the duality results between (UCIVOP) and (WIRD).

Theorem 4 (Weak Duality). Let ϑ0 ∈ H and (v0, $, µL, µU , γ) ∈ HW
D . If (ΨL, ΨU , ϕ) is type

II(C,C,Rm0
+ )-generalized convex at v0, then the subsequent inequality cannot hold :

Ψ(ϑ0) <LU Ψ(v0) + γT ϕ(v0, $).

Proof. Suppose, if possible

Ψ(ϑ0) <LU Ψ(v0) + γT ϕ(v0, $). (19)

That is,

ΨL(ϑ0) < ΨL(v0) + γT ϕ(v0, $)

ΨU (ϑ0) < ΨU (v0) + γT ϕ(v0, $),

or

ΨL(ϑ0) ≤ ΨL(v0) + γT ϕ(v0, $)

ΨU (ϑ0) < ΨU (v0) + γT ϕ(v0, $),

or

ΨL(ϑ0) < ΨL(v0) + γT ϕ(v0, $)

ΨU (ϑ0) ≤ ΨU (v0) + γT ϕ(v0, $).
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Since µL ≥ 0, µU ≥ 0, then the preceeding inequalities together yield

µL[ΨL(ϑ0)−ΨL(v0)] + µU [ΨU (ϑ0)−ΨU (v0)]− γT ϕ(v0, $)[µL + µU ] < 0. (20)

Since (v0, $, µL, µU , γ) ∈ HW
D , we obtain µL, µU ∈ C∗ \ {0}, γ ∈ Rm0

+ , $ ∈ Φ,

µL + µU = 1, (21)

0 ∈
{

∂ΨL(v0)
TµL + ∂ΨU (v0)

TµU + ∂ϑ0 ϕ(v0, $)Tγ

}
. (22)

By using (21), the inequality (20) gives

µL[ΨL(ϑ0)−ΨL(v0)] + µU [ΨU(ϑ0)−ΨU (v0)]− γT ϕ(v0, $) < 0. (23)

Since (ΨL, ΨU , ϕ) is type II (C,C,Rm0
+ )-generalized convex at v0, then there exists

ξ ∈ R such that

ΨL(ϑ0)−ΨL(v0)− ALξ ∈ C, ∀AL ∈ ∂ΨL(v0),

ΨU (ϑ0)−ΨU (v0)− AU ξ ∈ C, ∀AU ∈ ∂ΨU (v0),

−ϕ(v0, $)− Bξ ∈ Rm0
+ , ∀B ∈ ∂ϑ0 ϕ(v0, $).

From the above inequalities, one has

µL[ΨL(ϑ0)−ΨL(v0)− ALξ] ≥ 0, ∀AL ∈ ∂ΨL(v0),

µU [ΨU (ϑ0)−ΨU (v0)− AU ξ] ≥ 0, ∀AU ∈ ∂ΨU (v0),

γT [−ϕ(v0, $)− Bξ] ≥ 0, ∀B ∈ ∂ϑ0 ϕ(v0, $).

Combining the above inequalities, we get

[µLAL + µUAU + γT B]ξ

≤ µL[ΨL(ϑ0)−ΨL(v0)] + µU [ΨU (ϑ0)−ΨU (v0)]− γT ϕ(v0, $). (24)

By using (23), the inequality(24) implies

[µL AL + µUAU + γT B]ξ < 0, ∀AL ∈ ∂ΨL(v0), ∀AU ∈ ∂ΨU (v0), ∀B ∈ ∂ϑ0 ϕ(v0, $),

which contradicts (22) and hence the theorem.

We now re-explore Example 1 to demonstrate Theorem 4.

Example 2. Let us examine the uncertain constrained interval-valued optimization problem.

(UCIVOP-1) min
ϑ1,ϑ2∈R

Ψ(ϑ1, ϑ2) = [ΨL(ϑ1, ϑ2), ΨU (ϑ1, ϑ2)]

subject to

−ϕ(ϑ1, ϑ2, $) ∈ R2
+, where $ ∈ Φ.
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LetRn,R,Rm0 ,Rp,C, Φ1, Φ2, ΨL, ΨU and ϕ be same as Example 1. The robust counterpart
of (UCIVOP-1) is defined as follows:

(RIVOP-1) min
ϑ1,ϑ2∈R

Ψ(ϑ1, ϑ2) = ([1, 1]ϑ1 + [1, 1]ϑ2
2 + [4, 5])

subject to{
− ϑ1

2 + 2ϑ1 + 3− ln(1 + $1), ϑ2 + |$2|
}T

∈ R2
+, ∀$ ∈ Φ,

where $ = ($1, $2) ∈ Φ = Φ1 × Φ2. Recall that the robust feasible set of (RIVOP-1) is
H = [−1, 1]×R+.

We consider a Wolfe type robust dual problem (WIRD-1) for (RIVOP-1) as follows:

(WIRD-1) max
(v1,v2,$,µL ,µU ,γ)

(
([1, 1]v1 + [1, 1]v2

2 + [4, 5])

+ γT

{
v2

1 − 2v1 − 3 + ln(1 + $1),−v2 − |$2|
}T)

subject to

0 ∈
{

∂ΨL(v̄1, v̄2)
TµL + ∂ΨU (v̄1, v̄2)

TµU + ∂ϑ0 ϕ(v̄1, v̄2, $̄)Tγ

}
,

where µL + µU = 1, µL, µU ∈ C∗ \ {0} and γ ∈ Rm0
+ . Again from Example 1, we have

(ϑ1, ϑ2, $, µL, µU , γ) ∈ HW
D where µL = 1/2 = µU , γ = (1/4, 1)T ∈ R2

+, $ = 0 ∈ Φ. For any
(v1, v2, $, µL, µU , γ) ∈ HW

D , we conclude that µL, µU ∈ C∗ \ {0}, γ = (γ1, γ2)
T ∈ R2

+. Hence,
it follows 0

0

 =

 1

2v2

µL +

 1

2v2

µU +

(
2v1 − 2 0

0 −1

)γ1

γ2


From the above equation, we get µL + µU + 2(v1 − 1)γ1 = 0 and 2v2(µ

L + µU )− γ2 = 0.
Combining these equations along with µL, µU , γ1, γ2 ≥ 0 and µL + µU = 1, we obtain v2 ≥ 0,
v1 ≤ 1. Taking into account v2 ≥ 0, v1 ≤ 1 and ∀(v1, v2, $, µL, µU , γ) ∈ HW

D , we have,

µL[ΨL(ϑ1, ϑ2)−ΨL(v1, v2)] + µU [ΨU (ϑ1, ϑ2)−ΨU (v1, v2)]

−(µL + µU )γT ϕ(v1, v2, $)

= −1/4− 3v1/2−v2
1/4−v2

2 + v2 − ln(1 + $1)/4 + |w2| ≮ 0.

Therefore, weak duality theorem of (WIRD-1) holds.

Theorem 5 (Strong Duality). Let ϑ̄0 be a robust LU -optimal solution of (UCIVOP) and (GRSCQ)
hold. Assume that ϕ satisfy the Assumption D, φ isR+-convexlike and ΨL, ΨU be C-convexlike.
Then, there exist $̄ ∈ Φ, µ̄L, µ̄U ∈ C∗ \ {0}, γ̄ ∈ Rm0

+ such that (ϑ̄0, $̄, µ̄L, µ̄U , γ̄) ∈ HW
D . Further-

more, if (ΨL, ΨU , ϕ) is type II (C,C,Rm0
+ )-generalized convex at v0, where (v0, $, µL, µU , γ) ∈

HW
D then (ϑ̄0, $̄, µ̄L, µ̄U , γ̄) is a robust LU -optimal solution of (WIRD).

Proof. As a result of Theorem 1, there exist $̄ ∈ Φ, µ̄L, µ̄U ∈ C∗ \ {0}, γ̄ ∈ Rm0
+ such that

(ϑ̄0, $̄, µ̄L, µ̄U , γ̄) ∈ HW
D and

γ̄T ϕ(ϑ̄0, $̄) = 0. (25)
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By Theorem 4, the subsequent inequality does not hold:

Ψ(ϑ̄0) <LU Ψ(v0) + γT ϕ(v0, $), ∀(v0, $, µL, µU , γ) ∈ HW
D .

This implies (ϑ̄0, $̄, µ̄L, µ̄U , γ̄) is a robust LU -optimal solution of (WIRD).

Theorem 6 (Converse Duality). Let (v0, $, µL, µ̄L, µ̄U , γ̄) be a robust LU -optimal solution of
(WIRD) with v̄0 ∈ H. If (ΨL, ΨU , ϕ) is type II (C,C,Rm0

+ )-generalized convex at v̄0, then v̄0 is
a robust LU -optimal solution of (UCIVOP).

Proof. Since (v̄0, $̄, µ̄L, µ̄U , γ̄) is a robust LU -optimal solution of (WIRD) and v̄0 ∈ H.
Then, it follows from Theorem 4, the subsequent inequality does not hold:

Ψ(ϑ0) <LU Ψ(v̄0) + γ̄T ϕ(v̄0, $̄), ∀ ϑ0 ∈ H.

This implies, the subsequent inequality does not hold: Ψ(ϑ0) <LU Ψ(v̄0).
Hence, v̄0 is a robust LU -optimal solution of (UCIVOP).

5. Mond-Weir Type Robust Dual Problem

Let us examine the subsequent Mond-Weir type robust dual problem for (UCIVOP).

(MWIVRD) max
(v0,$,µL ,µU ,γ)

Ψ(v0) = [ΨL(v0), ΨU (v0)]

subject to

0 ∈
{

∂ΨL(v0)
TµL + ∂ΨU (v0)

TµU + ∂ϑ0 ϕ(v0, $)Tγ

}
,

γT ϕ(v0, $) ≥ 0, $ ∈ Φ,

µL, µU ∈ C∗ \ {0}, γ ∈ Rm0
+ .

It is worth mentioning that (MWIVRD) is viewed as a likely version to the Mond-Weir
type robust dual problem of (UCIVOP).

(MWIVRD) max
(v0,$,µL ,µU ,γ)

Ψ(v0) = [ΨL(v0), ΨU (v0)]

subject to

0 ∈
{

∂ΨL(v0)
TµL + ∂ΨU (v0)

TµU + ∂ϑ0 ϕ(v0, $)Tγ

}
,

γT ϕ(v0, $) ≥ 0,

µL, µU ∈ C∗ \ {0}, γ ∈ Rm0
+ ,

where $ ∈ Φ is an uncertain parameter.
The robust feasible set of (MWIVRD) is denoted by HMW

D , which is the set of all points

of the form (v0, $, µL, µU , γ) ∈ Rn × Φ × C∗ \ {0} × C∗ \ {0} × R(m0)
+ that satisfies the

constraints of (MWIVRD).

Remark 3. (i). If ΨL(v0) = ΨU (v0) for all v0 ∈ Rn, then (MWIVRD) reduces to Mond-Wier
type dual model (MWRD) of Chen et al. [42].
(ii). In the absence of uncertain parameter ρ in the constraints, the (MWIVRD) reduces to (MWD)
model of Singh et al. [45].
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Definition 10. The robust feasible point (v̄0, $̄, µ̄L, µ̄U , γ̄) ∈ HMW
D is called a robust LU -optimal

solution of (MWIVRD), if there does not exist a robust feasible solution (v0, $, µL, µU , γ) of
(MWIVRD) such that Ψ(v̄0) <LU Ψ(v0).

The following section describes the duality results between (UCIVOP) and (MWIVRD).

Theorem 7 (Weak Duality). Let ϑ0 ∈ H and (v0, $, µL, µU , γ) ∈ HMW
D .

(i). If (ΨL, ΨU , ϕ) is type I (C,C,Rm0
+ )-pseudo convex at v0, then the subsequent inequality cannot

hold :
Ψ(ϑ0) <LU Ψ(v0).

(ii). If (ΨL, ΨU , ϕ) is type II (C,C,Rm0
+ )-pseudo convex at v0, then the subsequent inequality

cannot hold:
Ψ(ϑ0) <LU Ψ(v0).

Proof. Firstly we validate (i).
Suppose, if possible

Ψ(ϑ0) <LU Ψ(v0).

That is,

ΨL(ϑ0) < ΨL(v0)

ΨU (ϑ0) < ΨU (v0),

or

ΨL(ϑ0) ≤ ΨL(v0)

ΨU (ϑ0) < ΨU (v0),

or

ΨL(ϑ0) < ΨL(v0)

ΨU (ϑ0) ≤ ΨU (v0).

Since µL ≥ 0, µU ≥ 0, then the preceeding inequalities together yield

µL[ΨL(ϑ0)−ΨL(v0)] + µU [ΨU (ϑ0)−ΨU (v0)] < 0. (26)

Since (v0, $, µL, µU , γ) ∈ HMW
D , there exist µL, µU ∈ C∗ \ {0}, γ ∈ Rm0

+ , $ ∈ Φ
such that

γT ϕ(v0, $) ≥ 0, (27)

0 ∈
{

∂ΨL(v0)
TµL + ∂ΨU (v0)

TµU + ∂ϑ0 ϕ(v0, $)Tγ

}
. (28)

By virtue of (28), there exist ϑ1 ∈ ∂(µLΨL)(v0), ϑ2 ∈ ∂(µUΨU )(v0), v1 ∈ ∂ϑ0 ϕ(v0, $)Tγ
such that

ϑ1 + ϑ2 + v1 = 0. (29)

Since (ΨL, ΨU , ϕ) is type I (C,C,Rm0
+ )-pseudo convex at v0, for any ϑ0 and µL,

µU ∈ C∗ \ {0} the following hold:

µLΨL(ϑ0) < µLΨL(v0)⇒ AL(ϑ0 −v0) < 0, ∀AL ∈ ∂(µLΨL)(v0). (30)

µUΨU (ϑ0) < µUΨU (v0)⇒ AU (ϑ0 −v0) < 0, ∀AU ∈ ∂(µUΨU )(v0). (31)
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ϕ(ϑ0, $) ≤ ϕ(v0, $)⇒ BT(ϑ0 −v0) ≤ 0, ∀B ∈ ∂ϑ0 ϕ(v0, $). (32)

By using the inequalities (26), (30) and (31), we obtain

[AL + AU ](ϑ0 −v0) < 0. (33)

The inequality (33) along with (29) gives

−v1(ϑ0 −v0) < 0. (34)

Since v1 ∈ ∂ϑ0 ϕ(v0, $)Tγ, we get v1 = BT
0 γ, for some B0 ∈ ∂ϑ0 ϕ(v0, $).

Thus,
− BT

0 γ(ϑ0 −v0) < 0, for some B0 ∈ ∂ϑ0 ϕ(v0, $). (35)

Since ϑ0 ∈ H and using (27) in the inequality (32) with γ ∈ Rm0
+ , we have

BTγ(ϑ0 −v0) ≤ 0, ∀B ∈ ∂ϑ0 ϕ(v0, $).

This is a contradiction to (35).
Assertion (ii) is proved similar to part (i) by using the type II pseudo convexity of

(ΨL, ΨU , ϕ) at v0.

We demonstrate weak duality theorem by the subsequent illustration.

Example 3. Consider the subsequent uncertain constrained interval-valued optimization problem.

(UCIVOP-2) min
ϑ1,ϑ2∈R

Ψ(ϑ1, ϑ2) = [ΨL(ϑ1, ϑ2), ΨU (ϑ1, ϑ2)]

subject to

−ϕ(ϑ1, ϑ2, $) ∈ R2
+, where $ ∈ Φ.

The robust counterpart of (UCIVOP-2) is defined as follows:

(RIVOP-2) min
ϑ1,ϑ2∈R

Ψ(ϑ1, ϑ2) = ([1, 1]ϑ1 + [1, 1]ϑ3
2 + [4, 5])

subject to{
−ϑ1

2 + 2ϑ1 + 3− ln(1 + $1), ϑ2 + |$2|
}T

∈ R2
+, ∀$ ∈ Φ,

where $ = ($1, $2) ∈ Φ = Φ1 × Φ2. Clearly, the robust feasible set of (RIVOP-2) is
H = [−1, 1]×R+.

We consider a Mond-Weir type robust dual problem (MWIVRD-2) for (RIVOP-2) as follows:

(MWIVRD-2) max
(v1,v2,$,µL ,µU ,γ)

Ψ(v1, v2) = ([1, 1]v1 + [1, 1]v3
2 + [4, 5])

subject to

0 ∈
{

∂ΨL(v1, v2)
TµL + ∂ΨU(v1, v2)

TµU + ∂ϑ0 ϕ(v1, v2, $)Tγ

}
,

γT ϕ(v0, $) ≥ 0, $ ∈ Φ,

µL, µU ∈ C∗ \ {0}, γ ∈ Rm0
+ .

Clearly, (ΨL, ΨU , ϕ) is type I and type II (C,C,Rm0
+ )-pseudo convex at v0 (See Figure 2).

It follows from Example 1, we have (ϑ1, ϑ2, $, µL, µU , γ) ∈ HMW
D where µL = 1/2 = µU ,
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γ = (1/4, 1)T ∈ R2
+, $ = 0 ∈ Φ. For any (v1, v2, $, µL, µU , γ) ∈ HMW

D , µL, µU ∈ C∗ \ {0},
γ = (γ1, γ2)

T ∈ R2
+, we get0

0

 =

 1

3v2
2

µL +

 1

3v2
2

µU +

(
2v1 − 2 0

0 −1

)γ1

γ2


The above equation yields µL + µU + 2(v1 − 1)γ1 = 0 and 3v2

2(µ
L + µU ) − γ2 = 0.

Combining these equations along with µL, µU , γ1, γ2 ≥ 0, we obtain v2 ≥ 0. Since, γT ϕ(v0, $) ≥ 0,
that is, (

γ1 γ2
)v2

1 − 2v1 − 3 + ln(1 + $1)

−v2 − |$2|

 ≥ 0.

This implies,

γ1[v
2
1 − 2v1 − 3 + ln(1 + $1)] + γ1[−v2 − |$2|] ≥ 0.

Since γ1 ≥ 0 and −v2 − |$2| ≤ 0, we have

v2
1 − 2v1 − 3 + ln(1 + $1) ≥ 0.

This implies, v1 ≤ −1 for $1 = 0. Taking into account v2 ≥ 0, v1 ≤ −1 and
∀(v1, v2, $, µL, µU , γ) ∈ HMW

D , we get,

µL[ΨL(ϑ1, ϑ2)−ΨL(v1, v2)] + µU [ΨU(ϑ1, ϑ2)−ΨU (v1, v2)] = −1−v1 −v3
2 ≮ 0.

Therefore, weak duality theorem of (MWIVRD-2) holds.

Figure 2. Graphical view of the objective functions ΨL(v1, v2) and ΨU (v1, v2) of the problem
(MWIVRD-2).

Theorem 8 (Strong Duality). Let ϑ̄0 be a robust LU -optimal solution of (UCIVOP) and (GRSCQ)
hold. Assume that ϕ satisfy the Assumption D, φ isR+ - convexlike and ΨL, ΨU be C-convexlike.
Then, there exist $̄ ∈ Φ, µ̄L, µ̄U ∈ C∗ \ {0}, γ̄ ∈ Rm0

+ such that (ϑ̄0, $̄, µ̄L, µ̄U , γ̄) ∈ HMW
D .

(i). If (ΨL, ΨU , ϕ) is type I (C,C,Rm0
+ )-pseudo convex at v0 where (v0, $, µL, µU , γ) ∈ HMW

D ,
then (ϑ̄0, $̄, µ̄L, µ̄U , γ̄) is a robust LU -optimal solution of (MWIVRD).
(ii). If (ΨL, ΨU , ϕ) is type II (C,C,Rm0

+ )-pseudo convex at v0 where (v0, $, µL, µU , γ) ∈ HMW
D ,

then (ϑ̄0, $̄, µ̄L, µ̄U , γ̄) is a robust LU -optimal solution of (MWIVRD).
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Proof. Let ϑ̄0 be a robust LU -optimal solution of (UCIVOP) and (GRSCQ) hold. Then
by Theorem 1, there exist $̄ ∈ Φ, µ̄L, µ̄U ∈ C∗ \ {0}, γ̄ ∈ Rm0

+ such that (ϑ̄0, $̄, µ̄L, µ̄U , γ̄)
satisfies

0 ∈
{

∂ΨL(ϑ̄0)
T µ̄L + ∂ΨU (ϑ̄0)

T µ̄U + ∂ϑ0 ϕ(ϑ̄0, $̄)
T

γ̄

}
,

γ̄T ϕ(ϑ̄0, $̄) = 0.

Hence, (ϑ̄0, $̄, µ̄L, µ̄U , γ̄) ∈ HMW
D .

To prove (i).
As (ΨL, ΨU , ϕ) is type I pseudo convex at v0 and utilizing the assumption (i) of

Theorem 7, we get that the subsequent inequality does not hold:

Ψ(ϑ̄0) <LU Ψ(v0), ∀(v0, $, µL, µU , γ) ∈ HMW
D ,

which implies that (ϑ̄0, $̄, µ̄L, µ̄U , γ̄) is a robust LU -optimal solution of (MWIVRD).
(ii). As (ΨL, ΨU , ϕ) is type II pseudo convex at any v0 and utilizing the assumption

(ii) of Theorem 7, we get that the subsequent inequality cannot hold:

Ψ(ϑ̄0) <LU Ψ(v0), ∀(v0, $, µL, µU , γ) ∈ HMW
D ,

which implies that (ϑ̄0, $̄, µ̄L, µ̄U , γ̄) is a robust LU -optimal solution of (MWIVRD).

Theorem 9 (Converse Duality). Let (v̄0, $̄, µ̄L, µ̄U , γ̄) be a robust LU -optimal solution of
(MWIVRD) with v̄0 ∈ H.
(i). If (ΨL, ΨU , ϕ) is type I (C,C,Rm0

+ )-pseudo convex at v̄0, then v̄0 is a robust LU -optimal
solution of (UCIVOP).
(ii). If (ΨL, ΨU , ϕ) is type II (C,C,Rm0

+ )-pseudo convex at v̄0, then v̄0 is a robust LU -optimal
solution of (UCIVOP).

Proof. To prove (i).
Since (v̄0, $̄, µ̄L, µ̄U , γ̄) is a robust LU -optimal solution of (MWIVRD) with v̄0 ∈ H.

As (ΨL, ΨU , ϕ) is type I pseudo convex at v̄0 and utilizing the assumption (i) of Theorem 7,
the subsequent inequality does not hold:

Ψ(ϑ0) <LU Ψ(v̄0), ∀ϑ0 ∈ H.

Hence, v̄0 is a robust LU -optimal solution of (UCIVOP).
(ii) As (ΨL, ΨU , ϕ) is type II pseudo convex at any v̄0 and utilizing the assumption (ii)

of Theorem 7, the subsequent inequality cannot hold:

Ψ(ϑ0) <LU Ψ(v̄0), ∀ϑ0 ∈ H.

Hence, v̄0 is a robust LU -optimal solution of (UCIVOP).

6. Conclusions

This paper uses the LU -optimal solution and the generalized robust Slater constraint
qualifications (GRSCQ) to formulate Karush- Kuhn-Tucker type robust necessary optimality
conditions for an uncertain constrained interval-valued optimization problem (UCIVOP).
These Karush-Kuhn-Tucker type robust necessary conditions are shown to be sufficient op-
timality conditions under generalized convexity. An illustration is provided to demonstrate
the robust sufficient optimality theorem’s validity. Further to that, Karush-Kuhn-Tucker
robust necessary conditions are used to formulate Wolfe and Mond-Weir type robust dual
problems over cones. The validity of Wolfe and Mond-Weir’s weak duality theorems is
demonstrated. Finally, the usual duality results are demonstrated using the generalized
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convexity assumptions. It would be interesting to see if these results could be obtained
for other types of nonconvex vector optimization problems with multiple interval-valued
objective functions, as well as other types of extremum problems. As a result, we are
generalizing our current results to multiple interval-valued optimization problems with
uncertainty, which we will focus on in our future research.
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