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Abstract: Three classes of improper integrals involving higher powers of arctanh, arctan, and arcsin
are examined using the recursive approach. Numerous explicit formulae are established, which
evaluate these integrals in terms of 77, In2, the Riemann zeta function, and the Dirichlet beta function.
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1. Introduction and Outline

The evaluation of integrals is an important subject in mathematics, physics and applied
sciences. In the mathematical literature (see, for example, the monographs by Boros and
Moll [1], and Vadlean [2]), there are numerous intriguing integrals. We reproduce, for
instance, the following elegant integrals involving inverse trigonometric and hyperbolic
functions, where G denotes the Catalan’s constant:

3, 4
64
3
Entry (b) / mdx = g (3), [3]
arctanx , & (—1)"
Entry (c) / ——Tdx=G = 7;) T [4-7]
arctan® x nG 7
Entry (d) / T Sy = T2 - 20), (8], (A.289)) and [3,5,6]
Entry (e) / arcsmx dx = gln 2, ([9], §4.521: Equation (1))
2
Entry (f) / aresin’ xd - %mz — gg@). ([1], Equation 6.6.25)

Some related integrals of log-trigonometric functions are highlighted as follows:

Entry (g) G = /T In(cotx)dx =2 /T In(2 cos x)dx, [5,7,10,11]
0 0

Entry (h) gan = /7 In(secx)dx = /7 In(cscx)dx. [4,12]
0 0

Euler (1772) discovered the identity (h) and the following remarkable value

/072r xIn(sinx)dx = %2) - —1 2
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by making use of the Fourier series

In(sinx) = —In2— ) M.
n=1 n
Koyama and Kurokawa [13] evaluated the integral below as well as the related indefinite
integrals:
LTI 3¢(3)
| dx = =——+ — —1 2.
/0 x“In(sinx)dx = 16

Further integral identities of a similar nature can be found in the papers [14-18].

Motivated by these elegant formulae, we shall primarily investigate the following
improper integrals with two integer parameters in this article:

1 arctanh™
Hinm o= [ 2800y,
0 x"
1 tan”
T ) = [ 2802
0 x"
S(m,n) := /l Lcsinm xdx;
0 x"

where m € Ng and n € Z, subject to m > n, so that all these integrals are convergent.
By making use of recurrence relations and Fourier series expansions, we shall explicitly
evaluate, in the next three sections, these three classes of integrals. Two classes of subsidiary
integrals ®(m) and A(m) regarding log-cosine and log-tangent functions will also be exam-
ined. Finally, the paper will conclude with a brief discussion of more integral evaluations
in Section 5.

Throughout the paper, we shall utilize the following notations. Let Z and N stand,
respectively, for the sets of integers and natural numbers with Ny = NU {0}. For n € Ny
and an indeterminate x, the rising and falling factorials are defined by (x)o = (x)o = 1 and

= 1) ... —1
() =x(x+1)--- (x+n—-1) for nen.
(p=x(x—1)---(x—n+1)
leenz j € Z and m € N, the symbol “i =, j” represents that “i is congruent to j modulo
’. The logical function x will also be employed with x(true) = 1 and x(false) = 0. In
addition, we need the following four functions:

e Riemann zeta function: n;) it 1 (R(x) >1);

o Dirichlet lambda function: = HX::O 2n E (R(x) >1);

Dirichlet eta function: = R(x) > 0);

. ,?;0 L > 0)
o0 7’[

e Dirichlet beta function:

Y, o Zn — 1 (R(x) > 0).

n:()
2. Evaluation of H(m, n)
When n # 1, the following algebraic equality holds:

n—1)—(n-3)x*> 1 n—3

(n—1)x" T (n—1)xn2"
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Then, we have the integral equation below

1 m _ _ _ 2
$5(m, ) :/ arctanh”x{(n — 1) — (n — 3)x }dx
0 (n—1)x"
1 arctanh™x n—3 [l arctanh™x
:/ dx — dx
0 xn n—1Jo x"—2

=H(m,n) — L_iH(m,n —2).
Considering that

d 1-—x2 (n—1)—(n—3)x?

dx (1 —mn)xn-1 (n—1)x" ’

we can alternatively express the integral £ (m, n), by integration by parts, as

m 1 arctanh™ x m
ﬁ(m,n)—n_l/o i1 dx—n_lH(m—l,n—l).

Combining the two expressions of ) (m, n) results in the following three-term recurrence
relation

(n—1)H(m,n) —mH(m—-1,n—-1) — (n—3)H(m,n—2) =0. 1)
According to this relation, to compute all the values H(m, n) for m € Ny and n € Z with

m > n, we have to determine the boundary values {H(0,n), H(m,0), H(m,1)}.

2.1. H(0,n)

For n < 0, we have the following obvious values:

1
H(0,n) = /0 xMdx = ﬁ 2

2.2. H(m,0)
When m = 0, it is easy to see that H(0,0) = 1. For m > 1, by changing the variable

1-y
X = 1 We have

ol 14xym, (=17 1 My
H(m,O)—/O (3ingr) dx = /O T

According to the power series expansion

(1+y)7? :]g(—l)k(k—i—l)yk (lyl <1);
Wwe can express - 1
H(m,0) = (2_”1_)1 I;)(—l)k(k—i- 1)/0 yFIn™ ydy.

By repeatedly applying integration by parts, we can evaluate the last integral

1 m i m
kim . o ovs (CDHm) g e 0 (1) m!
Jy ¥ vy =L ey Yy = G ®
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Hereafter, exchanges in the order of summation and integration are justified by Lebesgue’s
dominated convergence theorem ([19], §11.32). By substitution, we can obtain the closed

formula L
-1 !
HOn0) = s 3 s gy = i) @

2.3.H(m,1)
We can also evaluate H(m, 1) by carrying out the same procedure as for H(m,0). In
fact, for m > 1, by making the change in variable x — %, We can express

T1/1. 14x\m (=)™ 1 In"y
H(m,1)= | —(31 = d
(m,1) /o x(an—x) A% = /0 1— 2
We take the above integral as an example to show how to justify the term-by-term

integration by making use of Lebesgue’s dominated convergence theorem. For any fixed x
with 0 < x < 1, we have the following power series expansion

1 ()
5 = Zka, where 0 <y <.
1-y k=0

Now;, define the following sequence of functions

n . lnm
on(y) = lnmyk;)ka such that nlgrgo on(y) = 1 _;/2 for ye€[0,x].
When 0 <y < x, we have
In"y In"y
|(Pn(]/)|< 1_]/2 S(_l)ml_xzf

where the rightmost function is dominating and integrable over [0,x]. According to
Lebesgue’s dominated convergence theorem, we can proceed using term-by-term integra-
tion

X X
/0 11n ydy—hm A on(y dy:hm 2/ v In™ ydy

v
— c- 2k+11m i
,;; 2k+11+1 o

where we have employed integral formula (3). Observing that the last series is uniformly
convergent for x € [%, 1}, we can evaluate the series through the term-by-term limit, as
follows:

_ =y In"y
2m=1 9= Jo 1—y2

— (_1)111 lim - i (_1)i< > 2k+11nm zx

2m=1 o1 = = (2k4-1)iH1
_ (=" i y (*1)i<”?>z‘ lim 22+ nm—i ¢
h=01=0 (2k + 1)l+1 x—1-
1
~am-1 kgo (2k + 1)m+1°
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This gives rise to the below formula

H(m,1) = o1

Am+1). ©)

In conclusion, we have shown the following general theorem. Its special case H(3, 1)
was studied by Sofo and Nimbran [3].

Theorem 1 (m € Ny and n € Z with m > n).
1, m=0;

n=0| H(m,0)=<¢ ;1
W*](m), m=>1;

|
H(m,1) = %A(m +1), m>1;

n>2| H(m,n)=

Hm—-1,n-1) —|—Zi—i)H(m,n—2), m>n;

=
I
—_

n—1
1
T m =0;
Hom) = | L §
~ " Hm— > 1.
n_lH(m,n+2) n—lH(m 1L,n+1), m>

Keeping in mind that 7 (k) and A (k) can be written in terms of the zeta function (except
for (1) = In2), we assert, according to this theorem, that H(m, n) is always expressible as a
linear combination of In 2 and zeta values. The integral values for H(m,n) with1 <m <5
and —5 < n < 5 are recorded in Table 1.

Table 1. Values for H(m, n).

n\m 1 2 3 4 5
SR BR3P LR
—4 H+w2 lizm L4 XPime b4z BB B0 no
-3 3 &+ 252 %‘F%z %(?’)—kan %-y%
-2 l4ln2 vz %0 412 w7 I50(3) | 754(5)
-1 5 In2 %2 %(3) 7977164

0 In2 z Lé?’) 7 25¢(5)

2 * %2 362(3) 73% %(5)

3 % * T 3(3) 5

¢ * * 5+5 5¢(3) + %5
s # * * E 8

(% indicates that the corresponding integral diverges.)
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3. Evaluation of T(m, n)

Supposing n # 1, by making use of integration by parts, we can obtain

1 arctan”
T
(m,n) = 1—n( n—l/ x”11+x2d ©)

When m # 0, the above integral can further be manipulated as

/1 arctan™ ! x x—/l arctan™ 1 x _/1 arctan™ 1 x .
o x"1(1+x2)""  Jo xn=1 0 x"3(1+4x2)
3 1 /m\m
= T(m—1, —1——T 2_7(7)
(m—1,n-1) (mn—2)-L(%

Substituting this into (6), and then simplifying the resulting expression, we can derive the
following three-term recurrence relation

(n—1)T(m,n) —mT(m—1,n—1)+ (n—3)T(m,n—2)+ Z(gyn =0. (7)

Based on this relation, to calculate all the T(m, n) form € Ny and n € Z with m > n, it
is sufficient to determine the boundary values {T(0,1), T(m,0),T(m,1)}.

3.1.T(0,n)
Firstly, it is trivial to check for n < 0 that
T(0 1 —d L 8
Om) = [ = —. ®)
3.2. T(m,0)
Then for m = 0, 1, we have no difficulty evaluating
1
T(0,0) :/ dx =1,
0
T 1n2
T(1,0) = dx = — — —
(1,0) /0 arctan xdx = 1 >
When m > 2, applying integration by parts twice shows that
1 T\ ™ 1 yarctan™ ! x
— & = (=) — _
T(m,0) _/0 arctan” xdx = (4> m/o Tt 2 dx
_mym mIn2 mym=1 om(m—1) (1 In(1+ x?) "2
- (Z) - <Z> + 5 /0 T2 arctan™ ™~ dx.
Then under the change in variable x — tany, the last expression becomes
T(m,0) = (z>m—M<E>mil—m(m—l)®(m—2) )
" \4 2 \4 ’
where ©(m) stands for the parametric integral
O(m) = /I y"In(cosy)dy with m > 0. (10)
0

3.3. ©(m)
To evaluate the integral ®(m), we recall the following Fourier series (cf. [9], §1.441)

s (—1)" T
In(cosy) = —In2— )" Tcos(Zky), where |y| < 5
k=1
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Then, using Lebesgue’s dominated convergence theorem ([19], §11.32), we can express

- —In2 mtl &
:/0 y" In(cosy)dy = m—l—l( ) ;

Applying integration by parts for m times, we can evaluate the last integral as follows:

1)k—1

/0Z y™ cos(2ky)dy.

i m < <m> m—i .
1 k) = [* " cos(2ky)dy = ). (Zk)jily Jsin (zky+7) 0
j=0

- (2kﬂ)1riz+l sin (% - )

Taking into account the trigonometric identity

sin(a + B) = sina cos f + cos a sin B, (11)
we can reformulate the infinite series
o - ml o m+2 N & (1!
Z mk) om+1 Sln( 2 7-[) ! Jem—+2
(m)j ro\m=i jry & (—1)k1
Lot (3) s (3) g sn(3)
() emymed Ly s (ZDFT
+J§) 21 (3) s (T)kg K2 cos ()
Observing that
sm(kn) = (—l)k%])((k =,1) and cos (k—n) = (—1)§X(k =, 0) (12)
2 2 ’
we have
00 (_1)k—1 k7t oo ( 1)k—1 )
: = 2),
k; 1+2 sin (%) k;(z;( niz ~Pi+2)
© (1 k—1 © (1 k-1 +2
y | /lz 008(7):2< k)j+2 Tl(éjﬂ)
ok =1 (2K)
By substitution, we obtain
- k-1 m! . m+2
g mk)-zan(m—l-Z)sm( 5 n)
(m); r7o\m=i
Lo (3) U2 ()

L () s (5)

Keeping in mind of (12), we have established the following explicit formula.
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Proposition 1 (m € Ny).

%] . i
m! . m+2 (m)oj rr\m=2j
O(m) = gy (m+2)sin (=) + Y (<157 (F) TA@I+2)
j=0
n2 mymit UE] (m)gj_1 7o\ m+1-2] pii 1
_m+1(Z) - L Vg (3) 1(2j+1)

From this proposition, we claim that ©(m) can always be expressed in terms of In 2
and values of {-function and -function (particularly G = B(2)). The initial values for small
m are recorded below, where we can locate ®(0) in Moll ([20], §8.4), and both ©(0) and
©(1) in Valean ([2], Equations 3.87 and 3.113).

G mln2
nG  217(3) m?In2
1) = — — _
o) 8 128 32 7
G B(4)  37mZ(3) mPIn2
0@) = 32 4 256 192 ¢
mG  3mp(4)  1395¢(5) 9m*7(3) m*In2
03) = 128 16 | 409 < 2048 1024
G  3m?B(4) 3B(6) 45mg(5) 3m3Z(3) mIn2
4) = — — —
©(4) 512 32 4 209 2048 5120 '
_ 25G  5mB(4 157p(6)  1200157(7 225727 (5 157*7(3 61n2
®(5) - ;.TOW - 7-[12/38 ) + 7?2 - 65536( ) - 3;7 8( ) + 37;.76(8) - 7,;451716'
3.4. T(m,1)

Applying integration by parts, we have

I arctan™ 1]
T(m,1) = / T T = —m/ nixz arctan” ! xdx.
0 x 0o 1+x

Then, making the change of variable x — tany, we can express
T(m,1) = —m/ y" n(tany)dy = —mA(m —1). (13)

Henceforth, A(m) is defined by the parametric integral

A(m) = /Z y"In(tany)dy for m € Ny. (14)
0
3.5. A(m)
Recalling another known Fourier series (cf. ([9], §1.442))
cos(4k —2)y T
tany 22 1 where 0<y<§,

we can reformulate the integral A(m) as

o]

1 [i,
A(m) = —2122](_1/0 y™ cos(4k — 2)ydy.
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Denote the last integral by J(m, k). Applying integration by parts for m times, we can
evaluate this as follows:

_ T, e <m>] i s jn T
](m,k)—/O y cos(4k—2)ydy_]§)my ]sm{(4k 2)y + }o

G (3 e () e (),

By making use of the trigonometric identity (11), we can proceed

> J(m, k) _m! M\ 1
—Zkzzl =1 = anon (g )Z 2k —1)m+2

=1

(m); (

Ozj

|
1=

. o sin (2"—1 )
Do (0) L
o COS (%T_lﬂ)

SR ) () &

j=0

-
i

Keeping in mind of (12), we can reduce the two trigonometric sums

0 Sin(ZkZ 7.[) 0 (_1)1(—1

ZW:,{;W:MHZ),

cos (251m) _
2 (2k —1)i+2 0

Therefore, we have proved the following simplified expression

AGm) = 2 sin (") 2 +2) — 3 2 (Y pj +2)cos (1),

= 2
which is equivalent to the formula below.
Proposition 2 (m € Np).
A(m) = —A(m+2) sin (20 - L%J )y ‘(E)M B(2j+2).
]:0 221 4

It should be pointed out that a similar formula for f(]% x™ In(tan x)dx was found by
Elaissaoui and Guennoun [21] by integrating the product of In(tan x) and the Euler polyno-
mials.

In accordance with this proposition, we affirm that A(m) can always be expressed by
{-function and B-function values. The first few values for small m are displayed as follows,
where the value for A(1) can be found in ([2], Page 130).
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A(0) = -G,

Ay =707

A =B _TC

2080 e

AG) = 5n36i(4) B 15715(6) B ir(:zi 19(;512(7)

Summing up, we have proved the following general theorem.

Theorem 2 (m € Ny and n € Z with m > n). Let ©(m) and A(m) be as in Propositions 1
and 2, respectively. The integral values for T(m, n) are determined as follows:

1, m=0;

T In2
[n=0]T(m,0)= ¢ 5 =5~ m=1;

= m=0;
w<oltmm =1 T y :
n—1

Some particular results of this theorem are commented as follows:

Both T(2,1) and T(2,2) can be found in Boyadzhiev ([8], Equations (A.289) and (5.54)).
Kobayashi [6] evaluated T(1,1), T(2,1) and further

1 arctanx arccotx 7 7
_— = —T(1,1) - T(2,1) = - .
/ - 11,1 = T2,1) = 50(3)

Sofo and Nimbran [3] examined cases for T(2, 1) and T(3, n).
When m = 1 and n < 0, the recurrence relation in Theorem 2 reads as

T 1
T(l'n+2)+2—2n+n(1—n)'

_1+n

(15)

Repeating this relation yields the next equation

_n+3 2

T(l,n) = mT(l,?’l +4) - m/

which is equivalent to a known recursion due to Chen [22].
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By iterating (15) further, we can recover the following explicit formula, recorded by
Gradshteyn and Ryzhik ([9], §4.532: Equation (1)):

2—n\ _ 4—n

where y and ¢ stand, respectively, for the Euler-Mascheroni constant and the digamma

function (cf. Rainville ([23], §9))

1
plx :_7+2{n+1 n—l—x}'

In view of this theorem, T(m, nn) can always be expressed in terms of 77, In2 and values
of {-function and B-function. The values for T(m,n) with1 < m < 3and —3 <n < 3 are

given in Table 2

Table 2. Values for T(m, n).
n\m 1 2 3
-3 : bt R S
B S B i R S e SR R
-1 i-3 L R
0 L In2 71172+ 7121276 %Z+3n25n273ﬂG+536§§3)
: : -1 e
2 * 254G R
3 * * 3nln2_7gj_%+%

(% indicates that the corresponding integral diverges.)

4. Evaluation of S(m, n)
When n # 1, we have by integration by parts
m—1

‘1 m 1 arcsin X p
X

M- 0 x"1y/1—x2

arcsin™ x
S(m,m) = (1 —mn)x"1lo

which can alternatively be expressed as

1 arcsin ! x n—1 1 my\m
S(m,n) .:/O xn_lmdx = S(m,n) +%<§> . (17)
By splitting G(m, n) into two integrals, we have
1 arcsin™ 11— xZarcsin™ ! x
Smm = [ am o+ P
1 — x2arcsin™ 1 x
dx.

1
=6&(mn—2 +/ poTEs|
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When n # 2, the last integral can be manipulated, again using integration by parts, as
/1 1 — xZarcsin 1 x m— /1 arcsin™ 2 X, 1 1 arcsin™ ! X
0 2

dx = dx — B Ny e
m—1
_T_ZS(m—z,n—z)——n_ZG(m,n—Z),

=1

which leads us to the following expression

n—3 m—1

S(m,n) = . 726(711,;1 -2)+ mS(m—Z,n -2).

Substituting (17) into the above equation, we can simplify the resulting equation into the
following three-term recurrence relation

(n—1)(n—2)S(m,n) — (n—3)?S(m,n —2) —m(m —1)S(m —2,n —2) + (g)m =0. (18)

By making use of this recurrence relation, we can produce all the values of S(m, n) for
m € Ny and n € Z subjectto m > n aslong as the boundary values {S(0,n),S(1,n),S(m,0),
S(m,1),S(m,2)} are explicitly determined.

4.1.5(0,n)

For n <0, it is routine to compute

1
S(0,n) = /0 x Mtdx = ﬁ (19)

4.2.5(1,n)
For n < 0, applying integration by parts yields

s
d
2(1—n)+n—1.0 i

The last integral can further be manipulated as follows:

1
S(1,n) = / x " arcsin xdx = (20)
0

1 yl-n 11— 1
7dx:/ 7dx—/ x 11 — x2dx
/0 V1—x? Vl—x 0
1 1 xl
[ +f/ EE
V1—x2 nJo v/1—x?

1 xl—n

n—l 1—x
Comparing the above relation with (20), we obtain the recurrence relation belew

n(n+1)
(n—1)

By iterating this relation /-times, we obtain the expression

7T

S(1,n) = =17

S(1,n+2)+

s(1, >_s<1n+2g)<’5>_jz;>e+78rg<%g>k
(") =0 ("5 )i
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Letting ¢ = —% and ¢ = 1%”, respectively, for even n and odd n, we can make further
simplifications

TN G e - B C )
(1,n) =5(1,0) (21)2 +§ > (112
2 _% k=0 2 Jk+1
_nt2
L 0om | 0,
(3)-g@n-2) 8 & (i,
(B ()1 5 (1) ()
— _ e e 2/)k\"2" )k
S(1,n) =5(1,1) (51;1)2 : +§ X (1)2
2 % k=0 2 Jk+1
—nfl n n+1
_r Zz (e (" )k
8 = ("THia

where we have employed the initial values (see Entry (e) in Section 1)

5(1,1):§1n2 and 5(1,0):/073/@5],@:;_1,

Writing further

Tl B o S Bk (B
8k§0 ("7 2”_2123{("21)“1 (nzl)k}
__ T o (F)en
2-2n 2-2n (2l

From this, we derive the following closed formula, which is equivalent to those recorded in
([9], §4.523: Equations (1) and (2)):

S(1,n) =

7T T (%
P

2-2n 2-2n (T;_ x(n=20). (21)

4.3.S(m,0)

For m > 2, making the change in variable x — siny and then applying integration by
parts, we can proceed with

1 us
S(m,0) = /0 arcsin” xdx = /02 y™ cosydy

= (g)m - m/og y" Lsinydy

= (%)m —m(m—1) /og y" 2 cos ydy,

which can be restated as the following recurrence relation

S(m,0) = (g)m — m(m —1)S(m —2,0).
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Considering that
1
5(0,0) =/ dx=1 and S(1,0)=7 -1,
0

we can iterate the above recurrence /-times

S(m,0) = (=1)" {m),S(m —2¢,0) +iz:<—1>k<m>2k(§)m2".
For ¢ = | |, the above expression becomes
S(m,0) = (=) Hlmis(m 27 ],0) + L%l<—1>k<m>2k(”)m2k
2 P 2
1311 —_— . L, om=o P
- L (15 ma(5) "+ (=) Em {7;_1, -

4.4.S(m,1)

For m > 1, making the change in variable x — siny and then applying integration by
parts, we can reformulate the integral

1 arcsin™ x

S(m,1) :/0 de = /07 y™ cotydy

z m—1 .
=— | d — 26
m J, v nsing)dy

=— 2’”111/Z 0" 1In(2 tan 6 cos? §)do
0
— __om E m_ m/z m—1
=-2 1n2(4) m2 ; 6"~ " In(tan 6)d6
— m2m Tl /I 0™ 1 In(cos 0)d6.
0

Recalling Propositions 1 and 2, we find the following explicit formula

7T

S(m,1) = —2'"1nz(4

)m —m2"A(m — 1) — m2"e(m — 1). 23)

4.5.5(m,2)

For m > 2, making the change in variable x — siny and then applying integration
by parts twice, we can manipulate the integral

1 arcsin™ x 7, Cosy
S(m,2) _/0 —a dx—/o y 7sin2ydy

_— (;T)m—I—m/Og y" L escydy

:_(;T)m—m(m—l)/ogymzln(tang)dy

- _ (g)m —m(m— 1)2”1’l /I xM2 In(tan x)dx.

0
This leads us to the following formula
m
S(m,2) = — (g) —m(m—1)2""1A(m - 2), (24)
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where A(m) is already evaluated by Proposition 2.
To summarise, we have shown the following general theorem.

Theorem 3 (m € Ny and n € Z with m > n). Let ©(m) and A(m) be as in Propositions 1
and 2, respectively. The integral values for S(m, n) are determined as follows:

[7]-1 —2k - 1 =, 0
i=0lsm0) = ¥ (-0Kmau(F)" "+ M2

(n=1]S(m,1) = —2"In2(Z)" —m2"A(m — 1) — m2" ' @(m — 1), m > 1;
S(m,2) = —(Z)" —m(m—1)2" " A(m —2), m > 2;

_ (1=3)8(mn-2) | m(m-1)S(m-2n-2) _ _ (7/2)" .
S(m'”) = (n—l)(i::—nZ) + = (n—l)(n—2;1 - (n—q)(n—Z)’ mzn;

1 i n’ m=0;

(2)_|n W)z ,@2-m)
-n<0 S(m,n) = n _ 23] L5 - _1.
( ) 2—-2n {1 (%),L%J } (%)7L%J(272H)X(n =2 O)I m 1/
S, n +2) = BR)S(m — 2,m) + T, m =2,

According to this theorem, S(m, n) can always be expressed in terms of 77 and In 2, as
well as values of {-function and B-function. The initial values for S(m, n) with1 < m < 4
and —4 < n < 4 are recorded in Table 3.

Table 3. Values for S(m, n).

n\m 1 2 3 4
4 T 8 298 4144 197 | 7 254728 1497 |, 7t
10 75 20 1125 5625 375 40 84375 375 80
_3 s 572 1 5m° _ 5ln §_51ﬂ2+@
64 128 8 256 512 8 512 512
T2 fisa 14 40  7n , n® 488  7m? ot
—2 [ 77 79t st — 9 T
1 i 1 ©_ 3_sm ot
8 1 4 32 16 4 16 64
0 T 9 6-3m+ % 24372+ T
2 ) T+ % ™+ 16
1 mln2 m2In2 _ 7¢(3) mIn2 _ 971(3) mn2  97*Z(3) 4 %E(5)
2 4 8 8 16 16 16 32
2 3 4
2 * Gc-% 6nG — 266 _ 672G — 48B(4) — X
3wIn2 pisd 37%In2 t 21Z(3)
3 * * T TR o moT1o
4 2
4 * * * 8G+m2G—8B(4) — K — %

(% indicates that the corresponding integral diverges.)

5. Concluding Comments

By making the change of variable x — y~, it is trivial to check

H(m,n) = /100 y"2arccoth™ydy and T(m,n) = /loo y"2arccot™ydy.

Therefore the two integrals on the right hand sides can easily be evaluated.
In this section, we shall further examine some integral variants that can be evaluated
as consequences by the preceding Theorems and Propositions, as shown in this paper.
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5.1. Evaluation of the Integral ®(m)

Firstly, for m € Ny, we examine

D(m) = /0Z y" In(siny)dy.

A similar integral of “y™ Insin 7ry” over [0, 1] was treated by Espinosa and Moll [24]. This
can easily be expressed as

d(m) = /0Z y" In(siny)dy = /0Z y" In(tany cosy)dy = ©(m) + A(m).

Hence, we can compute ®(m) by employing Propositions 1 and 2. The initial values for
0 < m < 5 are exemplified as follows (where ®(0) can also be found in ([25], Equation 9.7.9)).

G mln2
¢(0) - _E - 3’
(1) = 35¢(3) nG mIn2
128 8 32 7
B4) m*G 3m{(3) mIn2
*R) =" "% e 1o
®(3) 3np(4) mG  1581Z(5) N 97*¢(3) m*In2
16 128 4096 2048 1024 *
o(4) 372B(4) 3B(6) m'G  457mg(5) N 37°¢(3) m°In2
32 4 512 4096 2048 5120
o (5) 5mB(4) 15mB(6) m°G N 123825((7)  2257°((5) N 157%¢(3) n° In2
128 16 2048 65536 32768 32768 24576

5.2. Evaluation of the Integral ¥ (m)

For m € Ny, consider the integral

¥ (m) ::/O y" In(tanh y)dy.

Making the change of variable y — arctanh x and then applying integration by parts, we
obtain the transformation formula

0 I In x arctanh™x
-1 1 arctanh™H1x -1
fry = H 1 1 .
m+1Jo x dx m—+1 (m+1,1)

In view of Theorem 1, the initial values for 0 < m < 5 are exemplified as follows.

2
MO )
vy =20 - T

4
AT AT

5.3. Evaluation of the Integral H(m, n)
For m € Ny and n € Z subject m > n, consider the integral

© coth"y

H(m,n) ::/

dy.
0 cosh? Y
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By making the change of variable y — arctanh x, we can derive the following transforma-
tion formula

i h" 1 h™
mmd — / arCtainxdx:H(m,n).
0

x?’l

H(m,n) :/

0 cosh?y

Therefore, H(m,n) can be computed by means of Theorem 1 with the initial values being
given by the same Table 1.
Moll ([20], §6.5 and §6.6) evaluated two similar integrals

®©  ginhx T
X—e—dx = —
0

cosh? x 27
[ee] 3 h
/ x? s 2x dx = 4G.
0 cosh” x

More hyperbolic integral identities can be found in ([9], §3.527).

5.4. Evaluation of the Integral T (m,n)

Assuming m € Ny and n € Z with m > n, we examine the next integral

T(m,n) := /O.Z Y™ cot” ydy.

When n < 0, Moll ([25], §11.5) recorded an explicit formula for 7 (0,7). Jameson and
Lord [4] evaluated

TO,-1)=%

— E1112 and /7 xcotxdx = E1n2.
8 0 2

By making the change of variable y — arctan x, we can reformulate

arctan” x

x"(1 4 x2) *

z 1
T (m,n) = /4 y" cot” ydy = /
0 0
In view of (6), we find the expression

n 1 77\ m+1
=—T 1 1 — = .
T (m,m) m+1 (m+1,m 4 )+m+1(4)

According to Theorem 2, all the 7 (m,n) can be computed as consequences. For
0 <m <3and —3 < n < 3, the corresponding T (m, n) values are given in Table 4.
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Table 4. Values for T (m,n).

n\m 0 1 2 3
3 2 4 3
-3 1_In2 r_1_ G min2 ©_x_nGy 2 xn2 | 2103) [ S -
272 17272773 164 4 T2 2 61 _a2c _ong(3) | 3p)
32 256 4
Ji4 7 In2 | mln2 Jisd | 3m2In2 pisd 3nG | 637(3)
-2 1-7 I~ m T+ %" — 126 aT T T m et @
1 In2 _ 7mln2 G _ m2In2 _ 21Z(3) 3m2G _ 3B(4) + 9n¢(3) _ 72In2
2 2 8 R 64 32 1 256 128
0 g s st t
1 32 192 1024
G |, min2 nG ;| m*ln2  35((3) 3m2G ~ 3B(4)  9mZ(3) | nlln2
1 * 7t 73 Tt i o4 — 2% tis
nln2 =2 Jisd 3nG _ 105¢(3) s | 3m2In2
2 * * G+~ % 12 7 o 112 S e M ¥
%7375?67%7%+3n1n2
3 * * * 7n3ln2+977§(3)+%
128 4

256

(% indicates that the corresponding integral diverges.)

5.5. Evaluation of the Integral S(m,n)
Let m € Ng and n € Z satisfying the condition m > n. Define the integral S(m, n) by

S(m,n) = /7 Y™ esc” ydy.
0

A similar integral fo% y" cos” ydy was extensively examined by Moll ([25], §5.2).
By making the change of variable ¥ — arcsin x, we can manipulate

1 arcsin™ x

% m n
S(m,n) :‘/0 Yy cse ydy: ) mdx

Recalling (17), we have the expression

S(m +1,n+1) + —— (E)mﬂ.

S(mn)=6(m+1,n+1)= il

o
m—+1

Applying Theorem 3, we can evaluate S(m, n) as consequences. For 0 < m < 4 and
—3 < n < 3, the corresponding S(m, n) values are recorded in Table 5.

Table 5. Values for S(m, n).

n\m 0 1 2 3 4
-3 2 z 7 _ 40 7 _ 12 1456 _ 244m | 70
3 9 9 — 27 12w 81 27 T8
1 2 3 3 2 7_[4 3 3 3 5
2 i it 515 3 tim 8 E-F+4
-1 1 1 -2 i 6 U-12n+%
0 z Lusa bish P 75
2 8 2 64 160
1 * 2G 2nG — %(3) % —12B(4) 3G — 247 (4) + 932;2(5)
2 * * min2 ain2 _ 21%& rn2 97ri(3)
2 2 127G —217(3)—127B(4
3 ok % * 3G 346G — 6p(4) ”_%ui(%&ﬁﬁ

(¥ indicates that the corresponding integral diverges.)
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