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1. Introduction

It is known for centuries, that the Earth possesses a magnetic field, which has predom-
inantly the geometry of a dipole, almost coaxial (at a small angle of ∼ 10◦) with the axis
of rotation of the Earth. Its origin and nature were for a long time (and to a large extent
remain) an intriguing question of science. The first seemingly obvious hypothesis that
the planet is a permanent magnet [1] was rejected on the basis of a critical quantitative
examination, as well as many other hypotheses [2]. By contrast, only in the XIX century,
physicists began to suspect that the Sun is also a giant magnet (see [2]). Since the beginning
of the XX century, after J. Larmor [3,4] realised that the distribution of electric currents
in a moving electrically conducting melt or plasma can be the source of the geomagnetic
and solar field, the investigation of the terrestrial and solar magnetism was proceeding
in parallel. At present, the hydromagnetic dynamo theory [5,6] is widely accepted by the
scientific community as the explanation of the magnetic field of the Earth, the Sun [7],
stars [8], galaxies [9] and other astrophysical bodies [10,11].

The dynamical character of the Earth’s magnetic field was confirmed by the discovery
of geomagnetic field reversals [12] in the paleomagnetic data. The stripe magnetic anomalies
are records of the reversing geomagnetic field registered in the cooling rocks while the sea
floor is gradually spreading away from ocean ridges; their detection contributed to the wide
acceptance of the plate tectonics among geophysicists (see [13]). Although modelling of the
Earth’s dynamo is a very resource-consuming numerical problem because of the extreme
parameter values involved, the occurrence of the reversals was successfully modelled by
P. Roberts and G. Glatzmaier [14–20].

The magnetic α-effect, a pivotal notion of the hydromagnetic dynamo theory, is based
on the idea of E. Parker [21,22] that the mean electromotive force due to interacting small-
scale fluctuations of the flow (“cyclonic events”) and magnetic field may have a component
parallel to the mean magnetic field, which can amplify the mean magnetic field. In his
pioneering works [23–28], S.I. Braginsky gave the first derivation of the α-effect from
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the first principles by asymptotic methods for a nearly axisymmetric flow and magnetic
field and used it for the study of the geomagnetic field. Parker’s idea is in the heart
of the theory of mean-field electrodynamics [29,30] (the history of its development is
presented in [31]), from which the term α-effect originates. Analogous phenomena were
also encountered in the theory of hydrodynamic [32] (the anisotropic kinetic α-effect) and
magnetohydrodynamic (MHD) [33] (the combined MHD α-effect) stability (see also [34]).
When the α-effect tensor vanishes (e.g., if a parity-invariant MHD regime is perturbed),
the phenomena of magnetic eddy diffusivity, eddy viscosity or combined MHD eddy
diffusivity emerge, respectively.

The notion of the magnetic α-effect is firmly linked with the concepts of scale separa-
tion and averaging over small spatial scales. The impact of these effects can be analysed
by rigorous asymptotic methods when scale separation is significant; the ratio ε between
the characteristic small and large spatial scales is then a small parameter of the stability
problem. Two approaches can be followed. On the one hand, we can study perturbations
that depend on two spatial variables, the fast and the slow one, expand such perturbations
in power series in ε, and derive a hierarchy of equations for the terms in the expansions.
The mean parts of the terms satisfy partial differential equations in the slow variables
arising as the solvability conditions for partial differential equations in the fast variables
for the fluctuating parts. The equations for the averaged terms involve tensors of the
respective α-effect or eddy diffusivity; they can be solved in any region in the space of
slow variables. This approach was applied to the kinematic dynamo in [35–38], the hy-
drodynamic stability and evolutionary problems in [32,39–41] and to the MHD stability
problem in [33].

On the other, when tackling a large-scale linear stability problem of periodically-
replicated small-scale regimes, we can focus on the mean fields that feature spatial periodic-
ity in the slow variables. Then, by linearity, the solution (a large-scale magnetic or stability
mode, when the eigenvalue problem for a stability operator is considered) takes the form of
a Bloch field eiq·xf(x), where the wave vector q is small, |q| = ε. The amplitude-modulating
exponential eiq·x can be cancelled out, yielding a parabolic (when the evolutionary equation
is considered) or elliptic (in the case of the eigenvalue problem) equation in fast variables
only, where ε enters as a non-singular parameter. The remaining “carrier” factor f(x)
(unlike in the AM radio signal transmission, it is not harmonic) can now be expanded in the
asymptotic power series in ε, yielding a solution that is equivalent to the one constructed
for these boundary conditions by the general method. The small-ε asymptotics of the
kinematic magnetic modes of the Bloch type was explored in [37,42,43]. In [44,45], the size
of the wave vector q of the modulating harmonics eiq·x was not restricted to small values;
the goal of this work was to investigate which wave vectors q maximise the efficiency of
the dynamo, i.e., for which q the dominant magnetic modes enjoy maximum growth rates.
The authors concluded that, at least for the range of magnetic molecular diffusivities that
they considered, the most favourable for generation are wave vectors realising moderate
scale separation (|q| ∼ 1/2).

Rotation is known to be beneficial for hydrodynamic [46] and convective [47,48]
nonlinear dynamos (but see [49]). Regimes of nonlinear magnetic dynamo powered by
convection of electrically conducting fluid in a plane layer rotating about the vertical axis
with square periodicity cells were investigated numerically in [49–51] for the Taylor number
varying from 0 to 2000, numerically non-demanding values of other parameters being
fixed. The regimes are separated by typically short sequences of bifurcations (mainly
of a simple nature) from the onset of convective motion, have a rather simple spatial
structure (the fluid motion is in the form of distorted rolls) and do not require exceptional
numerical resources for simulation. In [49], five branches of hydrodynamically stable
amagnetic regimes were found: two-dimensional rolls of three types, travelling waves and
three-dimensional “wavy” rolls, all of which, except for one family of rolls, could act as
kinematic magnetic dynamos, giving rise to nonlinear MHD steady states (13 branches)
and time-periodic regimes (8 branches). Bifurcations in which these branches emerge and



Mathematics 2022, 10, 2957 3 of 44

disappear were identified, as well as the emerging more complex regimes (two-frequency
quasiperiodic and chaotic regimes, and a finite Feigenbaum period-doubling sequence
of bifurcations of a torus superseded by a chaotic regime and by a torus with 1/3 of the
cascade frequency). The symmetries of the regimes were listed ibid.

These regimes are stable to short-scale perturbations, i.e., perturbations of the same
periodicity in horizontal directions as the one of the regimes themselves. Large-scale
weakly nonlinear perturbations of hydromagnetic convective regimes in a rotating layer
of fluid were considered in [52]. The perturbations were assumed to depend on the slow
horizontal and fast spatial variables. The asymptotic formalism, which in previous studies
had revealed the α-effect and eddy diffusivity in linear stability problems, was used to
derive amplitude equations governing the perturbations. Free convective dynamos were
examined (i.e., no external forcing was supposed to affect their action). In this case, the
kernel of the linearisation involves two zero-mean neutral modes existing due to the spatial
invariance of the regimes under perturbation; this makes the analysis considerably more
involved. The results were applied in [53] for investigating the stability of steady states
from the branch SR1

8 found in [49] to weakly nonlinear large-scale perturbations. The system
of the amplitude equations was investigated numerically and the conclusion was drawn
that a large-scale perturbation either converges to a small-scale one (i.e., of the periodicity
of the unperturbed steady state) neutral stability mode of a constant amplitude, or it blows
up at a finite slow time.

Thus, the stability of the regimes found in [49] to perturbations involving moderate-
scale separation has not yet been investigated in the nonlinear setup. When considering
a perturbation, initially proportional to eiq·xf(x), it is impossible to just cancel out the
amplitude-modulating harmonics in the equations governing the perturbed regime due
to their nonlinearity. Consequently, the problem can only be tackled by direct numerical
simulations. The computations must be carried out with an adequate spatial resolution;
this implies that, in practice, we can consider only the perturbations and emerging regimes,
whose space periods are just several times larger than those of the regime subjected to
the perturbations.

When a convective fluid flow and magnetic field can have larger spatial periods—here,
in horizontal directions—we may expect the resulting characteristic length scales of the
fields to increase, giving rise to higher effective kinematic and magnetic Reynolds numbers,
which is favourable for magnetic field generation. Our goal is to check whether these
expectations are realised. We also address the question, whether the dynamo regimes
under consideration are stable to moderately scale-separated perturbations. If they are
unstable, is the evolution of the perturbations involving the moderate scale separation in
any respect compatible with the scenarios predicted in [53] for the evolution of weakly non-
linear perturbations featuring high scale separation, or do the moderately scale-separated
perturbations develop following their own paths in agreement with [44,45]?

A family of integral quantities Dq was studied numerically in [54] for four solutions to
the Navier–Stokes equation, that had been computed for studying turbulence. It was found
that, for all of them, Dq increases in q for the considered values q ≤ 18—a result, that is
not yet understood analytically. In Section 3.6, we investigate numerically these quantities
and introduce similar ones, Dq,s. In all our runs, Dq and Dq,2 computed for the flow also
decrease monotonically for all the considered values q ≤ 10; however, the monotonicity is
broken when these quantities are computed for the magnetic field. Equally, the behaviour
of Dq,s in s is generally non-monotonic for both the flow and magnetic field.

The mathematical statement of the problem at hand and the pseudospectral algorithms
applied for solving it are recalled in Section 2. We present the numerical results in Section 3.
Concluding remarks can be found in Section 4.
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2. Convective Magnetic Dynamo: Equations and Numerical Methods
2.1. Statement of the Problem

Our dynamo satisfies the Navier–Stokes equation involving the Archimedes (buoy-
ancy), Coriolis and Lorentz forces, the magnetic induction and heat transfer equations.
In the nondimensional form, in the reference frame rotating with the layer of fluid, they are
as follows:

∂v
∂t

= v× (∇× v) + P∇2v + PRθe3 + Pτv× e3 −∇p− b× (∇× b), (1.1)

∂b
∂t

=∇× (v× b) + PP−1
m ∇2b, (1.2)

∂θ

∂t
= − (v · ∇)θ + v3 +∇2θ. (1.3)

Here, v denotes the flow velocity in the fluid layer 0 ≤ x3 ≤ 1, b denotes the magnetic
field, p denotes the modified pressure,

θ = T − T0 − (T1 − T0)x3

is the difference between the temperature T of the fluid and the linear temperature pro-
file for the fluid at equilibrium (here T0 and T1 are constant temperatures at which the
boundaries at x3 = 0 and x3 = 1, respectively, are held), en, n = 1, 2, 3 are unit vectors
in the direction of the Cartesian coordinate system axes, and e3 is vertical. The super-
scripts in vi, bi denote the components of the vector fields in the basis of {en}. The fluid is
incompressible, and the magnetic field is solenoidal:

∇ · v = 0, ∇ · b = 0. (1.4)

We employ the standard nondimensional parameters describing thermal convection in
the presence of a magnetic field: the Rayleigh number, R (characterising the magnitude of
thermal buoyancy forces); the Prandtl number, P (the ratio of the fluid viscosity to thermal
diffusivity); the magnetic Prandtl number, Pm (the ratio of viscosity to magnetic diffusivity);
the Taylor number, Ta (the nondimensionalised angular velocity of the fluid rotation is
τ/2 =

√
Ta/2).

As in [49], we consider stress-free perfectly electrically conducting boundaries. The fol-
lowing conditions are satisfied on the horizontal boundaries:

∂v1

∂x3

∣∣∣∣
x3=0,1

=
∂v2

∂x3

∣∣∣∣
x3=0,1

= v3
∣∣∣
x3=0,1

= 0, (2.1)

∂b1

∂x3

∣∣∣∣
x3=0,1

=
∂b2

∂x3

∣∣∣∣
x3=0,1

= b3
∣∣∣
x3=0,1

= 0, (2.2)

θ
∣∣∣
x3=0,1

= 0. (2.3)

The state that is subjected to perturbations has periods L in the horizontal directions
x1 and x2. We consider perturbations that have periods M1L and M2L in x1 and x2,
respectively:

v(x, t) = v(x1 + m1M1L, x2 + m2M2L, x3, t), (3.1)

b(x, t) = b(x1 + m1M1L, x2 + m2M2L, x3, t), (3.2)

θ(x, t) = θ(x1 + m1M1L, x2 + m2M2L, x3, t) (3.3)

for all integer m1 and m2 and all x in the layer of fluid. In what follows, we will call
such fields (M1, M2)-periodic and denote the (M1, M2)-periodicity box by C . It is easy to
show that under the boundary conditions (2), the horizontal components of the magnetic
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field and flow, averaged over the volume of the periodicity cell, are time-independent.
We consider the case where the magnetic field is not imposed, and study the convective
dynamo problem in the reference frame, in which the mean fluid flow through the layer
vanishes: 〈

b1〉 = 〈b2〉 = 0;
〈
v1〉 = 〈v2〉 = 0. (4)

Here,
〈f〉 = (M1M2L2)−1

∫
C

f(x) dx

denotes the spatial mean over the (M1, M2)-periodicity box C .
We have performed computations for all pairs of integers (M1, M2) in the range

1 ≤ M1, M2 ≤ 4, resulting in the scale ratios that are confined to the interval 0.25 ≤ ε ≤ 1.
Although the geometries of the (M1, M2)-periodicity and (M2, M1)-periodicity boxes are
identical, we have performed simulations in the periodicity boxes arising for both pairs
of integers, because the regime that we perturb lacks the symmetry of rotation by π/2
exchanging the horizontal directions x1 and x2. The flow in the 1x1-periodic steady state is
comprised of distorted rolls along one Cartesian direction (see Figure 1), and the associated
magnetic structures are also anisotropic. Thus, small perturbations give rise to significantly
different initial conditions and may reveal different attractors.

(a) (b)

(c) (d)

Figure 1. Isosurfaces of the kinetic (a) and magnetic (b) energy densities at the levels of 1/2 of the
respective maxima of the unperturbed short-scale convective dynamo steady state. One periodicity
box is shown. Isolines of the kinetic (c) and magnetic (d) energy densities on the midplane x3 = 0,
step 1.5 and 0.3, respectively. In (c) and (d), the line width increases with the common along-the-line
value of the energy density.
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The influence of the Rayleigh and Prandtl numbers on magnetic field generation
by convection was examined in [55,56], and it was found that the critical Pm generally
decreases on increasing R over the critical value, but for R over a certain threshold, the
behaviour of the critical Pm is non-monotonic (see also [57]). We have employed the same
values as in [49,55]:

P = 1, Pm = 8, R = 2300, L =
√

8 (5)

and studied perturbations of the steady-state dynamo from the branch SR1
8 [49] for Ta = 675.

Here, L is the horizontal size (relative to the layer width) of the periodicity cell of the
unperturbed convective dynamo regime; its value (5) is equal to the horizontal period of
the first unstable hydrodynamic mode, when on increasing the Rayleigh number convective
flow sets in in a non-rotating layer. Since the Rayleigh number shown in (5) is close to the
critical value for the onset of convection, convective attractors have a simple roll structure.
The magnetic Prandtl number (5) is close to its critical value for the onset of kinematic
magnetic field generation by the convective flows, and therefore flows in the convective
MHD attractors are not significantly altered by the Lorentz force.

2.2. Numerical Techniques

Three large-scale perturbation evolutions (which we label with the indices 1–3) have
been simulated in each (M1, M2)-periodicity box. In runs labelled 1, the energy of the initial
perturbation is in the range 10−5 − 0.2; only the coefficients of harmonics associated with
the wave vectors (2π/(M1L), 0, 0), (0, 2π/(M2L), 0) and (0, 0, π) of the flow and magnetic
field have been randomly perturbed (together with their complex-conjugate counterparts).
Runs 2 and 3 have been carried out to seek additional attractors of the dynamical system
under consideration. For them, initial conditions have been synthesised as Fourier series
with random coefficients, whose amplitude decays exponentially on increasing the length
of the wave vector, and the gradient part is removed (to satisfy (1.4)). They can be regarded
as large initial perturbations, in which kinetic and magnetic energies exceed the energies
of the respective fields constituting the unperturbed MHD steady state, or have similar
magnitudes. (We define the energy of a vector field f as

Ef =

〈
1
2
|f|2
〉

,

i.e., we actually refer to the spatially averaged energy density; while we believe this does
not cause confusion, this is convenient in that the regimes in the (M1, M2)-periodicity box
C , constructed by replicating an (1,1)-periodic regime, have the same energy for whichever
M1 and M2.) In runs 2, the kinetic energy is several times larger than the magnetic energy,
and in runs 3, the former is several times smaller than the latter. In what follows, run
M in the (M1, M2)-periodicity box is labelled M1xM2.M (for instance, run 1 in the (3,2)-
periodicity box is referred to as 3x2.1).

The equations are solved numerically by the standard pseudospectral methods [58–60].
The fields are expanded into truncated Fourier series satisfying the boundary conditions (2):

v(x, t) =
N1/2

∑
n1=−N1/2

N2/2

∑
n2=−N2/2

N3

∑
n3=0

 v̂1
n(t) cos(πn3x3)

v̂2
n(t) cos(πn3x3)

v̂3
n(t) sin(πn3x3)

e
2πi
L (n1x1+n2x2),

b(x, t) =
N1/2

∑
n1=−N1/2

N2/2

∑
n2=−N2/2

N3

∑
n3=0

 b̂1
n(t) cos(πn3x3)

b̂2
n(t) cos(πn3x3)

b̂3
n(t) sin(πn3x3)

e
2πi
L (n1x1+n2x2),

θ(x, t) =
N1/2

∑
n1=−N1/2

N2/2

∑
n2=−N2/2

N3

∑
n3=0

θ̂n(t) sin(πn3x3)e
2πi
L (n1x1+n2x2).



Mathematics 2022, 10, 2957 7 of 44

For all (M1, M2)-periodicity boxes, we have performed runs with the so-called “stan-
dard” resolution of N1 = 128M1, N2 = 128M2, and N3 = 96 harmonics. The mean
horizontal components of the flow and magnetic field, v̂k

n and b̂k
n for n = 0 and k = 1, 2, are

assumed to be zero for all t ≥ 0 (see (4)). As usual, in order to verify that the resolution is
sufficient, we analyse the energy spectrum of the unknown fields, i.e., the distribution of
energy Ek contained in harmonics associated with the wave vectors in successive spherical
shells Ck = {n | k− 1 < |n| ≤ k} of width one. In all the runs, the energy spectrum decay
for the flow, magnetic field and temperature is at any time at least 7, 4 and 12 orders of
magnitude, respectively. (More precisely, we report the minimum energy spectrum decay
estimates

log10 min
t

(
max

1≤k≤min(N1/2,N2/2,N3)
Ek(t) / min

1≤k≤min(N1/2,N2/2,N3)
Ek(t)

)
; (6)

the minimum and maximum in the ratio are over fully populated shells only.) Sometimes
we observe plateaux at the right end of the energy spectrum plots, Ek vs. k, emerging due
to round-off errors, as seen, e.g., in Figure 2; the “outer” shells constituting the plateaux
were excluded when estimating the quantity (6).

0 20 40 60 80 100

1

10-10

10-20

10-30

10-40

k

E v
k

Figure 2. Energy spectrum of the flow at t = 220 in run 2 for M1 = M2 = 2; the kinetic energy
distribution Ev

k over shells Ck is shown for fully populated shells only.

The decays found in computations for different periodicity boxes are shown in Table 1.
We interpret these numbers as evidence that the employed resolution is sufficient, and hence
regard the standard-resolution runs as our principal runs. However, a higher resolution
may be desirable for comparison and to be on the safe side. The decays are low, because for
the standard resolution, the number of fully populated shells is mostly constrained by
the resolution in the vertical direction. To overcome this, we have repeated the runs,
where the energy spectrum decay is below 7, using the constant “alternative” resolution
of 256× 256× 257 harmonics, wave numbers in the vertical direction being in the range
[0, 256], and have checked our conclusions against these runs. However, in all the runs, the
attractors have proven to be chaotic (except for they are a travelling wave in the 3x1/1x3-
periodicity cells, as Table 2 shows) and therefore, all such comparisons can be carried out at
a qualitative level only. Energy spectra decays for the two resolutions are shown in Table 1;
the minimum decays for the three fields in the new runs are at least 10, 6 and 15 decades,
respectively.

Time stepping has been performed by the third-order Runge–Kutta method ETD3RK [61]
with exponential time differencing, which had proven useful for computing regimes of
thermal convection [62] and convective dynamo [57]. The time steps 0.0005, 0.00075 and
0.001 have been employed; the smaller steps have been typically used when the initial
magnetic energy exceeded the kinetic one and for the largest periods M1L and M2L.



Mathematics 2022, 10, 2957 8 of 44

Table 1. Minimum energy spectrum decay (orders of magnitude) in the simulated regimes of spatial
periods M1L and M2L in x1 and x2, respectively. In each cell of the table, three lines show the decays
in the runs for the three different initial conditions that are labelled by the suffices 1, 2 and 3 in the
names of the runs (see the beginning of the present section). In each line, commas separate three
groups of numbers showing the energy spectra decays of the flow, v, magnetic field, b, and the
difference, θ, between the temperature and the linear temperature profile for the fluid at equilibrium
in the respective run. A single number in a group, or the first number in a group of two numbers refers
to the value in the run with the standard resolution of 128M1 × 128M2 × 97 harmonics. The second
number (after the slash) in a group of two numbers refers to the decay in the alternative resolution
run involving 256× 256× 257 harmonics, when such runs have been performed.

M1, M2 1 2 3 4

1 15.8,9.6,21.8 21.4,8.0,24.6 7.8/11.7,4.3/7.2,12.7/17.6
15.2,12.2,21.7 9.9/13.4,6.3/10.5,15.9/18.8 7.2/11.6,4.3/6.3,12.0/16.8
17.1,9.6,23.4 11.1/13.6,6.0/13.0,16.0/19.6 9.5/11.0,4.2/6.8,13.6/16.2

2 16.2,11.4,21.8 36.0,14.1,38.0 25.3,9.0,27.3 18.8/12.2,6.5/7.7,20.8/17.1
15.0,8.5,20.5 37.8,15.0,38.1 24.6,7.9,26.3 18.3/11.2,6.5/7.6,20.0/15.7
25.0,9.0,27.2 36.9,14.6,38.0 24.9,8.5,26.5 18.6/10.9,5.9/7.2,20.2/15.7

3 9.8/14.9,5.7/12.1,14.7/20.9 25.1,8.2,26.6 24.7,8.8,27.1 18.4/11.8,6.4/7.2,20.9/17.17
9.4/14.1,5.6/11.4,14.7/20.1 25.0,8.7,26.9 19.7,8.4,25.3 18.2/10.2,6.1/7.6,20.3/15.6

10.0/13.9,5.8/11.0,15.1/19.2 25.2,8.8,27.2 18.9,8.3,24.6 18.1/10.4,6.1/7.3,20.6/15.2

4 7.4/11.6,4.0/6.9,13.1/16.7 18.4/12.6,5.9/7.3,20.7/17.5 18.0/23.8,6.3/7.5,20.4/26.2 14.1/24.4,6.1/7.9,19.5/26.5
7.3/10.8,4.2/7.3,13.2/16.3 18.8/11.4,6.0/7.5,20.5/16.6 18.6/11.0,6.0/6.9,20.3/14.6 18.1/10.8,5.6/6.8,20.5/15.5
7.2/11.3,4.1/7.2,12.9/15.7 18.5/10.6,6.3/7.5,20.6/16.1 18.6/10.8,6.2/7.6,20.9/15.7 10.7/10.2,5.7/7.2,16.1/15.4

2.3. Symmetries

An important tool for investigating invariant structures in the phase space of a dy-
namical system is an analysis of their symmetries. Here, we list the symmetries of the
convective dynamo rotating about a vertical axis in the notation of [55].

For the (M1, M2)-periodicity box C , the symmetry group is Z4 n (T1 × T2)× Z2 × Z2
if the horizontal base of C is square (i.e., when M1 = M2, given that for M1 = M2 = 1
the periodicity box in the horizontal variables is square), otherwise reducing to
Z2 n (T1 × T2)× Z2 × Z2. Here, the subgroup Z4 is comprised of rotations by π/2 about a
vertical axis:

s1 : (x1, x2, x3) 7→ (x2,−x1, x3),
s2 : (x1, x2, x3) 7→ (−x1,−x2, x3),
s3 : (x1, x2, x3) 7→ (−x2, x1, x3)

and the identity s0 = e. If the horizontal face of C is not square, only the rotations
by π are possible, i.e., the rotations s1 and s3 are not involved. The subgroups T1 and T2
consist of translations in the x1 and x2 directions, respectively:

γ1
α1

: (x1, x2, x3) 7→ (x1 + α1, x2, x3),
γ2

α2
: (x1, x2, x3) 7→ (x1, x2 + α2, x3)

where 0 ≤ αi < MiL (γ1
M1L = γ2

M2L = e). One of the subgroups Z2 is generated by the
reflection about the horizontal midplane:

r : (x1, x2, x3) 7→ (x1, x2, 1− x3),

and the other one by the symmetry reversing magnetic field

q : (v, θ, b) 7→ (v, θ,−b).

(Note that rotations si and the reflection r about the horizontal midplane affect not
only the spatial coordinates, but also the components of the vector fields.)
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Table 2. Attractors (A, column 2) and metastable states (MS) in simulations in the (M1, M2)-
periodicity boxes. Columns 3–6: kinetic, magnetic, heat (top to bottom lines in each cell of the table)
initial, minimum, average and maximum energies, respectively, in the saturated regimes (A) or when
the trajectory approaches the metastable states (MS). Column 7: time intervals when the trajectory is
close to the attractor (the right end is then the time at which the run was terminated) or the metastable
state. Column 8 (regime type): C—chaotic; HD—hydrodynamic; MHD—magnetohydrodynamic;
Q—quasiperiodic; R1—steady rolls parallel to the x2 axis; S—steady; S2—steady rolls parallel to the
x2 axis; and TW—travelling wave. Column 9: the symmetry pair for the flow and magnetic field.

Run A/MS Ein Emin Eav Emax Time Type Symmetries

1x2.1 A 135.92 109.88 133.34 156.64 [75:1016.90] MHD
4 4.22×10−6 8.64 20.11

0.0476 0.0392 0.0452 0.05

MS 138.66 143.55 148.48 [85:152], HD rγ1
L/2,

1.54×10−5 0.012 0.13 [655:663], Q rγ1
L/2

0.0441 0.0451 0.0464 [805:812] TW

MS 130.80 130.87 130.93 [48:50.5] HD
2.09×10−5 1.63×10−4 5.57×10−4 S

0.0446 0.0446 0.0460

1x2.2 A 100 112.36 134.09 154.22 [20:300.08] MHD
25 0.0350 7.76 19.27

0.01 0.0413 0.0451 0.0493

MS 138.04 143.32 148.73 [24:38], HD rγ1
L/2,

0.0602 0.21 0.55 [120:128], Q rγ1
L/2

0.0441 0.0451 0.0477 [170:190] TW

1x2.3 A 100 34.38 133.34 158.94 [40:1691.82] MHD
400 4.42×10−74 0.66 19.65
0.01 0.0115 0.0426 0.0506

MS 138.84 143.56 148.48 [325:1560] HD rγ1
L/2,

4.60×10−71 5.44×10−5 1.23 Q rγ1
L/2

0.0441 0.0451 0.0464 TW

MS 34.38 82.10 143.21 [40:293] HD
5.97×10−74 4.06×10−7 8.07×10−5 C

0.0115 0.0291 0.0478

2x1.1 A 135.92 97.18 137.37 150.22 [40:341.81] MHD γ2
L/2,

3.76 0.91 6.98 23.93 C qγ2
L/2

0.0476 0.0381 0.0475 0.0501

MS 150.14 150.19 150.22 [62.8:63.25] HD
0.96 1.19 1.45 [182.4:182.7] S2

0.0498 0.0499 0.0500 [298.8:299.1] R1

2x1.2 A 100 34.03 133.89 159.26 [40:2218.50] MHD
25 1.61×10−73 2.01 19.70

0.01 0.0109 0.0432 0.0505

MS 138.85 143.56 148.48 [300:1500], HD rγ2
L/2,

3.99×10−70 5.83×10−6 1.32 [1661:1678], Q rγ2
L/2

0.0441 0.0451 0.464 [1723:1740] TW

MS 34.03 83.34 133.71 [40:270], HD
3.14×10−73 5.28×10−15 1.12×10−12 [2000:2218] C

0.0109 0.0294 0.0445

2x1.3 A 1 33.85 133.05 158.90 [40:3505.05] MHD
400 1.71×10−158 0.15 18.76
0.01 0.0110 0.0424 0.0505

MS 138.85 143.56 148.48 [670:3400] HD rγ2
L/2,

1.66×10−154 3.04×10−6 1.18 Q rγ2
L/2

0.0441 0.0451 0.0464 TW

MS 33.85 82.71 153.46 [40:633.2] HD
1.83×10−158 7.26×10−12 5.66×10−9 C

0.0110 0.0292 0.0504

1x3.1 A 135.92 132.64 142.87 156.49 [25:483.79] HD rγ1
L/2,

4 1.34×10−26 6.34×10−5 5.03×10−3 Q rγ1
L/2

0.0476 0.0435 0.0453 0.0476 TW
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Table 2. Cont.

Run A/MS Ein Emin Eav Emax Time Type Symmetries

1x3.2 A 100 132.58 142.87 156.50 [100:558.16] HD rγ1
L/2,

25 7.25×10−26 5.26×10−4 0.0512 Q rγ1
L/2

0.01 0.0435 0.0453 0.0477 TW

1x3.3 A 1 132.64 142.87 156.46 [85:1992.79] HD rγ1
L/2,

400 3.78×10−103 1.86×10−8 6.68×10−6 Q rγ1
L/2

0.01 0.0435 0.0453 0.0476 TW

3x1.1 A 135.92 132.59 142.85 156.49 [1275:1348.48] HD rγ2
L/2,

3.76 3.06×10−6 2.71×10−3 0.0432 Q rγ2
L/2

0.0476 0.0435 0.0453 0.0477 TW

3x1.2 A 100 132.64 142.80 156.46 [560:597.69] HD rγ2
L/2,

25 5.42×10−6 2.25×10−4 1.76×10−3 Q rγ2
L/2

0.01 0.0435 0.0453 0.0476 TW

MS 139.71 139.73 139.85 [8:16] HD γ2
L/2,

3.60×10−5 1.38×10−4 5.35×10−4 S2 γ2
L/2

0.0468 0.0468 0.0468

3x1.3 A 100 132.51 142.87 156.63 [160:561.06] HD rγ2
L/2,

400 2.54×10−22 1.79×10−3 0.0991 Q rγ2
L/2

0.01 0.0435 0.0453 0.0477 TW

MS 139.71 139.72 139.74 [10:15.5] HD
5.84×10−5 2.84×10−4 1.27×10−3 S2

0.0468 0.0468 0.0468

1x4.1 A 135.92 56.81 123.87 183.43 [50:202.18] MHD
4 1.92×10−5 1.15 14.76 C

0.0476 0.0180 0.0359 0.0487

MS 131.67 142.41 151.88 [115:121], HD
1.92×10−4 8.71×10−4 3.95×10−3 [9:15.5] Q

0.0439 0.0460 0.0478

1x4.2 A 100 53.62 128.35 215.63 [50:200.89] MHD
25 3.88×10−4 3.21 17.27 C

0.01 0.0183 0.0389 0.05

1x4.3 A 1 43.52 122.10 200.92 [50:211.14] MHD
400 3.01×10−7 0.27 2.92 C
0.01 0.0136 0.0330 0.0485

4x1.1 A 135.92 49.93 128.33 203.82 [15:381.79] MHD
4 1.77×10−6 2.15 16.71 C

0.0476 0.0168 0.0391 0.0487

MS 131.45 142.83 152.27 [223:242] HD
1.92×10−4 4.22×10−4 8.51×10−4 Q

0.0444 0.0462 0.0476 TW

4x1.2 A 100 51.86 124.30 205.75 [50:310.23] MHD
25 3.60×10−6 1.65 16.04 C

0.01 0.0172 0.0358 0.0499

MS 146.06 147.19 147.87 [246:247.75] HD
7.85×10−3 0.0799 0.30 S2

0.0484 0.0486 0.0487

4x1.3 A 100 51.20 126.69 187.53 [25:286.47] MHD
900 9.13×10−6 2.33 15.10 C
0.01 0.0179 0.0388 0.0487

MS 130.19 143.60 151.34 [46:51.5] HD
8.92×10−4 1.78×10−3 3.03×10−3 Q

0.0441 0.0466 0.0483

MS 122.37 123.00 123.76 [12.5:15] HD γ2
L/2,

0.47 0.89 1.50 S2 γ2
L/2

0.0419 0.0419 0.0419

2x2.1 A 135.92 47.29 79.2 131.63 [40:1001.34] HD
4 9.49×10−244 2.01×10−11 6.90×10−9 C

0.0476 0.0160 0.0267 0.0393
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Table 2. Cont.

Run A/MS Ein Emin Eav Emax Time Type Symmetries

2x2.2 A 100 48.34 78.59 118.35 [40:331.19] HD
25 1.77×10−75 3.59×10−12 4.69×10−10 C

0.01 0.0166 0.0265 0.0373

2x2.3 A 1 46.40 78.83 135.50 [40:409.44] HD
1225 4.30×10−96 1.18×10−11 1.98×10−9 C
0.01 0.0171 0.0265 0.0399

2x3.1 A 135.92 55.55 77.88 135.61 [40:204.50] HD
4 1.06×10−35 3.82×10−8 1.60×10−6 C

0.0476 0.0176 0.0258 0.0358

2x3.2 A 100 53.37 80.47 159.21 [40:540.45] HD
25 8.70×10−109 1.47×10−11 7.92×10−9 C

0.01 0.0177 0.0263 0.0413

2x3.3 A 1 47.40 79.94 149.96 [40:417.59] HD
400 8.98×10−76 1.51×10−11 2.21×10−9 C
0.01 0.0161 0.0263 0.04

3x2.1 A 135.92 55.47 80.48 136.12 [40:318.22] HD
4 1.56×10−48 4.52×10−9 1.16×10−6 C

0.0476 0.0174 0.0264 0.0395

3x2.2 A 100 53.78 80.50 149.84 [40:364.87] HD
25 1.79×10−66 1.12×10−9 2.41×10−7 C

0.01 0.0188 0.0263 0.0394

3x2.3 A 100 54.77 78.96 146.56 [40:363.77] HD
400 1.61×10−65 1.10×10−7 2.59×10−5 C
0.01 0.0183 0.0261 0.0382

2x4.1 A 135.92 56.35 83.93 165.97 [40:244.38] HD
4 1.25×10−27 1.77×10−6 2.77×10−4 C

0.0476 0.0171 0.0263 0.0382

2x4.2 A 100 54.33 82.05 159.80 [40:381.79] HD
25 1.94×10−60 9.28×10−7 1.62×10−4 C

0.01 0.0196 0.0262 0.0375

2x4.3 A 100 57.54 80.22 152.08 [40:326.87] HD
400 6.23×10−49 1.55×10−7 1.46×10−5 C
0.01 0.0188 0.0259 0.0348

4x2.1 A 135.92 56.54 79.66 153.39 [40:290.67] HD
4 6.00×10−36 1.60×10−5 8.01×10−4 C

0.0476 0.0194 0.0261 0.0355

4x2.2 A 225 55.31 80.67 146.53 [40:366.17] HD
25 1.49×10−51 7.81×10−6 1.50×10−3 C

0.01 0.0194 0.0260 0.0349

4x2.3 A 1 52.71 81.42 164.80 [40:391.69] HD
100 1.88×10−58 6.09×10−7 7.67×10−5 C
0.01 0.0161 0.0260 0.0379

3x3.1 A 135.92 59.34 80.38 133.18 [40:201.10] HD
4 4.48×10−27 6.42×10−7 5.76×10−5 C

0.0476 0.0195 0.0262 0.0354

3x3.2 A 100 55.04 79.20 108.71 [40:321.50] HD
25 9.71×10−49 4.57×10−6 4.75×10−4 C

0.01 0.0186 0.0259 0.0327

3x3.3 A 100 56.12 78.41 106.72 [40:312.34] HD
400 3.92×10−40 2.25×10−5 2.38×10−3 C
0.01 0.0182 0.0259 0.0334

3x4.1 A 135.92 60.18 78.74 120.72 [40:200.17] HD
4 6.08×10−30 3.19×10−6 3.62×10−4 C

0.0476 0.0197 0.0256 0.0319

3x4.2 A 225 63.75 79.86 121.48 [40:295.39] HD
100 1.11×10−40 1.20×10−6 8.99×10−5 C
0.01 0.0203 0.0259 0.0323
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Table 2. Cont.

Run A/MS Ein Emin Eav Emax Time Type Symmetries

3x4.3 A 1 62.18 79.26 117.60 [40:285.44] HD
900 5.22×10−38 7.20×10−6 5.29×10−4 C
0.01 0.0206 0.0258 0.0327

4x3.1 A 135.92 60.75 79.99 112.65 [40:200.01] HD
4 6.26×10−25 1.07×10−5 5.83×10−4 C

0.0476 0.0190 0.0259 0.0338

4x3.2 A 225 59.81 79.15 110.28 [40:337.28] HD
100 2.34×10−44 7.68×10−6 5.46×10−4 C
0.01 0.0202 0.0258 0.0321

4x3.3 A 100 53.78 78.80 109.92 [40:296.86] HD
400 1.44×10−33 6.20×10−7 5.71×10−5 C
0.01 0.0183 0.0257 0.0324

4x4.1 A 135.92 65.55 79.53 106.56 [40:200.51] HD
4 5.33×10−23 1.03×10−6 7.88×10−5 C

0.0476 0.0212 0.0257 0.0313

4x4.2 A 225 61.65 79.41 105.68 [40:528.55] HD
100 8.18×10−54 3.14×10−6 5.88×10−4 C
0.01 0.0201 0.0258 0.0333

4x4.3 A 100 62.51 80.20 113.30 [40:342.84] HD
400 1.16×10−38 2.58×10−5 2.61×10−3 C
0.01 0.0210 0.0259 0.0319

The presence of the symmetries reported in Table 2 has been detected numerically.
A field f is supposed to possess a symmetry σ provided that the norm of the discrepancy
f− σf in the Lebesgue space L2(C ) is below the threshold 10−6.

None of the attractors or metastable states, obtained numerically, possesses more than
a single pair of symmetries for the flow and magnetic field. The symmetries in the pair
are either identical, or the symmetry of the magnetic field additionally comprises the field
reversal q.

3. Results of Simulation

General characteristics of the regimes obtained in our computations are shown in
Table 2. While in the runs for triple-period fluid cells, the terminal regimes are non-
generating stable hydrodynamic travelling waves, in all other runs the attractors are
chaotic. In the course of temporal evolution, some attractors acquire in finite time intervals
a behaviour that is visibly close to a regular one, subsequently abandoning it. This happens
when a trajectory approaches (in the phase space) an invariant object, whose behaviour
is regular (in our runs, these objects are steady states or travelling waves), and which is
only mildly unstable (i.e., it has a low-dimensional unstable manifold, and growth rates
of the non-decaying perturbation modes are small). Following, e.g., [63], we call such
invariant objects metastable states. If a trajectory comes close to a metastable state, it is
repelled from the state only along the unstable manifold, which takes a relatively long time
(since the positive growth rates of the perturbation modes are small). Prior to leaving a
neighbourhood of the metastable state, the trajectory mimics the quasi-regular behaviour
of the trajectory (or trajectories) constituting the metastable state. Metastable states are
often encountered during the initial saturation phase and do not significantly affect the
evolution. Alternatively, metastable states can be repeatedly visited by the trajectory and
play an important role in shaping the attractor. For instance, this occurs in our double-
period simulations: the attractor is influenced by the presence of a hydrodynamically
stable steady flow permanently staying in its vicinity in run 2x1.1, and in the other five
runs, a hydrodynamically stable flow, which is a travelling wave capable of magnetic field
generation, is approached repeatedly, preventing the magnetic field from its ultimate decay.

To describe an attractor or a metastable state, we report in Table 2 the energies obtained
in the respective run. This explains, for instance, why the magnetic energy is strictly positive
in the attractor entries labelled hydrodynamic. In this case, very small (much below the
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computer “epsilon”) magnetic energies are meaningful: To advance the magnetic field, b,
by a time step, the field only in the beginning of the step is needed. Since the magnetic
induction Equation (1.2) is linear in b, all values that are added up for computing the
new field have comparable orders of smallness, this resulting in round-off errors that are
significantly smaller than the new field.

Increasing the horizontal periods allows larger structures to develop in the flow. Thus,
higher magnetic Reynolds numbers can be attained, which is beneficial for generating
or sustaining magnetic field. Surprisingly, our simulations have shown that convection
remains a dynamo only in elongated (M1, M2)-periodicity cells, i.e., for M1 = 1 or M2 = 1.
Kinetic and magnetic energy densities averaged over space and time upon saturation
are shown in diagrams Figure 3 for the two employed resolutions. They attest that only
sufficiently vigorous flows (whose mean kinetic energy density is over 100) generate
magnetic field. However, this is only a necessary condition: flows obtained in simulations
in the periodicity cells 3x1 and 1x3 satisfy it, but do not act as dynamos.
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Figure 3. Space- and time-averaged kinetic (smaller black dots, left axis) and magnetic (larger blue
dots, right axis) energies for the attractors obtained in the runs with the standard (128M1× 128M2× 97
harmonics), (a), and alternative (256× 256× 257 harmonics), (b), resolution. Gray vertical lines:
r.m.s. deviations of the space-averaged kinetic energy from their time averages. Thin vertical dotted
lines separate the runs into groups of regimes residing in identical periodicity cells.

In the subsequent investigation, for each run, we have computed the estimates of the
magnetic Reynolds number Rm= `|v|/η (as Table 3 shows), where ` is the characteristic
length scale of the flow, |v| is the characteristic flow velocity and η = P/Pm is the molecular
magnetic diffusivity. Within the framework of the approach of [64], we have tried four
different estimates of the characteristic length scale:

`1 =

(
(t1 − t0)

−1
∫ t1

t0

(∫
C
|v|2 dx

/∫
C
|∇v|2 dx

)
dt
)1/2

=

(t1 − t0)
−1
∫ t1

t0

(
∑
n

δn|vn|2
)(

∑
n

δn(α
2
1n2

1 + α2
2n2

2 + α2
3n2

3)|vn|2
)−1

dt

1/2

; (7.1)

`2 =

(∫ t1

t0

∫
C
|v|2 dx dt

/∫ t1

t0

∫
C
|∇v|2 dx dt

)1/2

=

(∫ t1

t0

(
∑
n

δn|vn|2
)

dt

/∫ t1

t0

(
∑
n

δn(α
2
1n2

1 + α2
2n2

2 + α2
3n2

3)|vn|2
)

dt

)1/2

; (7.2)

`3 =

(t1 − t0)
−1
∫ t1

t0

∫
C
|v|2 dx

/∫
C

∣∣∣∣∣
(

∂2v
∂x2

1
,

∂2v
∂x2

2
,

∂2v
∂x2

3

)∣∣∣∣∣
2

dx

dt

1/4
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=

(t1 − t0)
−1
∫ t1

t0

(
∑
n

δn|vn|2
)(

∑
n

δn(α
4
1n4

1 + α4
2n4

2 + α4
3n4

3)|vn|2
)−1

dt

1/4

; (7.3)

`4 =

∫ t1

t0

∫
C
|v|2 dx dt
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t0

∫
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∣∣∣∣∣
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1
,
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2
,
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∂x2

3

)∣∣∣∣∣
2

dx dt

1/4

=

(∫ t1
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(
∑
n

δn|vn|2
)

dt

/∫ t1

t0

(
∑
n

δn(α
4
1n4

1 + α4
2n4

2 + α4
3n4

3)|vn|2
)

dt

)1/4

, (7.4)

where δn = 2 if n3 = 0, and δn = 1 otherwise. We have defined the characteristic flow
velocity |v| as the root-mean square velocity averaged over the time interval, for which
the magnetic Reynolds number is estimated. Thus, four mean estimates of the magnetic
Reynolds number, Rmn = `n|v|/η, have been obtained.

Typically, Rm1 and Rm2 are smaller than Rm3 and Rm4. The differences |Rm1 − Rm2|
and |Rm3 − Rm4| turn out to be small compared to the difference between Rm1 and Rm3,
or between Rm2 and Rm4 (see Table 3). This behaviour of the magnetic Reynolds number
estimates Rmn mimics the behaviour of the space scales estimates `n. The difference
|Rm3 − Rm4| is much smaller for the non-dynamo regimes (below 0.018) than for the
generating regimes (which can be an order of magnitude larger, reaching 0.16).

The characteristic length scales `n are small relative the horizontal size of the periodic-
ity boxes and have the tendency to decrease with the area of the horizontal section of the
periodicity box. No large discrepancies between the values `n for a given run are observed.
This behaviour of the length scales is counterintuitive and opposite to the one that we
have expected. Solutions in all the non-elongated M1xM2 periodicity boxes (for M1 > 1
and M2 > 1) possess chaotic amagnetic attractors. The small size of the flow structures,
their variability and the resulting spatial intermittency give rise to the lack of the concerted
action of the flow structures spread out over the periodicity box, that is needed for magnetic
field generation.

Table 3. Magnetic Reynolds number estimates in the runs for Mi ≤ 4 (in the order of increasing Rm4).
Column G: “M” indicates that magnetic field generation is sustained in the perturbed regime; Interval:
the time interval, over which the magnetic Reynolds number estimates are computed; `n: estimates (7)
of the internal spatial scale of the perturbed regime; Rmn: the magnetic Reynolds number estimate
based on `n; |v|: the characteristic flow velocity in the time interval under consideration.

Run G Interval `1 Rm1 `2 Rm2 `3 Rm3 `4 Rm4 |v|

4x4.2 51–528.55 0.223 22.413 0.223 22.416 0.206 20.722 0.206 20.720 12.58
4x2.1 232.40–290.65 0.219 21.769 0.219 21.770 0.241 23.988 0.241 23.983 12.43
3x3.3 220.46–312.34 0.220 21.843 0.220 21.842 0.241 24.011 0.241 24.004 12.43
2x2.3 310.15–409.44 0.219 21.879 0.220 21.885 0.242 24.115 0.242 24.103 12.46
2x3.1 100–204.50 0.219 21.920 0.219 21.923 0.241 24.113 0.241 24.108 12.50
4x3.3 223.17–296.86 0.221 22.050 0.221 22.047 0.242 24.176 0.242 24.167 12.48
2x3.2 505.52–540.45 0.220 22.092 0.220 22.101 0.242 24.280 0.242 24.278 12.53
3x2.3 251.39–363.77 0.221 22.183 0.221 22.190 0.243 24.365 0.242 24.358 12.55
3x4.1 42.18–200.17 0.222 22.273 0.222 22.277 0.243 24.377 0.243 24.369 12.55
3x4.3 219.42–295.39 0.221 22.281 0.221 22.283 0.243 24.400 0.242 24.393 12.57
4x3.2 290.74–337.38 0.222 22.337 0.222 22.332 0.243 24.414 0.243 24.406 12.56
4x4.3 201–336 0.223 22.385 0.223 22.385 0.243 24.439 0.243 24.436 12.56
4x3.1 42–200.02 0.223 22.396 0.223 22.397 0.243 24.481 0.243 24.480 12.57
3x4.2 246.87–285.44 0.223 22.454 0.223 22.446 0.243 24.497 0.243 24.486 12.57
3x3.2 278.28–321 0.224 22.467 0.223 22.459 0.244 24.533 0.244 24.518 12.56
2x3.3 309.16–417.59 0.221 22.382 0.221 22.415 0.243 24.554 0.243 24.560 12.65
3x3.1 42.91–201.10 0.222 22.468 0.222 22.473 0.243 24.574 0.243 24.568 12.62
2x2.2 200–331.19 0.221 22.333 0.221 22.356 0.245 24.698 0.244 24.680 12.62
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Table 3. Cont.

Run G Interval `1 Rm1 `2 Rm2 `3 Rm3 `4 Rm4 |v|

4x4.1 100–200.51 0.223 22.619 0.224 22.623 0.244 24.689 0.244 24.685 12.65
2x2.1 719.70–800.70 0.221 22.484 0.221 22.502 0.243 24.788 0.243 24.779 12.73
2x4.2 317.09–381 0.223 22.741 0.224 22.784 0.243 24.795 0.243 24.810 12.73
2x4.3 223.93–326 0.224 22.806 0.224 22.816 0.244 24.850 0.244 24.846 12.72
3x2.1 231.77–318 0.223 22.723 0.223 22.728 0.244 24.863 0.244 24.857 12.72
4x2.3 268.69–366.17 0.224 22.855 0.224 22.860 0.244 24.902 0.244 24.895 12.73
2x4.1 102–207.69 0.225 22.959 0.226 22.973 0.245 24.954 0.245 24.961 12.73
3x2.2 304.32–364 0.223 22.978 0.224 23.022 0.244 25.093 0.244 25.104 12.86
4x2.2 334.41–391.69 0.225 23.106 0.226 23.135 0.245 25.106 0.245 25.113 12.81
3x1.1 100–249.39 0.227 27.379 0.227 27.279 0.247 29.761 0.246 29.608 15.04
2x1.2 M 1946.90–1980.90 0.227 26.638 0.228 26.815 0.254 29.868 0.255 29.949 14.68
3x1.2 285.85–377.67 0.227 28.423 0.226 28.342 0.245 30.675 0.244 30.537 15.65
1x4.3 M 130–211.14 0.242 29.726 0.243 29.786 0.254 31.235 0.254 31.163 15.34
4x1.3 M 108.81–241.99 0.233 29.797 0.233 29.727 0.248 31.701 0.247 31.589 15.96
4x1.2 M 200–310.23 0.238 30.258 0.238 30.170 0.253 32.107 0.252 31.986 15.85
4x1.1 M 168–330 0.238 29.814 0.238 29.770 0.256 32.060 0.256 32.015 15.65
1x4.1 M 140–192 0.242 30.969 0.241 30.894 0.252 32.300 0.251 32.165 16.00
1x4.2 M 120–200 0.237 31.140 0.236 31.098 0.259 34.047 0.257 33.888 16.45
1x2.1 M 185–245 0.238 30.339 0.238 30.333 0.267 34.018 0.267 34.003 15.92
1x2.3 M 1606–1691 0.238 30.534 0.238 30.526 0.267 34.206 0.267 34.181 16.01
2x1.3 M 3460–3505.05 0.239 30.794 0.238 30.787 0.266 34.407 0.266 34.383 16.13
1x2.2 M 50–300 0.239 31.193 0.239 31.188 0.266 34.715 0.266 34.684 16.32
2x1.1 M 152–277.81 0.248 33.000 0.248 32.987 0.261 34.777 0.261 34.739 16.64
1x3.3 50–354.35 0.234 31.566 0.234 31.568 0.263 35.499 0.263 35.483 16.87
1x3.1 25–487.12 0.234 31.668 0.234 31.659 0.263 35.589 0.263 35.566 16.90
1x3.2 83–558.16 0.234 31.669 0.234 31.660 0.263 35.590 0.263 35.567 16.90
3x1.3 330.20–365.60 0.234 31.676 0.234 31.667 0.263 35.597 0.263 35.574 16.90

The magnetic Reynolds number estimates Rmn separate sharply the regimes in elon-
gated periodicity boxes (including all generating regimes) from those in larger-size boxes
(where the generation fails) at the thresholds Rm1 =Rm2 = 25, Rm3 =Rm4 = 27 (see
Table 3). While these values are higher than the critical Reynolds numbers Rmc for the onset
of magnetic field generation by Beltrami flows (Rmc = 9 for the 1:1:1 ABC flow [65] and
Rmc = 16 for a Beltrami flow in a sphere [66]), they are much lower than the critical num-
bers for many other kinematic dynamos presented in the literature (e.g., cf. Rmc = 515.63
for the Christopherson flow [67]). The main contribution to the obtained values of mag-
netic Reynolds numbers comes from the characteristic flow velocity, which significantly
decreases with the area of the horizontal section of the periodicity box. In larger periodicity
boxes, convective motions tend to become less vigorous, affecting their ability to generate
magnetic fields.

For t1 → t0, the length scale estimates `1 and `2 have equal limits, which we denote
`′1(t0); similarly, `3 and `4 have equal limits, which we denote `′3(t0). Employing the
root-mean square velocity (averaging being over the periodicity cell) as the momentary
characteristic velocity |v(t)|, we define the time-dependent estimates of the magnetic
Reynolds number, Rm′n(t) = `′n(t)|v(t)|/η. Figure 4 illustrates the temporal variation of
the estimates `′1, `′3, Rm′1 and Rm′3 in run 1x2.2 . While the behaviour of `′j and Rm′j is
quite similar, Rm′j displays a much higher variability than `′j, and the behaviour of the
two quantities differs significantly in detail. For instance, while `′3 experiences an overall
increase towards the end of the evolution shown in Figure 4, `′1, Rm′1 and Rm′3 are on
average growing.

In the sections that follow, we will consider in more detail the generating regimes of
thermal convection in the presence (at least initially) of magnetic field.
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Figure 4. Temporal behaviour of the time-dependent estimates of the length scales (7), `′1 (green line)
and `′3 (blue line), (a), and of the magnetic Reynolds number, Rm′1 (green line) and Rm′3 (blue line), in
run 1x2.2 (b).

3.1. Regimes in the Elongated Boxes with the Periodicities 1x2/2x1

The data in Table 3 for the six runs in the 2x1- and 1x2-periodicity fluid volumes
(which we call “double-period”) are only indicative. For instance, the plot Figure 5i,
showing the temporal behaviour of the kinetic and magnetic energy in run 2x1.2, im-
plies that the regime encountered in these periodicity cells is a succession of three dis-
tinct phases: the magnetic field decay phase (50 < t < 250 and 2000 < t ≤ 2200 in
Figure 5i), the generation phase (300 < t < 1500) and the saturation phase
(1550 < t < 1950), separated by short transition phases. Each phase is characterised
by well-defined distinct values of the mean kinetic energy, length scales and the respective
estimates of the magnetic Reynolds number. These are presented in Table 4, where the
phases are labelled D (the magnetic field decay phase), G (the generation phase), S (the
saturation phase) and T (the initial transitory regime). Phase G occurs when a trajectory
in the phase space finds itself close to a travelling wave transporting a time-periodic flow
capable of kinematic magnetic field generation (see the discussion below); by contrast, we
have failed to identify an analogous non-dynamo underlying the hydrodynamic object of a
simple temporal structure in phase D. These phases can be identified in the evolutions of
the convective dynamo in all our double-period runs, except 2x1.1, and the lengths of the
phases in all five successions change randomly; thus, estimating the mean values for an
entire trajectory in the attractor reliably requires integrating it up to times of at least order
105, which we cannot afford for obvious reasons.

Nonlinear convective dynamo regimes approaching for certain finite times flows of
a simple temporal structure (such as steady states, periodic or quasiperiodic flows), that
can generate magnetic field kinematically, are known in the literature. Most of them were
detected numerically (see, for instance, [49,57,62]). Notably, an advance towards a periodic
regime by the geodynamo was also observed in the paleomagnetic data in durations of the
Earth’s geomagnetic epochs [68].

According to Table 4, the values of `n and Rmn during phases G in the five runs for
double-period cells are consistent: for each n, Rmn varies between runs in these phases by
less than 0.1 . The Rm1 and Rm2 values during phases D differ by less than 0.3, and the Rm3
and Rm4 values by less than 0.2 . Evidently, we cannot expect a full coincidence of the values
even for phases G, because (1) the time intervals used for computing Rmn during phases
G in the vicinity of quasiperiodic metastable states have not been synchronised between
the runs taking the quasiperiodicity into account; (2) during phase G, the flow closely
approaches but does not coincide with the travelling wave which is the hydrodynamic
component of the amagnetic metastable state; in particular, (3) the magnetic field affects the
flow, especially in the beginning of phases D and towards the end of phases G. The Rmn
values obtained for phases S are, as can be expected, less consistent.
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The six runs for the double-period fluid volume turn out to reveal two different
attractors, this explaining the difference of the Rmn estimates in phases S.
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Figure 5. Cont.
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Figure 5. Temporal behaviour of the kinetic (left vertical axis, black line) and magnetic (right vertical
axis, blue line) energies in the double-period runs 1x2.1 (a), 1x2.2 (c), 1x2.3 (e), 2x1.1 (g), 2x1.2 (i), and
2x1.3 (k). Evolution of the magnetic energy versus kinetic energy in runs 1x2.1 (b), 1x2.2 (d), 1x2.3 (f),
2x1.1 (h), 2x1.2 (j), and 2x1.3 (l).

Table 4. Magnetic Reynolds number estimates in various phases of the runs in the double-period
periodicity cells. Interval: the time interval, for which the magnetic Reynolds number estimates are
computed; `n: estimates (7) of the internal spatial scale of the perturbed regime; Rmn: the magnetic
Reynolds number estimate based on `n; |v|: the characteristic flow velocity in the time interval under
consideration.

Run Phase Interval `1 Rm1 `2 Rm2 `3 Rm3 `4 Rm4 |v|

1x2.1 T 10–65 0.215 22.690 0.214 22.615 0.249 26.325 0.249 26.265 13.20
G 75–170 0.240 32.566 0.240 32.553 0.263 35.653 0.263 35.638 16.93
S 185–250 0.238 30.425 0.238 30.418 0.267 34.099 0.267 34.083 15.96

1x2.2 T 0–13.8 0.220 24.205 0.220 24.172 0.245 26.928 0.244 26.765 13.72
G 20–40 0.240 32.557 0.240 32.543 0.263 35.665 0.263 35.648 16.93
S 50–115 0.238 30.439 0.238 30.432 0.267 34.165 0.267 34.151 15.98

1x2.3 D 10–293 0.214 22.367 0.214 22.350 0.246 25.699 0.246 25.627 13.03
G 300–1597 0.240 32.584 0.240 32.571 0.263 35.667 0.263 35.653 16.94
S 1606–1691.82 0.238 30.534 0.238 30.526 0.267 34.206 0.267 34.181 16.01

2x1.1 T 0–8 0.244 32.150 0.244 32.151 0.260 34.363 0.260 34.362 16.50
S 12–277.81 0.248 33.010 0.248 32.993 0.261 34.789 0.261 34.737 16.65

2x1.2 D 40–270 0.216 22.533 0.214 22.374 0.246 25.743 0.245 25.585 13.06
G 285–1555 0.241 32.658 0.240 32.621 0.263 35.727 0.263 35.699 16.95
S 1570–1962 0.239 31.254 0.239 31.170 0.266 34.814 0.266 34.743 16.33

2x1.3 D 40–633.2 0.215 22.265 0.214 22.161 0.246 25.559 0.245 25.448 12.97
G 646–3445 0.240 32.611 0.240 32.579 0.263 35.686 0.263 35.662 16.95
S 3460–3505.05 0.239 30.794 0.238 30.787 0.266 34.407 0.266 34.383 16.13
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The coincidence of the attractor in the five runs has been verified by comparing some
of their quantitative characteristics: For instance, different runs exhibit the same growth and
decay rates in phases G and D, respectively, and the same kinetic energy levels in each phase;
this remains true for more subtle quantities, such as the characteristic length scales (7) and
the magnetic Reynolds number estimates. Figure 5 illustrates the richness of details featured
by individual trajectories approaching the attractor. The similarity of the regimes is evident
in plots of the kinetic and magnetic energies in the double-period runs 1x2.3, 2x1.2 and
2x1.3 (see Figure 5e,i,k), as well as in projections of trajectories on the plane of kinetic
and magnetic energies (Figure 5f,j,l). The relatively thin “cylinders”, i.e., spirals that are
densely populated by almost horizontal, slowly rising relatively narrow loops display
phases G, and their upper sections, gradually shifting to the left, phases S. The irregularly
entangled and relatively wide curves in the left part of the plots Figure 5b,d display the
initial phases T, and the wide “cylinders”, i.e., spirals comprised of relatively less densely
populated, almost horizontal, slowly descending, relatively wide loops in Figure 5f display
phase D occurring after a very short transient phase in run 1x2.3 . A short plateaux for
45 < t < 51 (well visible upon magnifying the figure in the electronic version of the
paper) is approached exponentially by the trajectory in run 1x2.1; it displays an amagnetic
metastable state. The plot Figure 5i for run 2x1.2 demonstrates that the attractor consists of
a cyclic repetition of phases D, G and S.

The plots of the isosurfaces of the kinetic (Figure 6a) and magnetic (b) energy densities
in run 1x2.3 at a randomly chosen time t = 1650.707 demonstrate that the double-cell
periodicity of the physical fields does not degenerate into the single-cell periodicity of the
unperturbed convective dynamo.

(a) (b)

Figure 6. Isosurfaces of the kinetic (a) and magnetic (b) energy densities at the level of 1/2 of their
respective maxima in run 1x2.3 at time t = 1650.707. One double-period fluid box is shown.

We illustrate the temporal behaviour of the flow in run 2x1.2 by the plots of real parts
of the Fourier coefficients v̂1

111 and v̂1
222 in Figure 7 in the time intervals 0 ≤ t ≤ 320 (phase

T of the initial transient process, see Figure 5i), 800 ≤ t ≤ 830 (phase G, quasiperiodic
metastable state), 1520 ≤ t ≤ 1620 (phase S, including connections with the previous phase
G and subsequent phase D) and 2000 ≤ t ≤ 2200 (phase D). This behaviour is typical
for individual harmonics in the five double-period runs. The temporal power spectra of
these coefficients in phases G, S and D are shown in Figure 8. The plots reveal that in
phase G the flow possesses two basic frequencies, it is a travelling wave (basic frequency
fTW = 0.317) transporting a periodic orbit (basic frequency fPO = 1.961), and in phases
S and D the dynamical system is chaotic. The saturated behaviour in phase S is intricate;
for instance, the hydrodynamic quasiperiodic metastable state of phase G is revisited in the
time intervals 1660 ≤ t ≤ 1675 and 1720 ≤ t ≤ 1740.
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Figure 7. Temporal behaviour of the Fourier coefficients Re v̂1
111 (left column) and Re v̂1

222 (right
column) in run 2x1.2 in four time intervals: 0 ≤ t ≤ 320 (phase T of the initial transient processes,
chaotic behaviour and approach to the quasiperiodic metastable state), (a), (b); 800 ≤ t ≤ 830
(phase G in the vicinity of the quasiperiodic hydrodynamic metastable state), (c), (d); 1520 ≤ t ≤ 2020
(departure from phase G, phase S of the saturated chaotic regime and approach to the chaotic phase D),
(e), (f); and 2000 ≤ t ≤ 2200 (phase D of magnetic field decay), (g), (h).
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The following evidences corroborate the coincidence of the generating flows in
phases G of runs 1x2.3, 2x1.2 and 2x1.3:

• All of them are quasiperiodic hydrodynamic travelling waves.
• The energy ranges and mean (over time) energies coincide.
• The basic frequencies are identical.
• The ranges of the magnetic Reynolds number estimates Rm′1 and Rm′3 and their mean

(over time) values coincide.
• The ranges of the kinetic helicity and its temporal mean values are the same.
• The growth rates of the dominant magnetic modes are also equal.
• The flows have the symmetry rγ1

L/2 in the 1x2 cell and rγ2
L/2 in the 2x1 cell.
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Figure 8. Temporal power spectra of the Fourier coefficients Re v̂1
111 (left column) and Re v̂1

222 (right
column) in run 2x1.2 in the time intervals 285 ≤ t ≤ 1555 (phase G), (a), (b); 1580 ≤ t ≤ 1940
(phase S), (c), (d); and 2000 ≤ t ≤ 2200 (phase D), (e), (f).
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In Figure 9, we present the projection of the Poincaré map of the hyperplane Re v̂3
222 = 0

on the plane (Re v̂1
111,Re v̂2

111). As stated above, for 300 ≤ t ≤ 1500 (phase G), the flow is a
quasiperiodic attractor, and the points lie on smooth curves (see Figure 9a). By contrast, in
the chaotic phases S and D of the saturated and decaying magnetic field, the Poincaré map
yields a cloud of randomly distributed points, which is a signature of chaos. The Poincaré
maps in Figure 9a are symmetric about the centre of coordinates; for a travelling wave,
this property is not linked with a spatial symmetry of the flow, but rather stems from the
nature of the conditions, for which the mapping is constructed. In Figure 9b for phase S,
the approximate symmetry about the centre of coordinates of the area, where the points
constituting the mapping are located, can be attributed to the time intervals, during which
the trajectory is close to the generating quasiperiodic flow that is also approached in
phase G. The absence of the symmetry in Figure 9c during phase D suggests that this phase
is not linked with any underlying quasiperiodic flow.
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Figure 9. Projection of the Poincaré map of the hyperplane Re v̂3
222 = 0 on the plane (Re v̂1

111,Re v̂2
111)

in the time intervals 300 ≤ t ≤ 1500 (phase G), (a); 1600 ≤ t ≤ 2015 (phase S and its small
neighbourhood), (b); and 2000 ≤ t ≤ 2200 (phase D), (c), in run 2x1.2 .

At first glance, the behaviour of the kinetic and magnetic energies in Figure 5a,c in
runs 1x2.1 and 1x2.2 differs from that in runs 1x2.3, 2x1.2 and 2x1.3 . However, a zoom
into the behaviour of the energies in phase S in run 2x1.2 (see Figure 10) shows a similar
behaviour, the trajectory approaching (once in Figure 5a and four times in Figure 5c) the
same generating hydrodynamic travelling wave, as in phase G, in runs 1x2.3, 2x1.2, and
2x1.3. Multiple evidences confirm that the same travelling wave is visited in phase S and
acts as the kinematic dynamo in phase G: their energies span the same ranges, the magnetic
growth rates coincide up to small (order 10−3) errors, and many peaks in the temporal
power spectra of the coefficients Re v̂1

111 and Re v̂1
222 during phase S are very close to the

frequencies of the quasiperiodic flow of phase G (see Figure 8). The difference in the
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behaviour of the kinetic and magnetic field energies in phases G and S is just in a much
smaller duration of the chaotic evolutions resulting in the magnetic energy decay by several
orders of magnitude only, and in a much shorter stay in the vicinity of the generating
travelling wave. Thus, the same succession of the “mini-phases” G, S and D occurs within
the phase S, their alternation being much faster. Several large-amplitude “excursions”
seen in Figure 5c, that are relatively short episodes of the magnetic field decay and its
subsequent growth, give rise to irregular large-radius loops around and under the right
thin cylinder in Figure 5d. We conclude that, in all the five double-period runs, we observe
the same attractor.
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Figure 10. Temporal behaviour of the kinetic (left vertical axis, black line) and magnetic (right vertical
axis, blue line) energies in the double-period run 2x1.2 for 1540 ≤ t ≤ 1960, phase S (a). Evolution of
the magnetic energy versus kinetic energy in this run in the same time interval (b).

Figure 11 shows the temporal behaviour of the mean kinetic helicity

h(t) = 〈(∇× v) · v〉

in three runs for the double-period fluid volume. The mean helicity during phase G is zero.
This is clearly seen in Figure 11b for run 2x1.2; in run 1x2.2, the phase G time intervals
are short, initial departures from the underlying metastable state are high, and when the
energy evolution already indicates the advent of this phase, it still takes some time for the
helicity to decay to significantly small values (see Figure 11a). Notably, vanishing of the
mean helicity does not prevent kinematic magnetic field generation in this phase. This
agrees with the findings of [69], where many examples of generating pointwise zero-helicity
three-dimensional steady flows were constructed, and it was concluded that neither kinetic
helicity nor helicity spectrum control the dynamo properties of a flow regardless of whether
scale separation is present or not. In phase S, we observe bursts of the mean helicity,
whose amplitude is at first small, but gradually increases towards the end of this phase.
The amplitude is maximum in phase D, when the flow fails to generate magnetic field.
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Figure 11. Temporal behaviour of the mean kinetic helicity (green line, right vertical axis) together
with the kinetic energy (black line, left vertical axis) for reference in runs 1x2.2 (a), 2x1.2 (b) and
2x1.1 (c).

The attractor that we have encountered in run 2x1.1 is distinct: the projections of the
trajectory in the phase space onto the plane of the kinetic and magnetic energies shown
in Figure 5h (visually resembling a wing of the Lorenz butterfly attractor) clearly differs
from the spiral-like structures observed in the similar projection of the attractor in other
five double-period runs. The mean helicity in this run features intervals of almost periodic
behaviour that are separated by significantly shorter intervals of irregular behaviour (see
Figure 11c), during which kinetic energy experiences oscillations of twice higher temporal
frequency. The intervals of almost periodic behaviour have opposite signs of the maximum
in absolute value helicity (for instance, cf. its behaviour in the intervals 18 < t < 50 and
60 < t < 105). The almost regular helicity behaviour can be expected to set in when the
trajectory in the phase space approaches a time-periodic metastable state. We find that the
2x1.1 flow is close to the flow possessing the following symmetries:

• Independence of x2 (the energy of the discrepancy averaged over the periodicity
cell, equal to the mean energy of the harmonics associated with wave vectors with a
non-zero second component, is below 0.25 in the saturated regime for t > 18; it shows
the tendency to increase towards the ends of the intervals of almost regular helicity
behaviour).

• s2 (for t > 18, the mean energy of the discrepancy v(x)− s2 v(x) is below 24.0).
• rγ1

L/2 (for t > 18, the mean energy of the discrepancy v(x)− rγ1
L/2 v(x) is below 14.4).

• The flow is approximately 1x1-periodic (for t > 18, the spatially averaged mean energy
of the discrepancy, equal to the mean energy of the harmonics associated with wave
vectors, whose first component is odd, is below 6.1).

This suggests that the underlying metastable state has the four symmetries and,
in particular, it is 1x1-periodic.
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Three 1x1-periodic regimes of hydromagnetic convection for the parameter values
considered here were identified in [49]: R1 (steady amagnetic rolls, parallel to one of the
sides of the square periodicity cell and stable to 1x1-periodic hydrodynamic perturbations),
SR1

7 and SR1
8 (MHD steady states, stable to 1x1-periodic MHD perturbations; SR1

8 is the state
subjected to perturbations in the present study). Only R1 matches the flow in the regime
2x1.1 in kinetic energy, and only R1 has the four symmetries that hold approximately for
2x1.1. We conclude that R1 is the metastable state approached by 2x1.1. The following
evidence corroborates this:

• We have performed a hydrodynamic run (the magnetic field being set to zero at each
step) in a 2x1-periodic fluid box for an initial condition that is the 2x1.1 flow at t = 180
(close to the local minimum of the magnetic energy), where the x2-dependence is
suppressed by setting to zero all harmonics associated with wave vectors, whose
second component is non-zero. This run has converged fast (in roughly 15 time units)
to the double-replicated R1, the energy of discrepancy decreasing below 10−18.

• The energy of the discrepancies between the 2x1.1 flow at t = 180 and the flows of the
MHD steady states R1, SR1

7 and SR1
8 is 0.2, 0.2 and 16.1, respectively.

The rolls R1 do not depend on x2 and have the symmetries s2 (rotation about the
vertical axis by π) and rγ1

L/2 (the midplane reflection with a shift in x1 by half the period).
The symmetry rγ1

L/2s2 amounts to parity invariance (upon shifting appropriately the origin
in x1), implying that the mean helicity of R1 vanishes. Thus, the flow in the 2x1.1 regime
can be regarded as a perturbation of the parity-invariant metastable state R1, and its total
helicity is predominantly linear in the parity-anti-invariant component of the perturbation.
Since the rolls R1 are stable with respect to hydrodynamic perturbations, their perturbation
giving rise to the 2x1.1 flow is the consequence of the action of the Lorentz force, resulting
from the growing magnetic field. The Lorentz force has the required parity-anti-invariant
component only if the magnetic field has both non-zero parity-invariant and parity-anti-
invariant components. The existence of two dominant magnetic modes, whose growth rates
are equal, one mode being parity-invariant and another one being parity-anti-invariant, is
linked with the independence of R1 on x2: the two eigenmodes take the form e±ix2 m(x1, x3),
and their real and imaginary parts feature opposite parity invariance properties. In the
course of evolution, the magnetic field grows until its magnitude becomes so large that
the Lorentz force starts affecting significantly the flow until the modified flow fails to
sustain the magnetic field. The generation ceases, the flow converges back to R1, and the
cycle of magnetic field generation and subsequent decay repeats, although with alterations,
because during one cycle, the initial noise does not weaken sufficiently not to affect the
next cycle. When the perturbation accumulates to significant levels, the periodic repetition
of the cycles gets broken and a chaotic “interlude” starts that leads to the onset of the next
sequence of the cycles. We observe this as the series of repeated perturbed “teeth” in the
helicity plot.

Exhaustive arguments explaining the almost regular behaviour of the kinetic helicity
in certain time intervals and a similar behaviour with the helicity reversed in other time
intervals can be obtained by constructing the appropriate asymptotic solutions for the
weakly nonlinear regime 2x1.1 . We plan to present them elsewhere. The presence of
intervals of the irregular behaviour of the helicity characterised by the frequency doubling
of the energy suggests that another metastable state of a twice shorter period exists in the
vicinity of the attractor.

The temporal behaviour of the real part of the Fourier coefficient b̂1
111 (see

Figure 12a) resembles magnetic reversals: while Re b̂1
111 is predominantly negative for

18 < t < 50, it is positive for 60 < t < 105; other similar intervals of dominant signs
of the coefficient can be identified. The imaginary part (Figure 12b) shows an analogous
intermittent behaviour; its intervals of dominant signs loosely correlate with those of the
positive part.
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Figure 12. Temporal behaviour of the Fourier coefficients Re b̂1
111 (a) and Im b̂1

111 (b) in run 2x1.1 .

3.2. Regimes in the Elongated Cells with the Periodicities 1x3/3x1

A typical behaviour of the kinetic and magnetic energies in the triple-period fluid
volumes (1x3 or 3x1) is shown in Figure 13. After a chaotic transition phase (its duration
varies in our runs roughly from 25 to 1250 time units), a regime with an underlying non-
generating quasiperiodic flow sets in; this is a travelling wave carrying a periodic orbit.
Unlike in the double-period case, in our runs, instability never transforms this flow into a
generating one. (More precisely, all standard-resolution runs in this periodicity cell have
produced the terminal non-generating travelling wave, as well as all the five alternative-
resolution runs that we have performed. One of the alternative resolution runs has been
followed up to t = 580, the terminal regime lasting for over 115 time units.) For instance, we
have followed the travelling wave from t = 85 up to t = 1992 in run 1x3.3, but integration
for almost 1900 time units in this run has not restored magnetic field generation. We
therefore conclude that for convection in the triple-period elongated cells, the attractor is
unique and it is hydrodynamic.

In Figure 13, we show the temporal evolutions of the energies in two instances of run
3x1.2 with the standard (128×384×97 harmonics) and alternative (256×256×257 harmon-
ics) space resolutions. Because of the intrinsic instability of the regimes, the evolutions,
of course, do not coincide, but they are qualitatively similar, differing only in minor details
(a relatively long oscillatory decrease of the kinetic energy in the time interval 52 < t < 80
is the most prominent feature occurring in the run with the alternative resolution only).
The behaviour of the projection of the trajectories on the plane of magnetic and kinetic
energies in Figure 13b,d is similar to that observed in runs for the double-period fluid
volumes. In particular, the spiral-like columnar structures in the right sides of Figure 13b,d
emerge in the terminal phase of the run, where the flow is quasiperiodic; unlike in the
double-period runs, the magnetic field is now exponentially decaying, and hence in the
course of time the loops in the spiral are now descending.
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Figure 13. Temporal behaviour of the kinetic (left vertical axis, black line) and magnetic (right vertical
axis, blue line) energies in triple-period runs (left column), and the projection of the trajectories on
the plane of magnetic and kinetic energies (right column). Runs 3x1.1, (a), (b), and 3x1.2, (c), (d), with
the standard space resolution (128× 384× 97 harmonics); and run 3x1.2, (e), (f), with the alternative
resolution (256× 256× 257 harmonics).

We present in Figure 14 the isosurfaces of the energy densities at two randomly chosen
time moments, one within the initial chaotic transitory phase (extending roughly up to
t = 550 for run 3x1.2) and within a more ordered terminal phase (roughly beginning
at t = 565). At t = 566.671, for which the isosurfaces are shown in panels (c) and (d),
the magnetic field decay has just begun, implying that the magnetic field has not yet
acquired the structure of the least decaying magnetic mode. Nevertheless, we observe
that the distribution of the kinetic and magnetic energies is more ordered than in the
initial chaotic transitory phase (panels (a) and (b) for t = 380.671). The part of the volume
where the magnetic field is relatively strong shrinks significantly. The distribution of
energy in the quasiperiodic hydrodynamic attractor is visibly more uniform in space.
The isosurfaces attest that in the course of temporal evolution, the fields have not acquired
smaller space periods.
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(a) (b)

(c) (d)

Figure 14. Isosurfaces of the kinetic, (a), (c) and magnetic (b), (d) energy densities in run 3x1.2 (the
standard resolution) at times t = 380.671 (a), (b) and t = 566.671 (c), (d), at the levels of 15% (d), 30%
(b) and 50% (a), (c) of the respective maxima of the densities. One triple-period fluid box is shown.

The isosurfaces of the individual components of the flow in Figure 15 demonstrate
that neither in the initial chaotic transitory phase, nor when it exponentially approaches
the travelling wave in the terminal phase, the flow acquires a two-dimensional structure
that would preclude magnetic field generation by the Zeldovich antidynamo theorem [70].
The plots of the magnetic Reynolds number estimates for run 3x1.2 in Figure 16a show
that, upon the advent of the flow’s quasiperiodicity in the terminal phase, Rm′1 and Rm′3
on average increase. In particular, the mean Rm′3 increases from roughly 30.5 in the initial
generating chaotic phase for t < 533 to 35.6 in the terminal phase. The mean (over time)
Rm′1 and Rm′3 values in the terminal phases differ insignificantly; they are 32.6 and 35.7,
respectively, for the double-period runs, and 31.7 and 35.7 for the triple-period runs. The
kinetic energy is on average smaller in the initial chaotic phase than in the terminal phase.
The two travelling waves in the double-period and triple-period cells are almost identical
in vigour (kinetic energy is oscillating in the ranges 138.9 < Ev < 148.5 around the mean
value 143.6 in the double-period runs, and 132.6 < Ev < 156.5 around the mean 142.9 in
the triple-period runs). In the initial transitory chaotic regime, the mean kinetic helicity
varies in the range −18.7 < h < 22. Like in phase G of the generating quasiperiodic
flow in the five runs for the double-period fluid cells, in the terminal phase the mean
kinetic helicity vanishes. Despite this similarity in the parameter values, the flow in the
double-period cell is generating and the flow in the triple-period cell is not. This confirms
that the favourable values of any integral parameter (such as the kinetic energy, mean
kinetic helicity, or magnetic Reynolds number) of a flow do not guarantee that it can be
a dynamo, since the intrinsic small-scale details of a flow’s structure are important for
magnetic field generation.
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(a) (d)

(b) (e)

(c) (f)

Figure 15. Isosurfaces of the flow components: v1 = 0 (a), (d); v2 = 0 (b), (e); v3 = 0 (c), (f) in run
3x1.2 (the standard resolution) at times t = 380.671 (a)–(c) and t = 566.671 (d)–(f). Two adjacent
triple-period fluid boxes are shown. However, by the boundary conditions (2.1), v3 = 0 on the
horizontal boundaries, they are not shown as isosurfaces in (c), (f), because that would block the view
of the isosurfaces inside the fluid volume.
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Figure 16. Temporal behaviour of the magnetic Reynolds number estimates Rm′1 (green line) and
Rm′3 (blue line), (a), and of the kinetic helicity (green line, right vertical axis) together with the kinetic
energy (black line, left vertical axis) for reference, (b), in run 3x1.2 .

The temporal behaviour of the coefficients Re v̂1
111 and Re v̂1

222 in run 3x1.2, shown in
Figure 17 for 0 ≤ t ≤ 600, is typical for individual harmonics in the triple-periodic runs.
Plots of the temporal power spectra Figure 18a,b of the two coefficients, computed in the
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interval 50 ≤ t ≤ 533 for this run confirm that initially the behaviour is chaotic. In the
subsequent terminal regime, the quasiperiodic flow and the exponentially decaying mag-
netic field have been followed for more than 1900 time units in run 1x3.3. In Figure 18c,d,
we present the spectra of the two harmonics that have been constructed using the data
obtained in this run over the time interval 75 ≤ t ≤ 975. The flow is a travelling wave
transporting a periodic orbit, whose basic frequencies are fTW = 0.398 and fPO = 1.391,
respectively. The same quantitative and qualitative tests, used to establish the coincidence
of the generating flows in phases G of runs 1x2.3, 2x1.2, and 2x1.3 (see Section 3.1), have
been applied to the flows encountered in the terminal phases of the triple-period runs
(obviously, the magnetic field decay rates have been measured for triple-period cells instead
of the growth rates for double-period cells) and confirmed that these flows are identical.
Agreeing frequencies have also been obtained for the flow in the terminal regime in runs
for the alternative resolution.
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Figure 17. Temporal behaviour of the Fourier coefficients Re v̂1
111 (a) and Re v̂1

222 (b) for 0 ≤ t ≤ 600
in run 3x1.2 .
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Figure 18. Temporal power spectra of the Fourier coefficients Re v̂1
111 (left column) and Re v̂1

222 (right
column) in the interval 50 ≤ t ≤ 533 in run 3x1.2 (a), (b) and in the interval 75 ≤ t ≤ 975 in run 1x3.3
(c), (d).
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The Poincaré sections constructed for the flows obtained in runs 1x3.1 and 3x1.3 (see
Figure 19) also confirm that in the final phase the flows are travelling waves transporting
periodic orbits. The shape of the sections is significantly different, because adjusting the
relative positions of the periodicity cells is required to obtain identical mappings, and we
have not implemented it.
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Figure 19. Projection of the Poincaré map of the hyperplane Re v̂3
222 = 0 on the plane (Re v̂1

111, Re v̂2
111)

for the amagnetic attractors in runs 1x3.1 (constructed over the time interval 100 ≤ t ≤ 487) (a)
and 3x1.3 (over 300 ≤ t ≤ 550) (b).

3.3. Regimes in the Elongated Cells with the Periodicities 1x4/4x1

The typical behaviour of convective dynamos in the quadruple-period fluid cells is
shown in Figure 20. The evolution of the flows is again chaotic. It is more structured in the
standard-resolution run 4x1.1 (see Figure 20c,d) than in 4x1.2 (Figure 20a,b). In run 4x1.1,
one can identify the phase (occurring at 15 < t < 120 and t > 340) of a relatively vigorous
flow generating a relatively large magnetic field, separated by the phase (at 132 < t < 212)
of a more moderate flow that fails to support the generation of a magnetic field of the same
magnitude. In the first phase, the kinetic energy Ev experiences relatively low-amplitude
chaotic oscillations between 105.0 and 166.0 around the mean value 140.5, and magnetic
energy Eb oscillates between 0.7 and 14.7 around the mean 5.9. In the separating phase, Ev

oscillates around the mean 112.0 and the amplitude of oscillations is significantly larger,
49.9 < Ev < 203.8, than during the previous phase, and the magnetic field is much weaker,
Eb < 0.17 with the mean 0.01. The high density of segments of smooth curves in the right
upper part of the trajectory plot on the (Ev, Eb) plane arises during the second phase of
the evolution. In its turn, the latter phase gets split into two parts when the trajectory
approaches a hydrodynamic metastable state for a short time (at 223 < t < 242). The kinetic
energy of this flow varies within tighter limits, 131.5 ≤ Ev ≤ 152.3, but has the largest
mean value 142.9. This flow is a generating travelling wave; it gives rise to the familiar
spiral-kind feature in the energies plot on the (Ev, Eb) plane. No similar categorisation
into phases can be established for runs 4x1.2 (see Figure 20e,f), 1x4.1 and 1x4.3, where the
energies undergo unstructured chaotic evolutions; such a behaviour is also typical for the
quadruple-period alternative-resolution runs.

Apparently, the aforementioned qualitative differences in the behaviour of runs 4x1.2,
1x4.1 and 1x4.3 are not substantial enough to suggest that the quadruple-period runs
reveal two or more different attractors. The unique emerging attractor is chaotic and
non-hydrodynamic, magnetic field generation remains sustained, although a word of
caution is necessary: since quadruple-period runs are consuming a lot of processor time,
for such periodicity cells we have not made runs exceeding 400 time units. The example of
triple-period runs shows that transitory regimes may well last twice as long, and therefore
further continuation of the runs may reveal that the computed evolutions just show a
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transient behaviour that may subsequently result in the emergence of different attractors or
an ultimate magnetic field decay at the terminal stage.
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Figure 20. Temporal behaviour of the mean kinetic (left vertical axis, black line) and magnetic
(right vertical axis, blue line) energies (left column), and projection of the trajectories on the plane
of magnetic and kinetic energies (right column) in the quadruple-period runs 4x1.2 for the stan-
dard resolution, (a), (b); 4x1.1 for the standard resolution, (c), (d); and 4x1.1 for the alternative
resolution (e), (f).

A similar division of the evolution into distinct phases is observed in the behaviour
of individual harmonics (see Figure 21), the magnetic Reynolds number estimates Rm′1
and Rm′3, and the mean kinetic helicity (Figure 22). The flow Fourier coefficient Re v̂1

111 in
the first phase is predominantly zero, but it suffers jerky perturbations; each perturbative
event dies out in fast exponentially decaying oscillations. In fact, this phase consists of
random perturbations of a chaotic metastable state possessing the symmetry rγ1

2L that is
violated during the perturbative events. The temporal spectra of the coefficients Re v̂1

111
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and Re v̂1
222 (see Figure 23) in the two phases differ in detail. In the first phase, the spectra

can be characterised as curves consisting of multiple arc segments that are concave up
and down and subjected to a white-noise-like perturbation of a considerable amplitude.
Such an intricate double-scale structure of the spectra is not typical for chaotic regimes
in our simulations. The temporal spectra of the oscillatory regime splitting the second
phase confirm that the flow is a travelling wave transporting a periodic orbit (as we
have established, |v̂1

111| and |v̂1
222| are time-periodic functions); the basic frequencies are

fTW = 0.947 and fPO = 1.816, respectively.
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Figure 21. Temporal behaviour of the Fourier coefficients Re v̂1
111 (a) and Re v̂1

222 (b) in run 4x1.1 .

The behaviour of the magnetic Reynolds number estimates in Figure 22 is consistent
with the observed efficiency of magnetic field generation: in the first phase, the estimates
Rm′1 and Rm′3 are on average higher than in the second phase, during which the generation
is weaker, although the momentary peak values are significantly higher in the second phase.
The estimates for the intermediate quasiperiodic flow are higher than those encountered in
the first phase, and, indeed, this flow is kinematically generating. However, the ranges of
Rm′1 and Rm′3 characterising this quasiperiodic flow differ very little from those charac-
terising the terminal quasiperiodic flow in the triple-period elongated fluid cell, which is
incapable of generation. We again observe that the magnetic Reynolds number does not
control magnetic field generation.
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Figure 22. Temporal behaviour of the magnetic Reynolds number estimates, Rm′1 (green line) and
Rm′3 (blue line), (a); and of the kinetic helicity (green line, right vertical axis) together with the kinetic
energy (black line, left vertical axis) for reference, (b), in run 4x1.1 .
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Figure 23. Temporal power spectra of the Fourier coefficients Re v̂1
111 (left column) and Re v̂1

222 (right
column) in the standard-resolution run 4x1.1 in the time intervals 15 ≤ t ≤ 120, (a), (b); 132 ≤ t ≤ 212,
(c), (d); and 223 ≤ t ≤ 242, (e), (f).

The isosurfaces of the kinetic and magnetic energy densities, shown in Figure 24,
demonstrate that the quasiperiodic flow depends on all three spatial variables and does
not acquire smaller spatial periods.
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(a) (b)

Figure 24. Isosurfaces of the kinetic (a) and magnetic (b) energy densities at the levels of 50% and
35% of their respective maxima in run 4x1.1 at time t = 222.626. One quadruple-period fluid box is
shown.

3.4. Regimes in the (M1, M2)-Periodicity Cells for Mi ≥ 2

All runs in the “wide” fluid cells of the periodicity M1xM2, where both Mi ≥ 2,
demonstrate a very similar behaviour, which is distinct from the behaviour in the elongated
cells. Typical examples of the evolution of the kinetic and magnetic energies is shown in
Figure 25. The behaviour of the kinetic energy is unstructured, it consists of the stationary
chaotic oscillations of relatively low amplitude (see Figure 25a; in run 4x4.2, the minimum,
mean and maximum kinetic energies over time are 61.6, 79.4 and 105.7, respectively),
which can be superimposed with random violent large-amplitude bursts of short duration,
the energy increasing up to 160 (see Figure 25b; in run 2x4.2, the minimum kinetic energy
and its time average are 54.3 and 82, respectively).

The time- and space-averaged kinetic energy in all runs is roughly 80 independently
of the size of the wide periodicity cell. It is markedly smaller than the mean kinetic
energy of flows in elongated periodicity cells, the difference exceeding the sum of their
r.m.s. deviations from the time averages (see diagram Figure 3). We interpret this as
follows. According to Table 3, the characteristic length scales determining the size of the
hydrodynamic structures are in wide cells below 0.25 . For Mi ≥ 2, the period in xi is
MiL ≥ 4

√
2 which is more than 20 characteristic length scales, suggesting that the flow

does not “feel” the presence of the constraints due to the periodicity condition and evolves
as if they were absent. This ensures the independence of the main flow parameters of the
size of the periodicity cell. The relatively small kinetic energy and characteristic length
scales in these regimes imply the smallness of the magnetic Reynolds number estimates.
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Figure 25. Temporal behaviour of the kinetic (left vertical axis, black line) and magnetic (right vertical
axis, blue line) energies in the double-period runs 4x4.2 (a) and 2x4.2 (b).

The chaotic behaviour of the kinetic energy is paralleled by a similar behaviour of
individual harmonics; as typical examples, we again present in Figure 26 the plots of the
time dependence of the harmonics Re v̂1

111 and Re v̂1
222 in run 2x4.2 . Its chaotic nature is
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corroborated by the temporal power spectra and Poincaré sections in Figures 27 and 28,
respectively. Because of the small size of the hydrodynamic structures and their chaoticity,
they cannot self-organise to participate in a concerted action needed for magnetic field
generation. On top of this structural deficiency, the flow is relatively slow, implying that
none of the flows in the wide cells is generating: in all runs for such fluid volumes, the
magnetic field exponentially decays, experiencing just occasional insignificant increases
(see Figure 25).
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Figure 26. Temporal behaviour of the Fourier coefficients Re v̂1
111 (a) and Re v̂1

222 (b) in run 2x4.2 .
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Figure 27. Temporal power spectra of the Fourier coefficients Re v̂1
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interval 40 ≤ t ≤ 381.21 in run 2x4.2 .
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3.5. Videos of the Kinetic and Magnetic Energy Evolution

The reader may find, in the Supplementary Material for this paper, visualisations of the
flow and magnetic field evolutions in runs 2x1.1, 2x2.1, 2x3.1, 4x2.1 and 4x4.1 . The videos
show the isosurfaces of the kinetic and magnetic energy densities (of the simulated solution,
or, for run 4x4.1, of the perturbations). The name indicates the size of the periodicity box,
where the regime shown in the video resides. In the panel in the upper right corner of
each frame, we present the plots of the spatially averaged kinetic (black line, left vertical
axis) and magnetic (blue line, right vertical axis) energies as functions of time. A vertical
line marks the time of the current frame, and the time is also displayed in the left part of
the screen. All the videos—except for the video for the 4x4.1 run—show the isosurfaces,
where the kinetic and magnetic energy densities are equal to 144 and 9, respectively, in two
adjacent periodicity boxes to provide a clearer illustration of the evolving structures. The
time step between frames is δt = 0.05 .

It was established in [53] that when the scale separation is high, the amplitudes of
a two-scale weakly nonlinear perturbation of the MHD regime SR1

8 , which depend on
the slow spatial variables only, resemble a solitary wave moving along a straight line,
gradually accelerating and increasing in magnitude until in a finite time it blows up. Even
if a perturbation adheres to the multiscale form studied in [53], it is difficult to extract
the amplitudes from it. Consequently, in an M1xM2-periodicity box, we have considered
first the truncated Fourier series for the perturbed flow, where harmonics associated with
horizontal wave numbers ni are retained only for |ni| < Mi—none of these harmonics
belong to the replicated 1x1-periodic state that we perturb and, therefore, are involved in the
amplitudes. However, unlike the amplitudes derived in [53], such (severely!) “truncated
amplitudes” have never demonstrated the characteristic motion in the horizontal direction
or an unlimited (or at least significant) growth in size.

We have therefore switched to analysing videos for assessing whether these features
are present in the behaviour of the simulated perturbations. The amplitudes of the two-
scale weakly nonlinear perturbation investigated in [53] evolve in the slow time T = ε2t,
where ε is the ratio of the small-to-large spatial scales. In our direct numerical simulations,
the smallest scale ratio ε = 0.25 characterises runs for the largest (of all the considered
ones) 4xM/Mx4-periodicity box. This has suggested choosing the time step δt = 0.01
between frames.

A typical behaviour of the flow and magnetic field perturbations is shown in the
video of perturbations in run 4x4.1 for the 4x4-periodicity box. Each frame presents the
isosurfaces of energy densities of the hydrodynamic and magnetic perturbations at the
levels of 35% of the spatial maxima at the respective time moment. Initially, transients
are dying out and the perturbation is evolving very fast, but after t = 0.15 the evolution
slows down considerably, for t > 0.5 becoming very slow. It again accelerates after t = 5.5,
when the energies of the perturbations approach the maxima (see plots in the panel in the
upper right corner), but it never becomes as fast as near t = 0. While for t < 5.5 the flow
perturbation tends to respect the periodicity of the unperturbed steady state, subsequently
it becomes completely chaotic in space (blobs of the magnetic perturbation energy become
spatially disordered earlier). No traces of the behaviour, typical for the perturbation studied
in [53], are visible. Thus, we conclude that even for this periodicity, characterised by the
smallest in our runs scale ratio ε = 0.25, the perturbation is not in the asymptotic regime
examined in [53].

Another typical scenario of the perturbation behaviour is observed in run 2x2.1 for
the 2x2-periodicity box. Up to t = 3.3 the evolution of the fields is very slow, but it is
accelerating. The displacement along the x1 axis of the structures in the middle part of the
periodicity boxes (over a wide strip parallel to this axis) sets in and bends the isosurfaces of
the energy densities; no such motion is visible close to the vertical sides of the periodicity
boxes parallel to this axis. By t = 5.5 the isosurfaces of the kinetic energy density take
the shape of rolls aligned with the diagonal of the horizontal base of the parallelepiped of
periodicity. The rolls are non-generating, and the magnetic field decays. At t = 6.7 they
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start bending and at t = 7.0 a large eddy emerges. Its axis is vertical and the diameter is
equal to the period of the unperturbed MHD state. The eddy efficiently “wipes out” both
the flow and magnetic field from a half of the periodicity cell volume and disintegrates,
and the space-averaged kinetic and magnetic energy significantly decreases. By t = 7.8, the
perturbation becomes unstructured and chaotic. A similar succession of events is observed,
for instance, in run 4x2.1; in run 3x2.1 the appearance of the “killer-eddy” is less manifested.
This scenario in no way resembles what we might expect on the basis of the results of [53].

The video of the evolution of the perturbed R1 rolls (see [49]) in the 2x1.1 run is
instructive. We observe that the magnetic field evolves much faster than the flow. Like in
the 4x4.1 run, the evolution slows down significantly after most transients gradually die
out by t = 2.5 . Although the plots of the energies show that by this time the perturbation
is still significant, the shape of the rolls at this level is close to that of the steady state R1
subjected to perturbation. However, at t = 7.35, near the local minimum of the kinetic
energy, 130.0, the rolls become significantly distorted, they bend and are not any more
parallel to the horizontal x2 axis. The next time, a visibly fast evolution of the shape of the
isosurfaces of the kinetic energy density is observed at 11.5 < t < 16, still during the initial
transient regime. After t = 20, during the time interval of more or less ordered cycles of
the magnetic field generation and decay, the magnetic energy exhibits a behaviour that
resembles a time-periodic one, while the kinetic energy density structure almost freezes,
and only close to the local maxima of the magnetic energy, the cross-section of the rolls
slightly changes in form and the rolls slightly bend. This confirms our scenario describing
the attractor revealed in run 2x1.1 (see Section 3.1). No qualitative difference in the shape
of the isosurfaces of the kinetic energy densities is visible in the sequences of cycles for
20 < t < 50 and 60 < t < 100.

3.6. Analysis of Integral Parameters of the Regimes

We denote by | · |p a norm in the Lebesgue space Lp(C ),

|f|q =
( 1

volC

∫
C
|f|q dx

)1/q
= 〈|f|q〉1/q, q ≥ 1, (8)

where volC means the volume of the periodicity cell C , and by ‖ · ‖s the norm in the
Sobolev–Hilbert space Hs(C ),

‖f‖s =
(

∑
n
|n|2s |̂fn|2

)1/2
, where f = ∑

n 6=0
f̂nein·x.

While the norm (8) may be regarded as non-standard because of the presence of the
factor 1/volC , it is equivalent to the norm defined as usual.

It was proven in [71] that for space-periodic magnetohydrodynamic flows and space-
analytic initial conditions ∫ T

t0

(
‖v‖q,s + ‖b‖q,s

)αq,s dt < ∞ (9)

for any
q ≥ 2, s ≥ 3/q− 1/2, T > 0 (10)

(see also [72,73] for the purely hydrodynamic case). Here, it is denoted αq,s = q/(q(s + 1)− 3)
and ‖f‖q,s = |(−∇2)s/2f|q. The present problem differs from that considered ibid. in two
respects: there is no periodicity in the vertical direction and an additional equation (the heat
transfer equation) is present. However, the boundary conditions (2) used here are similar
to those considered ibid. allowing to expand the solutions in the sine and cosine series in
the vertical direction, and the nonlinearity in the heat transfer equation is analogous to the
quadratic one in the Navier–Stokes and magnetic induction equations. Thus, the conjecture
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that the integrals (9) are also finite at any T is plausible, since these similarities enable us to
use the techniques of [71] to prove it.

For the parameter values (10), the family of quantities

Dv
q =

(

vA−1/q
( ∫

C
|∇ × v|q dx

)1/q)αq,1
, v

= A/ν (11)

was studied numerically in [54] (the rescaling factor vwas introduced in [74–76]) for
solutions v to the Navier–Stokes equation. Here, A = M1M2L2 is the area of the horizontal
cross-section of the flow periodicity box; in the undimensionalised case, when the layer has
a unit width as it is assumed here, the volume of C is also equal to A . We analyse these
quantities for the flow, as well as similar ones for the magnetic field (for b and η replacing
v and ν, respectively, in (11)).

Two possible scenarios (called regimes in [54]) for the flow evolution were envisaged
in [54]: Dv

q decrease monotonically for all considered q at all times (scenario I), or this
monotonicity is at certain times broken for some q (scenario II). By Hölder’s inequality,
〈|f|q〉1/q monotonically increases on increasing q ≥ 1 (unless f is constant in C ) and tends to
the essential maximum of |f| for q→ ∞, but the powers αq,s decrease in q, making scenario I
possible [54]. It was shown numerically that all the four flow evolutions considered ibid.
realise it for all the considered values q ≤ 18. The occurrence of the two scenarios can be
also explored for the quantities

Df
q,s =

(

v

〈
|(−∇2)s/2f|q

〉1/q)αq,s
(12)

for q and s satisfying (10), where it is assumed that f = v, b or the 6-dimensional field
(v, b).

The behaviour observed ibid. can be interpreted as follows. Differentiating the
integral (8) in q reveals the inequality

q2〈|f|q〉1−1/q d
dq
〈|f|q〉1/q = q〈|f|q ln |f|〉 − 〈|f|q〉 ln〈|f|q〉 ≥ 0 (13)

which holds true identically for any vector field f in L∞(C ), and the inequality is strict
when f is not constant. Now,

d
dq

Dv
q,s = Dv

q,sαq,sq−2
(

q
〈|f|q ln |f|〉
〈|f|q〉 − ln〈|f|q〉 − 3αq,s ln( v|f|q)

)
for f = (−∇2)s/2v (or for f = ∇× v when the family Dv

q is considered). In view of (13),
the first two terms constitute a positive quantity. Therefore, whether Dv

q,s grows for any
q→ ∞ depends on the sign and magnitude of the last term. It is instructive to consider a
model f such that |f| is constant on a set of Lebesgue measure µ, and f = 0 everywhere else
in C . In this case, for s satisfying (10), dDv

q,s/dq > 0 provided

|f| < (A/µ)(s+1)/3/ v. (14)

This suggests that the onset of scenario II is possible for sufficiently small µ/A , i.e., for
sufficiently space-intermittent flows, where intensive eddies are highly localised. Notably,
the condition (14) does not explicitly involve the norm index q.

We have computed some quantities Dq and Dq,s for the flow and magnetic field
obtained in computations for both considered resolutions. In our simulations, the flow
also follows scenario I (see, e.g., Figure 29 presenting the temporal behaviour of Dq and
Dq,s in run 4x1.1; we observe a similar behaviour in other runs). We have checked that the
monotonic decrease in Dv

q in q ≤ 10 holds for all runs and all resolutions (we note that,
for all families of the considered quantities, the monotonicity is not broken initially). The
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robustness of this property is remarkable, in particular, for the following reason: while
solutions to the Navier–Stokes equations alone were considered in [54], we have been
solving the complete system (1) of equations of thermal convective dynamo. The fast
accumulation of Dv

q for q ≥ 4 (see Figure 29a) was interpreted in [54], as indicating the
presence of a significant depletion, i.e., cancellation in the vector products constituting
the nonlinear terms in (1), and their decrease upon the removal of the gradient parts in
the Navier–Stokes equation. The similarity of the graphs of Dv

q for q ≥ 4 as functions

of time can be attributed to the fast convergence of 〈|∇ × v|q〉1/q and αq,s on increasing
q to the essential maximum of |∇ × v| and 1/(s + 1), respectively. The fast convergence
of 〈|∇ × v|q〉1/q and 〈|∇ × b|q〉1/q primarily characterises the distributions of values of
|∇ × v| and |∇ × b|. The fast-converging powers αq,s in the definition of Dq may have
been chosen arbitrarily, just because these powers are the maximum ones, for which (9) can
be proven [71,72] (indicating that we can estimate the depletion only very roughly).
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Figure 29. Time evolution of the quantities Dv
q (a), Dv

q,s (c), (e), Db
q (b) and Db

q,s (d), (f) for s = 2 and q
varying in the range 2 ≤ q ≤ 10 (c), (d), and for q = 2 and s in the range 1 ≤ s ≤ 10 (e), (f) in run
4x1.1 .
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We observe that the values of Dv
q,2 monotonically decrease in q in all runs as well (see

Figure 29b). For larger values of q and/or for other s, or when computed for the magnetic
field, the monotonicity of Dq or Dq,s can partially break down or become completely
inverted (at least in the considered parameter range 2 ≤ q ≤ 10). For instance, in run 4x1.1,
Db

q decreases in q, as well as Dv
q , for t ≤ 45, but monotonically increases in q almost in

the entire time interval 80 ≤ t ≤ 160 (see Figure 29b). Similarly, the quantities Dq,s may
decrease in s for small values of the parameter, but they begin to increase for larger s (e.g.,
for 60 ≤ t ≤ 270, Db

q,s monotonically increases in s for all s ≤ 10, for which computations
have been carried out, as Figure 29f shows). In some runs, Db

q,s for q = 2 monotonically
increases in s for all considered s in the range 1 ≤ s ≤ 10 in some time intervals; by contrast,
a monotonic increase in Dv

2,s in s becomes broken at all times in all runs.

4. Concluding Remarks

We have explored numerically the magnetic dynamo action of thermal space-periodic
convection in a horizontal plane layer of electrically conducting fluid rotating about the
vertical axis, focusing on the nonlinear perturbations of the MHD steady state identified
in [49]. We have investigated the temporal evolution of small perturbations, whose periods
in horizontal directions are up to four times larger than the spatial period of the MHD
state that we perturb. No evidence has been found that a multiscale weakly nonlinear
perturbation of the kind considered in [53] develops. This may have two reasons. On the
one hand, the scale ratio ε = 1/4 is probably insufficiently small for the regimes to set in
that were found in [53] by asymptotic methods for infinitesimally small ε. On the other,
intermediate-scale perturbations are likely to dominate, which is typical for all kinds of
linear stability problems in the MHD realm: purely hydrodynamic perturbations of flows,
magnetic modes arising in the context of the kinematic dynamo problem (i.e., magnetic
perturbations of flows of electrically conducting fluids), and full MHD perturbations of
MHD regimes [44,45].

Looking at the problem from a broader perspective, we have also considered initial
conditions that are large perturbations of the replicated MHD steady state found in [49].
All the attractors revealed in our computations are chaotic, except for the attractor in the
so-called elongated (where the spatial period in one horizontal direction is several times
larger than the period of the state subjected to perturbation, and in the complementary
horizontal Cartesian direction it is equal to the period of the unperturbed steady state)
triple-period fluid cells, where it is a travelling wave. Regardless of whether the initial
perturbation is small or large, only in the elongated periodicity cells, where the long spatial
period is twice or four times larger than the period of the unperturbed state, the attractors
remain MHD (i.e., the magnetic field does not decay in the terminal regime). We have
identified two distinct MHD attractors in the double-period cells and just a single one in
quadruple-period cells; in the fluid cells of the 2:1 and 4:1 aspect ratio, we have not found
any hydrodynamic attractor with the magnetic field ultimately decaying.

For a number of runs, we have computed the estimates of the characteristic length
scales of the flow structures, defined in terms of ratios (7) of Sobolev norms of the flow
velocity (see [64]). Using these estimates and the r.m.s. velocity values, we have computed
magnetic Reynolds number estimates. The estimated values turn out to be relatively small
(typically below 35.6). Neither the obtained Rm values, nor the mean helicity distinguish
between the generating attractors in the elongated cells and the non-generating ones in
the triple-period elongated or wide cells. (Let us note that, when considered in the fluid
cells of different periodicities, the dynamical systems described by the same system of
Equations (1) are distinct, and thus the emergence of chaos in double- and quadruple-
period elongated cells does not imply that the attractor for triple-period cells should also
demonstrate chaotic behaviour.) Attractors in the periodicity cells, where both periods in
the horizontal direction are larger than that of the MHD state subjected to perturbation, are
characterised by smaller estimates of Rm. This owes to the shortening of the characteristic
length scales significantly below the period of the unperturbed state in such cells, and to
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the convection becoming less vigorous, which results in the cessation of magnetic field
generation. The length scale estimates and the kinetic energy remain more or less the same
for all of these non-elongated fluid cells. This can be interpreted as follows: the flow does
not “feel” the influence of the “boundaries” of periodicity cells.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/math10162957/s1, Video S1: 2x1.1; Video S2: 2x2.1; Video S3:
2x3.1; Video S4: 4x2.1; Video S5: 4x4.1. The videos show isosurfaces of the kinetic and magnetic
energy densities of the simulated solution or, for the run 4x4.1, of the perturbations. The video name
indicates the size of the periodicity box shown in the video.
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