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Abstract: The efficiency in the controller performance of a BLDC motor in an uncertain environment
highly depends on the adaptability of the controller gains. In this paper, the chaotic adaptive tuning
strategy for controller gains (CATSCG) is proposed for the speed regulation of BLDC motors. The
CATSCG includes two sequential dynamic optimization stages based on identification and predictive
processes, and also the use of a novel chaotic online differential evolution (CODE) for providing
controller gains at each predefined time interval. Statistical comparative results with other tuning
approaches evidence that the use of the chaotic initialization based on the Lozi map included in
CODE for the CATSCG can efficiently handle the disturbances in the closed-loop system of the
dynamic environment.

Keywords: adaptive tuning; brushless motor; chaotic online differential evolution; online optimiza-
tion; meta-heuristics
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1. Introduction

Nowadays, the application of robotic systems in diverse engineering areas is one
of the most active fields where science and technology are merged. The inclusion of a
robot in a harsh environment involves replacing the human being (regarding tasks) in
such a way that the robot controller must have the capability of handling uncertainties to
confront unexpected environments [1] and achieve autonomy. As most robot controllers
are in a cascade control arrangement, the actuator controller is one of the final inner loops.
Therefore, the actuator controller’s adaptability, reconfigurability, and flexibility are vital to
handling the task. In this direction, the brushless direct current (BLDC) motor is the most
used actuator in industry and commercial applications; it is expected that in the year 2030,
BLDC motors will replace the majority of traditional induction motors in the industry [2].

The brushless direct current (BLDC) motor is a permanent magnet synchronous motor
that is widely used in diverse applications because it improves the efficiency and control of
aerospace processes [3], electric vehicles [4], submarines [5], wind turbines [6], photovoltaic
energy [7], etc. Unlike the permanent magnet synchronous motor (PMSM), which has a
sinusoidal back-electromagnetic force (back-EMF) wave shape, the BLDC motor has 15%
more power density than PMSM [8]. The main difference between the PMSM and the BLDC
motor is in the flux distribution in the motor; the BLDC motor is a permanent magnet
synchronous motor with a trapezoidal back-EMF wave shape.

Mathematics 2022, 10, 1977. https://doi.org/10.3390/math10121977 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10121977
https://doi.org/10.3390/math10121977
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-6901-3833
https://orcid.org/0000-0002-7565-8128
https://orcid.org/0000-0003-2856-9648
https://orcid.org/0000-0002-2483-083X
https://orcid.org/0000-0002-7540-489X
https://doi.org/10.3390/math10121977
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10121977?type=check_update&version=3


Mathematics 2022, 10, 1977 2 of 32

On the other hand, the most representative advantages of the BLDC motor compared
to the brushed DC motor [9,10] include its high reliability and efficiency, high torque
capability, long service life, low maintenance, high speed operating range with the noiseless
operation, good dynamic response, and the reduction of size and weight. Those advantages
in BLDC motors come from the electronic commutation circuit that replaces the mechanical
commutator of brushed DC motors. Hence, the BLDC motor is the most used today.

The efficiency in the regulation and tracking performance of BLDC motors depends
on two main aspects, the controller design [8,11] and the controller tuning process [12–15].
Several PID-like controllers and advanced control strategies have been adopted to address
the first aspect. Nevertheless, the controller design does not guarantee to fit one or several
performance characteristics, such as settling time, maximum overshoot, steady-state error,
energy consumption, etc. The control performance is influenced mainly by the controller
tuning process, i.e., the setting of its parameters.

According to the taxonomy of the controller tuning methods given in [16,17], analytic
tuning methods find the controller gains by analyzing the closed-loop system stability.
Those methods provide suboptimal solutions in nonlinear systems because they only show
a region of interest in the controller parameter space, such that a selection procedure
must be additionally done in such a region to find the controller gains that fulfill the
desired performance characteristics. For instance, in robotic manipulators [18,19], the use
of Lyapunov stability defines the conditions to find the PID-like controller gains where
the stability is ensured in a specified domain. Likewise, the rule-based procedure in the
heuristic tuning methods searches for controller parameters by using the experience in the
manual tuning of the controller and the assumptions in the plant and desired output. Some
representative heuristic tuning methods are the Tyreus–Luyben method [20], the Cohen–
Coon method [21], the Ziegler–Nichols tuning method [22], Ciancone–Marlin method [23],
and the C-H-R method [14]. Nevertheless, those methods require more time to tune the
controller, which represents a challenge. Moreover, those methods can be applied to a
reduced class of systems mainly focused on industrial plants expressed as linear systems;
it is also difficult to simultaneously consider several performance indices. In nonlinear
systems, the assumptions made in the heuristic tuning methods produce undesired results
in the closed-loop system.

Otherwise, the most promising controller tuning approaches are related to the opti-
mization and adaptive methods (according to the taxonomy in [16,17]). In the optimization
method and in a class of the adaptive method, the controller tuning is formulated as a
dynamic optimization problem, which becomes an NP-hard problem [24], and the solution
requires special techniques. The main difference between the optimization and adaptive
methods is that the former is stated as an offline dynamic optimization problem, where
fixed controller gains are obtained at the end of the optimization process, and those op-
timum gains are set in the controller for the real-time implementation in a second step.
Meanwhile, the latter is formulated as an online dynamic optimization problem, where
the controller gains change through time, i.e., the controller is tuned in the closed-loop
system. In both cases, the representation of the plant, either by using the approximated
mathematical model or the surrogate model (metamodel), is required.

Hence, the intelligent control (IC) [25] for the controller tuning tasks has been fre-
quently used in the optimization method and the adaptive method. The IC [25] in the
controller tuning tasks involves systems based on knowledge and rules from the collection
of methodologies and techniques of the computational intelligence and soft computing to
emulate the decision making of an expert to state the corresponding controller gains. In [26],
a novel machine learning technique was incorporated in search of the link–mass parameters
used in the controller and the tuning of PID gains. The proposal incorporates a Bayesian
optimization that incorporates a surrogate probabilistic model to construct the performance
functions from the search parameters, i.e., this model mapping from the design parameters
to the objective functions. It does not require the robot model in the approach. A penalty
function is incorporated to constrain the joint position error, which results in unstable
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behaviors. In other work, model-based reinforcement learning (MBRL) in the human–robot
collaborative task was used [27]. In that work, the stiffness and damping of the impedance
control parameters were found to minimize human effort by using an ensemble of artificial
neuronal networks (ANNs) and a model predictive controller.

In the reviewed literature on the use of IC in BLDC motors, the IC was able to reduce
(in a better fashion) the torque ripples compared to several control techniques [2]. In the last
decade, computational intelligence in the controller tuning task has increased because of
the growth of complex demands in real applications that must simultaneously be satisfied.
Among the computational intelligence techniques, metaheuristic algorithms [28] have been
adopted in the controller tuning problem [12] because they can provide suitable solutions
for NP-hard problems.

Several tuning strategies have been adopted in the control system of BLDC motors
based on metaheuristic algorithms. In Table 1, the most important features of each work
are shown. PID-like controllers are the most used ones in the controller tuning with 42%
of the works presented in such a table. This is related to the PID-like controller being the
most used in industrial applications in over 90% of systems because of the implementation
facility and reduced costs; moreover, when the gains are well-tuned [29], they exhibit
somewhat robust performances in nonlinear and time-varying processes, such that the
electric drive’s market does not justify the use of the advanced control [30]. Otherwise,
neuro-fuzzy-like controllers and PID-like fractional-order controllers present the same use
frequency (21%). The rest of the works (16%) in Table 1 include fuzzy logic control. In this
work, the PI controller is used for the velocity regulation of the BLDC motor.

Table 1. Investigations related to the BLDC motor controller tuning problem using metaheuristic al-
gorithms.

Ref. Used Controller Tuning Parameters Design Objective * Employed
Algorithms

Optimization
Process

[10] PID PID controller gains SE PSO Offline

[30] VcPMSMd

Speed and current
controller gains,

coefficients

SE in the settling
phase, FAMA, GA

Offline and Onlinein the velocity filter
and voltage

compensators
MO, RT, AxCOsc Simplex Method

[31] FL Membership function
parameters SE, SL PSO Online

[32] PI PI controller gains MO, ST, SE DE, Modified DE Online

[33]

Online ANFIS, PID,
Learning rate,

forgetting factor,
steepest descent, RMSE+IAE+ITAE+ISE BAT, GA, PSO Offline

Fuzzy PID, Adaptive
FL

momentum constant,
PID, Fuzzy, and FL

controller gains

[34]
Fuzzy PID

supervised on-line
RFNN

Learning rate,
dynamic factor, node

number

RMSE, IAE, ITAE,
ISE

GA, PSO, ACO, BA,
ALO Offline

[35] PI PI controller gains IAE, ISU
PSO with five inertia

weight Offline
adjustment strategies

[36] ANFIS

Learning rate,
forgetting factor, ISE, TDPC

BFO
Offlinesteepest descent

momentum constant BAT, PSO

[37] PID–type FL PID controller gains IAE GA Offline

[38] PID PID controller gains ISE FPA, PSO, FA OfflineZiegler–Nichols
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Table 1. Cont.

Ref. Used Controller Tuning Parameters Design Objective * Employed
Algorithms

Optimization
Process

[39] PID PID controller gains ISE GOA Offline

[40] Fuzzy PD/PID

PD/PID controller
gains, membership

function parameters,
RMSE, IAE, ITAE, ISE PSO, CS, BAT Offlinecoefficient of the

consequent part of
fuzzy PD/PID

controller

[41] FOPID PID controller gains,
fractional-orders RMS BAT, Modified GA,

MSA, ABC Offline

[42] FOPI, PI PI controller gains,
fractional-orders ITAE Offline

[43] PI PI controller gains MO, ST GA Offline

[44] PID PID controller gains ITSE PSO, BFO Offline

[45] FOPD PI controller gains,
fractional-orders TR Jaya Offline

[46] Online ANFIS, PID,
offline ANFIS

Learning rate,
forgetting factor, RMSE, MO Hybrid GA-PSO Offlinesteepest descent

momentum constant

[47] FOPID PID controller gains,
fractional-orders TR FA, GA Offline

* The error is related to the difference between the desired and actual motor velocity.

The use of the offline optimization process has prevailed in the controller parameter
tuning of the BLDC motor with 84% of the works presented in Table 1. However, the offline
optimization process is affected by disturbances and uncertainties not considered in the
optimization problem, such that the controller tuning may behave differently in real-time
implementation. So, robust tuning strategies are required in practical applications [48].
In order to face such an issue in BLDC motors, efforts have been carried out in [33,34,46]
to improve the closed-loop system performance under different operating conditions
by using lookup tables of controller tuning parameters previously found by the offline
optimization process.

The lack of ideal plant models for depicting real-world systems (which are inherently
uncertain), the limitations in the offline optimization process to handle complexities, as well
as the performance degradation of the closed-loop system appear after some time, giving
rise to the use of the online optimization process for controller tuning. However, although
the adaptive tuning method could efficiently handle the uncertainties and the disturbances
in the closed-loop system compared to an offline optimization process, only 16% of works
in Table 1 applied the online optimization process in the tuning problem of the BLDC
motor controller. The lack of works may be attributed to the high computational costs in
the solution of the online optimization process through metaheuristic algorithms, which is
a challenge in real applications. Moreover, the reliability of the adaptive tuning process
must be guaranteed in an interest region due to the stochastic nature of the metaheuristic
algorithms; nonetheless, the works reported in such a table do not reach conclusions that
extend beyond the obtained data.

Contributions

In Table 1, several improvements and applications of metaheuristic algorithms in the
speed controller tuning task of the BLDC motor are observed. The most used algorithms
are based on particle swarm optimization (PSO) and genetic algorithm (GA). The inclusion
of chaotic dynamics [49] in metaheuristics reveals a positive impact of chaotic functions
instead of the classic pseudo-random functions. Nevertheless, chaotic dynamics in the
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solution of the controller tuning task of BLDC motors (by using an online optimization
process) are not reported in the literature. The empirical results of this work indicate that
the use of chaotic dynamics in the differential evolution algorithm in an online optimization
process suitably balances its search capacities, maintaining (as minimum as possible) the
motor velocity error under the effects of disturbances.

In this work, different from the research given in Table 1, the chaotic adaptive tuning
strategy for controller gains (CATSCG) of BLDC motors is proposed; this is the first contri-
bution of the paper. In the author’s previous works [50,51], the parameters of the inverse
dynamic controller (model-based controller) for the speed regulation of the brushed DC
electric motor were obtained through a single-stage tuning strategy. In that strategy, it is
assumed that a specific closed-loop system response and the obtained control parameters
are associated with the DC motor parameters and not the linearizing control parameters.
Then, in the best-case scenario, the response of the closed-loop system with the optimum
gains will behave as it was established from the beginning. Unlike the author’s previous
works, the CATSCG consists of a two-stage tuning strategy where the dynamics associ-
ated with the future behavior of the BLDC motor are estimated in the first stage with the
experience gained from the past optimization process. These dynamics are used in the
second stage to find, through the novel chaotic online differential evolution (CODE), the
controller gains that directly impact the closed-loop system responses. Furthermore, the
CODE includes Lozi chaotic initial populations in the differential evolution algorithm to
enhance the diversity of candidate solutions in the dynamic environment, which further
improves the quality of the controller gains under the effects of uncertainties.

On the other hand, unlike what was reported in Table 1, the efficiency of the proposed
CATSCG in BLDC motors is shown through the use of nonparametric statistical tests [52]
to make inferences from our study data to more general conditions and, hence, to reach
general conclusions that extend beyond the obtained data. With this test, the reliability
of the proposed control tuning based on metaheuristics in future practical applications is
confirmed, providing more fair and meaningful comparative studies with other tuning
approaches. The latter is the second contribution of the work.

Based on the above, the novelties of the proposal are summarized next:

• The chaotic online differential evolution is included in the two-stage adaptive tuning
strategy for the controller gains. This chaotic adaptive tuning strategy can efficiently
handle perturbations, uncertainties, noise, and abrupt changes in the references of the
closed-loop system.

• The reliability of the proposed CATSCG in future practical applications is confirmed
by presenting a nonparametric statistical study that provides more fair and meaningful
comparative studies with other tuning approaches.

The advantages of the proposed chaotic adaptive tuning strategy in the BLDC mo-
tors are:

• In a real application (for example, in the object manipulation task), the system (for
instance, the robotic manipulator) to be incorporated into the BLDC motor shaft can be
modeled as a dynamic load. So, one of the advantages of the proposed chaotic adaptive
tuning strategy in the BLDC motors is that this dynamic load could be considered a
dynamic perturbation, such that the proposal could handle such perturbation and
others (uncertainties, noise, and reference velocity changes) in a better fashion.

• The proposal assumes an analytical model to represent the system dynamics where
its efficiency increases, unlike the model-free tuning approaches where the use of
machine learning and reinforcement learning estimates the behavior of the system (or
performance function), and so, a trade-off between the model accuracy and computa-
tional time must be considered. The model-free tuning approaches tend to increase
the computational time when they increase the accuracy, while simple ones affect the
precision [53] but reduce the computational time.
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The rest of the paper is organized as follows. In Section 2, the dynamics and controller
of the BLDC motor are presented. The details of the proposed CATSCG of BLDC motors
are included in Section 3. The discussion of the results is given in Section 4, and finally, in
Section 5, the conclusions are drawn.

2. BLDC Motor Dynamics and Speed Controller

The brushless direct current (BLDC) motors are three-phase synchronous motors
usually in a star topology. The schematic diagram of the BLDC motor is shown in Figure 1.
The variables associated in the figure include the phase resistance r, the phase inductance l,
the friction coefficient b0, the trapezoidal back-electromagnetic (EMF) force eγ induced in
the winding of phase γ ∈ {a, b, c}, the angular position θ, the angular velocity w, the phase
to phase voltage Vγγ, the phase voltage Vγ, the phase current iγ, the load torque τL, the
input voltage Vs and the total torque τe.

Figure 1. Three-phase motor diagram.

The dynamic equations of the BLDC motor consist of the electrical and mechanical
ones [8,11]. The electrical equations are given in (1)–(3), where R and L are the phase-to-
phase resistance and inductance, respectively.

Vab = L
(

dia

dt
− dib

dt

)
+ R(ia − ib) + ea − eb (1)

Vbc = L
(

dib
dt
− dic

dt

)
+ R(ib − ic) + eb − ec (2)

Vca = L
(

dic
dt
− dia

dt

)
+ R(ic − ia) + ec − ea (3)

The equations in (1)–(3) are influenced by the three-phase full-bridge inverter conduc-
tion mode shown in Table 2, i.e., the current and voltage flowing in the motor windings
when the pairs of switches are conducted. Each switch in the inverter conducts (activates)
for a duration of 2π/3 rad = 120°, and the pair of switches are activated in sequence at
pi/3 rad = 60°, as shown in Figure 2. In a real application, the switches Q1–Q6 consist of
metal-oxide-semiconductor field-effect transistor (MOSFET) devices, which are controlled
by PWM signals through the gate driver commutation logic.

The switching sequence mathematical equations of the inverter are included in the
phase voltages VaN = Vs

2 η̄(θ), VbN = Vs
2 η̄(θ − 2π/3), and VcN = Vs

2 η̄(θ − 4π/3), con-
sidering the inverter commutation function η̄(θ) expressed in (4). Then, the phase-to-
phase voltages Vab = Vs

2
(
η̄(θ)− η̄(θ − 2π/3)

)
, Vbc =

u
2
(
η̄(θ − 2π/3)− η̄(θ − 4π/3)

)
, and

Vca = u
2
(
η̄(θ − 4π/3)− η̄(θ)

)
include the inverter dynamics, and those are introduced

in (1)–(3).

η̄(θ) =


0, If −π/6 ≤ θ ≤ π/6
1, If π/6 ≤ θ ≤ 5π/6
0, If 5π/6 ≤ θ ≤ 7π/6
−1, If 7π/6 ≤ θ ≤ 11π/6

(4)
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Table 2. The three-phase full-bridge inverter 120-degree conduction mode.

Switching Sequence Switch Phase Voltage Vs/2 Voltage Flowing
Interval Number Closed VaN VbN VcN in Sequence

0− π/6 1 Q5, Q3 off − +
π/6− π/2 2 Q5, Q1 + − off

π/2− 5π/6 3 Q6, Q1 + off −
5π/6− 7π/6 4 Q6, Q2 off + −
7π/6− 3π/2 5 Q4, Q2 − + off

3π/2− 11π/6 6 Q4, Q3 − off +
11π/6− 2π 7 Q5, Q3 off − +

Figure 2. Switching sequence (SS) at each point of the inverter.

The trapezoidal back-EMF force eγ is described by (5)–(7), where ke is the back-EMF
constant of the motor and ē(θ) is related to the trapezoidal shape function (due to switch-
commutation logic for BLDC motors) displayed in (8).

ea = kewē(θ) (5)

eb = kewē(θ − 2π/3) (6)

ec = kewē(θ − 4π/3) (7)

ē(θ) =


6θ
π , If −π/6 ≤ θ ≤ π/6
1, If π/6 ≤ θ ≤ 5π/6

− 6(θ−π)
π , If 5π/6 ≤ θ ≤ 7π/6
−1, If 7π/6 ≤ θ ≤ 11π/6

(8)

The mechanical equations of the BLDC motor are presented in (9) and (10), where P is
the number of pole pairs.

J
dw
dt

+ b0w + τL = τe (9)

dθ

dt
= Pw (10)

The total torque τe in (9) results from the sum of the torque applied for each phase,
and it is described in (11), where km is the torque constant.

τe = km
(
ia ē(θ) + ib ē(θ − 2π/3) + ic ē(θ − 4π/3)

)
(11)
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Let the state space x = [θ, w, ia, ib,
∫
(x̄2 − w)dt]T ∈ R5, the desired one x̄ and the

control signal u = Vs given by the proportional integral (PI) speed controller as

u = kp(x̄2 − x2) + kix5 (12)

Assuming that ia + ib + ic = 0 and grouping the BLDC motor parameter in the vector
Θ = [ b0

J , km
J , ke

L , R
L , 1

L , 1
J , τL]

T ∈ R7, and the PI control gains in K = [kp, ki]
T , the

electromechanical BLDC motor dynamics can be expressed in the state space x as follows:

ẋ =


0 P 0 0 0
0 −Θ1 C̄Θ2 D̄Θ2 0
0 Ā

3 Θ3 −Θ4 0 0
0 B̄

3 Θ3 0 −Θ4 0
0 −1 0 0 0

x +


0 0
0 0

2
3 Θ5

1
3 Θ5

− 1
3 Θ5

1
3 Θ5

0 0


[

Vab
Vbc

]
−


0

Θ6Θ7
0
0
x̄2


ẋ = f (x, Θ, K) (13)

where Ā = ē(θ − 2π/3)− 2ē(θ) + ē(θ − 4π/3), B̄ = ē(θ)− 2ē(θ − 2π/3) + ē(θ − 4π/3),
C̄ = ē(θ)− ē(θ − 4π/3), D̄ = ē(θ − 2π/3)− ē(θ − 4π/3), Vab = u

2
(
η̄(θ)− η̄(θ − 2π/3)

)
and Vbc =

u
2
(
η̄(θ − 2π/3)− η̄(θ − 4π/3)

)
.

3. Chaotic Adaptive Tuning Strategy for Controller Gains in BLDC Motors

The proposed chaotic adaptive tuning strategy for controller gains (CATSCG) of BLDC
motors consists of the adaptive tuning strategy with two sequential stages and a novel
chaotic online differential evolution (CODE) algorithm. In the first stage, the CATSCG fits
the BLDC motor parameters Θ̃(t) of a model based on an identification stage. In the second
stage, the CATSCG settles the parameters K(t) of the controller based on a predictive stage
using the trained model. Finally, both stages are settled as dynamic optimization problems
where the proposed CODE obtains the corresponding solutions to set those parameters at
each predefined fixed time interval through time.

In this formulation, the time t is split in the time sequence {t0, tl}l∈N with
N := {1, 2, . . . , nN}. At each time sequence, the information about the actual BLDC motor
states is provided by integrating its dynamics (13), considering the time interval between
two consecutive times, ∆t = tl − tl−1 > 0, as the integration step. In a real application, ∆t
refers to the sampling time, and the actual states are acquired through sensors. On the other
hand, the proposed CATSCG is carried out at each discrete time sequence t̄ ∈ {t̄0, t̄l̄}l̄∈N̄
with N̄ := {1, 2, . . . , nN̄}, where the time interval between two tuning processes is expressed
as ∆t̄ = t̄l̄ − t̄l̄−1 > ∆t.

In the time t < ∆w = nw∆t considering nw ≥ 1, the initial parameter values of
the controller K(t̄0) and the BLDC motor model parameters Θ̃(t̄0) are chosen by the
user. The model parameter vector Θ̃(t) of the BLDC motor model and the controller
parameter one K(t) are updated based on the identification and predictive stages at each
time t = t̄l̄ . In those stages, the actual BLDC motor state information and the BLDC motor
model in the backward/forward time window ∆w are required in the CATSCG. The visual
representation of the proposed parameter adaptation in the CATSCG is shown in Figure 3,
and the time horizon for the updating of the parameters Θ̃(t) and K(t) is displayed in
Figure 4.
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Figure 3. Schematic diagram of the proposed chaotic adaptive tuning strategy for controller gains in the BLDC motor.

Figure 4. Time horizon of the proposed chaotic adaptive tuning strategy for controller gains in the BLDC motor.
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One of the main aims of using CODE in the adaptive tuning strategy is to provide
the most suitable model parameter Θ̃(t) and control gains K(t) at each time t = t̄l̄ , such
that they achieve an appropriate future behavior of the closed-loop system in the next
time interval t ∈ (t̄l̄ , t̄l̄+1], and so the controller can efficiently handle the uncertainties in
the system.

The requirements to apply the CATSCG are: (I) The structure of BLDC motor dynamics
must be known and described by differential equations. (II) The transcription method [54]
is used to apply the proposed CODE or other optimizers. This method transforms the
original continuous time formulation (infinite-dimensional optimization problem) into a
discrete time formulation (discrete-dimensional optimization problem). The associated
dynamics are set as finite states through the solution of the differential equations by
numerical integration techniques. Moreover, there is a control system parameterized in the
corresponding control gains. (III) The solution of the optimization process in the CATSCG
at each time t = t̄ must be computed in the time interval between two tuning processes (in
∆t̄ s) for real-time implementations of CATSCG in a prototype.

The following subsections detail the optimization problem formulation of the CATSCG
for identifying and predicting stages and present the proposed chaotic online differential
evolution that solves both problems.

3.1. Identification Stage in the BLDC Motor

In the identification stage, the parameter vector Θ̃(t) ∈ R7 of the BLDC motor model
is fitted at each time t̄l̄ through the solution of a dynamic optimization problem. The
identification stage requires the actual BLDC motor state information from a short back-
ward time interval. This time interval is set as t ∈ Ω̃ ∈ [t̄l̄ −4w, t̄l̄ ]. In this stage, the
dynamic equations of the BLDC motor model are expressed in (16), where x̃(t) is the model
state vector.

The dynamic optimization problem consists of finding the parameter vector Θ̃∗(t̄l̄)
of the BLDC motor dynamics (16), which minimizes the identification error JI ∈ R (14)
between the actual states x(t) and the model ones x̃(t).

JI(t̃) =
(

x1(t̃)− x̃1(t̃)
)2

+
(
x2(t̃)− x̃2(t̃)

)2
+
(
x3(t̃)− x̃3(t̃)

)2
+
(
x4(t̃)− x̃4(t̃)

)2 (14)

The dynamic optimization problem’s mathematical formulation of the identification
stage is presented in (15)–(18) in the time interval t ∈ Ω̃ ∈ [t̄l̄ −4w, t̄l̄ ]. This problem is
constrained by the BLDC motor model (16) with its final conditions (17), and the bound
interval [Θ̃min, Θ̃max] (18) of the parameter vector Θ̃. A backward numerical integration
method [55] is used to the solution of the differential equation of the motor model.

min
Θ̃∗(t̄l̄) ∈ R7

∫
t∈Ω̃

JI(t)dt (15)

Subject to :

˙̃x =


0 P 0 0 0
0 −Θ̃1 C̄Θ̃2 D̄Θ̃2 0
0 Ā

3 Θ̃3 −Θ̃4 0 0
0 B̄

3 Θ̃3 0 −Θ̃4 0
0 −1 0 0 0

x̃ +


0 0
0 0

2
3 Θ̃5

1
3 Θ̃5

− 1
3 Θ̃5

1
3 Θ̃5

0 0


[

Vab
Vbc

]
−


0

Θ̃6Θ̃7
0
0
x̄2

 (16)

x̃(t̄l̄) = x(t̄l̄) (17)

Θ̃min ≤ Θ̃(t̄l̄) ≤ Θ̃max (18)

The minimization of the identification error through the optimization process pro-
vides a trained model that approximates, through the model parameters Θ̃∗(t̄l̄) ∈ R7, the
dynamic behavior of the actual BLDC motor.
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3.2. Predictive Stage in the BLDC Motor

In the predictive stage, the controller gains K(t) ∈ R2 of the PI speed controller are
obtained in the time t̄l̄ by using the trained model as a state predictor, and solving a
dynamic optimization problem in the time interval t ∈ Ω̂ ∈ [t̄l , t̄l +∆w]. The state predictor
x̂ of the BLDC motor computes the estimated future motor behavior, and the acquired
information from this behavior is given through the forward numerical integration of the
differential equation of the trained model in the short time interval t ∈ Ω̂. The dynamics
of the predictor (trained model) are given in (21), and so, it uses the BLDC motor model
parameter vector Θ̃∗(t̄l̄) found in the previous identification stage.

The predictive error Jp ∈ R (19) between the predictive state of the motor speed x̂2
and the reference one x̄2 is chosen as the performance function to be optimized.

Jp(t̂) = (x̄2(t̂)− x̂2(t̂))2 (19)

The formulation of the dynamic optimization problem for the predictive stage is shown
in (20)–(25). The aim was to find the control gains K∗(t̄l̄) ∈ R2 based on the minimization
of the predictive error, subject to the predictive state equations (trained model) (21) with its
initial conditions (23) and the predictive controller (22) using Vab = û

2
(
η̄(θ)− η̄(θ − 2π/3)

)
,

Vbc = û
2
(
η̄(θ − 2π/3)− η̄(θ − 4π/3)

)
; the bounds of both the control signal (24) and

control gains (25). The subscript in (24) and (25) indicate the minimum and maximum
values of the related term.

min
K(t̄l̄)

∗ ∈ R2

∫
t∈Ω̂

Jp(t) dt (20)

Subject to:

˙̂x =


0 P 0 0 0
0 −Θ̃1 C̄Θ̃2 D̄Θ̃2 0
0 Ā

3 Θ̃3 −Θ̃4 0 0
0 B̄

3 Θ̃3 0 −Θ̃4 0
0 −1 0 0 0

x̂ +


0 0
0 0

2
3 Θ̃5

1
3 Θ̃5

− 1
3 Θ̃5

1
3 Θ̃5

0 0


[

Vab
Vbc

]
−


0

Θ̃6Θ̃7
0
0
x̄2

 (21)

with û = kp(x̄2 − x̂2) + ki x̂5 (22)

x̂(t̄l̄) = x(t̄l̄) (23)

ûmin ≤ û(t) ≤ ûmax (24)

Kmin ≤ K(t̄l̄) ≤ Kmax (25)

The decrement of the predictive error through the optimization process provides the
PI control gains that fulfill the regulation task in the prediction time horizon. At the end of
this stage, the optimum controller parameter vector K∗(t̄l̄) is set to the control system in (12)
for the velocity regulation of the actual BLDC motor in the next time interval [t̄l̄ − t̄l̄+1].

3.3. Chaotic Online Differential Evolution

As mentioned before, the adaptive optimal tuning of the speed control for the brushless
DC motor requires the solution of two consecutive optimization problems online, i.e., the
problems are solved at every ∆t̄ during the execution of the speed regulation task in the
motor: the identification problem (to estimate the current motor parameters) and the
prediction one (for the tuning of the speed controller). Both problems are complex and
must be solved fast. This section details the optimizer used for this purpose.

The proposed chaotic online differential evolution (CODE) is an optimizer based on
the variant DE/rand/1/bin of differential evolution. It incorporates a chaotic initialization
and an elitist adaptation mechanism to improve the exploitative capacity and the speed
convergence of the original algorithm. The components of CODE are described next.
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3.3.1. Differential Evolution

Differential evolution (DE) is a well-known bio-inspired, population-based, and ap-
proximated optimizer that is shown to be effective when solving complex optimization
problems, especially those involved in real-world applications as observed in the recently
specialized literature [56–58]. This method is bio-inspired in the process of natural evolution
and was proposed by Storn and Price in 1997 [59].

DE follows the operation described in Algorithm 1. This optimizer starts with a
random population XG that contains NP vectors (candidate solution vectors to the op-
timization problem). Then, these vectors evolve iteratively through a given number of
generations Gmax to find a suitable approximated solution to the problem. An offspring
population is generated using mutation and crossover operations for each generation. After
that, a selection procedure decides which solutions must survive from this new population
and the original one for the next iteration based on a fitness function (the value of the
objective function and the compliance with constraints in the optimization problem). By
the end of the algorithm, the population includes the fittest vectors, and the best one is the
solution to the problem.

Algorithm 1: Differential evolution (DE)

Input: Maximum generations (Gmax), population size(NP), crossover rate (CR), and scaling
factors (F and/or S), fitness function ( f itness).

Output: The best solution (χG
b ).

1 G ← 1
2 Generate a random initial population XG with NP candidate vectors within the search

space.
3 Evaluate vectors in XG using f itness.
4 while G ≤ Gmax do
5 foreach χG

i ∈ XG do
6 Generate a mutant vector νG

i using (26).
7 Generate an offspring vector µG

i using (27) or (28).
8 Evaluate µG

i using f itness.
9 Select the vector that will conform to XG+1 between χG

i and µG
i based on the f itness

value.

10 G ← G + 1

11 Obtain the best vector χG
b from XG.

12 return χG
b

DE includes different variants that can be useful to address different types of optimiza-
tion problems. Each variant aims to enhance two features of the algorithm—the exploration
(the ability to find promising regions in the search space) and the exploitation (the capacity
to find outstanding solutions in an area from the search space). These variants are named
using the nomenclature DE/α/β/γ [59], which indicates how mutant and offspring vectors
(νG

i and µG
i , respectively) are generated for a given original solution χG

i in the current
population XG, where:

• α is the vector χα to be mutated in (26) and can be the vector χG
r selected randomly

from the population (rand), the vector χG
b as the best alternative in the population

(best), or as the current vector χG
i plus the scaled difference (using a predefined scaling

factor S ∈ [0, 1]) between it and one of the previous ones (respectively, current-to-rand
and current-to-best [60]).

• β is the number of the scaled vector differences used in mutation (26), where F ∈ [0, 1]
is an established scaling factor and r1, r2, . . . , r2β−1, r2β are randomly selected vectors
from the current population XG, such that i 6= r1 6= r2 6= · · · 6= r2β−1 6= r2β.

• γ is the crossover strategy and can be typically binomial (bin) or exponential (exp), as
shown in (27) and (28), respectively, where j denotes the j-th design variable in a vector,
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jrand is a number of a randomly chosen design variable, CR ∈ [0, 1] is a predetermined
crossover rate, and rand(0, 1) generates a random number in [0, 1].

νG
i =

Vector to be mutated︷︸︸︷
χα +F (χG

r1
− χG

r2
+ . . . + χG

r2β−1
− χG

r2β
)︸ ︷︷ ︸

Vector differences

(26)

µG
i,j =

{
νG

i,j if rand(0, 1) < CR or j = jrand

χG
i,j otherwise

(27)

µG
i,j =

{
νG

i,j from rand(0, 1) < CR or j = jrand

χG
i,j otherwise

(28)

Regarding the selection procedure, all variants utilize the same alternative. This
selection is applied pairwise between an original vector χG

i and its corresponding offspring
µG

i considering the fitness. In order to determine which of these two solutions is fittest to
conform to the population in the next generation XG+1, the next feasibility rules based on
the ones presented in [61] are adopted:

• If χG
i and µG

i are feasible, i.e., both meet the constraints of the optimization problem,
then the fittest solution is the one with the best objective function value (the lowest
value for minimization).

• If χG
i is feasible and µG

i is unfeasible, then χG
i is preferred and vice versa.

• If both χG
i and µG

i are unfeasible, then the one that satisfies a greater number of
constraints is preferred.

• If both χG
i and µG

i are unfeasible and meet the same number of constraints, then the
fittest solution is selected randomly.

Among the possible combinations of α, β, and γ, the variant DE/rand/1/bin is shown to
be one of the most effective for solving benchmark and real-world problems [62–64], and
its operation is adopted as the basis of CODE. However, its main drawback is related to
its slow convergence, although it can maintain the population diversity (i.e., a desirable
exploration ability) and has a high global search performance [65]. In order to tackle
the previous difficulty, the following chaotic initialization and elitist online adaptation
mechanisms are included in the DE/rand/1/bin operation for CODE.

3.3.2. Elitist Online Adaptation

A dynamic optimization problem, such as the ones addressed in this work (for identi-
fication and prediction), i.e., a problem where there are variations in the objective functions
or constraints along time, can be solved in two different ways by approximated optimizers,
such as DE [66]:

(a) Starting an optimization process from scratch as soon as an environmental change is
produced or at fixed update intervals (e.g., every ∆t̄). This approach usually requires
more computational resources but is affordable when the time between changes or
the fixed intervals are large.

(b) Using the experience gained from past optimization processes to adapt the solutions
to the environmental changes instead of restarting the optimization when the time
between those changes or a fixed update interval are short enough. In this case, the
optimization speeds up but must enhance the diversity of candidate solutions.

Every time a new optimization process is performed, i.e., every ∆t̄, the optimization
problems for the identification of the BLDC motor and the tuning of the PI controller change.
This is because, at each instant that the optimization is performed, the motor information
used for identification changes (this can be attributed to uncertainties, disturbances, or
unmodeled dynamics), and in turn also affects the predictions made during tuning. In
this way, different past BLDC states in the backward time window ∆w are acquired and
are then used in the identification problem. After that, the tuning problem uses the
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model parameters obtained from the identification stage in a future time window ∆w for
prediction. Therefore, the objective functions and the constraints vary for both problems at
every instant ∆t̄. So, new solutions to both optimization problems must be calculated in
a time of at most ∆t̄, which must be short to increase the adaptability and, therefore, the
ability to respond to uncertainties and disturbances. Then, approach (b) is more suitable to
be adopted in CODE for this work.

The approach (b) is implemented in the proposal as suggested in [50], where the best
solution χG

b , calculated in the last CODE execution (i.e., in the previous ∆t̄), is included as an
individual of the initial population X1 in the next CODE run for the subsequent optimization
process (after ∆t̄). In contrast, the remaining individuals are randomly initialized within
the search space as usual. The above prevents CODE from starting the search from scratch,
accelerating the convergence and lightening the computational burden.

Then, within the proposed CATSCG of BLDC motors, the optimized model parameters
Θ̃∗ and PI controller gains K∗ calculated in the previous optimization processes at time
t̄l̄−1 are stored and then utilized for the CODE algorithm in the subsequent optimization
processes for identification and tuning problems at time t̄l̄ .

3.3.3. Chaotic Initialization

The improved convergence speed introduced by the above elitist online adaptation
mechanism may lead to an additional difficulty—the search stagnation in the vector χG

b in-
cluded during the initialization procedure. So, population diversity must also be enhanced
to prevent this issue. In this sense, the use of chaotic maps, especially the Lozi one [67], to
replace the sequences of uniform random numbers utilized by approximated methods, has
successfully increased their exploration ability in several works [68–70], also raising the
quality of the found solutions.

In DE, random numbers are necessary in the first steps of the algorithm when the
initial population of candidate individuals is generated randomly within the search space
(see Algorithm 1), and during the crossover procedures, as observed in (27) and (28).

In the case of CODE, the random numbers utilized in the population initialization
are generated by the Lozi chaotic map. This is intended to increase the initial diversity of
solutions at the beginning of each CODE run. The Lozi map is a 2D chaotic, linear, and
discrete dynamic system described by [71]:{

z1(nL + 1) = 1− a
∣∣z1(nL)

∣∣+ b z2(nL)
z2(nL + 1) = z1(nL)

(29)

where nL indicates the iteration number; a and b are the control parameters.
Depending on the values of the control parameters a and b, and the initial conditions

given by z1(0) and z2(0), the Lozi map can develop different chaotic behaviors evidencing
a strange attractor. The attractor is a shape that appears to pull the states of the map even
when two consecutive states are unlikely to be close [72]. As described in [71], the typical
control parameters for the Lozi map are a = 1.7, b = 0.5, and they are considered in this
proposal. Figure 5 illustrates the behavior of the Lozi map using the above parameters and
considering the initial conditions z1(0) = 0 and z2(0) = 0 after 10, 000 iterations.

Concerning the initial condition of the Lozi discrete dynamics adopted in the adaptive
tuning proposal, it is established randomly at the very first instant of the control strategy
execution (i.e., when t = 0). After that, the Lozi map dynamics evolve one step forward each
time a new chaotic random number is required (i.e., when it is required to generate a new
random variable while generating each individual from the initial population of CODE).
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Figure 5. Lozi chaotic map with a = 1.7, b = 0.5, z1(0) = 0, and z2(0) = 0 after 10,000 iterations.

Therefore, each design variable of the vectors in the CODE population is initialized as
follows:

χG
i,j = χmin,j + lozi(0, 1)(χmax,j − χmin,j) (30)

where i 6= 1 (since the vector χG
1 comes from the elitist online adaptation mechanism

described previously), χmin,j and χmax,j denote the lower and upper bounds of each design
variable, respectively, and lozi(0, 1) computes the next iteration of the Lozi dynamics and
returns a chaotic value in the interval [0, 1]:

lozi(0, 1) =
z1(nL)− zmin

1

zmax
1 − zmin

1
(31)

with zmin
1 = −1.29 and zmax

1 = 1.35 as the bounds of the state z1.
In this sense, a new iteration of the Lozi discrete dynamics is calculated on every call

of lozi(0, 1), starting from a random initial condition when t = 0.

3.4. Integrating CODE with the BLDC Motor Adaptive Tuning Strategy

In this section, we explain the full integration of CODE with the BLDC motor adaptive
tuning strategy. This integration can be observed in Algorithm 2. In the proposal described
by this algorithm, the speed regulation task runs in the interval t ∈ [0, t f ]. At every
sampling instant ∆t, the BLDC motor states are acquired (in simulation, these are obtained
as the solution of the initial value problem associated with (13)) and the PI controller
computes a suitable control action for its speed regulation to the profile x̄2 using the
optimized gains K∗. These gains are re-optimized at fixed time intervals ∆t̄ using the
information acquired from the BLDC motor, as long as it is sufficient (t ≥ ∆w). For this, an
optimization process is developed in two stages. In the first stage, the optimized model
parameters of the BLDC motor Θ̃∗ are calculated by CODE, considering the states acquired
in a backward time window ∆w. The obtained parameters are included in the second stage
to predict the motor behavior in the forward time window ∆w, when different PI control
gains are adopted. CODE is also utilized to handle the second stage for computing the
optimized controller gains K∗.
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Algorithm 2: Chaotic adaptive tuning strategy for controller gains (CATSCG) in the
closed-loop system of a BLDC motor.

Input: Final execution time (t f ), sampling interval (∆t), optimization interval (∆t̄),
backward/forward time window (∆w), desired speed profile (x̄2), CODE parameters
(Gmax, NP, CR, and F).

Output: Effective speed regulation of the BLDC motor.
1 t← 0, topt ← 0
2 while t < t f do
3 Acquire the BLDC motor states x(t).
4 Compute and apply the PI control action (12) with the gains K∗.
5 if t ≥ ∆w and topt = ∆t̄ then
6 Identification stage:
7 Run CODE to calculate Θ̃∗ by solving (15)–(18), considering the past states x(t̄)

with t̄ ∈ [t− ∆w, t], and using the last Θ̃∗ in the elitist online adaptation.
8 Predictive stage:
9 Run CODE to calculate K∗ by solving (20)–(25), considering the last optimized

BLDC motor parameters Θ̃∗, and using the last K∗ in the elitist online adaptation.
10 topt ← 0

11 t← t + ∆t
12 topt ← topt + ∆t

4. Results an Discussion

In this section, the proposed adaptive strategy for the brushless motor based on the
chaotic online differential evolution (CODE) is tested. The details of the experiments are
explained below.

4.1. Details of the Experiment

For the experiments in the simulation, the considered brushless DC motor has the
nominal parameters presented in Table 3. The differential equation associated with the
motor is solved by the numerical integration method ode1 using a fixed integration step
of ∆t = 5 (µs) to simulate its dynamics. This integration step also coincides with the
sampling interval and refers to it in the same way. The motor must complete the task of
speed regulation with the highest possible accuracy for t ∈ [0, 3] (s), utilizing the proposed
control strategy. For this, the reference speed is defined as (32) to test different operating
cases.

x̄2 =


150 (rad/s), t < 1 (s)
100 (rad/s), 1 (s) ≤ t < 2 (s)
125 (rad/s), t ≥ 2 (s)

(32)

On the other hand, two experimental conditions are selected to validate the adaptabil-
ity of the control strategy—the normal operating condition(s) (NOC) and the disturbed
operating condition(s) (DOC). In the NOC, the nominal parameters in Table 3 remain fixed.
On the other hand, the DOC consider a scenario closer to reality, where the load torque
τL = 1 (N m) is added suddenly when the time is in the interval 0.5 (s) ≤ t ≤ 2.5 (s);
random noise signals up to ±0.01, ±0.1, and ±0.001 are included in the angular position
(x1), angular speed (x2), and motor currents (x3 and x4) states, respectively; the motor
parameters change continuously according to (33).

b0 = b0 + 0.1 b0 cos(π t)
J = J + 0.1 J cos(2π t/3)

L = L + 0.1 L cos(π t)
R = R + 0.1 R cos(2π t/3)

km = km + 0.1 km cos(2π t)
ke = ke + 0.1 ke cos(2π t)

(33)
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Concerning the re-optimization process in the identification and predictive stages of
the CATSCG for the PI controller, it is performed by CODE every ∆t̄ = 5 (ms).

Table 3. Nominal parameters and characteristics of the BLDC motor obtained from the maxon flat
brushless motor EC 90 with part number 607327.

Parameter Nominal Value

b0 3.1288× 10−4 (kg m2)
J 5.0600× 10−4 (kg m2)
L 1.0700× 10−3 (H)
R 0.8440 (Ω)
km 0.2310 (N m/A)
ke 0.2310 (V s/rad)
τL 0.0000 (N m)
P 11

Power 260(W)
Nominal voltage 48 (V)
No load speed 1960 (rpm)
No load current 278 (mA)
Nominal speed: 1670 (rpm)
Nominal torque: 964 (mNm)
Nominal current 4.06 (A)
Stall torque 13100 (mNm)
Stall current 56.9 (A)

The dynamic optimization problem for identification is set up using the past brushless
states acquired in a backward time window of ∆w = 50 (µs) from the current time instant.
The upper and lower bounds of the model parameters for this problem are set as Θ̃max =

[2 b0
J , 2 km

J , 2 ke
L , 2 R

L , 2 1
L , 2 1

J , 0.05]T and Θ̃min = [ 1
2

b0
J , 1

2
km
J , 1

2
ke
L , 1

2
R
L , 1

2
1
L , 1

2
1
J , 0]T . As

can be noticed, these bounds are based on the nominal values of the system parameters
as suggested in [73] to prevent the model over-fitting. In this way, the lower bounds
correspond to half the value of the nominal parameters, while the upper ones correspond
to double. The above rule is simple and allows to set the limits considering approximate
values of the motor parameters and not necessarily the actual ones.

In the case of the predictive stage, a future horizon of ∆w = 50 (µs) is selected to
predict the motor behavior for different sets of controller gains. For this last problem, the
input voltage limits are ûmin = −250 (V) and ûmax = 250 (V). For the same problem, the
selected upper and lower bounds of the PI controller gains are Kmax = [200, 200]T and
Kmin = [0, 0]T . These limits were obtained by a non-exhaustive trial-and-error approach
using a fixed-gain PI controller. In this, the PI gains are adjusted to observe limiting
behaviors that can be considered acceptable, but not necessarily good..

In addition, the effectiveness of the CODE optimizer in the proposed adaptive tuning
strategy is verified through comparisons with other alternatives provided with the same
elitist online adaptation (the inclusion of an individual with the best previous knowledge).
These are: the genetic algorithm (GA) described in [50], a particular case of the well-
known non-dominated sorting genetic algorithm II (NSGA-II) [74] where the objective
function space considers a single objective; the particle swarm optimization (PSO) with
a full-connected topology and a linear-decreasing inertia weight in [75], and the variant
DE/rand/1/bin of differential evolution (DE). These new variants are referred to as OGA,
OPSO, and ODE.

Regarding the hyperparameters of the above optimizers, there are many approaches
to set them up. For instance, in the algorithms from the works in Table 1, these parameters
were tuned by hand (i.e., the best hyperparameters were selected after a series of trials
with different combinations) or chosen as the most promising alternative reported in the
literature. In this work, the latter approach is preferred because, in practical applications,
it is important to provide the parameter setting in an easy way by using a guideline, and
it can be more attractive to engineers for implementation purposes. So, the algorithm
parameter settings are set based on the suggestions found in the specialized literature,
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as follows—crossover rate CR = 0.5 and scaling factor F = 0.5 for ODE and CODE [76];
crossover probability pc = 1, mutation probability pm = 1

d with d as the number of
design variables, distribution index ηc = 20 in the simulated binary crossover (SBX), and
distribution index ηm = 20 in the polynomial mutation (PM) for OGA [74]; personal and
global knowledge constants C1 = 2 and C1 = 2, and minimum and maximum value of
inertia weight w̄min = 0.4 and w̄max = 0.9 for OPSO [77]. To produce fair comparisons, the
number of objective function evaluations is the same for all optimizers, determined by the
number of candidate vectors NP = 25 and the maximum number of iterations Gmax = 10.

4.2. Discussion of the Results

The proposal was tested for the two operating conditions (NOC and DOC) through
thirty independent runs for each of the previously described optimizers. For simplicity,
the prefix ATCB (adaptive tuning for the controller in BLDC motors) refers to the adaptive
tuning strategy based on any other optimizer than CODE. In this way, the alternatives
compared with the proposed CATSCG are ATCB/ODE, ATCB/OGA, and ATCB/OPSO.

Each independent run was evaluated using the integral square error (ISE), a helpful
performance metric to assess the transient controller response since it (more) weights the
large errors [78]. Table 4 outlines the descriptive statistics over the ISE results of all runs
grouped by the operating conditions. This table includes the mean, standard deviation,
minimum, and maximum values of ISE for each adaptive tuning strategy, and the best
results are highlighted in boldface. Based on the above values, the proposed CATSCG is
the best performing alternative for NOC and DOC, and is followed by ATCB/ODE, which
also utilizes DE as the optimizer. On the other hand, ATCB/OGA is not far from these two
controllers, and ATCB/OPSO develops the worst results. It is important to note that all
strategies have a small increase in error under DOC compared to NOC. This highlights the
ability of the online optimization-based strategies to handle perturbations, uncertainties,
noise, and abrupt changes in the reference.

Table 4. Descriptive statistical results.

Cond. Strategy Mean (ISE) STD (ISE) Min (ISE) Max (ISE)

NOC

CATSCG 25.0690 0.5515 24.7177 26.7540
ATCB/ODE 25.7099 0.6303 24.8184 26.5760
ATCB/OGA 25.6657 0.6827 24.7470 26.4691
ATCB/OPSO 26.1632 0.4290 24.8573 26.9761

DOC

CATSCG 28.2791 1.0214 27.3197 31.3868
ATCB/ODE 28.7739 0.9620 27.2317 30.6307
ATCB/OGA 28.8977 0.8481 27.1414 30.0556
ATCB/OPSO 29.5448 0.6452 27.7060 30.9074

The motor output behaviors of the best and worst runs of each controller are observed
in Figures 6 and 7 considering NOC and DOC, respectively, while their corresponding
control actions are depicted in Figures 8 and 9. The inner plots of the speed figures display
the evolution of the error in time.

In the speed graphs of all controller alternatives, there is no visible difference between
the best and worst outputs for both NOC and DOC conditions. In the case of ATCB/OGA
and ATCB/OGA, some error peaks stand out from the inner plots in comparison with the
error signals of CATSCG and ATCB/ODE under DOC. In the case of ATCB/OPSO, the
peak-to-peak error seems more attenuated than in the rest of the alternatives. Still, it has
very high peaks and is always above the reference for both operating conditions.
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CATSCG (Worst) CATSCG (Best) Ref. ATCB/ODE (Worst) ATCB/ODE (Best) Ref.

ATCB/OGA (Worst) ATCB/OGA (Best) Ref. ATCB/OPSO (Worst) ATCB/OPSO (Best) Ref.

Figure 6. Speed output for the best and worst runs of the adaptive controller tuning, considering
NOC.

CATSCG (Worst) CATSCG (Best) Ref. ATCB/ODE (Worst) ATCB/ODE (Best) Ref.

ATCB/OGA (Worst) ATCB/OGA (Best) Ref. ATCB/OPSO (Worst) ATCB/OPSO (Best) Ref.

Figure 7. Speed output for the best and worst runs of the adaptive controller tuning, considering DOC.
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CATSCG (Worst) CATSCG (Best) ATCB/ODE (Worst) ATCB/ODE (Best)

ATCB/OGA (Worst) ATCB/OGA (Best) ATCB/OPSO (Worst) ATCB/OPSO (Best)

Figure 8. Control action for the best and worst runs of the adaptive controller tuning, consider-
ing NOC.

CATSCG (Worst) CATSCG (Best) ATCB/ODE (Worst) ATCB/ODE (Best)

ATCB/OGA (Worst) ATCB/OGA (Best) ATCB/OPSO (Worst) ATCB/OPSO (Best)

Figure 9. Control action for the best and worst runs of the adaptive controller tuning, consider-
ing DOC.

On the other hand, the control action figures reveal that control strategies require much
more energy to compensate for the difficulties of DOC compared to NOC. Concerning the
control action, Figures 10 and 11 give examples of the operation of the coil commutation
used in the brushless motor simulation. These figures show the behaviors of the phase
voltages Vab, Vbc, and Vca for NOC and DOC, respectively. Each figure shows a small time
interval of 0.05 (s) from the 0 (s), 1 (s), and 2 (s) instants.

Returning to the error in the speed regulation task, the remarkable performances of
the controllers based on DE are attributed to the suitable balance between the capacities of
exploration and exploitation. In the case of ODE, the use of the elitist online adaptation only
increases the exploitation ability of DE/rand/1/bin, while exploration may be compromised.
In CODE, these two abilities are better balanced by using the chaotic initialization based on
the Lozi map, which explains the outstanding performance of CATSCG.
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Vab (Best) Vbc (Best) Vca (Best) Vab (Worst) Vbc (Worst) Vca (Worst)

Best case when 0 (s) ≤ t ≤ 0.05 (s) Worst case when 0 (s) ≤ t ≤ 0.05 (s)

Vab (Best) Vbc (Best) Vca (Best) Vab (Worst) Vbc (Worst) Vca (Worst)

Best case when 1 (s) ≤ t ≤ 1.05 (s) Worst case when 1 (s) ≤ t ≤ 1.05 (s)

Vab (Best) Vbc (Best) Vca (Best) Vab (Worst) Vbc (Worst) Vca (Worst)

Best case when 2 (s) ≤ t ≤ 2.05 (s) Worst case when 2 (s) ≤ t ≤ 2.05 (s)

Figure 10. Phase voltages in the motor obtained with the best and worst runs of CATSCG, consider-
ing NOC.

In the case of OGA, the elitism improves the exploitation and is induced by sorting
solutions based on fitness. However, the elitism in OGA is tougher than in ODE and
CODE, as all poor-performing solutions are removed from the population at the end of each
generation, i.e., only the overall fittest ones survive. In contrast, in the DE-based alternatives,
selecting the elite solution is performed pairwise between an original solution and its
offspring vector, which provides a gap to explore other interesting search space regions.
Because of the above, there is a noticeable change in the performance of ATCB/OGA when
it passes from NOC to DOC in Table 4.

On the other side, the opposite happens with OPSO, as the lack of an elitist selec-
tion mechanism favors exploration. Therefore, solutions cannot converge to a suitable
solution using the available budget of objective function evaluations (this is given by
Gmax · NP for each optimization process). The above implies a low control performance
with ATCB/OPSO when considering NOC, which worsens under DOC.

At this point, it is essential to remember that the approximate optimizers used in this
work are stochastic methods. This means that the distribution of their results does not
belong to a particular shape (e.g., the normal one). So, the descriptive statistical information
in Table 4 does not provide enough evidence to draw strong conclusions, although it gives
a preliminary look at the behaviors of all the controllers. Therefore, the results of the
experiments are evaluated in this work through two well-known non-parametric statistical
tests: the pairwise Wilcoxon signed-rank test and the multi-comparative Friedman test [52].
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Vab (Best) Vbc (Best) Vca (Best) Vab (Worst) Vbc (Worst) Vca (Worst)

Best case when 0 (s) ≤ t ≤ 0.05 (s) Worst case when 0 (s) ≤ t ≤ 0.05 (s)

Vab (Best) Vbc (Best) Vca (Best) Vab (Worst) Vbc (Worst) Vca (Worst)

Best case when 1 (s) ≤ t ≤ 1.05 (s) Worst case when 1 (s) ≤ t ≤ 1.05 (s)

Vab (Best) Vbc (Best) Vca (Best) Vab (Worst) Vbc (Worst) Vca (Worst)

Best case when 2 (s) ≤ t ≤ 2.05 (s) Worst case when 2 (s) ≤ t ≤ 2.05 (s)

Figure 11. Phase voltages in the motor obtained with the best and worst runs of CATSCG, consider-
ing DOC.

The pairwise Wilcoxon signed-rank test compares the location of two different sets
of samples. For this, a null hypothesis H0 indicates no significant differences between the
samples of the two sets or they share a similar location. Moreover, an alternative hypothesis
Ha suggests that there are noticeable differences between the samples of the two sets in
three ways: the samples in the first set are to the left of those in the second (left-sided
hypothesis); the samples in the first set are to the right of those in the second (right-sided
hypothesis); or the samples in the first set are in a different location than those in the second
(two-sided hypothesis). Then, the test outputs a p-value with the probability of accepting
the H0 and rejecting the Ha. A statistical significance ρ establishes a threshold of the p-value
for which the Ha can be accepted (typically 5%).

In this study, each sets contains the ISE values of the thirty independent runs of one of
the ATCB alternatives and the CATSCG for particular operating conditions. Moreover, the
two-sided hypothesis is selected as the Ha and the statistical significance is set as ρ = 5%.
The results of all possible Wilcoxon tests are presented in Table 5 and are grouped by the
type of operating conditions. In this table, the columns R+ and R− are the sums of ranks
calculated for the test. In this way, R+ indicates the times that a sample of the first set
outperforms a sample of the second, while R− indicates the contrary. These two columns
are displayed to determine the location of the samples of each set and, therefore, decide the
winner in boldface when p-value ≤ ρ. Table 6 summarizes the results of the Wilcoxon tests,
where it is observed that the alternative in boldface, i.e., CATSCG, is the best choice since
it obtained a greater number of wins, followed by ATCB/ODE and ATCB/OGA, which
performed equally well, and finally by ATCB/OPSO.
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Table 5. Results of the pairwise Wilcoxon signed-rank test over the values of ISE for the adaptive
controller tuning.

Cond. Test R+ R− p-Value

NOC CATSCG vs. ATCB/ODE 390 75 0.0007 × 100

CATSCG vs. ATCB/OGA 359 106 0.0081 × 100

CATSCG vs. ATCB/OPSO 451 14 2.0489× 10−7

ATCB/ODE vs. ATCB/OGA 222 243 0.8393× 100

ATCB/ODE vs. ATCB/OPSO 377 88 0.0021 × 100

ATCB/OGA vs. ATCB/OPSO 375 90 0.0025 × 100

DOC CATSCG vs. ATCB/ODE 330 135 0.0449 × 100

CATSCG vs. ATCB/OGA 342 123 0.0234 × 100

CATSCG vs. ATCB/OPSO 434 31 4.4219 × 10−6

ATCB/ODE vs. ATCB/OGA 239 226 0.9032× 100

ATCB/ODE vs. ATCB/OPSO 400 65 0.0002 × 100

ATCB/OGA vs. ATCB/OPSO 423 42 2.0798 × 10−5

Table 6. Summary of the pairwise Wilcoxon signed-rank test over the values of ISE for the adaptive
controller tuning.

Strategy Wins under NOC Wins under DOC Total Wins

CATSCG 3 3 6
ATCB/ODE 1 1 2
ATCB/OGA 1 1 2
ATCB/OPSO 0 0 0

Pairwise non-parametric statistical tests, such as the Wilcoxon test, are helpful to
compare the samples of two different sets. However, when one wants to compare the
samples of several sets as a group, multi-comparative non-parametric statistical tests are
necessary [52].

The multi-comparative Friedman test compares the location of the samples of two
or more sets. As in the Wilcoxon case, the Friedman test includes a null hypothesis H0 to
indicate no significant differences among the compared sets but adopts a unique alternative
hypothesis Ha that suggests the opposite. The p-value obtained with this test also refers to
the probability of accepting the H0. So, a statistical significance ρ (often 5%) is required to
determine when Ha is valid.

In this work, the multi-comparative Friedman test, with ρ = 5%, was applied to the sets
of ISE samples for the adaptive controller tuning and the particular operating conditions.
The results of this test are displayed in Table 7 and, according to the p-value, there are
significant differences among the behaviors of all controllers for NOC and DOC (p-value
≤ ρ in both cases). The magnitude of those differences is observed in the statistic column,
which includes the chi-squared (χ2) statistic value of the test. In this sense, the differences
in the performance of the controllers are greater in NOC than in DOC. Additionally, Table 7
shows the ranks computed with the Friedman test, indicating a particular order of the
studied alternatives concerning control performance. In this way, the order from best
to worst is the same for both operating conditions: (1) CATSCG, (2) ATCB/ODE, (3)
ATCB/OGA, and (4) ATCB/OPSO.

Based on the multi-comparative Friedman test results, all control choices have signifi-
cantly different performances from each other no matter the operating conditions. Now,
it is possible to perform post hoc Friedman tests to analyze particular pairwise cases and
determine which ISE sets perform better. For this, the H0 and Ha hypotheses are the same
as in the multi-comparative Friedman test, and the statistical significance is also established
as ρ = 5%. Table 8 shows the results of all possible post hoc Friedman tests over the sets
of ISE samples for adaptive controller tuning and NOC and DOC conditions. In addition
to the operating conditions and the information on the test performed, this table includes
the unadjusted p-value and its Holm, Shaffer, and Bergmann corrections [52], which are
highlighted in boldface when they are ≤ ρ (i.e., when Ha is accepted). The above cor-
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rected values help to compensate for errors included in the p-value calculation for post
hoc tests [52]. Moreover, the test statistic, denoted by z, is shown in the same table to
determine the location of each result set. In this way, a negative value of z indicates that the
first alternative overcomes the second, while a positive one indicates the opposite. Table 9
summarizes the results of the above post hoc Friedman tests. According to the number of
wins in this table, the choice in boldface, i.e., CATSCG, has the best performance and is
followed by ATCB/OGA, ATCB/ODE, and ATCB/OPSO.

Table 7. Results of the multi-comparative Friedman test over the values of ISE for the adaptive
controller tuning.

Cond. Strategy Rank Statistic p-Value

NOC

CATSCG 1.667

23.76 2.8034× 10−5ATCB/ODE 2.667
ATCB/OGA 2.4
ATCB/OPSO 3.267

DOC

CATSCG 1.9

21 1.0528× 10−4ATCB/ODE 2.467
ATCB/OGA 2.267
ATCB/OPSO 3.367

Table 8. Results of the post hoc Friedman test over the values of ISE for the adaptive controller tuning.

Cond. Test Unadjusted Holm Shaffer Bergmann z

NOC

CATSCG vs. ATCB/ODE 2.6998 × 10−3 1.3499 × 10−2 8.0994 × 10−3 8.0994 × 10−3 −3
CATSCG vs. ATCB/OGA 2.7807 × 10−2 8.3421× 10−2 8.3421× 10−2 5.5614× 10−2 −2.2
CATSCG vs. ATCB/OPSO 1.5867 × 10−6 9.5199 × 10−6 9.5199 × 10−6 9.5199 × 10−6 −4.8
ATCB/ODE vs. ATCB/OGA 4.2371E-01 4.2371× 10−1 4.2371× 10−1 4.2371× 10−1 0.8
ATCB/ODE vs. ATCB/OPSO 7.1861× 10−2 1.4372× 10−1 1.4372× 10−1 7.1861× 10−2 −1.8
ATCB/OGA vs. ATCB/OPSO 9.3224 × 10−3 3.7290 × 10−2 2.7967 × 10−2 2.7967 × 10−2 −2.6

DOC

CATSCG vs. ATCB/ODE 8.9131× 10−2 2.6739× 10−1 2.6739× 10−1 2.6739× 10−1 −1.7
CATSCG vs. ATCB/OGA 2.7133× 10−1 5.4266× 10−1 5.4266× 10−1 2.7133× 10−1 −1.1
CATSCG vs. ATCB/OPSO 1.0825 × 10−5 6.4951 × 10−5 6.4951 × 10−5 6.4951 × 10−5 −4.4
ATCB/ODE vs. ATCB/OGA 5.4851× 10−1 5.4851× 10−1 5.4851× 10−1 5.4851× 10−1 0.6
ATCB/ODE vs. ATCB/OPSO 6.9339 × 10−3 2.7736 × 10−2 2.0802 × 10−2 1.3868 × 10−2 −2.7
ATCB/OGA vs. ATCB/OPSO 9.6685 × 10−4 4.8342 × 10−3 2.9005 × 10−3 2.9005 × 10−3 −3.3

Table 9. Summary of the post hoc Friedman test over the values of ISE for the adaptive controller tuning.

Strategy Wins under NOC Wins under DOC Total Wins

CATSCG 9 4 13
ATCB/ODE 0 4 4
ATCB/OGA 4 4 8
ATCB/OPSO 0 0 0

The results of the non-parametric statistical tests presented previously confirm that
CATSCG is the best alternative for the speed regulation of the brushless DC motor under
normal operating condition(s) (NOC) and disturbed operating condition(s) (DOC).

In addition to the performance of the CATSCG, it is important to know what are
the behaviors of the solutions that it could obtain through online optimization. In this
regard, Figures 12 and 13 show the brushless motor parameters identified through CODE
for the best and worst performances under NOC and DOC, respectively. These results
are contrasted with the actual values of the motor parameters, which are also included
in the graphs. As can be seen in these figures, the parameters identified by CATSCG are
far from the actual ones. This is because the optimization problem for identification does
not consider the differences between the real and identified parameters, but the difference
between the acquired motor outputs and those obtained through the model simulation. In
this way, there can be different combinations of parameters that, used in the model, can
generalize the real behavior of the brushless motor.
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Identified (Best) Identified (Worst) Ref. Identified (Best) Identified (Worst) Ref.

Identified (Best) Identified (Worst) Ref. Identified (Best) Identified (Worst) Ref.

Identified (Best) Identified (Worst) Ref. Identified (Best) Identified (Worst) Ref.

Identified (Best) Identified (Worst) Ref.

Figure 12. Identified motor parameters for the best and worst runs of CATSCG considering NOC.

An additional point to consider is the execution time of each optimization process.
Currently, the average time for a run of 3 (s) is 2.5 (s) with the CATSCG. The above in-
volved using a computer with Intel(R) Core(TM) i5-10400F CPU @ 2.90 GHz and 64.0 GB
of RAM, and implementing the control strategy in C++ language through Visual Studio
2019 Community Edition. This indicates that the proposal can be tested in a future ex-
perimental stage with a laboratory prototype, but other aspects must be considered, such
as the characteristics of the sensors and data acquisition devices, which also consume
computational time.



Mathematics 2022, 10, 1977 26 of 32
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Figure 13. Identified motor parameters for the best and worst runs of CATSCG considering DOC.

5. Conclusions

This paper proposes the chaotic adaptive tuning strategy for controller gains (CATSCG).
This strategy contains two sequential stages to set the control gains in the dynamic envi-
ronment. The proposal is applied to the tuning of the PI controller of a BLDC motor. The
main feature of the proposed CATSCG is the inclusion of a novel chaotic online differential
evolution (CODE) in the identification and predictive stages.

Among the tested optimizers (ODE, OGA, and OPSO) in the adaptive controller
tuning, the statistical results evidence that the use of CODE suitably balances the search
capacities of exploration and exploitation of the algorithm, such that the proposed CATSCG
maintains, as minimum as possible, the motor velocity error under the effects of distur-
bances, uncertainties, noise, and reference velocity changes. The outstanding performance
of CATSCG is attributed to the use of the chaotic initialization based on the Lozi map.

The obtained results in the dynamic process indicate that the generation of the initial
population through the use of the Lozi chaotic map positively impacts the performance of
the differential evolution algorithm for dynamically setting the gains in the BLDC motor
controller. Every time the tuning process is called, the results indicate that the algorithm
performance does not increase with a random initial population.
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The nonparametric statistical test confirms the reliability of the proposed CATSCG in
the BLDC motor under the effects of disturbances.

Future work will involve the experimental evidence of the proposed CATSCG and
the implementation of CATSCG in systems with more complex dynamics. The primary
consideration of using CATSCG in complex dynamics is that the optimization processes
in the CATSCG must be computed in—at most—the time interval between two tuning
processes (∆t̄ s) for real-time implementations.

The initialization of the CODE is an important factor in the convergence time and the
precision of the CATSCG. Therefore, future work will involve incorporating a lookup table
for the initial parameters according to the operative conditions and analyzing the effects of
uncertainties and disturbances in the closed-loop system.
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Acronyms

DC direct current
BLDC brushless direct current
PMSM permanent magnet synchronous motor
back-EMF back-electromagnetic force
PD proportional derivative
PI proportional integral
PID proportional integral derivative
ATCB adaptive tuning for controller in BLDC motors
FL fuzzy logic
ANFIS adaptive neuro-fuzzy inference system
FOPD fractional order PD
FOPI fractional order PI
FOPID fractional order PID
VcPMSMd vector-controlled PMSM drive
IC intelligent control
RMSE root mean square error
ISE integral square error
IAE integral absolute error
ITSE integral time-weighted square error
ITAE integral time-weighted absolute error
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SSE steady-state error
ISU integral square control signal
SE speed error
MO maximum overshoot
RT rise time
ST settling time
SL semiconductor lifetime
TDPC time domain performance criteria, such as MO, SSE, ST and RT
AxCOsc axis-current oscillations
TR torque ripple
CATSCG chaotic adaptive tuning strategy for controller gains
CODE chaotic online differential evolution
DE differential evolution
ODE online differential evolution
NSGA-II non-dominated sorting generic algorithm ii
GA genetic algorithm
OGA online genetic algorithm
PSO particle swarm optimization
OPSO online particle swarm optimization
ABC artificial bee colony
FA firefly algorithm
BFO bacterial foraging optimization
FPA flower pollination algorithm
CS cuckoo search
GOA grasshopper optimization algorithm
SBX simulated binary crossover
BA bat algorithm
MSA moth swarm algorithm
FAMA fast adaptive memetic algorithm
ALO antlion optimization
RFNN recurrent fuzzy neural network
NOC normal operating conditions
DOC disturbed operating conditions
CT convergence time of the optimizer
DRT disturbance rejection test
CRPT changed reference position test
NCD non-conclusive data

Nomenclature

θ ∈ R angular position
w ∈ R angular velocity
r ∈ R phase resistance
l ∈ R phase inductance
b0 ∈ R viscous friction constant
km ∈ R torque constant
J ∈ R rotor inertia
γ ∈ a, b, c winding of phase
iγ ∈ R phase current γ
eγ ∈ R trapezoidal back-EMF induced in the winding of phase γ
Vγγ ∈ R phase to phase voltage
iγ ∈ R phase current
τL ∈ R load torque
τe ∈ R total torque
R ∈ R phase to phase resistance
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L ∈ R phase to phase inductance
ke ∈ R back-EMF constant
ē(θ) : R→ R trapezoidal shape function
P ∈ R number of pole pairs
x ∈ R5 state vector
x̄ ∈ R5 desired state vector
u control system
û control system in the predictive stage
Θ ∈ R7 motor parameter vector
Θ̄ ∈ R7 parameter vector of the motor model
K ∈ R2 PI control gains
η̄(θ) : R→ R inverter commutation function
t0, t̄0 ∈ R initial time
t ∈ R time
t̄ ∈ R time sequence where the proposed CATSCG is carried out
∆t ∈ R integration time
∆t̄ ∈ R time interval between two tuning process
∆w ∈ R backward/forward time window
nN ∈ R number of times that the time is split
nN̄ ∈ R number of times that the time is split to carry out the proposed

CATSCG

nw ∈ R
number of integration steps required in the backward/forward
time window

JI , Jp objective function for the identification and predictive stages
NP population size
D size of design variable vector
G current generation
Gmax maximum generations
CR DE’s crossover probability
F scale factor for DE
S second scale factor for DE
pc, ηc probability and density probability in SBX crossover operator for

GA
pm, ηm probability and density probability in polynomial mutation for

GA
ω̄, ω̄min, ω̄max Inertia weight, and initial and final inertia weight
C1, C2 PSO’s individual and collective factors
XG population in the generation G of the DE algorithm

χG
i , µG

i , νG
i

the i-th parent, offspring, and mutant vectors
in the generation G, respectively

χG
i,j the j-th parameter of the i-th parent vector in the generation G

χmin/max,j the j-th design variable bound (minimum or maximum)
z state vector of the Lozi chaotic dynamics
ρ statistical significance for non-parametric tests
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