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Abstract: Metaheuristics are proven solutions for complex optimization problems. Recently, bio-
inspired metaheuristics have shown their capabilities for solving complex engineering problems. The
Whale Optimization Algorithm is a popular metaheuristic, which is based on the hunting behavior
of whale. For some problems, this algorithm suffers from local minima entrapment. To make WOA
compatible with a number of challenging problems, two major modifications are proposed in this
paper: the first one is opposition-based learning in the initialization phase, while the second is
inculcation of Cauchy mutation operator in the position updating phase. The proposed variant is
named the Augmented Whale Optimization Algorithm (AWOA) and tested over two benchmark suits,
i.e., classical benchmark functions and the latest CEC-2017 benchmark functions for 10 dimension and
30 dimension problems. Various analyses, including convergence property analysis, boxplot analysis
and Wilcoxon rank sum test analysis, show that the proposed variant possesses better exploration
and exploitation capabilities. Along with this, the application of AWOA has been reported for three
real-world problems of various disciplines. The results revealed that the proposed variant exhibits
better optimization performance.

Keywords: metaheuristic algorithms; Whale Optimization Algorithm

MSC: 68T01; 68T05; 68T07; 68T09; 68T20; 68T30

1. Introduction and Literature Review

Optimization is a process to fetch the best alternative solution from the given set of
alternatives. Optimization processes are evident everywhere around of us. For example,
to run a generating company, the operator has to take care of operating cost and to check
and deal with various type of markets to execute financial transactions.The operator has to
optimize the fuel purchase cost, sell the power at maximum rate and purchase the carbon
credits at minimum cost to earn profit. Sometimes, optimization processes involve various
stochastic variables to model the uncertainty in the process. Such processes are quite
difficult to handle and often pose a severe challenge to the optimizer or solution provider
algorithms. Evolution of modern optimizers is the outcome of these complex combinatorial
multimodal nonlinear optimization problems. Unlike classical optimizers, where the search
starts with the initial guess, these modern optimizers are based on the stochastic variables,
and hence, they are less vulnerable towards local minima entrapment. These problems
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become the main source of emerging of metaheuristic algorithms, which are capable of
finding a near-optimal solution in less computation time. The popularity of metaheuristic
algorithms [1] has increased exponentially in the last two decades due to their simplicity,
derivation-free mechanism, flexibility and better results providing capacity in comparison
with conventional methods. The main inspiration of these algorithms is nature, and hence,
aliased as nature-inspired algorithms [2].

Social mimicry of nature and living processes, behavior analysis of animals and
cognitive viability are some of the attributes of nature-inspired algorithms. Darwin’s
theory of evolution has inspired some nature-inspired algorithms, based on the property of
“inheritance of good traits” and “competition, i.e., survival of the fittest”. These algorithms
are Genetic Algorithm [3], Differential Evolution and Evolutionary Strategies [4].

The other popular philosophy is to mimic the behavior of animals which search
for food. In these approaches, food or prey is used as a metaphor for global minima in
mathematical terms. Exploration, exploitation and convergence towards the global minima
is mapped with animal behavior. Most of the nature-inspired algorithms also known as
population-based algorithms can further be classified as:

• Bio-inspired Swarm Intelligence (SI)-based algorithms: This category includes all
algorithms inspired by any behavior of swarms or herds of animals or birds. Since
most birds and animals live in a flock or group, there many algorithms that fall under
this category, such as Ant Colony Optimization (ACO) [5], Artificial Bee Colony [6],
Bat Algorithm [7], Cuckoo Search Algorithm [8], Krill herd Algorithm [9], Firefly
Algorithm [10], Grey Wolf Optimizer [11], Bacterial Foraging Algorithm [12], Social
Spider Algorithm [13], Cat Swarm Optimization [14], Moth Flame Optimization [15],
Ant Lion Optimizer [16], Crow Search Algorithm [17] and Grasshopper Optimization
Algorithm [18]. A social interaction-based algorithm named gaining and sharing
knowledge was proposed in reference [19]. References pertaining to the applications
of bioinspired algorithms affirm the suitability of these algorithms on real-world
problems [20–23]. A timeline of some famous bio-inspired algorithms is presented in
Figure 1.

• Physics- or chemistry-based algorithms: Algorithms developed by mimicking any
physical or chemical law fall under this category. Some of them are Big bang-big
crunch Optimization [24], Black Hole [25], Gravitational search Algorithm [26], Central
Force [27] and Charged system search [28].

Other than these population-based algorithms, a few different algorithms have also
been proposed to solve specific mathematical problems. In [29,30], the authors proposed
the concept of construction, solution and merging. Another Greedy randomised adaptive
search-based algorithm using the improved version of integer linear programming was
proposed in [31].

The No Free Lunch Theorem proposed by Wolpert et al. [32] states that there is no one
metaheuristic algorithm which can solve all optimization problems. From this theorem, it
can be concluded that there is no single metaheuristic that can provide the best solution
for all problems. It is possible that one algorithm may be very effective for solving certain
problems but ineffective in solving other problems. Due to the popularity of nature-
inspired algorithms in providing reasonable solutions to complex real-life problems, many
new nature-inspired optimization techniques are being proposed in the literature. It is
interesting to note that all bio-inspired algorithms are subsets of nature-inspired algorithms.
Among all of these algorithms, the popularity of bio-inspired algorithms has increased
exponentially in recent years. Despite of this popularity, these algorithms have also been
critically reviewed [33].
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Figure 1. Development timeline of some of the leading bio-inspired algorithms.
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In 2016, Mirjalili et al. [34] proposed a new nature-inspired algorithm called the
Whale optimization algorithm (WOA), inspired by the bubble-net hunting behavior of
humpback whales. The humpback whale belongs to the rorqual family of whales, known
for their huge size. An adult can be 12–16 m long and weigh 25–30 metric tons. They
have a distinctive body shape and are known for their breaching behavior in water with
astonishing gymnastic skills and for haunting songs sung by males during their migration
period. Humpback whales eat small fish herds and krills. For hunting their prey, they
follow a unique strategy of encircling the prey spirally, while gradually shrinking the size
of the circles of this spiral. With incorporation of this theory, the performance of WOA is
superior to many other nature-inspired algorithms. Recently, in [35], WOA was used to
solve the optimization problem of the truss structure. WOA has also been used to solve the
well-known economic dispatch problem in [36]. The problem of unit commitment from
electric power generation was solved through WOA in [37]. In [38], the author applied
WOA to the long-term optimal operation of a single reservoir and cascade reservoirs. The
following are the main reasons to select WOA:

• There are few parameters to control, so it is easy to implement and very flexible.
• This algorithm has a specific characteristic to transit between exploration and exploita-

tion phasesm as both of these include one parameter only.

Sometimes, it also suffers from a slow convergence speed and local minima entrapment
due to the random size of the population. To overcome these shortcomings, in this paper,
we propose two major modifications to the existing WOA:

• The first modification is the inculcation of the opposition-based learning (OBL) con-
cept in the initialization phase of the search process, or in other words, the exploratory
stage. The OBL is a proven tool for enhancing the exploration capabilities of meta-
heuristic algorithms.

• The second modification is of the position updating phase, by updating the position
vector with the help of Cauchy numbers.

The remaining part of this paper is organized as follows: Section 2 describes the crisp
mathematical details of WOA. Section 3 is a proposal of the proposed variant; an analogy
based on modified position update is also established with the proposed mathematical
framework. Section 4 includes the details of benchmark functions. In Sections 5 and 6 show
the results of the benchmark functions and some real-life problems that occur with different
statistical analyses. Last but not the least, the paper concludes in Section 7 with a decisive
evaluation of the results, and some future directions are indicated.

2. Mathematical Framework of WOA

The mathematical model of WOA can be presented in three steps: prey encircling,
exploitation phase through bubble-net and exploration phase, i.e., prey search.

1. Prey encircling: Humpback whales choose their target prey through the capacity to
finding the location of prey. The best search agent is followed by other search agents
to update their positions, which can be given mathematically as:

~P =
∣∣∣~Q ~Y∗(s)− ~Y(s)

∣∣∣ (1)

~Y(s + 1) = ~Y∗(s)− ~R · ~P (2)

where Y∗ denotes the position vector of the best obtained solution, ~Y is the position
vector, s is the current iteration, | | denotes the absolute value and · denotes the
element to element multiplication.
The coefficients ~R and ~Q can be calculated as follows:

~R = 2~p ·~r− ~p (3)

~Q = 2~r (4)
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where ~p linearly decreases with every iteration from 2 to 0 and~r ∈ [0, 1]. By adjusting
the values of vectors ~P and ~R, the current position of search agents shifted towards
the best position. This position updating process in the neighborhood direction also
helps in encircling the prey n dimensionally.

2. Exploitation phase through bubble-net: The value of ~p decreases in the interval [−p, p].
Due to changes in ~p, ~P also fluctuates and represents the shrinking behavior of search
agents. By choosing random values of ~P in the interval [−1, 1], the humpback whale
updates its position. In this process, the whale swims towards the prey spirally and the
circles of spirals slowly shrink in size. This shrinking of the spirals in a helix-shaped
movement can be mathematically modeled as:

~Y(s + 1) = ~Q
′ · eal · cos(2πl) + ~Y∗(s) (5)

~Q
′
=
∣∣∣~Y∗(s)− ~Y(s)

∣∣∣ (6)

where ~a is the constant factor responsible for the shape of spirals and l randomly
belongs to interval [−1, 1].
In the position updating phase, whales can choose any model, i.e., the shrinking
mechanism or the spiral mechanism. The probability of this simultaneous behavior is
assumed to be 50 during the optimization process. The combined equation of both of
these behavior can be represented as:

~Y(s + 1) =

{
~Y∗(s)− ~P · ~Q p < 0.5

~Q
′
eal cos(2πl) + Ys p > 0.5

(7)

3. Exploration Phase
In this phase, ~P is chosen opposite to the exploitation phase, i.e., the value of ~P
must be > 1 or < −1, so that the humpback whales can move away from each
other, which increases the exploration rate. This phenomenon can be represented
mathematically as:

~Q =
∣∣∣~R · ~Yrand − ~Y

∣∣∣ (8)

~Y(s + 1) = ~Yrand − ~P · ~Q (9)

where ~Yrand represents the position of a random whale.
After achieving the termination criteria, the optimization process finishes. The main
features of WOA are the presence of the dual theory of circular shrinking and spiral
path, which increase the exploitation process of finding the best position around the
prey. Afterwards, the exploration phase provides a larger area through the random
selection of values of

∣∣∣~A∣∣∣.
3. Motivation and Development of the Augmented Whale Optimization Algorithm

It is observed in the previous reported applications that inserting mutation in the
population-based schemes can enhance the performance of the optimization. Some note-
worthy applications are reported in [39].

3.1. Augmented Whale Optimization Algorithm (AWOA)

By taking the motivation of the modified position update, we present the development
of AWOA and the mathematical steps we have incorporated. To simulate the behavior
of whale through modified position update and their connection to the position update
mechanism for mating, we require two mechanisms:

1. The mechanism that puts the whales in diverse directions.
2. The mechanism that updates the positions of the whales by using a mathematical

signal.
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3.1.1. The Opposition-Based Position Update Method

For simulating the first mechanism, we choose the opposition number generation
theory that was proposed by H. R Tizoosh. Opposition-based learning is the concept
that puts the search agents in diverse (rather opposite directions) so that the search for
optima can also be initiated from opposite directions. This theory has been applied in many
metaheuristic algorithms, and now, it is a proven fact that the search capabilities of the
optimizer can substantially be enhanced by the application of this opposition number gen-
eration technique. Some recent papers have provided evidence of this [40,41]. With these
approaches, an impact of opposition-based learning can be easily seen. Furthermore, a rich
review on the techniques related to opposition, application area and performance-wise
comparison can be read in [42,43].

The following points can be taken as some positive arguments in favor of the applica-
tion of the oppositional number generation theory (ONGT) concept:

1. While solving multimodal optimization problems, it is required that an optimizer
should start a process from the point which is nearer to the global optima; in some
cases, the loose position update mechanism becomes a potential cause for local minima
entrapment. The ONGT becomes a helping hand in such situations, as it places search
agents in diverse directions, and hence, the probability of local minima entrapment is
substantially decreased.

2. In real applications, where the shape and nature of objective functions are unknown,
the ONGT can be a beneficial tool because if the function is unimodal in nature, as
per the research, the exploration capabilities of any optimizers can be substantially
enhanced by the application of ONGT. On the other hand, if the function is multimodal
in nature, then ONGT will help search agents to acquire opposite positions and help
the optimizer’s mechanism to converge to global optima.

For the reader’s benefit, we are incorporating some definitions of opposite points in
search space for a 2D and multidimensional space.

Definition 1. Let x ∈ [a, b] be a real number, where the opposite number of x is defined by:

−
x = a + b− x (10)

The same holds for Q dimensional space.

Definition 2. Let A = (x1, x2, . . . , xQ) be a point in Q dimensional space, where x1, x2, . . . , xQ ∈ R

and xi ∈ [a, b], i=1, 2, . . . , Q ; the opposite points matrix can be given by
−
A = [

−
x1 ,

−
x2 ,

−
x3 . . . ,

−
xQ ].

Hence:
−
xi = [ai + bi − xi] (11)

where ai and bi are the lower limit and upper limit, respectively. Furthermore, Figure 2 illustrates
the search process of ONGT, where A1 and B1 are the search boundaries, and it shrinks as the
iterative process progresses.
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A1                      B1 
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Figure 2. Solving the one-dimensional problem by recursive halving the search interval.

3.1.2. Position Updating Mechanism Based on the Cauchy Mutation Operator

For simulating the second mechanism, we require a signal that is a close replica of a
whale song. In the literature, a significant amount of work has been done on the application
of the Cauchy mutation operator due to the following reasons:

1. Since the expectation of the Cauchy distribution is not defined, the variance of this
distribution is infinite; due to this fact, the Cauchy operators sometimes generate a
very long jump as compared to normally distributed random numbers [44,45]. This
phenomenon can be observed in Figure 3.

2. It is also shown in [44] that Cauchy distribution generates an offspring far from its
parents; hence, the avoidance of local minima can be achieved.

In the proposed AWOA, the position update mechanism is derived from the Cauchy
distribution operator. The Cauchy density function of the distribution is given by:

ft(x) =
1
π

t
t2 + x2 −∞ < x < ∞ (12)

where t is the scaling parameter and the corresponding distribution function can be given as:

Ft(x) =
1
2
+

1
π

arctan(
x
t
) (13)

First, a random number y ∈ (0, 1) is generated, after which a random number α is
generated by using following equation:

α = x0 + t tan(π(y− 0.5)) (14)
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Figure 3. Whale position update inspired from Cauchy Distribution.

We assume that α is a whale position update generated by the search agents and on
the basis of this signal, the position of the whale is updated. Furthermore, we define a
position-based weight matrix of jth position vector of ith whale, which is given as:

W(j) =

(
NP
∑

i=1
xi,j

)
NP

(15)

where W(j) is a weight vector and NP is the population size of whale. Furthermore, the
position update equation can be modified as:

x′(j) = x(j) + W(j) ∗ α (16)

Summarizing all the points discussed in this section, we propose two mechanisms for
the improvement of the performance of WOA. The first one is the opposition-based learning
concept that places whales in diverse directions to explore the search space effectively, and
based on the whale behaviour(modified position update) is created by them, the position
update mechanism is proposed. To simulate whale song, we employ Cauchy numbers.
Hence, both of these mechanisms can be beneficial for enhancing the exploration and
exploitation capabilities of WOA. In the next section, we will evaluate the performance of
the proposed variant on some conventional and CEC-17 benchmark functions.

4. Benchmark Test Functions

Benchmark functions are a set of functions with different known characteristics (sep-
arability, modality and dimensionality) and often used to evaluate the performance of
optimization algorithms. In the present paper, we measure the performance of our pro-
posed variant AWOA through two benchmark suites.

• Benchmark Suite 1: In this suite, 23 conventional benchmark functions are considered,
out of which 7 are unimodal and rest are multimodal and fixed dimension functions.
The details of benchmark functions, such as mathematical definition, minima, dimen-
sions and range are incorporated in Table 1. For further details, one can refer to [46–48].
The shapes of the used benchmark functions are given in Figure 4.

• Benchmark Suite 2: For further benchmarking our proposed variant, we also choose a
set of 29 functions of diverse nature from CEC 2017. Table 2 showcases the minor de-
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tails of these functions. For other details, such as optima and mathematical definitions,
we can follow [49].

Table 1. Details of Benchmark Functions Suite 1.

Function Dim Range Minima

Unimodal Benchmark Function

G1(x) =
n
∑

i=1
x2

i (BF1) 30 [−100, 100] 0

G2(x) =
n
∑

i=1
|xi|+

n
∏
i=1
|xi| (BF2) 30 [−10, 10] 0

G3(x) =
n
∑

i=1

(
i

∑
j−1

xj

)2

(BF3) 30 [−100, 100] 0

G4(x) = maxi{|xi| 1 ≤ i ≤ n (BF4) 30 [−100, 100] 0

G5(x) =
n−1
∑

i=1
[100(xi+1 − x2

i )
2
+ (xi − 1)2] (BF5) 30 [−30, 30] 0

G6(x) =
n−1
∑

i=1
([xi + 0.5])2 (BF6) 30 [−100, 100] 0

G7(x) =
n−1
∑

i=1
ix4

i + random[0, 1] (BF7) 30 [−1.28, 1.28] 0

Multimodal Benchmark Function

G8(x) =
n
∑

i=1
−xi sin

(√
|zi|
)

(BF8) 30 [−500, 500] −418.9829 × 5

G9(x) =
n
∑

i=1

[
xi

2 − 10 cos(2πxi) + 10
]

(BF9) 30 [−5.12, 5.12] 0

G10(x) = −20 exp

(
−0.2

√
1
n

n
∑

i=1
xi

2

)
− exp

(
1
n

n
∑

i=1
cos(2πxi)

)
+ 20 + e (BF10) 30 [−32, 32] 0

G11(x) = 1
4000

n
∑

i=1
xi

2 −
n
∏
i=1

cos
(

xi√
i

)
+ 1 (BF11) 30 [−600, 600] 0

G12(x) = π
n

{
10 sin(πy1) +

n−1
∑

i=1
(yi − 1)2[1 + 10sin2(πyi+1)] + (yn − 1)2

}
+

n
∑

i=1
u(xi, 10, 100, 4) (BF12)

30 [−50, 50] 0
yi = 1 + xi+1

4

u(xi, a, k, m) =

 k(xi − a)m xi > a
0 −a < xi < a

k(−xi − a)m xi < −a

G13(x) = 0.1{sin2(3πx1) +
n
∑

i=1
(xi − 1)2[1 + sin2(3πxi + 1)] + (xn − 1)2[1 + sin2(2πxn)]}+

n
∑

i=1
u(xi, 5, 100, 4) (BF13) 30 [−50, 50] 0

Fixed-Dimension Multimodal Benchmark Function

G14(x) =

 1
500 +

25
∑

j=1

1

j+
2
∑

i=1
(xi−aij)

6


−1

(BF14) 2 [−65, 65] 1

G15(x) =
11
∑

j=1

[
ai −

x1(b2
i +bix2)

b2
i +bix3+x4

]2

(BF15) 4 [−5, 5] 0.00030

G16(x) = 4x2
1 − 2.1x4

1 +
1
3 x6

1 + x1x2 − 4x2
2 + 4x4

2 (BF16) 2 [−5, 5] −1.0316

G17(x) =
(

x2 − 5.1
4π2 x2

1 +
5
π x1 − 6

)2
+ 10

(
1− 1

8π

)
cos x1 + 10 (BF17) 2 [−5, 5] 0.398

G18(x) = A(z)× B(x)
A(x) = 1 + (x1 + x2 + 1)2(19− 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2)

B(x) = 30 + (2x1 − 3x2)
2 × (18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2) (BF18) 2 [−2, 2] 3

G19(x) = −
4
∑

i=1
ci exp

(
−

3
∑

j=1
aij(xj − pij)

2

)
(BF19) 3 [1, 3] −3.86

G20(x) = −
4
∑

i=1
ci exp

(
−

6
∑

j=1
aij(xj − pij)

2

)
(BF20) 6 [0, 1] −3.32

G21(x) = −
5
∑

i=1

[
(X− ai)(X− ai)

T + ci

]−1
(BF21) 4 [0, 10] −10.1532

G22(x) = −
7
∑

i=1

[
(X− ai)(X− ai)

T + ci

]−1

(BF22) 4 [0, 10] −10.4028

G23(x) = −
10
∑

i=1

[
(X− ai)(X− ai)

T + ci

]−1

(BF23) 4 [0, 10] −10.5363
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Table 2. Details of CEC-2017 (Benchmark Suite 2).

Function Name Optima

Unimodal Functions

Shifted and Rotated Bent Cigar Function (CEC-G1) (F1) 100

Shifted and Rotated Zakharov Function (CEC-G3) (F3) 300

Simple Multimodal Functions

Shifted and Rotated Rosenbrock’s Function (CEC-G4) (F4) 400

Shifted and Rotated Rastrigin’s Function (CEC-G5) (F5) 500

Shifted and Rotated Expanded Scaffer’s Function (CEC-G6) (F6) 600

Shifted and Rotated Lunacek Bi Rastrigin Function (CEC-G7) (F7) 700

Shifted and Rotated Non-continuous Rastrigin Function (CEC-G8) (F8) 800

Shifted and Rotated Levy Function (CEC-G9) (F9) 900

Shifted and Rotated Schwefel’s Function (CEC-G10) (F10) 1000

Hybrid Functions

Hybrid Function 1 (N = 3) (CEC-G11) (F11) 1100

Hybrid Function 2 (N = 3) (CEC-G12) (F12) 1200

Hybrid Function 3 (N = 3) (CEC-G13) (F13) 1300

Hybrid Function 4 (N = 4) (CEC-G14) (F14) 1400

Hybrid Function 5 (N = 4) (CEC-G15) (F15) 1500

Hybrid Function 6 (N = 4) (CEC-G16) (F16) 1600

Hybrid Function 7 (N = 5) (CEC-G17) (F17) 1700

Hybrid Function 8 (N = 5) (CEC-G18) (F18) 1800

Hybrid Function 9 (N = 5) (CEC-G19) (F19) 1900

Hybrid Function 10 (N = 6) (CEC-G20) (F20) 2000

Composite Functions

Composition Function 1 (N = 3) (CEC-G21) (F21) 2100

Composition Function 2 (N = 3) (CEC-G22) (F22) 2200

Composition Function 3 (N = 4) (CEC-G23) (F23) 2300

Composition Function 4 (N = 4) (CEC-G24) (F24) 2400

Composition Function 5 (N = 5) (CEC-G25) (F25) 2500

Composition Function 6 (N = 5) (CEC-G26) (F26) 2600

Composition Function 7 (N = 6) (CEC-G27) (F27) 2700

Composition Function 8 (N = 6) (CEC-G28) (F28) 2800

Composition Function 9 (N = 3) (CEC-G29) (F29) 2900

Composition Function 10 (N = 3) (CEC-G30) (F30) 3000
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Figure 4. Benchmark Suite 1.
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5. Result Analysis

In this section, various analyses that can check the efficacy of the proposed modifica-
tions are exhibited. For judging the optimization performance of the proposed AWOA, we
have chosen some recently developed variants of WOA for comparison purpose. These
variants are:

• Lévy flight trajectory-based whale optimization algorithm (LWOA) [50].
• Improved version of the whale optimization algorithm that uses the opposition-based

learning, termed OWOA [41].
• Chaotic Whale Optimization Algorithm (CWOA) [51].

5.1. Benchmark Suite 1

Table 3 shows the optimization results of AWOA on Benchmark Suite 1 along with
the leading. The table shows entries of mean and standard deviation (SD) of function
values of 30 independent runs. Maximum function evaluations are set to 15,000. The first
four functions in the table are unimodal functions. Benchmarking of any algorithm on
unimodal functions gives us the information of the exploration capabilities of the algorithm.
Inspecting the results of proposed AWOA on unimodal functions, it can be easily observed
that the mean values are very competitive for the proposed AWOA as compared with other
variants of WOA.

For rest of the functions, indicated mean values are competitive and the best results
are indicated in bold face. From this statistical analysis, we can easily derive a conclusion
that proposed modifications in AWOA are meaningful and yield positive implications
on optimization performance of the AWOA specially on unimodal functions. Similarly,
for multimodal functions BF-7 and BF-9 to 11, BF-15 to 19 and BF-22 have optimal values
of mean parameter. We observed that the values of mean are competitive for rest of the
functions and performance of proposed AWOA has not deteriorated.

5.1.1. Convergence Property Analysis

Similarly, the convergence plots for functions BF1 to BF4 have also been plotted in
Figure 5 for the sake of clarity. From these convergence curves, it is observed that the
proposed variant shows better convergence characteristics and the proposed modifications
are fruitful to enhance the convergence and exploration properties of WOA. As it can
be seen that convergence properties of AWOA is very swift as compared to other com-
petitors. It is to be noted here that BF1–BF4 are unimodal functions and performance of
AWOA on unimodal functions indicates enhanced exploitation properties. Furthermore,
for showcasing the optimization capabilities of AWOA on multimodal functions the plots
of convergence are exhibited in Figure 6. These are plotted for BF9 to BF12. From these
results of proposed AWOA, it can easily be concluded that the results are also competitive.

5.1.2. Wilcoxon Rank Sum Test

A rank sum test analysis has been conducted and the p-values of the test are indicated
in Table 4. We have shown the values of Wilcoxon rank sum test by considering a 5% level
of significance [52]. Values that are indicated in boldface are less than 0.05, which indicates
that there is a significance difference between the AWOA results and other opponents.

5.1.3. Boxplot Analysis

To present a fair comparison between these two opponents, we have plotted boxplots
and convergence of some selected functions. Figure 7 shows the boxplots of function
(BF1–BF12). From the boxplots, it is observed that the width of the boxplots of AWOA are
optimal in these cases; hence, it can be concluded that the optimization performance of
AWOA is competitive with other variants of WOA. The mean values shown in the boxplots
are also optimal for these functions. The performance of AWOA on the remaining functions
of this suite has been depicted through boxplots shown in Figure 8. From these, it can
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be concluded that the performance of proposed AWOA is competitive, as mean values
depicted in the plots are optimal for most of the functions.

Table 3. Results of Benchmark Suite-1.

Function Parameter AWOA CWOA LWOA OWOA WOA

BF1
Mean 0.00 1.33 × 10−97 2.04 × 10−8 2.37 × 10−172 1.24 × 10−172

SD 0.00 4.06 × 10−97 2.30 × 10−8 0.00 0.00

BF2
Mean 2.71 × 10−297 1.96 × 10−59 2.77 × 10−4 4.15 × 10−117 3.96 × 10−120

SD 0.00 4.93 × 10−59 1.35 × 10−4 1.01 × 10−116 1.51 × 10−119

BF3
Mean 0.00 9.27 × 103 8.11 × 102 6.04 × 103 7.02 × 103

SD 0.00 9.34 × 103 5.41 × 102 4.82 × 103 6.55 × 103

BF4
Mean 3.6 × 10−313 1.39 × 10−2 5.88 × 10−1 8.02 × 10 4.74

SD 0.00 5.71 × 10−2 3.38 × 10−1 1.98 × 10 1.33 × 10

BF5
Mean 2.84 × 10 2.78 × 10 2.77 × 10 2.71 × 10 2.74 × 10

SD 6.08 × 10−1 6.12 × 10−1 2.32 × 10−1 8.95 × 10−1 9.66 × 10−1

BF6
Mean 4.49 × 10−1 1.36 × 10−97 2.73 × 10−3 5.46 × 10−1 5.02 × 10−1

SD 2.01 × 10−1 4.81 × 10−1 1.09 × 10−3 2.46 × 10−1 3.71 × 10−1

BF7
Mean 1.55 × 10−4 4.94 × 10−4 7.58 × 10−3 1.53 × 10−3 1.75 × 10−3

SD 1.87 × 10−4 4.88 × 10−4 6.70 × 10−3 1.96 × 10−3 1.93 × 103

BF8
Mean −7.80 × 103 −6.93 × 103 −9.50 × 103 −1.03 × 104 −9.02 × 103

SD 1.70 × 103 1.51 × 103 1.59 × 103 2.13 × 103 2.02 × 103

BF9
Mean 0.00 0.00 1.88 0.00 2.84 × 10−15

SD 0.00 0.00 4.94 0.00 1.27 × 10−14

BF10
Mean 8.88 × 10−16 4.80 × 10−15 8.75 × 10−5 4.09 × 10−15 4.09 × 10−15

SD 0.00 2.28 × 10−15 3.34 × 10−5 1.59 × 10−15 2.55 × 10−15

BF11
Mean 0.00 5.58 × 10−3 2.09 × 10−3 0.00 0.00

SD 0.00 2.50 × 10−2 6.61 × 10−3 0.00 0.00

BF12
Mean 2.03 × 10−2 7.91 × 10−2 2.28 × 10−4 3.44 × 10−2 3.64 × 10−2

SD 9.28 × 10−3 3.22 × 10−2 7.37 × 10−5 2.11 × 10−2 2.35 × 10−2

BF13
Mean 5.69 × 10−1 1.23 8.76 × 10−3 9.87 × 10−1 1.01

SD 1.97 × 10−1 3.56 × 10−1 6.05 × 10−3 2.51 × 10−1 3.37 × 10−1

BF14
Mean 2.14 1.89 1.05 3.16 2.77

SD 9.80 × 10−1 1.01 2.22 × 103 3.41 2.88

BF15
Mean 4.00 × 10−4 4.00 × 10−4 5.30 × 10−4 5.21 × 10−4 1.51 × 10−3

SD 3.77 × 10−4 2.82 × 10−4 2.70 × 10−4 2.39 × 10−4 4.05 × 10−3

BF16
Mean −1.03 −1.03 −1.03 −1.03 −1.03

SD 1.57 × 10−8 1.12 × 10−8 2.32 × 10−8 6.20 × 10−11 7.34 × 10−11

BF17
Mean 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1

SD 1.73 × 10−8 8.73 × 10−9 4.40 × 10−6 1.39 × 10−7 1.23 × 10−6

BF18
Mean 3.00 3.00 3.00 3.00 3.00

SD 1.12 × 10−4 1.30 × 10−4 9.86 × 10−7 3.88 × 10−5 4.88 × 10−5

BF19
Mean −3.86 −3.86 −3.86 −3.86 −3.86

SD 3.81 × 10−3 3.61 × 10−3 4.01 × 10−5 3.09 × 10−3 1.75 × 10−3

BF20
Mean −3.22 −3.24 −3.27 −3.27 −3.23

SD 1.30 × 10−1 8.36 × 10−1 6.38 × 10−2 7.17 × 10−2 1.23 × 10−1

BF21
Mean −6.56 −7.74 −7.51 −8.27 −8.50

SD 2.35 2.70 3.41 3.34 2.64

BF22
Mean −8.71 −6.58 −8.62 −6.38 −8.03

SD 3.04 2.97 2.83 3.48 3.42

BF23
Mean −5.85 −7.20 −7.83 −7.79 −7.47

SD 2.87 3.15 2.77 3.20 3.22
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Figure 5. Convergence property analysis of unimodal functions.

Figure 6. Convergence property analysis of multimodal functions.
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Table 4. Results of Wilcoxon rank sum test of AWOA.

Function CWOA LWOA OWOA WOA

BF1 8.01 × 10−9 8.01 × 10−9 8.01 × 10−9 8.01 × 10−9

BF2 5.73 × 10−8 5.73 × 10−8 5.73 × 10−8 5.73 × 10−8

BF3 8.01 × 10−9 8.01 × 10−9 8.01 × 10−9 8.01 × 10−9

BF4 1.96 × 10−8 1.96 × 10−8 1.96 × 10−8 1.96 × 10−8

BF5 2.14 × 10−3 2.22 × 10−4 4.68 × 10−5 3.38 × 10−4

BF6 2.22 × 10−7 6.80 × 10−8 1.99 × 10 9.46 × 10−1

BF7 8.36 × 10−4 7.90 × 10−8 2.92 × 10−5 6.01 × 10−7

BF8 1.20 × 10−1 6.04 × 10−3 7.58 × 10−4 1.02 × 10−1

BF9 8.01 × 10−9 3.42 × 10−1

BF10 2.14 × 10−7 8.01 × 10−9 1.11 × 10−7 7.43 × 10−6

BF11 3.42 × 10−1 8.01 × 10−9

BF12 1.23 × 10−7 6.80 × 10−8 1.33 × 10−2 3.15 × 10−2

BF13 1.58 × 10−6 6.80 × 10−8 1.81 × 10−5 4.68 × 10−5

BF14 1.33 × 10−1 1.56 × 10−1 5.25 × 10−1 4.73 × 10−1

BF15 1.72 × 10−1 8.35 × 10−3 1.67 × 10−2 6.22 × 10−4

BF16 9.89 × 10−1 3.06 × 10−3 3.99 × 10−6 8.60 × 10−6

BF17 9.03 × 10−1 1.66 × 10−7 2.23 × 10−2 7.71 × 10−3

BF18 1.20 × 10−1 4.70 × 10−3 9.25 × 10−1 6.55 × 10−1

BF19 4.41 × 10−1 2.00 × 10−4 3.79 × 10−1 1.99 × 10−1

BF20 6.55 × 10−1 6.56 × 10−3 2.75 × 10−2 1.40 × 10−1

BF21 2.18 × 10−1 2.75 × 10−2 7.71 × 10−3 2.22 × 10−4

BF22 6.17 × 10−1 1.35 × 10−3 9.25 × 10−1 1.93 × 10−2

BF23 1.40 × 10−1 9.28 × 10−5 1.12 × 10−3 3.97 × 10−3

Figure 7. Boxplot analysis of Benchmark Suite 1.
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Figure 8. Boxplot analysis of the remaining functions of Benchmark Suite 1.

5.2. Benchmark Suite 2

In this section, we report the results of the proposed variant on CEC17 functions.
The details of CEC 17 functions have been exhibited in Table 2. To check the applicability of
the proposed variant on higher as well as lower dimension functions, 10- and 30-dimension
problems are chosen deliberately. While performing the simulations we have obeyed the
criterion of CEC17; for example, the number of function evaluations have been kept 104×D
for AWOA and other competitors. The results are averaged over 51 independent runs, as
indicated by CEC guidelines. The results of the optimization are expressed as mean and
standard deviation of the objective function values obtained from the independent runs.
Tables 5 and 6 show these analyses and the bold face entries in the tables show the best
performer. Tables 7 and 8 also report the statistical comparison results of objective function
values obtained from independent runs through Wilcoxon rank sum test with 5% level of
significance. These results are p-values indicated in the each column of the observation
table when the opponent is compared with the proposed AWOA. These values are indicator
of the statistical significance.

5.3. Results of the Analysis of 10D Problems

For 10D problems, the depiction of results are in terms of the mean values and standard
deviation values obtained from 51 different independent runs that are indicated for each
opponent of AWOA. Furthermore, the following are the noteworthy observations from
this study:

• From the table, it is observed that the values obtained from optimization process
and their statistical calculation indicate that the substantial enhancement is evident
in terms of mean and standard deviation values. These values are shown in bold
face. We observe that out of 29 functions, the proposed variant provides optimal
mean values for 23 functions. In addition to that, we have observed that the value
of the mean parameter is optimal for 23 functions for AWOA. Except CECF16, 17,
18, 23, 24, 26 and CECF29, the mean values of the optimization runs are optimal
for AWOA. This supports the fact that the proposed modifications are helpful for
enhancing the optimization performance of the original WOA. Inspecting other statis-
tical parameters, namely standard deviation values, also gives a clear insight into the
enhanced performance.
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• We observe that for unimodal functions, these values are optimal as compared to
different versions of WOA as compared to AWOA; hence, it can be said that for
unimodal functions, AWOA outperforms. Unimodal functions are useful to test the
exploration capability of any optimizer.

• Inspecting the performance of the proposed version of WOA on multimodal func-
tions that are from CECF4-F10 gives a clear insight on the fact that the proposed
modifications are meaningful in terms of enhanced exploitation capabilities. Natu-
rally, in multimodal functions, more than one minimum exist, and to converge the
optimization process to global minima can be a troublesome task.

• The results of optimization runs indicated in bold face depict the performance of AWOA.

Table 5. Results of Benchmark Suite-2 (10D).

Function Parameter WOA OWOA AWOA LWOA CWOA

F1
Mean 6.85 × 104 7.03 × 106 9.50 × 103 1.48 × 107 1.08 × 107

SD 1.43 × 105 4.97 × 107 5.84 × 103 5.32 × 107 3.97 × 107

F3
Mean 6.81 × 102 8.53 × 102 3.00 × 102 9.30 × 102 6.17 × 102

SD 7.92 × 102 1.15 × 103 2.43 × 102 1.15 × 103 5.82 × 102

F4
Mean 4.20 × 102 4.23 × 102 4.05 × 102 4.31 × 102 4.29 × 102

SD 2.83 × 10 3.16 × 10 1.33 × 10 4.11 × 10 3.56 × 10

F5
Mean 5.40 × 102 5.36 × 102 5.28 × 102 5.34 × 102 5.33 × 102

SD 1.68 × 10 1.57 × 10 9.68 1.04 × 10 1.55 × 102

F6
Mean 6.14 × 102 6.16 × 102 6.03 × 102 6.12 × 102 6.11 × 102

SD 7.96 7.89 5.00 6.04 5.65

F7
Mean 7.59 × 102 7.61 × 102 7.45 × 102 7.63 × 102 7.51 × 102

SD 1.64 × 10 1.88 × 10 1.22 × 10 1.50 × 10 1.54 × 10

F8
Mean 8.32 × 102 8.31 × 102 8.27 × 102 8.29 × 102 8.29 × 102

SD 1.08 × 10 1.13 × 10 1.11 × 10 1.03 × 10 1.10 × 10

F9
Mean 1.03 × 103 1.04 × 103 9.15 × 102 9.99 × 102 9.88 × 102

SD 1.11 × 102 1.71 × 102 3.97 × 10 9.15 × 10 1.05 × 102

F10
Mean 1.99 × 103 1.94 × 103 1.81 × 103 1.94 × 103 1.84 × 103

SD 2.87 × 102 3.38 × 102 3.12 × 102 3.41 × 102 2.72 × 102

F11
Mean 1.16 × 103 1.16 × 103 1.13 × 103 1.17 × 103 1.17 × 103

SD 6.27 × 10 5.89 × 10 1.14 × 10 4.84 × 10 6.47 × 10

F12
Mean 1.96 × 106 1.03 × 106 5.29 × 104 2.59 × 106 2.19 × 106

SD 2.41 × 106 1.82 × 106 5.19 × 104 2.90 × 106 2.25 × 106

F13
Mean 1.66 × 104 1.21 × 104 1.02 × 104 1.91 × 104 1.54 × 104

SD 1.31 × 104 9.71 × 103 8.32 × 103 1.38 × 104 1.21 × 104

F14
Mean 1.71 × 103 1.71 × 103 1.47 × 103 1.64 × 103 1.70 × 103

SD 8.69 × 102 8.71 × 102 3.13 × 10 6.95 × 102 7.96 × 102

F15
Mean 2.41 × 103 2.81 × 103 1.58 × 103 2.64 × 103 2.58 × 103

SD 1.17 × 103 1.41 × 103 4.47 × 10 1.30 × 103 1.22 × 103

F16
Mean 1.76 × 103 1.78 × 103 1.76 × 103 1.78 × 103 1.73 × 103

SD 1.22 × 102 1.25 × 102 1.37 × 102 1.01 × 102 9.82 × 10

F17
Mean 1.77 × 103 1.77 × 103 1.77 × 103 1.76 × 103 1.77 × 103

SD 3.23 × 10 3.60 × 10 3.16 × 10 2.46 × 10 3.08 × 10

F18
Mean 1.70 × 104 1.71 × 104 1.72 × 104 1.62 × 104 1.62 × 104

SD 1.24 × 104 1.14 × 104 1.02 × 104 1.20 × 104 1.07 × 104

F19
Mean 8.18 × 103 1.69 × 104 2.32 × 103 4.93 × 103 5.40 × 103

SD 6.91 × 103 5.21 × 104 6.54 × 102 5.01 × 103 5.25 × 103
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Table 5. Cont.

Function Parameter WOA OWOA AWOA LWOA CWOA

F20
Mean 2.09 × 103 2.10 × 103 2.05 × 103 2.11 × 103 2.11 × 103

SD 5.62 × 10 5.21 × 10 4.18 × 10 5.48 × 10 5.48 × 10

F21
Mean 2.31 × 103 2.31 × 103 2.30 × 103 2.27 × 103 2.29 × 103

SD 5.97 × 10 5.40 × 10 6.20 × 10 6.29 × 10 5.86 × 10

F22
Mean 2.33 × 103 2.31 × 103 2.30 × 103 2.31 × 103 2.31 × 103

SD 1.63 × 102 9.37 1.63 × 10 2.19 × 10 7.34

F23
Mean 2.64 × 103 2.64 × 103 2.64 × 103 2.63 × 103 2.64 × 103

SD 1.80 × 10 1.46 × 10 1.44 × 10 1.11 × 10 1.41 × 10

F24
Mean 2.75 × 103 2.76 × 103 2.75 × 103 2.75 × 103 2.74 × 103

SD 8.30 × 10 5.41 × 10 7.43 × 10 5.89 × 10 7.11 × 10

F25
Mean 2.94 × 103 2.93 × 103 2.92 × 103 2.94 × 103 2.93 × 103

SD 4.61 × 10 4.91 × 10 5.31 × 10 2.03 × 10 4.42 × 10

F26
Mean 3.22 × 103 3.13 × 103 3.04 × 103 3.03 × 103 3.03 × 103

SD 3.78 × 102 2.83 × 102 2.54 × 102 1.75 × 102 1.87 × 102

F27
Mean 3.12 × 103 3.11 × 103 3.11 × 103 3.11 × 103 3.11 × 103

SD 2.86 × 10 2.62 × 10 2.61 × 10 2.79 × 10 2.21 × 10

F28
Mean 3.33 × 103 3.31 × 103 3.30 × 103 3.33 × 103 3.33 × 103

SD 1.51 × 102 1.47 × 102 1.48 × 102 1.11 × 102 1.36 × 102

F29
Mean 3.27 × 103 3.27 × 103 3.24 × 103 3.23 × 102 3.25 × 103

SD 6.70 × 10 6.43 × 10 5.72 × 10 5.74 × 10 6.53 × 10

F30
Mean 2.19 × 105 3.56 × 105 9.26 × 104 1.37 × 105 2.36 × 105

SD 3.74 × 105 5.50 × 105 2.82 × 105 3.16 × 105 4.30 × 105

5.3.1. Statistical Significance Test by the Wilcoxon Rank Sum Test

The results of the rank sum test are depicted in Table 7. It is always important to
judge the statistical significance of the optimization run in terms of calculated p-values.
For this reason, the proposed AWOA has been compared with all opponents and results in
terms of the p-values that are depicted. Bold face entries show that there is a significance
difference between optimization runs obtained in AWOA and other opponents. This fact
demonstrates the superior performance of AWOA.

Table 6. Results of Benchmark Suite-2 (30D).

Function Parameter WOA OWOA AWOA LWOA CWOA

F1
Mean 1.35 × 109 1.61 × 109 4.53 × 105 2.36 × 109 2.65 × 109

SD 1.23 × 109 2.06 × 109 1.71 × 105 1.64 × 109 1.50 × 109

F3
Mean 4.85 × 104 4.78 × 104 3.24 × 102 4.83 × 104 4.57 × 104

SD 1.53 × 104 1.34 × 104 6.57 7.64 × 103 1.14 × 104

F4
Mean 5.93 × 102 6.05 × 102 4.95 × 102 7.73 × 102 7.48 × 102

SD 6.03 × 10 7.17 × 10 2.29 × 10 1.81 × 102 1.40 × 102

F5
Mean 7.60 × 102 7.67 × 102 7.13 × 102 7.68 × 102 7.52 × 102

SD 5.98 × 10 5.95 × 10 5.24 × 10 4.44 × 10 4.98 × 10

F6
Mean 6.66 × 102 6.65 × 102 6.51 × 102 6.58 × 102 6.58 × 102

SD 1.21 × 10 1.06 × 10 9.99 1.00 × 10 9.64

F7
Mean 1.18 × 103 1.16 × 103 1.09 × 103 1.15 × 103 1.14 × 103

SD 1.09 × 102 8.42 × 10 9.02 × 10 8.04 × 10 6.47 × 10

F8
Mean 1.01 × 103 1.01 × 103 9.80 × 102 1.01 × 103 1.00 × 103

SD 4.78 × 10 4.62 × 10 4.87 × 10 2.94 × 10 4.26 × 10
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Table 6. Cont.

Function Parameter WOA OWOA AWOA LWOA CWOA

F9
Mean 7.31 × 103 7.61 × 103 6.48 × 103 6.58 × 103 6.74 × 103

SD 2.91 × 103 2.61 × 103 2.08 × 103 1.64 × 103 2.04 × 103

F10
Mean 5.93 × 103 6.06 × 103 4.98 × 103 6.81 × 103 6.42 × 103

SD 7.21 × 102 6.72 × 102 6.81 × 102 7.10 × 102 8.61 × 102

F11
Mean 2.09 × 103 1.80 × 103 1.27 × 103 1.94 × 103 2.08 × 103

SD 9.83 × 102 7.53 × 102 5.97 × 10 5.86 × 102 6.85 × 102

F12
Mean 5.19 × 107 5.45 × 107 4.36 × 106 2.38 × 108 1.76 × 108

SD 5.05 × 107 4.00 × 107 2.82 × 106 2.39 × 108 1.25 × 108

F13
Mean 2.60 × 105 1.58 × 105 1.46 × 105 7.88 × 106 2.13 × 106

SD 7.92 × 105 1.75 × 105 1.05 × 105 2.55 × 105 1.10 × 107

F14
Mean 4.41 × 105 3.52 × 105 2.46 × 104 4.22 × 105 4.79 × 105

SD 7.29 × 102 4.31 × 105 1.56 × 104 4.92 × 105 5.11 × 105

F15
Mean 2.78 × 105 2.51 × 106 7.96 × 104 1.67 × 106 4.31 × 106

SD 5.75 × 105 9.42 × 106 4.71 × 104 2.63 × 106 9.62 × 106

F16
Mean 3.22 × 103 3.25 × 103 2.87 × 103 3.42 × 103 3.43 × 103

SD 3.71 × 102 4.08 × 102 3.13 × 102 3.97 × 102 3.65 × 102

F17
Mean 2.42 × 103 2.42 × 103 2.37 × 103 2.41 × 103 2.42 × 103

SD 2.33 × 102 2.43 × 102 2.62 × 102 1.97 × 102 1.81 × 102

F18
Mean 1.74 × 106 2.30 × 106 2.29 × 105 4.18 × 106 2.74 × 106

SD 1.77 × 106 2.52 × 106 1.89 × 105 3.89 × 106 2.57 × 106

F19
Mean 1.78 × 106 2.25 × 106 1.22 × 105 7.62 × 106 6.83 × 106

SD 1.64 × 106 2.01 × 106 7.15 × 104 5.58 × 106 1.12 × 107

F20
Mean 2.69 × 103 2.67 × 103 2.60 × 103 2.67 × 103 2.67 × 103

SD 1.99 × 102 1.81 × 102 2.11 × 102 1.70 × 102 2.02 × 102

F21
Mean 2.54 × 103 2.53 × 103 2.51 × 103 2.53 × 103 2.53 × 103

SD 5.43 × 10 5.18 × 10 4.98×103 4.82 × 10 4.72 × 10

F22
Mean 6.51 × 103 6.39 × 103 5.69 × 103 6.19 × 103 7.42 × 103

SD 2.08 × 103 1.93 × 103 1.90 × 103 2.46 × 103 1.59 × 103

F23
Mean 2.97 × 103 2.97 × 103 2.93 × 103 2.94 × 103 2.94 × 103

SD 8.35 × 10 7.33 × 10 8.35 × 10 6.26 × 10 5.59 × 10

F24
Mean 3.12 × 103 3.10 × 103 3.15 × 103 3.09 × 103 3.08 × 103

SD 7.23 × 10 7.51 × 10 8.51 × 10 5.79 × 10 4.63 × 10

F25
Mean 3.01 × 103 3.00 × 103 2.89 × 103 3.07 × 103 3.05 × 103

SD 5.54 × 10 5.79 × 10 1.62 × 10 4.41 × 10 4.56 × 10

F26
Mean 6.63 × 103 6.94 × 103 6.12 × 103 6.60 × 103 6.56 × 103

SD 9.57 × 102 8.47 × 102 1.12 × 103 8.13 × 102 8.41 × 102

F27
Mean 3.32 × 103 3.32 × 103 3.27 × 103 3.37 × 103 3.35 × 103

SD 4.56 × 10 5.12 × 10 4.04 × 10 6.38 × 10 6.36 × 10

F28
Mean 3.40 × 103 3.42 × 103 3.22 × 103 3.50 × 103 3.50 × 103

SD 7.82 × 10 8.98 × 10 2.20 × 10 1.13 × 102 9.80 × 10

F29
Mean 4.63 × 103 4.58 × 103 4.06 × 103 4.67 × 103 4.57 × 103

SD 3.07 × 102 3.11 × 102 2.77 × 102 3.56 × 102 3.82 × 102

F30
Mean 8.90 × 106 9.96 × 106 4.28 × 105 2.54 × 107 2.38 × 107

SD 5.90 × 106 6.80 × 106 1.92 × 105 2.30 × 107 1.83 × 107

5.3.2. Boxplot Analysis

Boxplot analysis for 10D functions are performed for 20 independent runs of objective
function values. This analysis is depicted in Figures 9 and 10. From these boxplots, it is
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easily to state that the results obtained from the optimization process acquire an optimal
Inter Quartile Range and low mean values. For showcasing the efficacy of the proposed
AWOA, all the optimal entries of mean values are depicted with an oval shape in boxplots.

Figure 9. Boxplot analysis of the 10D functions of Benchmark Suite 2.

Figure 10. Boxplot analysis of the remaining 10D functions of Benchmark Suite 2.

5.4. Results of the Analysis of 30D Problems

The results of the proposed AWOA, along with other variants of WOA, are depicted
in terms of statistical attributes of independent 51 runs in Table 6. From the results, it
is clearly evident that except for F24, the proposed AWOA provides optimal results as
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compared to other opponents. Mean values of objective functions and standard deviation
of the objective functions obtained from independent runs are shown in bold face.

Table 7. Results of the rank sum test on Benchmark Suite-2 (10D).

Function WOA OWOA LWOA CWOA

F1 2.58 × 10−1 3.99 × 10−1 3.30 × 10−18 3.30 × 10−18

F3 3.30 × 10−18 3.30 × 10−18 3.30 × 10−18 3.30 × 10−18

F4 4.20 × 10−9 2.99 × 10−13 3.00 × 10−15 4.73 × 10−16

F5 1.40 × 10−4 1.08 × 10−2 3.92 × 10−3 9.97 × 10−2

F6 1.56 × 10−13 5.13 × 10−15 6.26 × 10−13 9.11 × 10−12

F7 8.04 × 10−6 1.73 × 10−5 1.23 × 10−8 3.99 × 10−2

F8 3.22 × 10−2 1.29 × 10−1 3.15 × 10−1 4.45 × 10−1

F9 2.57 × 10−13 4.90 × 10−13 8.00 × 10−13 4.51 × 10−12

F10 5.59 × 10−3 5.15 × 10−2 5.73 × 10−2 4.70 × 10−1

F11 1.35 × 10−3 1.56 × 10−4 4.44 × 10−10 1.32 × 10−10

F12 1.47 × 10−14 2.33 × 10−10 2.33 × 10−13 1.74 × 10−12

F13 4.94 × 10−3 2.90 × 10−1 9.03 × 10−5 1.06 × 10−2

F14 4.09 × 10−3 1.02 × 10−3 4.20 × 10−4 2.34 × 10−1

F15 9.26 × 10−13 5.40 × 10−13 3.17 × 10−15 1.66 × 10−15

F16 6.02 × 10−1 1.72 × 10−1 8.30 × 10−2 6.06 × 10−1

F17 5.38 × 10−1 2.18 × 10−1 7.89 × 10−1 4.66 × 10−1

F18 5.83 × 10−1 8.30 × 10−1 3.73 × 10−1 5.47 × 10−1

F19 2.47 × 10−8 5.71 × 10−8 2.61 × 10−1 6.57 × 10−2

F20 1.20 × 10−5 1.14 × 10−6 2.47 × 10−7 4.22 × 10−8

F21 7.39 × 10−2 2.55 × 10−1 2.21 × 10−1 2.50 × 10−1

F22 1.60 × 10−6 6.88 × 10−6 6.60 × 10−7 9.26 × 10−11

F23 5.37 × 10−3 5.73 × 10−2 8.36 × 10−1 1.29 × 10−1

F24 6.83 × 10−1 2.87 × 10−1 1.08 × 10−1 1.54 × 10−2

F25 2.01 × 10−5 3.43 × 10−4 1.32 × 10−3 1.02 × 10−2

F26 1.17 × 10−3 2.60 × 10−3 1.43 × 10−1 3.00 × 10−1

F27 2.58 × 10−2 3.17 × 10−2 1.30 × 10−1 9.83 × 10−2

F28 6.06 × 10−1 3.32 × 10−1 1.29 × 10−3 2.54 × 10−3

F29 4.68 × 10−2 3.22 × 10−2 2.47 × 10−1 9.25 × 10−1

F30 4.70 × 10−6 1.49 × 10−5 2.23 × 10−6 1.65 × 10−6

The results of the rank sum test are depicted in Table 8. It is always important to judge
the statistical significance of the optimization run in terms of calculated p-values. For this
reason, the proposed AWOA was compared with all opponents and the results in terms of
p-values are depicted. Bold face entries show that there is a significance difference between
optimization runs obtained in AWOA and other opponent, as the obtained p-values are less
than 0.05. We observe that for the majority of the functions, calculated p-values are less than
0.05. Along with the optimal mean and standard deviation values, p-values indicated that
the proposed AWOA outperforms. In addition to these analyses, a boxplot analysis was
performed of the proposed AWOA with other opponents, as depicted in Figures 11 and 12.
From these figures, it is easy to learn that the IQR and mean values are very competitive
and optimal in almost all cases for 30-dimension problems. Inspecting the convergence
curves for some of the functions, such as unimodal functions F1 and F3 and for some other
multimodal and hybrid functions, as depicted in Figure 13.
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Table 8. Results of the rank sum test on Benchmark Suite-2 (30D).

Function WOA OWOA LWOA CWOA

F1 3.30 × 10−18 3.30 × 10−18 3.30 × 10−18 3.30 × 10−18

F3 3.30 × 10−18 3.30 × 10−18 3.30 × 10−18 3.30 × 10−18

F4 1.05 × 10−16 1.39 × 10−16 3.30 × 10−18 3.30 × 10−18

F5 1.13 × 10−4 1.06 × 10−5 7.07 × 10−7 3.17 × 10−4

F6 6.03 × 10−9 5.14 × 10−9 7.08 × 10−4 1.17 × 10−3

F7 3.74 × 10−5 3.01 × 10−4 8.80 × 10−4 3.23 × 10−3

F8 2.96 × 10−3 3.68 × 10−3 3.99 × 10−4 1.28 × 10−2

F9 2.34 × 10−1 3.17 × 10−2 4.66 × 10−1 4.34 × 10−1

F10 1.09 × 10−8 1.79 × 10−10 2.43 × 10−16 3.08 × 10−12

F11 3.78 × 10−17 9.65 × 10−16 3.72 × 10−18 3.72 × 10−18

F12 1.42 × 10−17 1.27 × 10−17 3.30 × 10−18 4.70 × 10−18

F13 5.83 × 10−1 7.53 × 10−1 1.63 × 10−14 2.84 × 10−13

F14 2.56 × 10−15 1.41 × 10−15 8.44 × 10−18 5.41 × 10−15

F15 7.39 × 10−2 8.19 × 10−4 7.30 × 10−14 1.34 × 10−13

F16 2.30 × 10−6 6.88 × 10−6 1.64 × 10−9 1.26 × 10−10

F17 3.29 × 10−1 4.58 × 10−1 4.22 × 10−1 3.00 × 10−1

F18 4.30 × 10−12 1.07 × 10−12 3.72 × 10−15 4.15 × 10−14

F19 1.95 × 10−16 1.34 × 10−15 3.72 × 10−18 1.72 × 10−14

F20 3.80 × 10−2 9.17 × 10−2 1.10 × 10−1 1.30 × 10−1

F21 3.44 × 10−2 1.13 × 10−1 1.99 × 10−1 1.45 × 10−1

F22 5.82 × 10−4 1.07 × 10−3 5.71 × 10−3 5.50 × 10−10

F23 8.53 × 10−3 9.23 × 10−3 4.14 × 10−1 2.44 × 10−1

F24 3.86 × 10−2 3.30 × 10−3 2.26 × 10−4 1.58 × 10−5

F25 1.27 × 10−17 8.44 × 10−18 3.30 × 10−18 3.30 × 10−18

F26 2.67 × 10−2 1.56 × 10−4 7.72 × 10−2 4.26 × 10−2

F27 1.14 × 10−8 6.53 × 10−9 4.60 × 10−14 3.56 × 10−12

F28 5.61 × 10−18 3.30 × 10−18 3.30 × 10−18 3.30 × 10−18

F29 3.64 × 10−13 5.98 × 10−12 9.26 × 10−13 5.74 × 10−10

F30 3.30 × 10−18 1.27 × 10−17 3.30 × 10−18 3.30 × 10−18

Figure 11. Boxplot analysis of the 30D functions of Benchmark Suite 2.
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Figure 12. Boxplot analysis of the remaining 30D functions of Benchmark Suite 2.

Figure 13. Convergence property analysis of some 30D functions of Benchmark Suite 2.

5.5. Comparison with Other Algorithms

To validate the efficacy of the proposed variant, a fair comparison on CEC 2017
criteria is executed. The optimization results of the proposed variant along with some
contemporary and classical optimizers are reported in Table 9. The competitive algorithms
are Moth flame optimization (MFO) [15], Sine cosine algorithm [53], PSO [54] and Flower
pollination Algorithm [55]. It can be easily observed that the results of our proposed variant
are competitive for almost all the functions.
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Table 9. Comparison of AWOA with other algorithms for 30D.

Algorithm

Function SCA PSO MFO FPA AWOA

F1 1.27 × 1010 5.56 × 109 1.31 × 1010 1.07 × 108 4.53 × 105

F3 3.67 × 104 1.33 × 105 9.48 × 104 1.10 × 105 3.24 × 102

F4 9.90 × 102 5.09 × 102 9.70 × 102 5.79 × 102 4.95 × 102

F5 2.75 × 102 3.04 × 102 2.20 × 102 8.06 × 102 7.13 × 102

F6 5.00 × 101 5.60 × 101 4.00 × 101 6.69 × 102 6.51 × 102

F7 4.30 × 102 4.30 × 102 4.60 × 102 1.33 × 103 1.09 × 103

F8 2.50 × 102 2.90 × 102 2.20 × 102 1.07 × 103 9.80 × 102

F9 4.74 × 103 5.70 × 103 6.57 × 103 1.31 × 104 6.48 × 103

F10 7.13 × 103 8.29 × 103 4.34 × 103 6.20 × 103 4.98 × 103

F11 9.70 × 102 2.54 × 103 5.30 × 103 1.54 × 103 1.27 × 103

F12 1.18 × 109 6.47 × 108 3.81 × 108 4.84 × 107 4.36 × 106

F13 3.96 × 108 1.93 × 108 9.52 × 107 2.61 × 106 1.46 × 105

F14 1.53 × 105 1.11 × 106 2.32 × 105 1.66 × 105 2.46 × 104

F15 1.62 × 107 3.91 × 107 5.21 × 104 4.22 × 105 7.96 × 104

F16 2.04 × 103 2.35 × 103 1.55 × 103 3.46 × 103 2.87 × 103

F17 7.00 × 102 9.60 × 102 8.80 × 102 2.71 × 103 2.37 × 103

F18 3.16 × 106 7.90 × 106 3.19 × 106 3.17 × 106 2.29 × 105

F19 2.37 × 107 5.17 × 107 2.42 × 107 2.30 × 106 1.22 × 105

F20 6.10 × 102 1.02 × 103 6.80 × 102 2.64 × 103 2.60 × 103

F21 4.60 × 102 5.00 × 102 4.10 × 102 2.57 × 103 2.51 × 103

F22 5.78 × 103 4.64 × 103 4.27 × 103 6.11 × 103 5.69 × 103

F23 6.90 × 103 7.80 × 102 5.30 × 102 3.00 × 103 2.93 × 103

F24 7.60 × 102 8.10 × 102 5.90 × 102 3.13 × 103 3.15 × 103

F25 7.10 × 102 7.10 × 102 8.30 × 102 2.97 × 103 2.89 × 103

F26 4.34 × 103 4.05 × 103 3.26 × 103 7.63 × 103 6.12 × 103

F27 7.00 × 102 6.60 × 102 5.60 × 102 3.34 × 103 3.27 × 103

F28 1.00 × 103 8.40 × 102 1.76 × 103 3.35 × 103 3.22 × 103

F29 1.73 × 103 2.02 × 103 1.25 × 103 4.64 × 103 4.06 × 103

F30 6.69 × 107 4.85 × 107 1.02 × 106 6.79 × 106 4.28 × 105

6. Applications of AWOA in Engineering Test Problems
6.1. Model Order Reduction

In control system engineering, most of the linear time invariant systems are of a higher
order, and thus, difficult to analyze. This problem has been solved using the reduced
model order technique, which is easy to use and less complex in comparison to earlier
control paradigm techniques. Nature-inspired optimization algorithms have proved to be
an efficient tool in this field, as they help to minimize the integral square of lower-order
systems. This approach was first introduced in [56] followed by [39,57,58] and many more.
These works advocate the efficacy of optimization algorithm in solving the reduced model
order technique, as these reduce the complexity, computation time and cost of the reducing
process. For testing the applicability of AWOA on some real-world problems, we have
considered the Model Order Reduction problem in this section. In MOR, large complex
systems with known transfer functions are converted with the help of an optimization
application to the reduced order system. The following are the steps of the conversion:
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1. Consider a large complex system with a higher order and obtain the step response of
the system. Stack the response in the form of a numerical array.

2. Construct a second-order system with the help of some unknown variables that are
depicted in the following equation. Furthermore, obtain the step response of the
system and stack those numbers in a numerical array.

3. Construct a transfer function that minimizes the error function, preferably the Integral
Square Error (ISE) criterion.

6.1.1. Problem Formulation

In this technique, a transfer function given by X(t) : u→ v of a higher order is reduced,
in function X(t) : u → ṽ of a lower order, without affecting the input u(x); the output
is ṽ(x) ≈ v(x). The integral error defined by the following equation is minimized in the
process using the optimization algorithm:

IE =

∞∫
0

[v(x)− ṽ(x)]2dx (17)

where X(t) is a transfer function of any Single Input and Single Output system defined by:

X(s) =
a0 + a1t + a2t2 + . . . + amtm

b0 + b1t + b2t2 + . . . + bntn (18)

For a reduced order system, X(s)′ can be given by:

X(t)′ =
a′0 + a′1t + a′2t2 + . . . + a′mr tmr

b′0 + b′1t + b′2t2 + . . . + b′nr tnr
(19)

where (nr ≥ mr, mr, nr ∈ I). In this study, we calculate the value of coefficients of the
numerator and denominator of a reduced order system defined in Equation (21) while
minimizing the error. To establish the efficiency of our proposed variant, we have reported
two numerical examples.

6.1.2. Numerical Examples and Discussions

• Function 1

X(s) =
(s3 + 7s2 + 24s + 24)

(s4 + 10s3 + 35s2 + 50s + 24)
(20)

• Function 2

X(s) =
(s + 4)

(s4 + 19s3 + 113s2 + 245s + 150)
(21)

The results of the optimization process by depicting the values of time domain speci-
fications, namely rise time and settling time for both functions, are exhibited in Table 10.
Furthermore, the convergence proofs of the algorithm on both functions are depicted in
Figures 14 and 15. Errors in the time domain specifications as compared to the original
system are depicted in Table 11.
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Table 10. Simulated models for different WOA variants and time domain specifications.

Function Function 1 Function 2

Parameters Rise Time Settling Time Rise Time Settling Time

Original 2.1398 4.8603 2.2985 4.9724

AWOA 2.1471 4.8388 2.2649 4.3923

WOA 2.0838 4.6762 3.1631 6.6672

OWOA 2.4744 5.4009 3.1783 6.689

LWOA 2.1002 4.7188 2.4078 5.1828

CWOA 2.45 4.965 3.1755 6.68

Table 11. Error analysis of MOR results on both functions.

Parameter % Error Function 1 % Error Function 2

Time Rise Time Settling Time Rise Time Settling Time

AWOA 0.341 0.442 1.462 11.666

WOA 2.617 3.788 37.616 34.084

OWOA 15.637 11.123 38.277 34.523

LWOA 1.851 2.911 4.755 4.231

CWOA 14.497 2.154 38.155 34.342

Figure 14. Results of MOR for function 1.

Figure 15. Results of MOR for function 2.
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From these analyses, it is quite evident that MOR performed by AWOA leads to a
configuration of the system that follows the time domain specifications of the original
system quite closely. In addition to that, the error in objective function values are also
optimal in the case of AWOA.

6.2. Frequency-Modulated Sound Wave Parameter Estimation Problem

This problem has been taken in many approaches to benchmark the applicability of
different optimizers. This problem was included in the 2011 Congress on Evolutionary
computation competition for testing different evolutionary optimization algorithms on
real problems [59]. This problem is a six-dimensional problem, where the parameters of a
sound wave are estimated in such a manner that it should be matched with the target wave.

The mathematical representation of this problem can be given as:

K = (α1, δ1, α2, δ2, α3, δ3) (22)

The equations of the predicted sound wave and target sound wave are as follows:

J(t) = α1. sin(δ1.t.θ + α2. sin(δ2.t.θ + α3. sin(δ3.t.θ))) (23)

J0(t) = (1.0). sin((5.0).t.θ − (1.5). sin((4.8).t.θ + (2.0). sin((4.9)t.θ))) (24)

Min f (
−→
K ) =

100

∑
t=0

(J(t)− J0(t))2 (25)

The results of this design problem are shown in terms of different analyses that include
the boxplot and convergence property, which are obtained from 20 independent runs. The
Figure 16 shows this analysis. A comparison of the performance on the basis of error in the
objective function values is depicted in Figure 17. Here, boxplot axis entry 1, 2, 3, 4 and 5
show LWOA, CWOA, proposed AWOA, OWOA and WOA, respectively.

Figure 16. Boxplot and Convergence Property analysis for the FM problem.

6.3. PID Control of DC Motors

In today’s machinery era, DC motors are used in various fields such as the textile
industry, rolling mills, electric vehicles and robotics. Among the various controllers avail-
able for DC motors, the Proportional Integral Derivative (PID) is the most widely used
and proved its efficiency as an accurate result provider without disturbing the steady state
error and overshoot phenomena [60]. With this controller, we also needed an efficient
tuning method to control the speed and other parameters of DC motors. In recent years,
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some researchers have explored the meta-heuristic algorithm in tuning of different types
of PID controllers. In [61], the authors presented a comparative study between simulated
annealing, particle swarm optimization and genetic algorithm. Stochastic fractal search
has been applied to the DC motor problem in [62]. The sine cosine algorithm is also used
in the determination of optimal parameters of the PID controller of DC motors in [20].
In [63], the authors proposed the chaotic atom search optimization for optimal tuning of
the PID controller of DC motors with a fractional order. A hybridized version of foraging
optimization and simulated annealing to solve the same problem was reported in [64].

LWOA CWOA AWOA OWOA WOA

Mean 22.44294433 19.67957724 18.94163348 21.27588287 22.19529618

SD 3.166458724 4.289888794 5.855781317 3.896087392 3.624564023

Min 11.76954173 11.49001778 0.424191058 11.68272924 11.6882669

Max 26.16739527 24.69547923 25.28085635 25.49910482 26.57275953

0

5

10

15

20

25

30

Mean SD Min Max

Figure 17. Comparative results of different statistical measures of independent runs.

6.3.1. Mathematical Model of DC Motors

The DC motor problem used here is a specific type of DC motor which controlled its
speed through input voltage or change in current. In DC motors, the applied voltage fb(t)
is directly proportional to the angular speed β(t) = dα(t)

dt , while the flux is constant, i.e.:

fb(t) = Hb
dα(t)

dt
= Hbβ(t) (26)

The initial voltage of armature fa(t) satisfies the following differential equation:

fb(t) = Pa
dra(t)

dt
+ Kara(t) + fa(t) (27)

The motor torque (due to various friction) developed in the process (neglecting the
disturbance torque) is given by:

τ(t) = L
dβ(t)

dt
+ Tβ(t) = Hmra(t) (28)

Taking the Laplace transform of these equations and assuming all the initial condition
to zero, we get:

Fb(s) = HbX(s) (29)

Fa(s) = (Pas + Ka)Ra(s) + Fb(s) (30)

Ω(s) = (Ls + T)X(s) = HmRa(s) (31)
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On simplifying these equations, open loop transfer function of DC motor can be
given as:

X(s)
Fa(s)

=
Hm

(Pas + Ka)(Ls + T) + Hb Hm
(32)

6.3.2. Results and Discussion

All the parameters and constant values considered in this experiment are given in
Table 12. The simulation results for tuning the PID controller for plant DC motors are de-
picted in Table 13. First column entries show the plant and controller combined realization
as a closed system and the other two entries show specification of time domain simulation
conducted when the system is subjected to step input.

After a careful observation, it is concluded that the closed loop system realized with the
proposed AWOA possesses optimal settling and rise time that itself depicts a fast transient
response of the system. Although the comparative analysis of other algorithms also depicts
very competitive values of these times, the response and convergence process of AWOA
are swift as compared to other opponents. The boxplot analysis and convergence property
analysis are shown in Figure 18. The boxplot shows the comparison of the optimization
results when the optimization is run 20 independent times. The X axis shows the AWOA,
CWOA, LWOA, OWOA and WOA algorithms. The optimal entries of settling time and
rise time are in bold face to showcase the efficacy of the AWOA. The step response of these
controllers has been shown in Figure 19.

Table 12. Various parameters of DC motors.

Motor Parameter Symbol Value

Resistance Ka 0.4 ω

Inductance Pa 2.7 H

Initial torque of motor L 0.0004 kg m2

constant of friction in motor T 0.0022 Nm s/rad2

Motor torque Hm 0.015 Nm/A

Emf constant Hb 0.05 V s/rad

Table 13. Comparison of AWOA with other algorithms for the DC motor controller design problem.

Algorithm DC Motor Closed Loop Transfer Function Settling Time Rise Time

OWOA 0.03684s2+0.2999s+0.1358
0.00108s3+0.04438s2+0.3095s+0.1358 0.0994 0.0603

WOA 0.03623s2+0.3s+0.106
0.00108s3+0.04377s2+0.3095s+0.106 0.0997 0.0609

CWOA 0.03703s2+0.3s+0.1447
0.00108s3+0.04457s2+0.3095s+0.1447 0.0993 0.0602

LWOA 0.03664s2+0.3s+0.1255
0.00108s3+0.04418s2+0.3095s+0.1255 0.0995 0.0605

AWOA 0.03703s2+0.3s+0.1447
0.00108s3+0.04457s2+0.3095s+0.1447 0.0991 0.0598
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Figure 18. Comparative results of different controllers for DC motors.

Figure 19. Step Response Analysis of Different Controllers.

7. Conclusions

This paper is a proposal of a new variant of WOA. The singing behavior of whales is
mimicked with the help of opposition-based learning in the initialization phase and Cauchy
mutation in the position update phase. The following are the major conclusions drawn
from this study:

• The proposed AWOA was validated on two benchmark suits (conventional and CEC
2017 functions). These benchmark suits comprise mathematical functions of distinct
nature (unimodal, multimodal, hybrid and composite). We have observed that for the
majority of the functions, AWOA shows promising results. It is also observed that the
performance of AWOA is competitive with other algorithms.

• The statistical significance of the obtained results is verified with the help of a boxplot
analysis and Wilcoxon rank sum test. It is observed that boxplots are narrow for the
proposed AWOA and the p-values are less than 0.05. These results show that the
proposed variant exhibits better exploration and exploitation capabilities, and with
these results, one can easily see the positive implications of the proposed modifications.
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• The proposed variant is also tested for challenging engineering design problems.
The first problem is the model order reduction of a complex control system into
subsequent reduced order realizations. For this problem, AWOA shows promising
results as compared to WOA. As a second problem, the frequency-modulated sound
wave parameter estimation problem was addressed. The performance of the proposed
AWOA is competitive with contemporary variants of WOA. In addition to that, the
application of AWOA was reported for tuning the PID controller of the DC motor
control system. All these applications indicate that the modifications suggested
for AWOA are quite meaningful and help the algorithm find global optima in an
effective way.

The proposed AWOA can be applied to various other engineering design problem,
such as network reconfiguration, solar cell parameter extraction and regulator design.
These problems will be the focus of future research.
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