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Abstract: In this paper, the transport phenomena of synaptic electric impulses are considered. The
FitzHugh–Nagumo and FitzHugh–Rinzel models appear mathematically appropriate for evaluating
these scientific issues. Moreover, applications of such models arise in several biophysical phenomena
in different fields such as, for instance, biology, medicine and electronics, where, by means of
nanoscale memristor networks, scientists seek to reproduce the behavior of biological synapses. The
present article deals with the properties of the solutions of the FitzHugh–Rinzel system in an attempt
to achieve, by means of a suitable “energy function”, conditions ensuring the boundedness and
existence of absorbing sets in the phase space. The results obtained depend on several parameters
characterizing the system, and, as an example, a concrete case is considered.
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1. Introduction

As is well known, transport phenomena are observable in a variety of scientific
fields. The one that will be taken into account here is the transport of electric charges,
a phenomenon that finds application in the most diverse areas. In physiology, this event
can be observed in the activities of neurons, which are the fundamental units of the nervous
system. Indeed, thanks to their peculiar physiological and chemical properties, neurons
are able to receive, process, and transmit electrical signals that, associated with ionic
currents, cross the neuron’s membrane. These electrical signals are called nerve impulses.
The difference in electrical charge existing between the inside and outside of the neuronal
cell is called the membrane potential, while the variation in the membrane potential is
called an action potential. Action potentials travel along the axon and are transmitted
unchanged to other neurons in the form of electrical impulses. This is only one of the
multiple ways in which the complex functioning process of the so-called synapse happens.
This process is well known in literature and is covered by an extensive bibliography [1–5].
In particular, a reference point for these studies is the work of Hodgkin and Huxley (HH),
ref. [6], who developed a model of propagation of the electrical signal along a squid axon.
Their scheme consists of a system of four differential equations describing the dynamics of
the membrane potential and the ionic current. However, as the model was extended and
applied to a wide variety of excitable cells, it became apparent that its non-linearity and
high dimensionality did not allow it to perform a smooth analysis. Consequently, simpler
models, such as the FitzHugh–Nagumo system (FHN) and the FitzHugh–Rinzel model
(FHR), were introduced to allow the essential aspects of the dynamics of more complicated
models to be captured.

The bibliography in this regard is extensive, and a very wide analysis exists (see, for
instance, refs. [7–12] and references therein). Among the many aspects, a particularly
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interesting one concerns the equivalence that such mathematical models create between
biological problems and the electrical transmission phenomena involved, such as in the
superconducting processes of Josephson junctions [13–17]. This suggests that the analysis
of such models is reflected in both biological and superconducting transport phenomena.

Moreover, the FHR system is able to describe the so-called bursting oscillations. This
phenomenon occurs in a vast number of different cell types, and it is characterized by
an alternation between short bursts of oscillatory activity and periods of quiescence dur-
ing which the membrane potential changes slowly [3,4]. Moreover, bursting oscillation
phenomena are becoming increasingly important in many scientific fields in light of its
practical applications. As an example, some studies on nanoscale memristor devices are
directed to the restoration of synaptic connections by mimicking the behavior of biological
synapses and suggesting that electronic synapses could be introduced in the future to
directly connect neurons [18,19]. Moreover, electrical charge transport phenomena due
to bursting oscillations have been observed in many nerve and endocrine cells, such as
hippocampal and thalamic neurons, the mammalian midbrain, and the pancreas in β-cells
(see, for example, ref. [20] and references therein). This phenomenon also occurs in the
cardiovascular system through the electrical activity of cardiac cells that excite the heart to
produce contractions of the ventricles and auricles [21].

The previous observations have aroused great interest and have led to the conduction
of, among other things, an analysis of FHR solutions. Indeed, several results regarding
the existence of exact solutions have already been proved (see, for instance, ref. [22–26]
and references therein), while more general analytical results can be found, for example,
in [27–30].

In this article, the FHR system is considered, and particular attention is paid to its
solutions. More specifically, the problem of the existence of attractors and invariant sets
is taken into account. Indeed, in qualitative analysis, this problem is of great importance;
just think of its implications in issues concerning stability and a priori estimates. Hence,
this paper aims to evaluate the conditions of existence for both bounded solutions and
absorbing sets as well as provide examples of explicit cases.

This paper is organized as follows: in Section 2, brief mathematical considerations
on the FHR physical models are highlighted, while in Section 3, conditions guaranteeing
solutions to boundedness are achieved, and an explicit example is determined. Moreover,
some numerical solutions are shown. In Section 4, the existence of absorbing sets in the
phase space is proved by giving an order of size according to values stated to physical
constants characterizing the system. Finally, Section 5 is devoted to a brief comment.

2. Mathematical Considerations

As expected, terms in FHR reflect peculiarities of physical problems and, as a general
system, the following one

∂ u
∂ t

= D
∂2 u
∂ x2 − au + ku2 ( a + 1 − u ) − w + y + I

∂ w
∂ t

= ε(−βw + c + u)

∂ y
∂ t

= δ(−u + h− dy)

(1)

can be taken into consideration.
Model (1) can be considered as a two time-scale slow-fast system with two fast vari-

ables (u, w) and one slow variable y. However, if, for instance, ε = δ, the system can
be considered as a two time-scale with one fast variable u and two slow variables (w, y).
Otherwise, if δ and ε have significant difference, it can also be considered as a three-time-
scale system with the fast variable u, one intermediate variable and a slow variable [31].
Moreover, (D, a, I, ε, β, c, d, h, δ, k) indicate arbitrary real constants, and if a propagation
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phenomenon is considered, they assume specific meanings. As an example, in the bio-
physical activities of neurons, a represents the threshold constant and is an excitability
parameter [32]. Cases with function a(x) or a depending on time have been examined
in [33,34].

For what concerns the coefficient D > 0, it gives a diffusion contribution, and in
synaptic studies, it depends on the axial current in the axon. Indeed, it derives from the HH
theory where, if d represents the axon diameter and ri is the resistivity, the spatial variation
in the potential V gives the term (d/4ri)Vxx, from which the term D uxx is given [5].

The parameter ε specifies the ratio between the time constants of the activator and
the inhibitor [32]. Moreover, I measures the amplitude of the external stimulus current
and it is modulated by variable y on a slower time scale [1,35], while c and β can be related
to the number of channels of the cell membrane opened to sodium and potassium ions,
respectively [36]. Moreover, if βε and δd are positive constants, they can be considered as
viscosity coefficients [30].

With respect to the system (1), in some cases, the constant k has been considered to
find explicit solutions (see, for instance, [8]), and when k = 1, denoting by (u0, w0, y0) the
initial conditions, and with

F = u2(a + 1− u) + I − w0e−εβt + y0e−δdt − c
β
(1− e−εβt) +

h
d
(1− e−δdt) (2)

being the non linear source function, the solution can be expressed by means of the integral
equation given by: [26]

u(x, t) =
∫
<

H(x− ξ, t) u0(ξ) dξ

(3)

+
∫ t

0
dτ
∫
<

H(x− ξ, t− τ) F [ ξ, τ, u(ξ, τ ) ] dξ,

where, denoting by J1(z) the Bessel function of the first kind and order 1, the fundamental
solution H(x, t) can be expressed by

H = H1 − H2, (4)

with

H1(x, t) =
e−

x2
4 D t

2
√

πDt
e− a t − 1

2

∫ t

0

e−
x2

4 D y −a y

√
t− y

√
ε e−βε ( t− y )
√

π D
J1( 2

√
ε y (t− y) ) }dy,

and

H2 =
∫ t

0
H1(x, y) e−δd(t−y)

√
δy

t− y
J1( 2

√
δ y (t− y) dy. (5)

For model (1), other properties have been proven, and in particular, by assuming
βε = δd, a class of explicit solutions has been obtained in [23].

In this paper, our attention is devoted to the following FHR model:

d u
d t

= −au + u2 ( a + 1 − 1
k

u ) − w + y + I

d w
d t

= ε(−βw + c + u)

d y
d t

= δ(−u + h− dy)

(6)

where all parameters are assumed to be real constants, and if bursting phenomena are
to be studied, the physical variables (u, w, y) can be associated, respectively, to the trans-



Mathematics 2022, 10, 2041 4 of 11

membrane potential, the recovery variable and the slow-moving current in the dendrite.
Specifically, (6) is characterized by two fast variables (u, w), that show a relaxation oscillator
in the phase plane where ε is a small parameter, and by the slow variable y, whose pace is
determined by the small parameter δ. In addition, as usual, I represents the amplitude
of the external stimulus current. A decrease in the value of the constant c causes longer
intervals between two bursts, while an increase causes a shortening of the intervals between
bursts and a change from periodic bursting to tonic spiking.

System (6) for a = −1 and k = 3 turns in

d u
d t

= u− u3/3 + Iext − w + y

d w
d t

= ε(−βw + c + u)

d y
d t

= δ(−u + h− dy)

(7)

which is often analysed in literature.

3. Conditions for Bounded Solutions

Several methods have been developed to study the properties of solutions. One that
seems to be quite successful is the method that takes into account the so-called “energy
function” as, for example, shown in [30]. Accordingly, the following theorem can be proved:

Theorem 1. Let us consider a FHR system (6) and let us assume k > 0. Denoting by
f (β, ε, a) = β ε − |ε− 1|

2
− (1 + a)2 k

2

g(δ, d, a) = δ d − |1− δ|
2

− (1 + a)2 k
2

,

(8)

if the system of constants is such that the following conditions:
f (β, ε, a) > 0

g(δ, d, a) > 0,
(9)

hold, then solutions of (6) are bounded.

Proof. Let us introduce the following energy function:

E =
1
2
(u2 + w2 + y2). (10)

Denoting by

η = βε; γ = δd, (11)

system (6) becomes

d u
d t

= −au + u2(a + 1)− 1
k

u3 − w + y + I

d w
d t

= −ηw + ε c + ε u

d y
d t

= −δ u + δ h− γ y

(12)
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Consequently, one has:

dE
dt

= u
[
− ua− u(η + γ) + u(η + γ) + u2(a + 1)− 1

k
u3 − w + y + I

]
+

(13)

+w
(
− ηw + ε c + ε u

)
+ y
(
− δ u + δ h− γ y

)
or rather

dE
dt

= −u2(η + γ) + u2(−a + η + γ) + u3(a + 1)− u4

k
(14)

+u(−w + y + I) + w(−ηw + ε c + ε u) + y (−δ u + δ h− γ y).

Considering that it results in

u2 (−a + η + γ) ≤ (−a + η + γ)2 k
2
+

u4

2 k
(15)

u3(a + 1) ≤ u4

2 k
+ u2(a + 1)2 k

2
,

from (14), one deduces:

dE
dt
≤ − u2

[
η + γ− (a + 1)2

2
k
]
− ηw2 − γ y2 + (ε− 1)w u + (1− δ) y u

(16)

+uI + wε c + +δ hy +
1
2
(−a + η + γ)2k.

Now, introducing an arbitrary constant ε1 ≥ 0, let

A = (a + 1)2 k + 2ε1. (17)

Since it results in

(ε− 1)wu ≤ |ε− 1|
2

(w2 + u2); δhy ≤ h2δ2

2A
+

Ay2

2

Iu ≤ I2

2A
+

Au2

2
; wε c ≤ ε2c2

2A
+

Aw2

2
;

(1− δ)uy ≤ |1− δ|
2

(u2 + y2),

(18)

from (16), one obtains:

dE
dt
≤ −u2

[
η + γ− (a + 1)2

2
k− A

2
− |ε− 1|

2
− |1− δ|

2

]
(19)

−w2
(

η − A
2
− |ε− 1|

2

)
− y2

(
γ− |1− δ|

2
− A

2

)

+
1

2A
(

I2 + h2δ2 + ε2c2)+ 1
2
(−a + η + γ)2k.
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Therefore, for (17), it results in

dE
dt
≤ −u2

[
η + γ− (a + 1)2 k− ε1 −

|ε− 1|
2
− |1− δ|

2

]
(20)

−w2
(

η − (a + 1)2 k
2

− ε1 −
|ε− 1|

2

)
− y2

(
γ− |1− δ|

2
− (a + 1)2 k

2
− ε1

)

+
I2 + h2δ2 + ε2c2

4ε1 + 2 k (a + 1)2 +
(−a + η + γ)2 k

2
.

According to hypotheses (8) and (9), it is possible to fix ε1 ≥ 0 such that :
f (β, ε, a) = β ε − |ε− 1|

2
− (1 + a)2 k

2
> ε1

g(δ, d, a) = δ d − |1− δ|
2

− (1 + a)2 k
2

> ε1.

(21)

As a consequence, when conditions (21) hold, it also results in

η + γ− k (a + 1)2 − ε1 −
|ε− 1|

2
− |1− δ|

2
> ε1. (22)

Thus, denoting by
B = η − |ε− 1|

2
− (a + 1)2 k

2
− ε1 > 0

B1 = γ− |1− δ|
2
− (a + 1)2 k

2
− ε1 > 0

(23)

and 
C = 2 min {B, B1}

C1 =
I2 + h2δ2 + ε2c2

4ε1 + 2 k (a + 1)2 +
(−a + η + γ)2 k

2

(24)

From (20), one gets:

dE
dt
≤ −CE + C1. (25)

Consequently, it follows that:

E ≤ C1

C
(1− e−Ct) + E0e−Ct, (26)

from which, ∀t ≥ 0, one obtains

E ≤ E0 +
C1

C
. (27)

Remark 1. Naturally, a constant ε1 for which the (21) are worth has to be determined according
to the values taken by all variables of the (8). By proving a possible application, it will show how
variable a and ε1 are related to each other.
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There are many examples in literature of numerical values assigned to the FHR system
(see, for instance, ref. [30]). Here, just for instance, the following set is considered:

I = 0.3125 ε = 0.8 c = 0.2 h = −0.775

β = 0.126 δ = 0.5 d = 1; k = 3.
(28)

To prove the existence of constant ε1 ≥ 0 such that:
η − |ε− 1|

2
− (a + 1)2 k

2
> ε1

γ− |1− δ|
2
− (a + 1)2 k

2
> ε1,

(29)

let us require, firstly, that conditions
η − |ε− 1|

2
− (a + 1)2 k

2
> 0

γ− |1− δ|
2
− (a + 1)2 k

2
> 0

(30)

are satisfied. For this, since the minimum value between (B, B1) is independent from
variables a, ε1 and since: 

η = β ε = 0.1008; γ = δ d = 0.5

|1− ε|
2

= 0.1
|1− δ|

2
= 0.25,

(31)

it is deduced that

C = 2
[

0.0008− 3 (a + 1)2

2
− ε1

]
. (32)

Consequently, it will be sufficient to choose variable a such that −1 −
√

3/75 <

a <
√

3/75− 1, (i.e, in an approximate form: −1.023094011 < a < −0.9769059892) to
satisfy (30).

Hence, if, for instance, a = −0.98, in order to prove inequalities in (29), a constant ε1
can be chosen in the interval [0, 0.0002].

This shows that a concrete case with bounded solutions exists. Naturally, the range
of variation for variable a ensures that, even just by the system of parameters set in (28),
several other explicit cases can be obtained.

Remark 2. Let us consider the FHR model expressed in (7). In the hypothesis that εβ = δd and
ε = −δ, it is possible to prove that (7) admits the following first integral:

du
dt

+
1
3

u3 − u = C1 + C2e−βε t, (33)

where C1 is a constant depending on (I, c, h, β) and C2 6= 0 is an arbitrary constant.
By means of (33), the solution has been obtained through the Matlab solver ode15s, and in

Figure 1 graphs show how the solution u(t) remains bounded.
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Figure 1. On the left: the bounded solution u(t) when εβ = 3.6, u0 = 1, C1 = −0.2, C2 = 0.2. On the
right: the bounded functions u(t) as −0.6 ≤ C1 ≤ 0.2.

4. Existence of Absorbing Sets

Let us consider bounded solutions. As previously observed, the existence of bounded
solutions also depends on the choice of the variable a. Consequently, once it is determined
to be an absorbing set, it will be possible to give it an order of magnitude in agreement
with the values of the parameters of the system, and according to the choice of values of a
and ε1.

In searching for an absorbing set, it is necessary to make sure that it is both invariant
and an attractor. For this, and also taking into account [30], the following theorem is proved:

Theorem 2. In the hypotheses of theorem (1), indicating by K0 a positive constant, let us assume
E0 < K0. Besides, denoting by DR the sphere of the phase space of center the origin and radius less
than R, let us assume

R =
√

2

√
C1

C
+ K0 . (34)

Then, DR proves to be an absorbing set for the system (6).

Proof. Theypothesis on E0 and relation (27) assure that:

E ≤ E0 +
C1

C
< K0 +

C1

C
, (35)

and consequently, DR is invariant.
Moreover, denoting by B a bounded region of the phase space, let us define

Ẽ0 = max
B

E0,

and let us consider bounded solutions of system (6) whose initial data (u0, w0, y0) belong
to Ẽ0.

Because of (26), it results that

E ≤ e−Ct
∣∣∣∣Ẽ0 −

C1

C

∣∣∣∣+ C1

C
∀t ≥ 0 (36)

and hence, there exists a positive T such that ∀t > T one has

E(t) ≤ C1

C
. (37)

On the other hand, formula (36) leads us to consider the positive instant τ given by
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r2 =
C1

C
+

∣∣∣∣Ẽ0 −
C1

C

∣∣∣∣e−Cτ (38)

which means:

τ =
1
C

log

∣∣Ẽ0 − C1
C

∣∣∣∣r2 − C1
C

∣∣ , (39)

and it will be sufficient to assume r2 = R2/2 to get, for all t > τ :

E ≤ e−Cτ

∣∣∣∣Ẽ0 −
C1

C

∣∣∣∣+ C1

C
=

R2

2
. (40)

Remark 3. Since the size of the absorbing set DR also depends on the radius R =

√
2 C1

C
, it seems

interesting to give an order of amplitude of R as a function of both constants (I, ε, β, c, d, h, δ, k)
and of the values of a and ε1 that can be chosen accordingly.

For this, as an example, let us assume the set of values (28).
Since −1.023094010768 < a < −0.9769059892324, choosing, for instance,

a = − 0.9769059892 and using 10 digits of precision, from (32), we deduce that:

C = 2 (0.00719999999998− ε1 ) (41)

and assuming, for instant, ε1 = 0.007199999997, one has:

C = 1.999999125× 10−12 ∼ 2× 10−12 (42)

then for what concerns C1, for a = −1.0230940107 and ε1 = 0, we obtain that

C1 ≈ 85.7089051. (43)

Consequently: √
2 C1

C
≈ 9.2579× 106. (44)

5. Results and Implications

The paper deals with an analysis of the ternary nonlinear dynamical FitzHugh–Rinzel
system. Properties of solutions are investigated and, by means of a suitable “energy
function”, conditions that ensure the boundedness and existence of absorbing sets in
the energy phase space are given. Moreover, according to the parameters characterizing
the system, an example has been considered showing that, even with only one choice
of parameters, the variable a allows us to obtain several classes of bounded solutions.
Moreover, by choosing the value of parameters in accordance with the assumptions of
Theorem 1, by means of a first integral of the FHR system (7), some graphs of numerical
solutions have been obtained, showing bounded solutions as predicted by theory.

The present results will be quite useful when the analysis is turned to a different
physical case. Indeed, the constant a introduced in the FHR model (6) generalizes the FHR
system (7), and the results obtained do not directly involve the limits on a, thus suggesting
the possibility of generalizing the results.

Moreover, the scientific methodology employed can be applied in multiple scientific
fields given the equivalence that such a mathematical model creates between biological
problems and electrical transmission phenomena, such as in the superconducting processes
of Josephson junctions. In this type of junction, a third-order partial differential equation,
similar to the one introduced in [5] and extensively discussed in [13–17], describes the
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motion of squids in superconductivity. This suggests that the analysis of such models
is reflected in a vast number of realistic mathematical models. Finally, it is important
to underline that the existence of bounded solutions and absorbing sets paves the way
for further research both into stability problems and in the Hopf bifurcations that are so
essential for the study of bursting oscillations.
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