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Abstract: This article is an independently written continuation of an earlier study with the same title
[Mathematics, 2022, 10, 1225] on the Newton Process (NP). This process is applied to solve nonlinear
equations. The complementing features are: the smallness of the initial approximation is expressed
explicitly in turns of the Lipschitz or Hölder constants and the convergence order 1 + p is shown
for p ∈ (0, 1]. The first feature becomes attainable by further simplifying proofs of convergence
criteria. The second feature is possible by choosing a bit larger upper bound on the smallness of the
initial approximation. This way, the completed convergence analysis is finer and can replace the
classical one by Kantorovich and others. A two-point boundary value problem (TPBVP) is solved to
complement this article.

Keywords: iterative processes; Banach space; semi-local convergence
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1. Introduction

Let X1 and X2 be Banach spaces, and let Ω be a nonempty convex subset of X1. In
addition, F : Ω ⊂ X1 −→ X2 is a Fréchet differentiable mapping between the Banach
spaces X1 abd X2. Let also L(X1, X2) denote the space of bounded linear operators from
X1 into X2. The nonlinear equation

F(x) = 0, (1)

plays an important role due to the fact that many applications can be brought to look like it.
The celebrated Newton Process (NP) in the following form

x0 ∈ Ω, F′(xn)sn = −F(xn), xn+1 = xn + sn, (2)

for n = 0, 1, 2, . . . is widely used to solve Equation (1) iteratively. This set up is motivated
by the solution of corresponding differential equations (see also the Numerical Section 4).

Kantorovich initiated the semi-local convergence (SLC) analysis of (NP) by using the
contraction mapping principle due to Banach [1,2]. He presented two different proofs based
on majorant functions and recurrent relations [2,3]. The Newton–Kantorovich Theorem
contains the (SLC) for (NP). A plethora of researchers utilized this result, in applications,
and also as a theoretical tool.

An elementary scalar equation given in [1,2,4–9] shows that convergence criteria may
not be satisfied. However, (NP) may converge. That is why these criteria are weakened
in [6] without new conditions. However, only linear convergence was obtained for (NP)
with the techniques employed in [6].
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In the present study, by employing different and more precise techniques, the elusive
convergence order 1+ p is obtained for p ∈ (0, 1]. This is achieved by choosing a bit smaller
upper bound on ‖F′(x0)

−1F(x0)‖. Another new feature involves an explicit upper bound
on the smallness of the initial approximation not given in [6]. Notice also that the present
study is written completely independently of the corresponding one in [6]. The former
reference is only mentioned to stretch the differences and the benefits of the new approach.
Consequently, new results can always replace corresponding ones by Kantorovich [2] and
others [7–11], as preceding results imply the one in this study but not necessarily vice versa.
The method in this study uses smaller Lipschitz or Hölder parameters to achieve these
extensions, which are specializations of earlier ones. That is, no additional effort is needed.
The generality of this idea allows its application to other processes [3,5–7,9–11]. This will
be the topic of future work.

Majorization of (NP) is presented in Section 2. The (SLC) of (NP) can be found in
Section 3. Section 4 contains a Boundary Value Problem (BVP) as an application. Conclu-
sions complete this study in Section 5.

2. Majorization

Let K0, L0, K, L be positive parameters and η ≥ 0.
The sequence generated for p ∈ (0, 1] and for ∀n = 0, 1, 2, . . . by v0 = 0, v1 = η

v2 = η +
Kη1+p

(1 + p)(1− K0ηp)
,

vn+2 = vn+1 +
L(vn+1 − vn)1+p

(1 + p)(1− L0vp
n+1)

, (3)

plays a critical role as a majorizing sequence for (NP) in the Lipschitz case (p = 1) as well
as the Hölder one (p ∈ (0, 1)).

Two convergence results for sequence {vn} are developed.

Lemma 1. Suppose
K0ηp < 1

and
L0vp

n+1 < 1

∀n = 0, 1, 2, . . . . Then, the following assertions hold

0 ≤ vn ≤ vn+1

and

lim
n−→∞

vn = t∗ ≤ min

{
v,
(

1
L0

) 1
p
}

,

where v = ( 1
K0
)

1
p .

Proof. The assertions follow by the definition of the sequence {vn} and the conditions of
Lemma 1.

Another convergence result follows.
It is convenient to develop parameters, d = v2 − v1, δ0 = Kdp

(1+p)(1−K0ηp)
, δ1 = 1−

d(
1

L0

)p
−η

and set S = [0, v). Moreover, introduce functions depending on parameter p and

defined on the interval S for n = 1, 2, . . . by

hn,p(t) = Lηptnp + (1 + p)L0t(η +
1− tn+1

1− t
d)p − (1 + p)t
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and
gn,p(t) = Ltp − L + (1 + p)L0t[(t−n + . . . + 1 + t)p − (t−n + . . . + 1)p].

Next, some properties for these functions are presented.

Lemma 2. The following assertions hold

hn+1,p(t) = hn,p(t) + gn,p(t)tnpηp,

gn+1,p(t)− gn,p(t) = (1 + p)L0t[(t−n+1 + . . . + t)p − (t−n+1 + . . . + t + 1)p

−((t−n + . . . + 1 + t)p − (t−n + . . . + 1)p)],

gn,1(t) = Lt− L + (1 + p)L0t1+p,

gn+1,1(t)− gn,1(t) = 0 ∀ t ∈ S

and
gn+1,p(t)− gn,p(t) ≤ 0 ∀ t ∈ S, p ∈ (0, 1).

Define the parameter δ by

δ =

{ 2L
L+
√

L2+8L0L
, if p = 1

the smallest zero in S− {0} of the function g1,p, if p ∈ (0, 1).

Moreover, suppose
(I) 0 ≤ δ0 ≤ δ ≤ δ1, if p = 1 or
(II) η ≤ 1

2 , η−1
2 := min{v, η0, η1}, if p ∈ (0, 1), where the parameter η0 is the smallest zero in

(0, v) of the function

ϕ(t) = K
[

Kt1+p

(1 + p)(1− K0tp)

]p

− δ(1 + p)(1− K0tp)

and

η1 =

(
(1 + p)δ

Lδp + (1 + p)L0δ(1 + δ + δ2)p

) 1
p
.

Then, the sequence {vn} is such that

0 ≤ vn+1 − vn ≤ δ(vn − vn−1),

0 ≤ vn ≤ vn+1 ≤ η + (1 + δ0
1− δn

1− δ
d) ≤ η +

δ0d
1− δ

=: t∗∗,

and
lim

n−→∞
vn = t∗ ∈ [0, t∗∗],

where δ0 = L(v2−v1)
p

(1+p)(1−L0tp)
.

Proof. The assertions on functions hn,p and gn,p follow immediately by their definitions.
If p = 1 by using the quadratic formula the parameter δ ∈ (0, 1) is obtained. Then, the
definition of the function g1,p for p ∈ (0, 1) implies g1,p(0) < 0 and g1,p(1) > 0. Let δ again
stand for the smallest zero of the function g1,p in S − {0} assured to exist by the (IVT)
(intermediate Value Theorem). Similarly the definition of parameter η0 is assured by (IVT),
since ϕ(0) = −δ(1 + p) < 0 and ϕ(t) −→ ∞ as t −→ v−.

Notice also that under (I)

hn,1(t) ≤ hn+1,1(t) ≤ h∞(t) ≤ 0 ∀t ∈ [0, δ],
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whereas under condition (II)

g1,p(t) ≤ 0 ∀ t ∈ [0, η0],

h1,p(t) ≤ 0 ∀ t ∈ [0, η1]

and
hn+1,p(t) ≤ hn,p(t) ∀ t ∈ [0, δ],

where h∞,p(t) = t[L0(η + d
1−t )

p − 1]. Hence, the sequence {vn} is bounded from above by
t∗∗ and non-decreasing.

Next, we show that condition (I) can be solved in terms of η as in case (II).
Define the real quadratic polynomials q, q1, q2 by

q(t) = L0(K− 2K0)t2 + 2L0t− 1,

q1(t) = (LK + 2δL0(K− 2K0))t2 + 4δ(L0 + K0)t− 4δ,

and
q2(t) = L0(K− 2(1− δ)K0)t2 + 2(1− δ)(L0 + K0)t− 2(1− δ).

The discriminants4,41,42 of these polynomials can be written as

4 = 4L0(L0 + K− 2K0) > 0,

41 = 16δ(δ(L0 − K0)
2 + (L + 2δL0)K) > 0

and
42 = 4(1− δ)((1− δ)(L0 − K0)

2 + 2L0K) > 0,

respectively. It follows by the definition of δ, q1 and q2 that

L =
2L0δ2

1− δ
, LK + 2δL0(K− 2K0) =

2L0δ

1− δ
(K− 2(1− δ)K0),

and so
q1(t) =

2L0δ

1− δ
q2(t).

That is the polynomials q1 and q2 have the same roots. Denote by 1
2r1

the unique positive
root of polynomial q. This root is given by the quadratic formula and can be written as

1
2r1

=
1

L0 +
√

L2 + L0(K− 2K0)
.

Moreover, denote by 1
2r2

the common positive root of the polynomials q1 and q2. This root
can be written as

1
2r2

=
2

δ(L0 + K0) +
√
(δ(L0 + K0))2 + δ(KL + 2δL0(K− 2K0))

.

Define the parameter η3 by

η−1
3 = min

{
1

2r1
,

1
2r2

}
.

Suppose that the nonnegative number η is such that

η3η ≤ 1
2

. (4)
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It is worth noticing that criterion (4) is written this way to make it looks like the usual
Kantorovich criterion for Newton’s method in the Lipschitz case [2,10,11].

By the choice of the parameters r1 and r2 the polynomials q, q1, q2 and the condition (4)
we get follows that

L0v2 < 1,

since q(η) < 0 and K0η < 1. We infer that

q1(η) ≤ 0

and
q2(η) ≤ 0.

Furthermore, the following estimate holds

δ0 ≤ δ ≤ 1− L0(v2 − v1)

1− L0v1
. (5)

Indeed, the left hand side inequality reduces to showing q1(η) ≤ 0 and the right hand
side to showing q2(η) ≤ 0. Conditions (4) provides the smallness of η to force convergence
of the sequence {vn}. By choosing 1

2η3
to be a little bit larger the convergence 1 + p is

recovered as follows. Let ε ≥ 0. Set b = L
1+p (1 + ε) and c = b−

1
p .

Define function ψ∞,p on interval S by

ψ∞,p(t) = (1 + ε)L0

(
t +

d(t)
(1− t)

)p
− ε,

where
d(t) =

Ktp

(1 + p)(1− K0tp)
.

These definitions imply ψ∞,p(0) = −ε < 0 and ψ∞,p(t) −→ ∞ as t −→ v−. Denote by 1
η4

the smallest zero of the function ψ∞,p on the interval (0, v). Define

η5 = max

{
{η3, 1

2 c, 1
2η4
}, if p = 1

{η2, 1
2 c, 1

2η4
}, if p ∈ (0, 1).

Let the sequence {vn} be defined as in the formula (3). Then its convergence is of
order 1 + p.

Lemma 3. Let η ≥ 0 be such that

η5η <
1
2

. (6)

Then, the following assertions hold

0 ≤ vn+1 − vn ≤
1
c
(cη)(1+p)n

and
t∗ − vn ≤

1
c(1− cη)

(cη)(1+p)n
.

The convergence order of the sequence {vn} is 1 + p.

Proof. Induction is used to show

0 ≤ L
(1 + p)(1− L0vp

n+1)
≤ b, (7)
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where b1+p
0 = supn≥1

Lp

(1+p)p(1−L0vp
n)

p , v0 = η and b ≥ b0. Then, this assertion holds for

n = 1 by the choice of η0. Then, the assertion (7) holds if using Lemma 2

(1 + ε)L0[η + (1 + (1 + t + . . . + tn−1)d]p − ε ≤ 0.

Define the functions

ψn,p(t) = (1 + ε)L0(η + (1 + (1 + t + . . . + tn−1)d)p − ε ≤ 0.

It suffices to show
ψn,p(t) ≤ 0 at t = δ.

The definitions of the functions {ψn,p} yield

ψn+1,p(t)− ψn,p(t) = (1 + ε)L0{[η + (1 + (1 + t + . . . + tn)d]p

−[η + (1 + (1 + t + . . . + tn−1)d]p} ≥ 0.

Define the function ψ∞,p on the interval S by

ψ∞,p(t) = lim
n−→∞

ψn,p(t).

By the definition of the functions ψ∞,p, it suffices to show ψ∞,p(t) ≤ 0, which is true by the
choice of η4. The induction is completed. It follows by the sequence {vn} and Lemma 2

bp(vn+1 − vn) ≤ (b(vn − vn−1))
1+p

≤ b1+p(b(vn−1 − vn−2)
1+p)1+p

= b1+pb1+p(vn−1 − vn−2)
(1+p)2

≤ . . .

≤ b(1+p)+(1+p)+...+(1+p)n−1
η(1+p)n

,

so

vn+1 − vn ≤ b1+(1+p)+...+(1+p)n−1
η(1+p)n

= b
(1+p)n−1

p η(1+p)n

=
1
c
(cη)(1+p)n

,

which shows the first assertion. Moreover, if k = 1, 2, . . .

vn+k − vn ≤ vn+k − vn+k−1 + . . . + vn+1 − vn

≤ 1
c
[(cη)(1+p)n+k−1

+ . . . + (cη)(1+p)n
]

≤ 1
c
(cη)(1+p)n 1− (cη)(1+p)n

1− cη
.

The second assertion follows if k −→ ∞ in the preceding calculation.

It is worth noticing that Lemma 3 is used to provide weak convergence conditions for
(NP). Then, the upper bounds on the iterates vn+1 make the proof of Lemma 3 possible.

Next, the Banach lemma on the invertible operators is recalled.

Lemma 4 ([1,2]). If Q is a bounded linear operator in X1, Q−1 exists if and only if there is a
bounded linear operator P in X1 such that P−1 exists and

‖I − PQ‖ ≤ 1.
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If Q−1 exists, then

Q−1 =
∞

∑
n=0

(I − PT)nP

and

‖Q−1‖ ≤ ‖P‖
1− ‖I − PQ‖ .

3. Convergence of (NP)

The notation U(w, ρ), U[w, ρ] means the open and closed balls with radius ρ > 0 and
center w ∈ X1, respectively. The parameters K0, L0, K, L, and η are connected with the
operator F as follows. Consider conditions (A):

Suppose

(A1) There exist x0 ∈ Ω, η ≥ 0 such that F′(x0)
−1 ∈ L(X2, X1), x1 = x0 − F′(x0)

−1F(x0)

‖F′(x0)
−1F(x0)‖ ≤ η,

‖F′(x0)
−1(F′(x1)− F′(x0))‖ ≤ K0‖x1 − x0‖p

and
‖F′(x0)

−1(F′(x0 + ξ(x1 − x0))− F′(x0))‖ ≤ K‖ξ(x1 − x0)‖p.

(A2) ‖F′(x0)
−1(F′(x)− F′(x0))‖ ≤ L0‖x− x0‖p for ∀x ∈ Ω.

Set B1 = U(x0,
(

1
L0

) 1
p
) ∩Ω.

(A3) ‖F′(x0)
−1(F′(x+ ξ(y− x))− F′(x))‖ ≤ L‖ξ(y− x)‖p for ∀x, y ∈ B1 and for ∀ξ ∈ [0, 1).

(A4) The conditions of the preceding Lemma 1 or Lemma 2 or Lemma 3 hold.
(A5) U[x0, t∗] ⊂ Ω.

Notice that K0 ≤ K ≤ L0.
Next, conditions (A) are applied to show the main convergence result for (NP).

Theorem 1. Under the conditions in (A) any (NP) sequence {xn} is convergent to a solution
x∗ ∈ U[x0, t∗] of the equation F(x∗) = 0. Moreover, upper bounds of the form

‖x∗ − xn‖ ≤ t∗ − vn (8)

hold for all n = 0, 1, 2, . . . .

Proof. The assertions

‖xi+1 − xi‖ ≤ vi+1 − vi, (9)

and
U[xi+1, t∗ − vi+1] ⊆ U[xi, t∗ − vi], (10)

are shown by induction ∀i = 0, 1, 2, . . . . Let u ∈ U[x1, t∗ − v1]. The following inequalities
are consequences of conditions (A1) together with the equality v0 = 0.

‖x1 − x0‖ = ‖F′(x0)
−1F(x0)‖ ≤ η = v1 − v0,

‖u− x0‖ ≤ ‖u− x1‖+ ‖x1 − x0‖ ≤ t∗ − v1 + v1 − v0 = t∗.

So, the vector u ∈ U[x0, t∗ − v0]. That is assertions (9) and (10) hold for i = 0. Assume these
assertions hold if i = 0, 1, . . . , n. It follows for each ξ ∈ [0, 1]

‖xi + ξ(xi+1 − xi)− x0‖ ≤ vi + ξ(vi+1 − vi) ≤ t∗,
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and

‖xi+1 − xi‖ ≤
i+1

∑
j=1
‖xj − xj−1‖ ≤

i+1

∑
j=1

(vj − vj−1) = vi+1.

By the induction hypotheses, by Lemmas 1–3 and the conditions (A1), (A2), and (A4), it
follows that

‖F′(x0)
−1(F′(xi+1)− F′(x0))‖ ≤ K̄‖xi+1 − x0‖p,

≤ K̄(vi+1 − v0)
p ≤ K̄vp

i+1 < 1.

Hence, the inverse of the linear operator F′(xi+1) exists. Therefore, F′(v)−1 ∈ L(X2, X1)
and

‖F′(xi+1)
−1F′(x0)‖ ≤

1
1− K̄vp

i+1)
(11)

follows as a consequence of Lemma 4, where K̄ =

{
K0, i = 0
L0, i = 1, 2, . . . .

The following

general integral equality is implied by (NP)

F(xi+1) = F(xi+1)− F(xi)− F′(xi)(xi+1 − xi),

=
∫ 1

0
(F′(xi + ξ(xi+1 − xi))− F′(xi))dξ(xi+1 − xi). (12)

Then, using the induction hypotheses, estimate (9) and condition (A3)

‖F′(x0)
−1F(xi+1)‖ ≤ L̄

∫ 1

0
(ξ‖xi+1 − xi‖)pdξ (13)

≤ L̄
1 + p

(vi+1 − vi)
1+p,

where L̄ =

{
K, i = 0
L, i = 1, 2, . . . .

It follows by (NP), estimates (11), (13) and the definition (3) of the sequence {vn}

‖xi+2 − xi+1‖ ≤ ‖F′(xi+1)
−1F′(x0)‖‖F′(x0)

−1F(xi+1)‖,

≤ K̃(vi+1 − vi)
1+p

2(1− L̃vp
i+1)

= vi+2 − vi+1,

where K̃ =

{
K, i = 0
L, i = 1, 2, . . . .

and L̃ =

{
K0, i = 0
L0, i = 1, 2, . . . .

Moreover, if v ∈ U[xi+2,

t∗ − vi+2] it follows

‖v− xi+1‖ ≤ ‖v− xi+2‖+ ‖xi+2 − xi+1‖
≤ t∗ − vi+2 + vi+2 − vi+1 = t∗ − vi+1.

So, the vector w ∈ U[xi+1, t∗ − vi+1] completing the induction for assertions (9) and (10).
Notice that the scalar majorizing sequence {vi} is fundamentally convergent. Hence, the
sequence {xi} is also convergent to some x∗ ∈ U[x0, t∗]. Furthermore, let i −→ ∞ in
estimate (13), to conclude F(x∗) = 0.
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Next, the uniqueness ball for a solution is presented. Notice that not all conditions
mentioned in (A) are used.

Proposition 1. Let, for some x0 ∈ Ω the center-Lipschitz condition (A2) be satisfied. Further

assume that there exists 0 < R <
(

1+p
2L0

) 1
p such that there exists a solution s ∈ U(x0, R) ⊂ Ω of

equation (1) and such that linear operator F′(s) is invertible. Let the parameter R1 ≥ R be given by

R1 =

(
1 + p

L0
− Rp

) 1
p
. (14)

Then, the point s solves uniquely the equation F(x) = 0 in the set B2 = U(x0, R1) ∩Ω.

Proof. Define the linear operator Q =
∫ 1

0 F′(s̄+ ξ(s− s̄))dξ for some point s̄ ∈ B2 satisfying
F(s̄) = 0. By using the definition of R1, set B2 and condition (A2),

‖F′(x0)
−1(F′(x0)−Q)‖ ≤

∫ 1

0
L0((1− ξ)p‖x0 − s‖p + ξ p‖x0 − s̄‖p)dξ,

<
L0

1 + p
(Rp

1 + Rp) = 1,

concluding that s = s̄, where the invertibility of the linear operator is also used together
with the approximation 0 = F(s)− F(s̄) = Q(s− s̄).

Remark 1. (i) Under the conditions in (A), the existence of x∗ is assured. In this case set q = x∗

and R = t∗.
(ii) Condition (A3) can be replaced by

‖F′(x0)
−1(F′(w1 + ξ(w2 − w1))− F′(w1))‖ ≤ d0‖ξ(w1 − w2)‖p (15)

∀w1 ∈ B1 and w2 = w1 − F′(w1)
−1F(w1) ∈ B1. This even smaller parameter d0 can replace L in

the aforementioned results. The existence of the iterate w2 is assured by (A2) and Lemma 4. Notice
that the proof of Theorem 1 goes through if condition (15) replaces stronger (A3).
(iii) Concerning the more general iteration {v̄n} studied in [6] defined by

v̄0 = 0, v̄1 = η,

v̄2 = v̄1 +
∫ 1

0

ψ̄θ(θ(v̄1 − v̄0))dθ(v̄1 − v̄0)

1− ψ̄1(K̄)
,

v̄n+2 = v̄n+1 +

∫ 1
0 ψθ(θ(v̄n+1 − v̄n))dθ(v̄n+1 − v̄n)

1− ψ1(v̄n+1)
∀n = 1, 2, 3, . . . . (16)

Suppose function

fθ(t, u) =
1
tp

∫ 1

0

ψθ(θt)dθ

1− ψ1(u)
(17)

is nondecreasing and bounded from above by some b̄ > 0. Then, the same proof as Lemma 3 recovers

the 1 + p order of convergence for this general iteration provided that c̄ = b̄−
1
p , η ≤ 1

c̄ , and the
conditions of Lemma 1 or Lemma 2 in [6] hold. This is due to the calculation

v̄n+2 − v̄n+1 =

∫ 1
0 ψθ(θ(v̄n+1 − v̄n))dθ(v̄n+1 − v̄n)1+p

(1− ψ1(v̄n+1))(v̄n+1 − v̄n)p

≤ b̄(v̄n+1 − v̄n)
1+p for ∀v̄n+1 6= v̄n.

Then, under the conditions of Theorem 1 and Proposition 1 in [6] the conclusions, hold for a
sequence {xn} in this more general setting, where it is also shown that the convergence order is
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1 + p. In the case when ψ̄θ , ψθ are constant functions, then, set b̄ = L(1+ε)
1+p . Hence condition (17)

can be realized. Notice that sequence v̄n} specializes to {vn} if ψ̄1(t) = K0tp, ψ̄θ(t) = K(θt)p,
ψ1(t) = L0tp and ψθ(t) = L(θt)p. Under, these choices of functions Lemma 1 and Theorem 1
coincide with the corresponding ones in [6]. Moreover, the rest of the Lemmas in [6] show only
linear convergence of majorizing sequences and, consequently of the sequence {xn}. However, in
Lemma 3, the convergence order 1 + p is obtained.

Finally, in Lemma 2, in [6], the upper bound on η is not given explicitly in all cases, nor is the
convergence order 1 + p. However, the objective of this article is to do so. That explains the approach
in this article.

4. Example

The solution of a BVP is presented as an application of theory.

Example 1. Let us consider the two-point BVP(TPBVP)

u′′ + u
3
2 = 0

u(0) = u(1) = 0.

The interval [0, 1] is divided into j subintervals. Set m = 1
j . Denote by w0 = 0 < w1 < . . . < wj = 1

the points of subdivision with corresponding values of the function u0 = u(w0), . . . , uj = u(wj).
Then, the discretization of u′′ is given by

u′′k ≈
uk−1 − 2uk + uk+1

m2 for ∀k = 2, 3, . . . j− 1.

Further, notice that u0 = uj = 0. It follows that the following system of equations is obtained

m2u
3
2
1 − 2u1 + u2 = 0,

uk−1 + m2u
3
2
k − 2uk + uk+1 = 0 for ∀k = 2, 3, . . . , j− 1

uj−2 + m2u
3
2
j−1 − 2uj−1 = 0.

This system can be converted into an operator equation as follows: Define operator H : Rj−1 −→
Rj−1 whose derivative is given as

H′(u) =



3
2 m2u

1
2
1 − 2 1 0 . . . 0

1 3
2 m2u

1
2
2 − 2 1 0 . . .

0
. . . . . . . . . . . .

...
...

...
...

...

0 · · · 1 0 3
2 m2u

1
2
j−1 − 2


.

Pick z ∈ Rj−1 be arbitrary. The norm used is ‖z‖ = max1≤k≤j−1 ‖zk‖, where as the norm for
H ∈ Rj−1 ×Rj−1 is given as

‖H‖ = max
1≤k≤j−1

j−1

∑
i=1
‖hk,i‖.
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Then, pick u, z ∈ Rj−1 for |uk| > 0, |zk| > 0, for∀k = 1, 2, . . . , j− 1 to obtain in turn

‖H′(u)− H′(z)‖ = ‖diag{3
2
(u

1
2
k − z

1
2
k )}‖

=
3
2

m2
[

max
1≤k≤j−1

|uk − zk|
] 1

2

=
3
2

m2‖u− z‖
1
2 .

Choose as an initial guess vector 130 sin πx to obtain after four iterations u0 = [3.35740 × 101,
6.5202 × 101, 9.15664 × 101, 1.09168 × 102, 1.15363 × 102, 1.09168 × 102, 9.15664 × 101,
6.52027 × 101, 3.35740 × 101]tr. Then, the parameters are ‖Q′(u0)

−1‖ ≤ 2.5582 × 101, η =
9.15311 × 10−5, p = 0.5, K0 = L0 = K = L = 3

200 = 0.015. Then, K0ηp = 1.4351 × 10−4.
The following Table 1 shows that the conditions of Lemma 1 are satisfied, since vn = vn+m for
∀n = 0, 1, 2, . . . , m = 0, 1, 2, . . . . Hence, the conditions of Theorem 1 hold.

Table 1. Sequence (3).

n 1 2 3 4 5 6

vn+1 0.1435 × 10−3 0.1435 × 10−3 0.1435 × 10−3 0.1435 × 10−3 0.1435 × 10−3 0.1435 × 10−3

By using the initial vector on (NP) the generated vector is not good enough to apply Theorem 1.
However, after four iterations, the vector u0 is good enough. Then, the Hölder constants are obtained
simply using conditions (A1)–(A3) and taking the max-norm of the resulting vector or matrix. In
this paper, the conditions of Lemma 1 are verified first, which are weaker.

Concerning the convergence order, one should verify conditions (6) of Lemma 3. Choose
ε = 0.8. Then, using the preceding values η5η < 0.47 < 0.5. Therefore, the convergence order is
1 + p = 1 + 0.5 = 1.5. Hence, the conclusions of Theorem 1 hold. The corresponding criteria in
([Remark 2, for the Hölder case], [6]) are

h1,p(γp) ≤ 0 and, 0 ≤ δ0 ≤ γp,

where δ0 = K(v2−v1)
p

(1+p)(1−K0vp
2 )

, γp =
(

L
L+(1+p)L0

) p
1+p and h1,p(t) = L

1+p tp(v2 − v1)
p + tL0(v1 +

(1 + t))p(v2 − v1)
p − t. However, these conditions give an implicit estimate on the smallness η,

they are not satisfied for this example for p = 0.5. However, even if they were the convergence of
the sequence {xn} is only linear. The same is true if another criterion given in [6] by 0 ≤ η ≤
min

{
2γ1

(1+2γ1)L0
, 1

K0+L0

}
. That is even if it is verified the convergence order is only linear.

5. Conclusions

The two new features are explicit upper bounds on the smallness of η. Convergence
order 1 + p is also recovered by choosing a larger upper bound on η. New Lipschitz or
Hölder parameters are smaller and specializations of previous parameters. The new theory
can always replace previous ones due to a weaker a priori hypothesis. The strategy can
be applied to other processes, such as Secant, Kurchatov, Stirling’s, Newton-like, and
multistep [2,3,5,9–11]. This will be done in future work.
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