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Abstract: The synchronization problem for impulsive fractional-order Cohen–Grossberg neural
networks with generalized proportional Caputo fractional derivatives with changeable lower limit at
any point of impulse is studied. We consider the cases when the control input is acting continuously as
well as when it is acting instantaneously at the impulsive times. We defined the global Mittag–Leffler
synchronization as a generalization of exponential synchronization. We obtained some sufficient
conditions for Mittag–Leffler synchronization. Our results are illustrated with examples.
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1. Introduction

Recently, differential equations with various types of fractional derivatives have been
widely studied because of their applications in various areas of science and engineering (see,
for example, ref. [1] ( star clusters), ref. [2]( viscoelasticity), ref. [3] (optics), ref. [4] (dynamics
of a free particle)). In the literature there are various types of fractional derivatives with
different properties. The main common property of fractional derivatives is connected with
the memory which differs from integer-order derivatives (see, for example, ref. [5] and the
cited therein references). Recently [6,7] generalized proportional integrals and derivatives
were introduced and applied to differential equations (see, for example, refs. [8,9]). These
integrals and derivatives generalize the classical Riemann–Liouville and Caputo fractional
integrals and derivatives. At the same time, to describe more adequate dynamics of
processes with sudden, discontinuous jumps, impulses are involved in fractional differential
equations (see, for example, refs. [10–12]).

In the past decades, complex networks have been intensively studied. Synchronization
has always been a hot research topic in complex systems. The exponential synchronization
for various types of neural networks with ordinary derivatives are studied, for example,
in [13] ( for inertial Cohen–Grossberg delayed neural networks), in [14] (for chaotic delayed
neural networks with impulsive effects), in [15] (for Cohen–Grossberg neural networks
with mixed time-delays), in [16] (for Cohen–Grossberg neural networks with impulse
controller).

Recently, there were some kinds of synchronization have been investigated for neu-
ral networks with various type of fractional derivatives (see, for example, refs. [17–19]).
The Cohen–Grossberg neural network is one of the most typical and popular neural net-
work models because it contains some well-known neural networks such as recurrent
neural networks, cellular neural networks, and Hopfield neural networks as a special case.
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The Cohen–Grossberg neural network models have been widely applied within various
engineering and scientific fields such as optimization problems, system control, signal
processing, associative memory, pattern recognition, and new class of artificial neural
networks. In order to synchronize nonlinear dynamical systems, impulsive control strat-
egy, as an important control means, has been widely concerned. However, to the best
of the authors’ knowledge, there are only a few corresponding results on the impulsive
generalizations of fractional Cohen–Grossberg neural networks reported in the existing
literature. Very recently, in [20] an example of an impulsive control for the exponential
synchronization of Cohen–Grossberg neural networks with Caputo fractional derivative
was presented. In the paper [21] a class of impulsive control memristive Cohen - Grossberg
neural networks with state feedback and Caputo fractional derivative is introduced, and a
synchronization analysis is studied. In both papers the Caputo fractional order derivative
with a fixed lower limit at the initial time is applied.

Note that in the application of impulses to the fractional differential equation it is
very important to take care of the connection between the lower limit of the fractional
derivative and the impulses. There are two basic types of impulsive fractional differential
Equations [22]:

• Fixed lower limit of the fractional derivative at the initial time point;
• Changeable lower limit of the fractional derivative at any impulsive time.

Note both types of impulsive fractional differential equations have different properties
and different methods for investigation and we are not able to mix these two types of
fractional impulsive equations. For example, when Caputo fractional derivative with fixed
lower limit at the initial time is applied and we consider the following scalar impulsive
fractional differential equation

C
t0

Dαu(t) = λu(t), t ∈ (tk, tk+1], k ∈ Z0, u(tk + 0) = bku(tk), k ∈ Z+, (1)

where λ, bk are constants and the points tk : tk−1 < tk < tk+1, k ∈ Z+ are initially given.
Then on (t0, t1] the solution u(t) = u(t0)Eα(λ(t − t0)

α). However, on (t1, t2] the
solution is not given by u(t) = u(t1+)Eα(λ(t − t1)

α (similar is the situation with other
types of fractional derivatives, such as see, for example, the proof of Theorem 2 [20],
Equation (28) [21]).

At the same time, if we consider Caputo fractional derivative with changeable lower
limit and we consider the following scalar impulsive fractional differential equation

C
tk

Dαu(t) = λu(t), t ∈ (tk, tk+1], k ∈ Z0, u(tk + 0) = bku(tk), k ∈ Z+, (2)

then on (t1, t2] the solution is given by u(t) = u(t1+)Eα(λ(t− t1)
α).

In connection with the above-given discussions, we will study Cohen–Grossberg
neural networks modeled by differential equations with generalized proportional Caputo
fractional derivatives and impulses at initially given time points. We define Mittag-Lefller
stabilization. We will apply the quadratic Lyapunov functions to obtain conditions for
Mittag–Leffler stabilization which is a fractional generalization of exponential stabilization
(see Remark 5).

In studying the stability or stabilization of differential equations one of the most useful
methods is the Lyapunov method. The most applied functions are absolute values functions
and quadratic functions. When the absolute value Lyapunov function is applied, for exam-
ple, with Caputo fractional derivative, then the inequality C

t0
Dα

t |u(t)| ≤ sign(u(t)) C
t0

Dα
t u(t)

is not true for any continuous and differentiable function.
In this paper, a generalized proportional Caputo fractional differential model of

Cohen–Grossberg neural networks with impulses is studied. We study the case when the
lower limit of the fractional derivative is changing after each impulsive time. To the best of
our knowledge this is the first model of neural networks with impulses and generalized
proportional Caputo fractional derivative studied in the literature. Both cases of contin-
uously acting control and impulsive control are studied. Mittag–Leffler synchronization
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is defined and studied. It is a generalization of the exponential synchronization. Our
sufficient conditions naturally depend significantly on the fractional order of the model.

2. Preliminary Notes on Generalized Proportional Fractional Derivatives

We recall that the generalized proportional fractional integral and the generalized
Caputo proportional fractional derivative of a function u : [a, b]→ R, (b ≤ ∞), are defined,
respectively, by (as long as all integrals are well defined, see [6,7])

(aIα,ρu)(t) =
1

ραΓ(α)

∫ t

a
e

ρ−1
ρ (t−s)

(t− s)α−1u(s) ds, t ∈ (a, b], α ≥ 0, ρ ∈ (0, 1],

and

(C
aDα,ρu)(t) = (aI1−α,ρ(D1,ρu))(t)

=
1

ρ1−αΓ(1− α)

∫ t

a
e

ρ−1
ρ (t−s)

(t− s)−α(D1,ρu)(s) ds,

for t ∈ (a, b], α ∈ (0, 1), ρ ∈ (0, 1],

where (D1,ρu)(t) = (Dρu)(t) = (1− ρ)u(t) + ρu′(t) and Γ(z) =
∫ ∞

0 sz−1e−sds.

Remark 1. If ρ = 1, then the generalized Caputo proportional fractional derivative is reduced to
the classical Caputo fractional derivative.

Denote by Cα,ρ[a, b] = {u : [a, b]→ R : (aDα,ρu)(t) exists on (a, b]}.

Remark 2. The generalized proportional Caputo fractional derivative could be generalized for
u : [a, b]→ Rn component-wise.

Lemma 1 (Theorem 5.3 [6]). Let u ∈ Cα,ρ[a, b], ρ ∈ (0, 1] and α ∈ (0, 1). Then we have

(aIα,ρ(C
aDα,ρu))(t) = u(t)− u(a)e

ρ−1
ρ (t−a), t ∈ (a, b].

Corollary 1 ([6]). Let u ∈ Cα,ρ[a, b], ρ ∈ (0, 1] and ρ ∈ (0, 1], α ∈ (0, 1). Then

(C
aDα,ρ(aIα,ρu))(t) = u(t), t ∈ (a, b].

Lemma 2 (Theorem 5.2 [6]). For ρ ∈ (0, 1] and α ∈ (0, 1), ρ ∈ (0, 1], we have

(aIα,ρe
ρ−1

ρ t
(t− a)β−1)(τ) =

Γ(β)

ραΓ(β + α)
)e

ρ−1
ρ τ

(τ − a)β−1+α, β > 0.

Remark 3. The generalized proportional Caputo fractional derivative of a constants is not zero for
ρ ∈ (0, 1) (compare with the Caputo fractional derivative of a constant).

Corollary 2 (Remark 3.2 [6]). For ρ ∈ (0, 1] and α ∈ (0, 1) the equality

(C
aDα,ρe

ρ−1
ρ (.)

)(t) = 0 for t > a

holds.

Lemma 3 (Lemma 3.2 [9]). If u ∈ C1([a, ∞),R), ρ ∈ (0, 1] and α ∈ (0, 1) then

(C
aDα,ρu2)(t) ≤ 2u(t)(C

aDα,ρu)(t) for t > a.
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From Lemma 1, we have the following result for the initial value problem for the
generalized proportional Caputo fractional differential equation

(C
aDα,ρu)(t) = f (t, u(t)), t > a,

u(a) = u0, α ∈ (0, 1), ρ ∈ (0, 1].
(3)

Lemma 4. For ρ ∈ (0, 1] and α ∈ (0, 1) the solution u(t) of (3) satisfies the integral equation

u(t) = u0e
ρ−1

ρ (t−a)
+

1
ραΓ(α)

∫ t

a
e

ρ−1
ρ (t−s)

(t− s)α−1 f (s, u(s))ds, t ∈ (a, b].

We will use the explicit form of the solution of the initial value problem for the scalar
linear generalized proportional Caputo fractional differential equation which is given in
Example 5.7 [6] and which is (with necessary slight corrections):

Lemma 5. The solution of the scalar linear generalized proportional Caputo fractional initial
value problem

(C
aDα,ρu)(t) = λu(t), u(a) = u0, α ∈ (0, 1), ρ ∈ (0, 1] (4)

has a solution
u(t) = u0e

ρ−1
ρ (t−a)Eα(λ(

t− a
ρ

)α),

where Eα(t) is the Mittag–Leffler function of one parameter.

We will use the following result

Lemma 6 ([9]). Let u ∈ C1([a, ξ],R), u(ξ) = 0 and ρ ∈ (0, 1] and α ∈ (0, 1) , then

(C
aDα,ρu)(t)|t=ξ =

ρα

Γ(−α)

∫ ξ

a
e

ρ−1
ρ (ξ−s) u(s)

(ξ − s)α+1 ds− ρα

Γ(1− α)
e

ρ−1
ρ (t−a) u(a)

(ξ − a)α
. (5)

From Lemma 6 and the inequality Γ(−α) < 0, α ∈ (0, 1) we obtain the following result:

Corollary 3. Let u ∈ C1([a, ξ],R), u(t) < 0 for t ∈ [a, ξ), u(ξ) = 0 and ρ ∈ (0, 1], α ∈ (0, 1),
then (C

aDα,ρu)(t)|t=ξ > 0.

Furthermore, we will use the following comparison result:

Lemma 7. The solution v(.) of the scalar linear generalized proportional Caputo fractional differ-
ential inequality

(C
aDα,ρv)(t) ≤ λvs.(t), v(a) ≤ u0, α ∈ (0, 1), ρ ∈ (0, 1] (6)

satisfies the inequality

v(t) ≤ u(t) = u0e
ρ−1

ρ (t−a)Eα(λ(
t− a

ρ
)α), (7)

where u(t) is the solution of initial value problem (4).

Proof. Let ε > 0 be an arbitrary number. Define the function m(t) = v(t) − u(t) −
εe

ρ−1
ρ (t−a), t ∈ (a, b]. For t = a the inequality m(a) ≤ u0 − u0 − ε < 0 Assume there exist

a point t∗ ∈ (a, b] such that m(t) < 0 for t ∈ (a, t∗) and m(t∗) = 0. Then according to
Corollary 3 the inequality 0 < (C

aDα,ρm)(t)|t=t∗ = (C
aDα,ρv)(t)|t=t∗ − (C

aDα,ρu)(t)|t=t∗ −
ε(C

aDα,ρe
ρ−1

ρ (t−a)|t=t∗ = (C
aDα,ρv)(t)|t=t∗ − λu(t∗) = (C

aDα,ρv)(t)|t=t∗ − λv(t∗) holds. It
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contradicts (6). Therefore, v(t) < u(t) + εe
ρ−1

ρ (t−a), t ∈ (a, b]. Since ε is an arbitrary number
we obtain (7).

3. Statement of the Problem

Let a sequence {tk}∞
k=1 : 0 ≤ tk−1 < tk ≤ tk+1, limk→∞ tk = ∞ be given. Let

t0 6= tk, k = 1, 2, . . . be the given initial time. Without loss of generality we can assume
t0 ∈ [0, t1).

Denote by Z0 the set of all non-negative integers, by Z+ the set of all natural numbers,
by Z[a, b] the set of all integers k : a ≤ k ≤ b where a, b ∈ Z0.

We restrict α ∈ (0, 1), ρ ∈ (0, 1] everywhere in the paper due to many applications in
science and engineering.

In this paper, we will study the dynamics of the Cohen–Grossberg neural networks
modeled by generalized proportional Caputo fractional derivative with impulses at initially
given points. We will consider the case when the lower limit of the fractional derivative is
changed after each impulsive time.

We will study the following model:

(C
tk
Dα,ρxi)(t) = −di(xi(t))

(
ci(xi(t))−

n

∑
j=1

aij(t) f j(xj(t))− Ii

)
,

t ∈ (tk, tk+1], k ∈ Z0

xi(tk + 0) = ψk(xi(tk)), k ∈ Z+, i = 1, 2, . . . , N,

(8)

where N represents the number of neurons in the network, x(t) = (x1(t), x2(t), . . . , xN(t))T

denotes the variable neuron’s state; di(xi(t)) is the amplification function of the i-th neuron;
ci(xi(t)) is well behaved function; f j(xj(t)) are the activation function of the j-th neuron; Ii
is the external input; ψk(xi(tk)) are the impulsive functions at impulsive time tk, k ∈ Z+;
aij(t) are neural connection memristive weights of the j-th neuron on the i-th neuron at
time t.

We consider the system (8) as a driven system and the responce system is as follows

(C
aDα,ρyi)(t) = −di(yi(t))

(
ci(yi(t))−

n

∑
j=1

aij(t) f j(yj(t))− Ii

)
+ ui(t),

t ∈ (tk, tk+1], k ∈ Z0,

yi(tk + 0) = ψk(yi(tk)) + wik, k ∈ Z+, i = 1, 2, . . . , N,

(9)

where ui(t) is the input continuous control and wik is the input impulsive control.

Remark 4. Throughout this paper, we assume the solutions of the systems (8) and (9) are left
continuous, i.e., x(tk) = limt→tk ,t<tk x(t).

We will introduce the following assumptions

Assumption 1. There exist positive numbers Mi,j, i, j = 1, 2, . . . , N such that |ai,j(t)| ≤ Mi,j for
t > t0.

Assumption 2. There exist positive constants d̃i, d̂i, Di such that the aplification function satisfy

0 < d̂i ≤ di(x) ≤ d̃i < ∞, |di(y)− di(x)| ≤ Di|y− x|, x, y ∈ R
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Assumption 3. For well behaved function ci(x) and amplification function di(x) there exists a
positive constant Ai such that

di(y)ci(y)− di(x)ci(x)
y− x

≥ Ai, i ∈ Z[1, m], x, y ∈ R, x 6= y.

Assumption 4. The activation functions are bounded, i.e., there exist constants Cj > 0 such that
| f j(x)| ≤ Cj, x ∈ R, j ∈ Z[1, N] and it satisfies the Lipschitz condition with a constant Fj > 0,
i.e.,

| f j(y)− f j(x)| ≤ Fj|y− x|, y, x ∈ R, j ∈ Z[1, n].

Assumption 5. For the impulsive functions ψk(x) there exists a positive constant Lk such that

|ψk(y)− ψk(x)| ≤ Lk|y− x|, k ∈ Z[1, N], x, y ∈ R, x 6= y.

4. Main Results

We will obtain some sufficient conditions for achievements of finite time synchroniza-
tion and exponential synchronization of (8) and (9) with different controllers.

Definition 1. The driven system of impulsive generalized proportional Caputo fractional differ-
ential Equation (8) and the responce system of impulsive generalized proportional Caputo frac-
tional differential Equation (9) are globally Mittag–Leffler synchronized if for any initial values
u0

i , vi p ∈ R there exist constants C, K, β > 0 such that

||x(t; t0, x0)− y(t; t0, y0)|| ≤ Km(x0 − y0)
(

Eα(−C(t− tk)
α)

k−1

∏
j=0

Eα(−C(tj+1 − tj)
α)
)β

,

t ∈ (tk, tk+1], k ∈ Z0

where m ∈ C(Rn
+,R+) (with m(0) = 0) is Lipschitz, ||x|| =

√
∑N

i=1 x2
i , x ∈ RN , x =

(x1, x2, . . . , xN).

Remark 5. Mittag–Leffler stabilization is a fractional generalization of the exponential one. Indeed,
from inequality Eα(−λ(t− t0)

α) ≤ e
−λ
α (t−t0), t > t0 (see Equation (16) [21]) it follows that if in-

equality (10) holds, then ||x(t; t0, x0)− y(t; t0, y0)|| ≤ Km(x0− y0)e
−C
α (t−tk) ∏k−1

j=0 e
−C
α (tj+1−tj) =

Km(x0 − y0)e
−C
α (t−t0).

4.1. Mittag–Leffler Synchronization under State Feedback Control

The continuous state feedback controller ui(t) will be designed to enable the controlled
model (8) and (9) to synchronize.

In this section, we will assume that the input impulsive control is zero, i.e., wik = 0,
k ∈ Z+, k = 1, 2, . . . , N.

Define the synchronization error ei(t) = yi(t)− xi(t) and the control gains

ui(t) = kiei(t), i ∈ Z[1, N]. (10)

Theorem 1. Let the following conditions be fulfilled:

1. Assumptions 1–5 are satisfied.
2. There exists a constant γ > 0 such that

2
N

∑
i=1

[
Ai − ki − Di Ii − Di

N

∑
j=1

MijCj − 0.5d̃i

N

∑
j=1

MijFj − 0.5Fi

N

∑
j=1

d̃j Mji

]
≥ γ. (11)
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3. There exists a constant L > 0 such that the sequence {∏k
i=1 Li}∞

k=1 is nondecreasing and
bounded, i.e., ∏∞

i=1 Li ≤ L.

Then the driven system (8) and the responce system (9) with wik = 0 are globally Mittag–
Leffler synchronized under the control (10).

Proof. Define the quadratic Lyapunov function V(x) = x xT = ∑N
i=1 x2

i .
Let t ∈ (tk, tk+1], k ∈ Z0. Then according to condition A2, Lemma 3 and inequality

2ab ≤ a2 + b2 we can write

(C
tk
Dα,ρV(e))(t) ≤ 2

N

∑
i=1

ei(t)(C
tk
Dα,ρei)(t) = 2

N

∑
i=1

ei(t)
(
(C

tk
Dα,ρyi)(t)− (C

tk
Dα,ρxi)(t)

)
≤ 2

N

∑
i=1

[
− Aie2

i (t) + Die2
i (t)Ii

+ ei(t)
N

∑
j=1

(
di(yi(t))aij(t) f j(yj(t))− di(xi(t))aij(t) f j(xj(t))

)
+ kie2

i (t)
]

≤ 2
N

∑
i=1

[
− Ai + Di Ii + ki

]
e2

i (t)

+ 2|ei(t)|
N

∑
j=1

[
|di(yi(t))| |aij(t)|

∣∣∣ f j(yj(t))− f j(xj(t))
∣∣∣

+
∣∣∣di(yi(t))− di(xi(t))

∣∣∣ |aij(t)| | f j(xj(t))|
]

≤ 2
N

∑
i=1

[
− Ai + Di Ii + ki

]
e2

i (t) + 2|ei(t)|
N

∑
j=1

[
d̃i MijFj|ej(t)|

+ Die2
i (t)MijCj

]
≤ −2

N

∑
i=1

[
Ai − ki − Di Ii − Di

N

∑
j=1

MijCj

]
e2

i (t)

+ e2
i (t)d̃i

N

∑
j=1

MijFj + d̃i

N

∑
j=1

MijFje2
j (t)

≤ −2
N

∑
i=1

[
Ai − ki − Di Ii − Di

N

∑
j=1

MijCj − 0.5d̃i

N

∑
j=1

MijFj − 0.5Fi

N

∑
j=1

d̃j Mji

]
e2

i (t)

≤ −γV(e(t)), t ∈ (tk, tk+1], k ∈ Z0.

(12)

For any k ∈ Z+ we have

V(e(tk + 0)) =
N

∑
i=1

e2
i (tk + 0) =

N

∑
i=1

(yi(tk + 0)− x(tk + 0))2

=
N

∑
i=1

(ψk(yi(tk))− ψk(xi(tk)))
2 ≤ L2

k

N

∑
i=1

e2
i (tk) = L2

kV(e(tk))

(13)

Apply Lemma 7 with a = tk, u0 = V(e(tk + 0)), λ = −γ to inequality (12), use
inequality (13) and obtain

V(e(t)) < V(e(tk + 0))e
ρ−1

ρ (t−tk)Eα(−γ(
t− tk

ρ
)α)

≤ L2
kV(e(tk))e

ρ−1
ρ (t−tk)Eα(−γ(

t− tk
ρ

)α), t ∈ (tk, tk+1], k ∈ Z0.
(14)
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From inequality (12) for t ∈ (tk−1, tk], Lemma 7 with a = tk−1, u0 = V(e(tk−1 + 0)),
λ = −γ and inequality (13) for k− 1 and obtain

V(e(t)) < V(e(tk−1 + 0))e
ρ−1

ρ (t−tk−1)Eα(−γ(
t− tk−1

ρ
)α)

≤ L2
k−1V(e(tk−1))e

ρ−1
ρ (t−tk−1)Eα(−γ(

t− tk−1
ρ

)α), t ∈ (tk−1, tk], k ∈ Z0.
(15)

Therefore, from inequality (15) for t = tk we have

V(e(tk)) ≤ L2
k−1V(e(tk−1))e

ρ−1
ρ (tk−tk−1)Eα(−γ(

tk − tk−1
ρ

)α). (16)

From inequalities (14) and (16) we get

V(e(t)) ≤ L2
k L2

k−1V(e(tk−1))e
ρ−1

ρ (tk−tk−1)Eα(−γ(
tk − tk−1

ρ
)α)e

ρ−1
ρ (t−tk)Eα(−γ(

t− tk
ρ

)α)

for t ∈ (tk, tk+1], k ∈ Z0.
(17)

Continue this process and applying Lemma 7 inductive with a = tk−1, tk−2, . . . , t0
we obtain

V(e(t)) ≤ V(e(tk−1))L2
k L2

k−1e
ρ−1

ρ (t−tk−1)Eα(−γ(
tk − tk−1

ρ
)α)Eα(−λ(

t− tk
ρ

)α)

≤ . . . . . .

≤ V(e(t0))
( k

∏
i=0

L2
i

)( k−1

∏
i=0

Eα(−γ(
ti+1 − ti

ρ
)α)
)

e
ρ−1

ρ (t−t0)Eα(−γ(
t− tk

ρ
)α)

=
( k

∏
i=0

L2
i

) n

∑
i=1

(x0
i − y0

i )
2
( k−1

∏
i=0

Eα(−γ(
ti+1 − ti

ρ
)α)
)

e
ρ−1

ρ (t−t0)Eα(−γ(
t− tk

ρ
)α)

Thus,

‖x(t)− y(t)‖

≤ ‖x0 − y0‖
( k

∏
i=0

Li

)
e

ρ−1
2ρ (t−t0)

√√√√( k−1

∏
i=0

Eα(−γ(
ti+1 − ti

ρ
)α)
)

Eα(−γ(
t− tk

ρ
)α),

t ∈ (tk, tk+1].

(18)

Corollary 4. Let the conditions of Theorem 1 are satisfied. Then the driven system (8) and the
responce system (9) with wik = 0 are globally exponentially synchronized under the control (10).

The proof follows from Remark 5.

4.2. Synchronization under Impulsive Control

In some applications, it is necessary for small control gains and control to be activated
only in some isolated points. This type of control is well described by impulses and the
control activated at impulsive times, which can not only realize the synchronization target
but also save the control costs. In this section, an impulsive controller wik will be designed
such that the given synchronization criteria reduce this conservativeness, i.e., in this section
we will assume that ui(t) ≡ 0.

Define the synchronization error ei(t) = yi(t)− xi(t) and the impulsive control gains

wi,k = Kikei(tk), i ∈ Z[1, N], k ∈ Z+, (19)
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where Kik, i ∈ Z[1, N], k ∈ Z+ are constants.

Theorem 2. Let the following conditions be fulfilled:

1. Assumptions 1–5 are satisfied.
2. There exist constants γ, L > 0 such that

2
N

∑
i=1

[
Ai − Di Ii − Di

N

∑
j=1

aijCj − 0.5d̃i

N

∑
j=1

MijFj − 0.5Fi

N

∑
j=1

d̃j Mji

]
≥ γ;

the sequence {∏k
i=1 Bi}∞

k=1 is increasing bounded, i.e., ∏∞
i=1 Bi ≤ B, where Bk = 2(L2

k +
max

i∈Z[1,N]
K2

ik).

Then the driven system (8) and the responce system (9) with ui(t) ≡ 0 are globally Mittag–
Leffler synchronized under the impulsive control (19).

Proof. Define the quadratic Lyapunov function V(x) = x xT = ∑N
i=1 x2

i .
Let t ∈ (tk, tk+1], k ∈ Z0. Then similar to the proof of Theorem 1 and inequality (12)

we prove

(C
tk
Dα,ρV(e))(t)

≤ −2
N

∑
i=1

[
Ai − Di Ii − Di

N

∑
j=1

aij Mj − 0.5d̃i

N

∑
j=1

aij(t)Fj − 0.5Fi

N

∑
j=1

d̃jaji(t)
]
e2

i (t)

≤ −γV(e(t)), t ∈ (tk, tk+1], k ∈ Z0.

(20)

For any k ∈ Z+ we have

V(e(tk + 0)) =
N

∑
i=1

e2
i (tk + 0) =

N

∑
i=1

(yi(tk + 0) + Kikei(tk)− x(tk + 0))2

=
N

∑
i=1

(yi(tk + 0)− x(tk + 0))2 +
N

∑
i=1

k2
i e2

i (tk) + 2
N

∑
i=1

(yi(tk + 0)− x(tk + 0))Kikei(tk)

≤ 2
N

∑
i=1

(yi(tk + 0)− x(tk + 0))2 + 2
N

∑
i=1

K2
ike2

i (tk)

= 2
N

∑
i=1

(ψk(yi(tk))− ψk(xi(tk)))
2 + 2

N

∑
i=1

K2
ike2

i (tk)

≤ 2(L2
k + max

i∈Z[1,N]

K2
ik)

N

∑
i=1

e2
i (tk) = BkV(e(tk))

(21)

According to Lemma 7 with a = tk, u0 = V(e(tk + 0)) we have

N

∑
i=1

(xi(t; t0, x0)− yi(t; t0, y0))
2 = V(e(t)) < V(e(tk + 0))e

ρ−1
ρ (t−tk)Eα(−γ(

t− tk
ρ

)α)

≤ BkV(e(tk))e
ρ−1

ρ (t−tk)Eα(−γ(
t− tk

ρ
)α)

(22)
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Continue this process and applying Lemma 7 inductively with a = tk−1, tk−2, . . . , t0
we obtain

V(e(t)) ≤ V(e(tk−1))BkBk−1e
ρ−1

ρ (tk−tk−1)Eα(−γ(
tk − tk−1

ρ
)α)e

ρ−1
ρ (t−tk)Eα(−γ(

t− tk
ρ

)α)

≤ . . . . . .

≤ V(e(t0))
( k

∏
i=0

Bi

)( k−1

∏
i=0

e
ρ−1

ρ (ti+1−ti)Eα(−γ(
ti+1 − ti

ρ
)α)
)

e
ρ−1

ρ (t−tk)Eα(−γ(
t− tk

ρ
)α)

= B
n

∑
i=1

(x0
i − y0

i )
2
( k−1

∏
i=0

Eα(−γ(
ti+1 − ti

ρ
)α)
)

e
ρ−1

ρ (t−t0)Eα(−γ(
t− tk

ρ
)α)

and thus

‖x(t)− y(t)‖

≤ ‖x0 − y0‖e
ρ−1
2ρ (t−t0)

√√√√B( k−1

∏
i=0

Eα(−γ(
ti+1 − ti

ρ
)α)
)

Eα(−γ(
t− tk

ρ
)α)|, t ∈ (tk, tk+1].

5. Example

We will provide a partial case of impulsive memristive Cohen–Grossberg neural
networks (8) to illustrate the application of the obtained sufficient conditions. Let α = 0.3,
ρ = 0.8, tk = k, k ∈ Z0 and consider the driven system (8) and the responce system (9)
with wik = 0, N = 3, ci(t) ≡ ci, with Ii = 0, the activation functions f j(s) = 0.5 tanh(s)
with Fj = 0.5 Cj = 0.5, and |aij(t)| ≤ Mij, i, j = 1, 2, 3, t ≥ 0 where M = {Mij}is given by

M =

0.1 0.5 0.3
0.2 0.3 0.2
0.4 0.2 0.1

.

Let the impulsive functions be ψk(x) = sin(x) with Li = 1 and L = 1, ci(u) =
1.5u + sin(u), i = 1, 2, 3, di(u) = 1 + 1

1+u2 , i = 1, 2, 3 with d̂i = 1, d̃i = 2 and Di = 0.67.

Then di(y)ci(y)−di(x)ci(x)
y−x =

(1+ 1
1+y2 )(1.5y+sin(y))−(1+ 1

1+x2 (1.5x+sin(x))

y−x ≥ Ai = 5.
Let the control gain be ui(t) = kiei(t), i = 1, 2, 3 with k1 = k2 = k3 = 4.
Thus, the inequality (10) is reduced to

2
3

∑
i=1

[
5− 4− (0.67) ∗ 0− 0.835

3

∑
j=1

Mij − 0.5
3

∑
j=1

Mji

]
≥ γ

2
3

∑
i=1

[
1− 0.835(0.7)− 0.5(0.6)

]
≥ γ = 0.693
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Therefore, the conditions of Theorem 1 are satisfied and then the driven system (8)
and its corresponding responce system (9) in this partial case are globally Mittag–Leffler
synchronized under the defined above control, i.e., the inequality (18) is reduced to

‖x(t)− y(t)‖ =

√√√√ 3

∑
i=1

(x(t)− y(t))2

≤

√√√√ 3

∑
i=1

(x0
i − y0

i )
2e−0.125t

√√√√( k−1

∏
i=0

E0.3(−0.693(
1

0.8
)0.3)

)
E0.3(−0.693(

t
0.8

)0.3)

≤

√√√√ 3

∑
i=1

(x0
i − y0

i )
2(0.730885)ke−0.125t

√
E0.3(−0.534193t0.3).

(23)

6. Conclusions

In this paper, a memristive Cohen–Grossberg neural network with impulsive effects at
initially given impulsive times and generalized proportional Caputo fractional derivatives
with lower limits at the impulsive time is studied. Some sufficient conditions for the
global Mittag–Leffler synchronization are obtained. We consider two types of controllers,
continuous controller and discrete controller acting at the impulsive time. The obtained
results are significant for various applications in engineering and technology.

Note, the results and the studied type of neural network could extend to the case of
non-Lipschitz discontinuous activation functions. Furthermore, both approaches for the
interpretation of solutions of fractional equations with impulses could be applied. It will
give wider possibilities for adequate modeling of the connections between neurons in the
networks. This topic goes beyond the scope of this paper and will be a challenging issue
for future research.
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