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Abstract: Mental workload (MW) assessment has been widely studied in various human–machine
interaction tasks. The existing researches on MW classification mostly use non-invasive electroen-
cephalography (EEG) caps to collect EEG signals and identify MW levels. However, the activation
region of the brain stimulated by MW tasks is not the same for every subject. It may be inappropriate
to use EEG signals from all electrode channels to identify MW. In this paper, an EEG rhythm energy
heatmap is first established to visually show the change trends in the energy of four EEG rhythms
with time, EEG channels and MW levels. It can be concluded from the presented heatmaps that this
change trend varies with subjects, rhythms and channels. Based on the analysis, a double threshold
method is proposed to select sensitive channels for MW assessment. The EEG signals of personalized
selected channels, named positive sensitive channels (PSCs) and negative sensitive channels (NSCs),
are used for MW classification using the Support Vector Machine (SVM) algorithm. The results
show that the selection of personalized sensitive channels generally contributes to improving the
performance of MW classification.

Keywords: mental workload classification; EEG; heatmap; sensitive channels
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1. Introduction

In recent decades, the roles of operators tend to be as decision makers and monitors
instead of manual workers in a modern human–machine system. The mental workload
(MW) can be regarded as the proportion of information processing capability used to
perform a task, which is determined by the amount of resources required by a set of
concurrent tasks, as well as by the use of resources needed to perform them [1]. Studies
have shown that an excessive MW lasting for a long time can cause rapid fatigue, frustration,
reduced flexibility and increased mistakes; but too low a MW can lead to the waste of
resources and dissatisfaction, which might reduce job performance [2]. Thus, the major
problem in the human–machine system is being able to measure MW levels. It is important
to research the control of MW, fatigue and stress levels for busy human–machine interface
operators [3–5].

The original method to evaluate MW levels is achieved by filling scales. However, it is
possible to use physiological signals to evaluate MW due to the particularity of operators’
work in modern brain–computer interface (BCI) systems. Existing methods to evaluate
MW levels use subjective measurement, performance measurement and psychophysio-
logical measurement [6]. The first is based on the real feelings of operators measured
by the National Aeronautics and Space Administration Task Load Index (NASA-TLX)
scale [7]; the second is based on the operation of the main tasks by the operators; and
the third is based on the physiological signals of operators including those measured
by electroencephalogram (EEG), event-related brain potential (ERP), electrooculogram
(EOG) and electrocardiogram (ECG), etc. [6,8]. The principle behind MW classification
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by physiological signals is based on comparing significant feature differences in the time
domain and frequency domain at different MW levels [9]. These features contribute to
building predictable classification models. With the development of BCI technology [10–12]
and machine learning, there is growing proof of the advantages of psychophysiological
measurement in MW level assessment, and many studies have focused on MW prediction
by using classifiers established by EEG signals [13–17].

BCI technology is classified as invasive and non-invasive. The latter is extensively
used at present for safety purposes despite the former achieving a higher accuracy [18].
Based on the functions of different brain partitions, non-invasive BCI has a multi-channel
nature, and some electrode placement schemes on human scalps were recommended by the
International Federation [19,20]. Relevant studies show that the main useful information
about MW lay in five frequency bands [21–23]. Because of the multi-channel nature of non-
invasive BCI and the dividing of the frequency domain, there is an added computational
complexity to the system and a reduction in the pertinence of feature extraction, which
may cause dimension disaster or low classification accuracy.

Many existing MW classification methods use the EEG rhythm energies of all chan-
nels [24], and dimension reduction algorithms or transfer learning algorithms are usually
necessary to solve this problem. Feature dimension reduction can also be solved by channel
selection, and many efforts have been made in the selection of EEG channels. Alotaiby
et al. summarized the application of EEG channel selection to classification problems in
several fields [25]. The results confirmed the contribution of existing EEG channel selection
strategies. Alyasser et al. promoted an EEG channel selection method based on the binary
flower pollination algorithm (FPA) and β-hill climbing for personal identification [26],
which showed that half of the channel numbers can achieve high accuracy. Li et al. applied
the Gradient Class Activation Mapping (Grad-CAM) visualization technology on raw EEG
signals to the channel selection [27]. The results achieved an optimal tradeoff between
performance and the number of channels for EEG intention decoding. Moctezuma et al.
applied the non-dominated sorting genetic algorithms (NSGA) to select EEG channels [28].
Park et al. compared channel selection results based on binary PSO (BPSO), BPSO with a
channel impact factor, a genetic algorithm (GA) and harmony search (HS) [29]. Most of
these researchers focused the channel selection on an optimization problem rather than
revealing the relationship between features and EEG channels.

In existing research, many studies have shown that the regular variation between
the EEG energy of the four rhythms and MW levels is not the same in different regions.
Chen et al. analyzed the Power Spectral Density (PSD) of the channels Fp1, Fp2, Tp9
and Tp10 by three-way analysis of variance (ANOVA) and showed that the channel Fp1,
especially the gamma band, had the highest correlation with the MW level [21]. Zhu
et al. used three graph features of EEG data to analyze the relationship between different
channels. The result showed that channels O2, T8, FC6, F8 and AF4 were considered
optimal for a more efficient estimation of cognitive load [30]. Wang et al. used a mental
workload index including the ratio of frontal theta power and parietal alpha power to
analyze mental workload [23]. The result showed that the theta band activity of the frontal
lobe increased significantly with the increase in task demand, while there was a decrease in
alpha band activity in the parietal lobe. Altahat et al. analyzed the curve of Detection Error
Tradeoff (DET) using different enhancement threshold values [31]. The result revealed that
it was helpful to use combined frequency rhythms rather than a single rhythm and the
personalized EEG channel set to classify the MW.

Our study firstly builds heatmaps of EEG energy to find the personalized activation re-
gions of the brain stimulated by MW tasks for individual subjects. Then a double threshold
method is proposed to select personalized sensitive channels for MW classification. The
rest of this paper is organized as follows: Section 2 introduces the EEG signal acquisition
experiments and data preprocessing. Subsequently, the principle of the sensitive channel
selection method based on energy visualization and feature extraction is presented in detail.
Section 3 applies the proposed method to classify MW levels and compares the results
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with those without personalized sensitive channel selection. Lastly, Section 4 discusses the
summary results and next steps.

2. Materials and Methods

This paper attempts to explore the relationship between EEG rhythm energy and the
change in MW, and then conducts sensitive channel selection and feature extraction.

2.1. Experiments and Data Preprocessing

In this section, we will describe the EEG signal acquisition experiments and EEG
signal preprocessing process.

2.1.1. Experiments

Two levels of MW were set on the multi-attribute task battery (MATB-II) developed
by the National Aeronautics and Space Administration (NASA) [32], namely low mental
workload (LMW) and high mental workload (HMW). Different MW levels during the fixed
test time, 12 min, were induced by the different activation frequencies of four types of flight
tasks, namely the system monitoring, tracking, scheduling and resource management tasks,
respectively [33]. The four tasks correspond to numbers 1, 2, 3 and 4 in Figure 1. The details
of each task are shown in Table 1. It should be noted that the time of each task and the
order of multiple tasks were set as random values.
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Figure 1. Area 1, 2, 3 and 4 are four tasks interface of MATB-II.

Thirty-two EEG electrode channels (Fp1, Fp2, F11, F7, F3, Fz, F4, F8, F12, FT11, FC3,
FCz, FC4, FT12, T7, C3, Cz, C4, T8, CP3, CPz, CP4, M1, M2, P7, P3, Pz, P4, P8, O1, Oz
and O2) were placed on the scalp of the subject mainly according to 10–20 international
electrode system [19]. M1 was set as the reference while collecting EEG signals by using
the Neuroscan Neuamps system (Synamps2, Scan 4.3, EI Paso, TX, USA). The recording
bandwidth was 0.1–200 Hz and the digital sampling rate was 1024 Hz.

According to the selection criteria of “high performance” and “less artifacts”, the EEG
signals of 10 participants with engineering knowledge background in Beihang University
(aged 23.4 ± 0.8 years, with 2 females and 8 males) were selected to analyze. The subject
number is represented by m (m = 1, 2, . . . , 10) and it can be labeled as Sub1–Sub10. The
criterion of “high performance” meant the accuracy rate of operating performance should
be greater than 90% and the criterion of “less artifacts” meant the artifacts should be less
than 40% of original EEG signals. All participants had trained for 15 days before the
experiment to become familiar with operating instruments and different tasks in MATB-II.
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In formal experiments, the one-day experiment was divided into two stages (morning
and afternoon), and the experiment tasks of each stage consisted of one LMW test and
one HMW test. Subjects had a 5-min rest at the beginning and end of every test. The
experiment design adopted the Latin square method to eliminate the influence of LMW
and HMW test sequences on EEG signals. EEG signals of every subject in LMW and HMW
experiments were collected during two-day experiments. The NASA-TLX scale was also
filled immediately after every MATB task to subjectively evaluate the MW state.

Table 1. Details of four tasks.

Title Description
Activation Frequency

LMW HMW

System Monitoring

Monitor the scales of
F1–F4 in Area 1 and

respond with a mouse
when the scales are

not around the center

1 24

Tracking

In Area 2, keep the
target at the grid

center by joystick in
MANUAL mode and
no action is required

in AUTO mode.

1 24

Scheduling

Monitor scheduling
bar in Area 3 and

respond to the
activated

communication with
keyboard

immediately.

1 24

Resource
Management

Monitor oil volume in
tanks and pump

status in Area 4. Click
the corresponding oil
pump with a mouse

when a failure occurs.

1 24

The NASA-TLX results showed that the overall scores gradually increased with the
increase in MW levels (LMW: 39.8 ± 15.0; HMW: 63.7 ± 8.2), which means that different
task frequencies had successfully caused differences in MW levels. In addition, to find out if
MW experiments were not affected by fatigue or emotional factors, subjects were required
to fill the Positive and Negative Affect (PANAS) [34] scale and Karolinska Sleepiness
Scale (KSS) [35] before and after each MATB task, separately. We calculated the average
results of PANAS and KSS scales before and after experiments. The average positive
emotion data of PANAS were 25.655 and 25.367, and the average negative emotion data of
PANAS were 12.733 and 12.931. The ratios of positive and negative emotion changes were
0.9888 and 1.0156, respectively, which means that subjects were not affected by emotion
significantly during the MW experiments. The average results of KSS were 4.333 and 5.931,
respectively, which means that the subjects were not overly alert or fatigued before and
after experiments.

2.1.2. Data Preprocessing

To reduce the influence of various noises and artifacts in EEG signals on MW classifica-
tion, it is necessary to remove these artifacts. Firstly, the re-reference of original EEG signals
is reset as the average value of M1 and M2. The re-referenced EEG signals are filtered
with a 1–30 Hz Finite Impulse Response (FIR) band-pass filter. The temporary artifacts
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are manually rejected by using Independent Components Analysis (ICA) according to
Reference [36]. It is noted that the EEG data are not normalized after then. According to the
10–20 system, which is endorsed as the standard of the American Electroencephalographic
Society (AES) and the International Federation of Societies for Electroencephalography and
Clinical Neurophysiology (IFSECN), 26 channels are retained as analyzed channels except
for F11, F12, FT11, FT12, M1 and M2. Therefore, 26-channel EEG data without artifact
components are obtained. EEG signals for every MW level are preprocessed as above and
are used for subsequent analysis and calculations.

2.2. MW Classification Method Based on Selected Sensitive Channels
2.2.1. MW Levels Visualization Method Based on Heatmap

Studies have shown that the PSD at different frequencies can represent the voltage
fluctuations under different MW levels [37–39]. The EEG signals can be divided into four
rhythms according to the frequency band distribution: δ (1–4 Hz), θ (4–8 Hz), α (8–12 Hz)
and β (12–30 Hz). The multitaper spectral estimation method based on PSD is used to
calculate the average PSDs in one epoch of each channel [40,41], namely p f req,ch(i). Then
energy values are obtained by summing individual p f req,ch(i) in the specific frequency
band, as shown in Equation (1).

E∗δ,ch(i) =
4
∑

f req=1
p f req,ch(i)

E∗θ,ch(i) =
8
∑

f req=4
p f req,ch(i)

E∗α,ch(i) =
12
∑

f req=8
p f req,ch(i)

E∗β,ch(i) =
30
∑

f req=12
p f req,ch(i)

(1)

where ch represents the EEG channel, and there are 26 channels to analyze in this study; i
represents the epoch, i = 1, 2, . . . I, and I is the number of epochs; E∗δ,ch(i), E∗θ,ch(i), E∗α,ch(i)
and E∗β,ch(i) are the energy values of channel ch for δ, θ, α and β in the ith epoch, respectively;
p f req,ch(i) refers to the average PSDs of the channel ch in the ith epoch at a certain frequency.

The middle 11-min cleaned EEG data are chosen for further analysis. According to
the previous studies [42], the time length of an epoch is set to 2 s, and there are 330 epochs
for the 11-min EEG signals in an MW level experiment. Thus I = 330 in this study. The
frequency sampling interval is 1.42 Hz.

The relative power spectrum is obtained by normalizing the absolute power spectral

Eall,ch(i) =
30
∑

f req=1
p f req,ch(i)

Eδ,ch(i) =
E∗δ,ch(i)

Eall,ch(i)
, Eθ,ch(i) =

E∗θ,ch(i)
Eall,ch(i)

, Eα,ch(i) =
E∗α,ch(i)
Eall,ch(i)

, Eβ,ch(i) =
E∗β,ch(i)
Eall,ch(i)

(2)

where Eall,ch(i) refers to the PSD at 1–30 Hz; Eδ,ch(i), Eθ,ch(i), Eα,ch(i) and Eβ,ch(i) are
four relative energy values of the ith epoch of channel ch, respectively.

EEG energy for every MW level is calculated using Equations (1) and (2). EEG rhythm
energy matrixes of Sub m in channel ch are recorded as EL

m,ch and EH
m,ch with Label L and H in

the upper right-hand corner to represent the levels of LMW and HMW, respectively. It is worth
noting that EL

m,ch = [EL
δ,ch, EL

θ,ch, EL
α,ch, EL

β,ch]
T, EL

m,ch ∈ R4×330 and it is similar for EH
m,ch.

To reveal the relationship between EEG energy and MW levels in each EEG channel,
we refer to the visualization method of cluster analysis in gene sequences [43,44] and
first establish an EEG rhythm energy heatmap. EL

m,ch and EH
m,ch of 26 channels are plotted

together to observe the change trends of four EEG rhythm energies with epochs or time,
EEG channels and MW levels. EL

m,ch is uniformly placed above EH
m,ch for a better comparison.
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It should be noted that the Latin square design was used in experiments, so the sequence of
LMW and HMW shown in the heatmap is not the real MW test sequence in the experiments.
Take EL

δ,ch and EH
δ,ch of Sub 5 in the first experiment as an example, Figure 2 shows the

visualization process of EL
5,ch and EH

5,ch. The min(EL
δ,ch, EH

δ,ch) and max(EL
δ,ch, EH

δ,ch) are set as
the upper and lower limits in the color palette of color mapping, separately. The presented
energy–channel–epoch heatmap can reveal the relationship between MW levels, EEG
channels and energy values.
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Figure 2. Energy–channel–epoch heatmap drawing flow.

In the energy–channel–epoch heatmap, the y-axis on the left represents epochs in
chronological order, the x-axis at the bottom corresponds to 26 EEG channels, and the
y-axis color palette on the right visualizes the EEG energy with a color gradient and the
color palette. Same rhythm energy values in low and high MW levels, EL

δ,ch and EH
δ,ch,

are plotted together to compare directly. It is similar to the visualization process of the
other three EEG rhythm energy. Observational analysis of heatmaps lay the foundation for
sensitive selection, and we built a mathematical method to implement this process rather
than observation.

2.2.2. Selection Method of Sensitive Channels

A double threshold method is proposed to select the personalized sensitive channels.
The double threshold method involves two threshold coefficients: the sensitivity coefficient
threshold, sens, and the correlation coefficient threshold, corr. Here sens and corr are both in
the range between 0 and 1.

In this method, the first step is to judge the sensitivity of 26 channels, and then they
will be divided into three types: positive sensitivity channel (PSC), negative sensitivity
channel (NSC) and insensitive channel. For the decomposed matrixes, EL

m,ch and EH
m,ch, their

energy forward differences are used to represent the sensitivity, as shown in Equation (3).

∆Em,ch = EH
m,ch − EL

m,ch (3)

where ∆Em,ch is energy forward differences of channel ch for Sub m.
If ∆Em,ch > 0, the channel ch is the PSC; if ∆Em,ch < 0, the channel ch is the NSC; if

∆Em,ch = 0, the channel ch is the insensitive channel.
The second step is to calculate the sensitivity coefficient to select sensitive channels

using the sensitivity coefficient threshold. For channel ch of Sub m, ∆Em,ch is calculated
in every epoch, and the times of ∆Em,ch > 0 are obtained for all 330 epochs. Let Pm,ch and
Nm,ch be the times that channel ch is deemed to be PSC and NSC, respectively. Define the
positive sensitivity index of channel ch as senpo

m,ch = Pm,ch/I and the negative sensitivity
index as senne

m,ch = Nm,ch/I. The sensitivity coefficient threshold of channel ch is denoted
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as sensm. All channels that meet senpo
m,ch ≥ sensm are marked with 1, namely PSCs; all

channels that meet senne
m,ch ≥ sensm are marked with −1, namely NSCs; others are marked

with 0. Therefore, 26-tuple vectors of each rhythm, described as X∗m,δ, X∗m,θ , X∗m,α and X∗m,β,
are obtained, which represent the results of sensitive channel selection marked with 0, 1
and −1. The selection results of PSCs and NSCs for the four rhythms can be denoted as
X∗m = [X∗m,δ, X∗m,θ , X∗m,α, X∗m,β]

T , X∗m ∈ R4×26.
The third step is to calculate the Pearson correlation coefficients for PSCs and NSCs,

and select sensitive channels using the correlation coefficient threshold. Energy values of
low and high MW levels are simultaneously used to calculate the correlation coefficient
between channels. Thus, the energy matrix used for the correlation coefficient calculation
can be recorded as Em,ch = [EL

m,ch, EH
m,ch], Em,ch ∈ R4×660. The Pearson coefficient between

them can be obtained with Equation (4).

corrm(ch1, ch2) =
cov(Em,ch1, Em,ch2)

σEm,ch1 σEm,ch2

(4)

where corrm(ch1, ch2) represents the Pearson correlation coefficient of four EEG rhythm
energies of channels ch1 and ch2, and corrm(ch1, ch2) ∈ R4×2×2; ch1 belongs to PSCs
or NSCs of each rhythm selected in the second step, and ch2 is any one of 26 channels;
cov(Em,ch1, Em,ch2) is the covariance of Em,ch1 and Em,ch2; σEm,ch1 and σEm,ch2 represent the
standard deviation of Em,ch1 and Em,ch2, respectively.

The correlation coefficient threshold of Sub m is denoted as corrm. If channel ch2
satisfies corrm(ch1, ch2) ≥ corrm, it is marked with 1 when ch1 corresponds to PSCs in X∗m.
Similarly, if the channel ch2 meets corrm(ch1, ch2) ≥ corrm, it is marked with −1 when
ch1 corresponds to NSCs in X∗m. Others are marked with 0. Therefore, a 26-tuple vector
is obtained for each ch1. Then two 26-tuple vectors are obtained by operating logical
conjunction on all 26-tuple vectors when ch1 belongs to PSCs and NSCs of each rhythm
energy, separately. Finally, new 26-tuple vectors of each rhythm energy, described as
Xm,δ, Xm,θ , Xm,α and Xm,β, are obtained by calculating the sum of the two 26-tuple vectors.
PSCs’ and NSCs’ selection results for the four EEG rhythm energy can be denoted as
Xm = [Xm,δ, Xm,θ , Xm,α, Xm,β], Xm ∈ R4×26. Xm is used to complete the feature extraction
for MW classification in the next subsection.

2.2.3. Feature Extraction Method

This section will mainly describe the feature extraction method based on the selected
PSCs and NSCs. Take the MW feature extraction of δ rhythm as an example. According to
Equation (2), the δ rhythm energy of 26 channels can be represented as Em,δ = [EL

m,δ, EH
m,δ],

where EL
m,δ = [EL

δ,Fp1, EL
δ,Fp2, . . . , EL

δ,ch, . . . , EL
δ,O2]

T , EL
m,δ ∈ R26×330, and it is similar to EH

m,δ.
According to the definition of sensitivity in Equation (3), there is a negative correlation
between PSCs and NSCs, so the energy difference in the PSCs and NSCs is calculated to
offset the opposite sensitivity. The MW features can be calculated by Equation (5).

Fm,δ = Xm,δ · Em,δ (5)

where Fm,δ represents the δ rhythm energy features extracted from Sub m.
The feature extraction calculations for θ, α and β rhythms are the same as the δ

rhythm, according to Equation (5). Hence, the energy features of Sub m can be described
as Fm = [Fm,δ, Fm,θ , Fm,α, Fm,β]. It is worth noting that the feature dimension of Sub m is
determined by the rank of the matrix Xm, namely Fm ∈ Rrank(Xm)×660. If rank(Xm) = 0, it
can be regarded that the EEG energy features of the subject are insensitive to these MW
experiments and the energy features are not separable.
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2.2.4. Classification Algorithm

In this study, the traditional Support Vector Machine (SVM) [45] algorithm is used to
classify MW levels even though several SVM augmentations have been developed [46].
The features extracted with Equation (5) are randomly divided into the training set and
the validation set by a ratio of 70% to 30%. The grid search method is used to obtain the
optimal model parameters on the training set. The search space of the kernel function
is {linear, rbf}, the penalty coefficient C is optimized from {0.1, 1, 10, 100} and the kernel
parameter γ required for the rbf kernel function is optimized from {0.01, 0.1, 1, 10}. To
ensure model robustness and reduce overfitting, the five-fold cross-validation is performed
in the classification algorithm.

3. MW Classification Results and Analysis

In this section, the energy–channel–epoch heatmaps and sensitive selection results are
analyzed. The proposed sensitive channel selection method and feature extraction method
are applied to MW classification. The classification performance of MW is compared with
the existing method.

3.1. Analysis of Energy–Channel–Epoch Heatmaps

For the four rhythms of Sub m in every experimental period, four energy–channel–
epoch heatmaps have been plotted by the visualized method in Section 2.2.1. The heatmaps
can help us to visually and directly observe the sensitivity of channels to tasks. The same
rhythm energy values of one subject in the same experimental period are plotted in one
subgraph. Three aspects are further analyzed using the heatmap as follows.

1. The change trend of the four rhythm energies in the heatmaps for the same subject
in the same experimental period.

If we take Sub 1 as an example, Figure 3a–d show the energy–channel–epoch heatmaps
of the four rhythms in the first experimental period.

As seen in Figure 3a,b, the δ and θ rhythm energy values of all channels decrease with
the increase in MW levels, and the downward trend corresponds to the O1, Oz and O2
channels in the occipital region, which is particularly significant. In Figure 3c, the blue
color of the forehead region becomes lighter with the increase in MW levels, which means
the α rhythm energy has a slight increase trend, but the energy of the pillow region shows
a significant decreasing trend. In Figure 3d, the β rhythm energy of all channels shows an
increasing trend as MW levels go from low to high, and the trend of the occipital region is
particularly obvious. The change is the opposite to the δ and θ rhythm energy values in
Figure 3a,b.
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Figure 3. Energy–channel–epoch heatmaps for Sub 1 in the first experimental period.

From the above analysis, it can be concluded that the overall EEG rhythm energy
values change with MW levels for the same subject in the same experimental period, but
their change trends vary with rhythms and channels.

2. The change trend of one rhythm energy in the heatmaps for the same subject in
different experimental periods.

If we take Sub 8 as an example, Figure 4a,b show the energy–channel–epoch heatmaps
of α rhythm in the first to fourth experimental periods.

As seen from each subgraph, the rhythm energy values in the forehead region increase
with the increase in MW levels, but with a downward trend near the occipital region. The
overall change trend of the α rhythm energy is similar in the four experiments.

From the above analysis, it can be concluded that the change trend of the overall EEG
rhythm energy values with MW levels is the same for the same rhythm of the same subject
in different experimental periods, but varies with channels.
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Figure 4. Energy–channel–epoch heatmaps of α rhythm for Sub 8 in 1st to 4th experimental periods.

3. The change trend of one rhythm energy in the heatmaps for different subjects in
the same experimental period.

If we take the second experimental period as an example, Figure 5a–d show energy–
channel–epoch heatmaps of the α rhythm energies of Sub 1, 3, 7 and 9.

As seen from Figure 5a, the α rhythm energies in the forehead region move upwards
with the increase in MW levels, but there is a downward trend in the occipital region. In
Figure 5b, an upward trend in the overall energies can be observed in all EEG channels
as MW levels move from low to high. In Figure 5c, the blue color of the forehead region
becomes lighter with the increase in MW levels, which means the α rhythm energy has an
increasing trend, but the energy of the central region and pillow region shows a significant
decrease trend. In Figure 5d, a downward trend of the overall energies can be observed in
all EEG channels with the increase in MW levels.

From the above analysis, it can be concluded that the change trends of the four EEG
rhythm energies with different MW levels vary with subjects and channels even in the
same experimental period.
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Based on the above analysis of the energy–channel–epoch heatmaps, some conclusions
can be obtained:

(1) The energy value in one epoch cannot represent the MW level very well.
(2) For the same subject, the four EEG rhythm energy values change with the MW level

steadily. This means that the sensitivity of channel energy to MW levels is also stable
with time in the short term. It should be noted that this conclusion is based on the
experimental conditions and other objective factors being the same.

(3) The sensitivity of the EEG channels to MW levels is divided into three types: positive
sensitivity (energy value is positively correlated with MW levels), negative sensitivity
(energy value is negatively correlated with MW levels) and insensitivity.

(4) Eδ,ch, Eθ,ch, Eα,ch and Eβ,ch separately and regularly vary with MW levels, but their
degrees of change are different among subjects.

3.2. Analysis of Sensitivity Threshold

The MW classification method with the features extracted with Equation (5) involves
two threshold variables: sensm and corrm. The correlation coefficient threshold is set as
corrm = 0.95 for all subjects. The influence of different sensm on MW classification is
analyzed as follows.

The search space of sensm is set as {0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9}. The features
extracted from the EEG data for two experiments on the first day are used as the training
data for MW classifier construction. The features extracted from the EEG data for the two
experiments on the second day are used as test data, and the feature extraction of the test
set is based on the sensitive channel selection results of the training set. Test accuracies
with different sensitivity coefficient thresholds are shown as follows:

From Figure 6, some conclusions can be drawn:

(1) The MW classification accuracies of Subs 3, 5 and 8 are positively correlated with sens.
(2) The values of sens for Subs 1, 2, 4, 6 and 10 are non-monotonic.
(3) The relationship between classification accuracy and sens is roughly negative for Subs

1 and 9.
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cient thresholds.

According to the polynomial curve fitting in Figure 6, the optimal and worst sens of
each subject can be obtained, as shown in Table 2.

Table 2. Classification results with optimal and worst sens.

Subject Optimal Worst

sensm
Test Accuracy

(%) sensm
Test Accuracy

(%)

Sub 1 0.75 73.44 0.55 61.98
Sub 2 0.7 76.04 0.55 61.98
Sub 3 0.9 94.27 0.55 63.02
Sub 4 0.7 81.25 0.55 57.81
Sub 5 0.9 97.92 0.55 90.63
Sub 6 0.75 100 0.55 82.29
Sub 7 0.55 98.44 0.9 89.58
Sub 8 0.9 100 0.55 92.71
Sub 9 0.55 100 0.9 89.58
Sub 10 0.8 99.48 0.9 56.77

From Table 2, we can observe that:

(1) The accuracy with the optimal sens ranges from 73.44% to 100%, and the average
is 92.08%.

(2) The accuracy with the worst sens ranges from 56.7% to 92.71%, and the average
is 74.64%.

(3) The improvement in test accuracy for each subject ranges from 7.29% to 42.71%, and
the average is 17.45%.

3.3. Selection Results with Optimal MW Classification Accuracy

If we take Subs 1 and 8 as examples, this section shows the channel selection results
with the optimal sens in Table 2, namely sens1 = 0.75 and sens8 = 0.9. EEG channel
diagrams of the four rhythms are shown in Figures 7 and 8. The channels are marked with
a red or blue color, which means that the energies presented in the four rhythms of certain
channels are sensitive to MW levels. The red and blue color channels represent the PSCs
and NSCs, respectively. Their corresponding values are 1 and−1 in matrix Xm, respectively.



Mathematics 2022, 10, 2266 13 of 17

The black color channels represent insensitive channels and their values are 0 in matrix
Xm. For Subs 1 and 8, their feature dimensions are both four, namely rank(X1) = 4 and
rank(X8) = 4, respectively.
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For Sub 1, Figures 3 and 7 reflect different aspects of the four EEG rhythm energies.
Figure 7 shows the sensitive channel selection results of the PSCs and the NSCs, and
Figure 3 shows the energy–channel–epoch heatmaps. Figures 4 and 8c show similar results
for Sub 8. From Figures 3, 4, 7 and 8, the results of the sensitive channel selection are
consistent with the heatmaps.

Comparing the sensitive channel selection diagrams with the energy–channel–epoch
heatmaps, some conclusions can be observed:

(1) In Figure 7a, almost all channels are marked as NSCs for the δ and θ rhythm energies.
It means that the δ and θ rhythm energies decrease with the increase in MW levels,
which corresponds to the trend shown in Figure 3a,b.

(2) In Figure 7c, the red channels in the forehead region and the blue channels in the oc-
cipital region are consistent with the increase in alpha rhythm energies in the forehead
region and the decrease in the occipital region shown in Figure 3c, respectively.

(3) In Figure 7d, 26 channels are selected as PSCs, which means that the beta rhythm ener-
gies of all channels increase with MW levels, which is consistent with the information
shown in Figure 3d.

(4) In Figure 8c, the channels in the forehead are marked as PSCs with a red color and the
channels in the occipital regions are marked as NSCs with a blue color, which is the
same as the analysis results of Figure 4.

3.4. Comparison of MW Classification Using Sensitive Channels and All Channels

Two MW classification methods are compared in this section. The former method
presented in this study is named Method 1 using the selected sensitive channels, and the
latter is named Method 2 using all channels.



Mathematics 2022, 10, 2266 14 of 17

Method 1: It is proposed in this study to build MW classifiers based on the PSCs
and the NSCs. In this method, after calculating the four EEG rhythm energies, the PSCs
and the NSCs of the four rhythms are selected by the double threshold method, and then
the selection results are used to obtain the MW features with Equation (4). The feature
dimension is determined by the sensitive channel selection results. Finally, these features
are used for training using the SVM.

Method 2: This realizes an MW classification by using all rhythm energies from
26 channels. This method directly extracts MW features by calculating the sum of the
rhythm energies of 26 channels. The features calculated by Method 2 are 4-dimensional
for each subject. Then the features are used for training using the SVM with the same
parameter settings as in Section 2.2.4.

To observe the influence of sensitive selection on MW classification, test accuracies
with the optimal and worst values of sens in Method 1, as shown in Table 2, are compared
with the test accuracies of Method 2, as shown in Figure 9. The max and min values of
the classification accuracies of Method 1 are obtained by setting the optimal and worst
sens, respectively.
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From Figure 9, some conclusions can be observed:

(1) The accuracies of Method 2 range between 31.77% and 96.88%, and the average
accuracy is 63.39%.

(2) The accuracies of Method 1 with the optimal sens are higher than those of Method 2,
and the improvement in the test accuracy ranges between 3.13% and 48.44% with an
average of 28.69%.

(3) The accuracies of Method 1 with the worst sens are mostly higher than those of Method
2 except for Subs 3 and 8, and the improvement in the test accuracy ranges between
2.08% and 35.42% with an average of 11.25%.

4. Discussion

It is possible to explore the regularity of rhythmic energy in various channels with
different MW levels. In the current literature, the channel selection problem is often
regarded as a complex multi-objective optimization problem. However, in this study, the
energy visualization method is presented for the first time to show the multi-information
of EEG signals simultaneously, including time, frequency and spatial domain information.
The energy–channel–epoch heatmaps generated by this method reveal that the overall EEG
energies of each channel sensitively vary with MW levels, but this change varies for different
rhythms and subjects. There are three tendencies for EEG rhythm energies changing with
the increase in MW levels: positive sensitive, negative sensitive and insensitive. However,
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the trend varies with subjects, rhythms and channels. The energy of a single epoch cannot
interpret the MW level effectively; that is, the energy features extracted from EEG signals
that are too short might be unfavorable to classification accuracy. In future work, we will
further investigate the stability of the optimal signal length for MW classification and the
temporal stability of EEG energy changing with MW levels.

This study provides a new idea for similar research in other fields of machine learning
with multi-information relevance. However, the presented double threshold method for
sensitive EEG channel selection has a limit for obtaining the optimal sensitivity coefficient
threshold for each subject, therefore, a pre-experiment should be carried out in order to
ensure good MW classification accuracy.

5. Conclusions

The brain activation region stimulated by MW tasks is not the same for every subject.
In this paper, heatmaps are presented to visualize the change trends of four EEG rhythm
energies with time, EEG channels and MW levels. Then a double threshold method is
proposed to select sensitive channels according to the analysis results of the heatmaps. The
selection results are consistent with the analysis of energy–channel–epoch heatmaps. The
PSCs, NSCs and insensitive channels are specially labeled as 1, −1 and 0. Their features are
extracted and are used to train an MW classifier with the SVM algorithm.

Some conclusions can be obtained:

(1) Selection results of sensitive channels

The personalized sensitivity threshold of each subject obtained by experiments finally
determines the selection results of sensitive channels. A too high or too low sensitivity
threshold may reject some channels containing useful information or introduce redundant
channel information.

(2) Classification accuracy comparisons

The results show that the MW classification accuracy of the presented method using
selected channels is between 73.43% and 100% with an average accuracy of 92.08%. Com-
pared with the method using all EEG channels, the classification accuracies with the worst
sens are still higher for most subjects and the average accuracy is improved by 11.25%.
With the optimal sens, the test accuracy can be improved from 3.13% to 48.44%, and the
average accuracy can be improved by 28.69%. The results show that sensitive channels can
contribute to the improvement in MW classification accuracy.
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