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Abstract: Several papers on distributions to model rates and proportions have been recently pub-
lished; their fitting in numerous instances is better than the alternative beta distribution, which has
been the distribution to follow when it is necessary to quantify the average of a response variable
based on a set of covariates. Despite the great usefulness of this distribution to fit the responses on
the (0, 1) unit interval, its relevance loses objectivity when the interest is quantifying the influence of
these covariates on the quantiles of the variable response in (0, 1); being the most critical situation
when the distribution presents high asymmetry and/or kurtosis. The main objective of this work is to
introduce a distribution for modeling rates and proportions. The introduced distribution is obtained
from the alpha-power extension of the skew–normal distribution, which is known in the literature as
the power–skew–normal distribution.

Keywords: unit distribution; linear regression; maximum likelihood estimation; score function;
information matrix

MSC: 60E05; 62J05

1. Introduction

Random variables for rates and proportions (bounded data) are very common in dif-
ferent areas of knowledge such as medicine and economics. There are also some statistical
distributions for fitting this type of variables, given their asymmetry and/or kurtosis. How-
ever, in different scenarios, these variables have been accompanied by a set of explanatory
variables having more complete explanation of the phenomenon. Among the asymmetric
probability distributions that stand out are Azzalini’s skew–normal [1] and generalized
Gaussian power–normal, see Durrans [2] and Pewsey et al. [3], which have been extended
over the last few decades to other types of distributions. These families of distributions
have their support in the whole set of the real numbers, implying in a double-truncated
distribution for data in the unit interval (0, 1), whose procedures of estimation of the
parameters are quite complex. Martínez-Flórez et al. [4] studied a distribution for rates
and proportions by using the power–normal distribution. Probability distributions for
bounded random variables are common in the statistical literature, with those that stick out
being beta distribution in classical statistics and some bounded extensions as in the case
of unit–Birnbaum–Saunders, unit–Weibull and unit–Lindley distributions by Mazucheli
et al. [5–7].

Along this same line of unit distributions and their extensions to the case of regression
models, more recent works are also highlighted, such as: the unit-generalized log Burn XII,
unit-folded normal, and unit log–log distributions, see [8–10]. Furthermore, for the specific
case with covariables, there are well-referenced works, among them, the beta-regression
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model of Ferrari and Cribari-Neto [11] and Ospina and Ferrari [12], whereas Martínez-
Flórez et al. [13] studied a double-censored model for random variables on the unit interval.
More recently, we find the works of Korkmaz et al. [14], Mazucheli et al. [15,16].

The skew–normal (SN) distribution, with asymmetry parameter λ, denoted by SN(λ),
was studied by Azzalini [1] and its probability density function (PDF) is represented by
φSN(z, λ) = 2φ(z)Φ(λz), for z ∈ R, where λ ∈ R and φ(·) and Φ(·) represent the PDF and
the cumulative distribution function (CDF) of the standard normal distribution, respectively.
Here, the parameter λ controls the asymmetry in the distribution. The CDF of a random
variable following an SN(λ) distribution is given by,

ΦSN(z; λ) =
∫ z

−∞
φSN(t; λ)dt = Φ(z)− 2T(z, λ), z ∈ R, (1)

where T(·, λ) is the Owen’s [17] function given by

T(h, a) =
1

2π

∫ a

0

exp[− 1
2 h2(1 + x2)]

1 + x2 dx, for −∞ < h, a < +∞.

The power–normal (PN) distribution, denoted by PN(α), with PDF given by,

f (z; α) = αφ(z){Φ(z)}α−1,

where z ∈ R and α ∈ R+ is a shape parameter, was introduced by Durrans [2]. The PN
distribution has been multiple applications in cases where the distribution of data presents
high or low asymmetry and/or kurtosis when compared to normal distribution. A more
flexible extension of the SN and PN distributions was studied by Martínez-Flórez et al. [13].
This extension is called power–skew–normal PSN(λ, α) and has PDF given by

f (z; λ, α) = αφSN(z; λ){ΦSN(z; λ)}α−1,

for z ∈ R, where λ ∈ R and α ∈ R+. These authors found out that the asymmetry
coefficient for the PSN distribution is the [−1.4676, 0.9953) interval, while the kurtosis is
in the [1.4672, 5.4386] interval. Furthermore, according to the results by Azzalini [1] and
Pewsey et al. [3], the PSN distribution contains the asymmetry and kurtosis ranges of the
SN and PN distributions, being able to fit data with higher (or less) skewness and kurtosis
than allowed by these two distributions. In this work, we extend this distribution to the
case of bounded random variables on the (0, 1) range, and study its main properties and
the process of estimating its parameters.

The rest of the paper is organized as follows. In Section 2, the unit-power-skew-normal
distribution is introduced and its main properties are studied. The inference process by
using maximum likelihood method is carry out. In Section 3, explanatories variable in
the unit-power–skew–normal distribution are introduced and, the statistical inference is
performed. The resulting model is called the unit–power–skew–normal regression model.
In addition, the score functions and the elements of the observed information matrix are
obtained. The Section 4 presents the results of two simulation studies. Two applications
with real data to illustrate the applicability of the proposed methodologies are presented in
Section 5. Finally, in Section 6, the extension of the unit–power–skew–normal distribution
to the bivariate case is explored.

2. The Unit–Power–Skew–Normal Distribution

Performing the transformation Y = exp(Z), where Z ∼ PSN(λ, α), is obtained the
extension of the PSN distribution for the case of positive random variables, which is called
log–power–skew–normal distribution (LPSN). The PDF of the LPSN distribution with
parameters λ and α, denoted by LPSN(λ, α), is given by:
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g(y; λ, α) =
α

y
φSN(log(y); λ){ΦSN(log(y); λ)}α−1, y > 0. (2)

In addition, the PDF of the location-scale family of the random variable with LPSN
distribution is

ϕ(y; µ, σ, λ, α) =
α

σy
φSN(z; λ){ΦSN(z; λ)}α−1, y ∈ R+, (3)

where z = (log(y) − µ)/σ, with µ ∈ R the location parameter, and σ > 0 the scale
parameter. Now, by applying the transformation X = exp(−Y) on the LPSN distribution,
it is obtained the distribution with PDF given by

ψ(x) =
α

σx log(x−1)
φSN

(
log(− log(x))− µ

σ
; λ

){
ΦSN

(
log(− log(x))− µ

σ
; λ

)}α−1

, (4)

where Y ∼ LPSN(µ, σ, λ, α), 0 < x < 1, λ ∈ R and α ∈ R+. The distribution in Equation (4)
is called unit–power–skew–normal and is denoted by UPSN(µ, σ, λ, α). The UPSN distri-
bution has some interesting features, for example, if λ = 0 and α = 1 the unit–normal (UN)
distribution is achieved, and is denoted by UN(µ, σ). For λ = 0, the unit–power–normal
(UPN) distribution, UPN(µ, σ, α) is obtained and, for α = 1, the unit–skew–normal (USN)
distribution USN(µ, σ, λ) is obtained. In this way, the UPSN distribution encompasses
three families of distributions that can be used in the fit of data in the unit interval (0, 1).

2.1. Properties
The CDF and survival function of the UPSN(µ, σ, λ, α) distribution are, respectively,

given by:

Ψ(x) =
{

ΦSN

(
log(− log(x))− µ

σ
; λ

)}α

and S(t) = 1−
{

ΦSN

(
log(− log(t))− µ

σ
; λ

)}α

(5)

and therefore, the hazard function is defined by:

r(t) =
α

σt log(t−1)

φSN

(
log(− log(t))−µ

σ ; λ
)

ΦSN

(
log(− log(t))−µ

σ ; λ
) ,

while the inverse hazard function is given by

R(t) =
α

σt log(t−1)

φSN

(
log(− log(t))−µ

σ ; λ
){

ΦSN

(
log(− log(t))−µ

σ ; λ
)}α−1

1−
{

ΦSN

(
log(− log(t))−µ

σ ; λ
)}α .

As a result, the cumulative hazard function can be obtained from the survival function
through the relationship:

H(t) = −α log
(

ΦSN

(
log(− log(t))− µ

σ
; λ

))
.

Figure 1a,b shows the UPSN density behavior for some parameter values. It can be
seen in Figure 1a that the UPSN distribution presents different asymmetric shapes to the
right and to the left. Furthermore, decreasing forms of the distribution are observed in the
support of the variable, and decreasing forms (See Figure 1b). These different behaviors
of the pdf allow it to fit data with a wide variety of shapes and behaviors, especially with
high kurtosis degrees, considering that this is one of the benefits of the power–normal
distribution family (see [3]).
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Figure 1. UPSN distribution for µ = 0.25 and σ = 1.75 (a) values of (λ, α) = (−1.75, 0.5)
(dotted–dashed line), (−1.75, 1.5) (dotted line), (−4.75, 3.5) (dashed line) and (−4.75, 5.5) (solid line),
(b) values of (λ, α) = (1.75, 0.5) (dotted–dashed line), (1.75, 1.5) (dotted line), (4.75, 3.5) (dashed line)
and (4.75, 5.5) (solid line).

Likewise, the graphs of the Figure 2 exhibit the behavior of the survival and haz-
ard functions.
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Figure 2. Survival and hazard functions for µ = 0.25, σ = 1.75 and values of (λ, α) = (1.75, 0.5)
(dotted–dashed line), (1.75, 1.5) (dotted line), (4.75, 3.5) (dashed line) and (4.75, 5.5) (solid
line) (a) S(t) and (b) r(t).

To generate a random variable with distribution UPSN(µ, σ, λ, α) can be done using
(5) using the inversion method. Thus, for a uniform random variable U, on (0, 1), we have
that the random variable

X = exp
[
− exp(µ + σΦ−1

SN((1−U)1/α; λ))
]
,

follows a UPSN(µ, σ, λ, α), where Φ−1
SN(·; λ) represents the inverse function of ΦSN(·; λ).

From this result, it follows that 1− X also follows a UPSN(µ, σ, λ, α) distribution.
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2.2. Moments

Moments of the standard UPSN(λ, α) distribution can be obtained from the relation-
ship X = exp(−Y), where Y ∼ LPSN(λ, α). Thus, for r > 0, we have

E(Xr) = E[exp(−rY)] = MY(−r),

where MY(·) represents the moment-generating function (MGF) of the random variable
Y ∼ LPSN(λ, α). Now, by performing Z = exp(−rY) and using the transformation
method, it can be demonstrated that

FZ(z) = 1− FY

(
−1

r
log(z)

)
,

then,

MY(−r) = E(Z) =
∫ 1

0
[1− FZ(z)]dz = r

∫ ∞

0
FY(y) exp(−ry)dy

and, since FY(y) is a non-decreasing function such that, 0 ≤ FY(y) ≤ 1, and given that
exp(−ry) > 0, it follows 0 ≤ FY(y) exp(−ry) ≤ exp(−ry), that is,

0 ≤
∫ ∞

0
FY(y) exp(−ry)dy ≤

∫ ∞

0
exp(−ry)dy =

1
r

,

whence it follows that
E(Xr) = MY(−r) ≤ 1

r
< ∞,

that is, moments of the UPSN distribution exist can be obtained from the relationship

E(Xr) = r
∫ ∞

0
{ΦSN(log(y); λ)}α exp(−ry)dy. (6)

Using the usual definition, the r-th moment of the standard UPSN distribution is
given by

µr = E(Xr) = α
∫ 1

0
uα−1 exp(−r exp(Φ−1

SN(u; λ)))du. (7)

The centred moments in mean, µ′r = E(X−E(X))r, for r = 2, 3, 4 can be calculated by
the expressions:

µ′2 = µ2 − µ2
1, µ′3 = µ3 − 3µ2µ1 + 2µ3

1 and µ′4 = µ4 − 4µ3µ1 + 6µ2µ2
1 − 3µ4

1.

Furthermore, the variance and coefficient of variation, skewness and kurtosis coeffi-
cients are given by:

Var(X) = µ′2, CV =

√
Var(X)

µ1
,
√

β1 =
µ′3

[µ′2]
3/2 and β2 =

µ′4
[µ′2]

2 .

From expression (7), it is possible to calculate the moments of the UPSN distribution.
The Table 1 shows the values of E(X), E(X2), Var(X) and the skewness and kurtosis
coefficients for a random variable with UPSN distribution in its standard form, that is,
X ∼ UPSN(0, 1, λ, α) for some selected values of the parameters λ and α. In addition,
for values λ ∈ (0, 50) and some values of α between 0.25 and 25, we find that the ranges
of skewness and kurtosis coefficients are (−1.229287, 9.512082) and (1.12317, 161.2386),
respectively.
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Table 1. Moments for a random variable with UPSN distribution.

λ α E(X) E(X2) Var(X)
√

β1 β2

0.25 0.75 0.4012 0.2382 0.0773 0.1536 1.8059
1.75 0.2102 0.0842 0.0400 0.9118 2.9505
2.75 0.1331 0.0399 0.0222 1.3673 4.3927

1.50 0.75 0.2506 0.1043 0.0415 0.618 2.4429
1.75 0.1159 0.0289 0.0154 1.3217 4.3589
2.75 0.0691 0.0121 0.0073 1.7686 6.3217

2.75 0.75 0.2113 0.0712 0.0265 0.531 2.4116
1.75 0.1026 0.0213 0.0108 1.136 3.7371
2.75 0.0630 0.0095 0.0055 1.5536 5.2632

2.3. Statistical Inference

For the estimation of the parameters of the UPSN(µ, σ, λ, α) distribution, we use the
maximum likelihood (ML) method. Thus, given a random sample X1, X2, . . . , Xn, with
Xi ∼ UPSN(µ, σ, λ, α), for i = 1, 2, . . . , n the log-likelihood function of the parameter vector
θ = (µ, σ, λ, α)>, except for the constant, is given by:

`(θ) = n(log(α)− log(σ))−
n

∑
i=1

log(xi log(x−1
i ))− 1

2

n

∑
i=1

z2
i +

n

∑
i=1

log{Φ(λzi)}+

(α− 1)
n

∑
i=1

log{ΦSN(zi, λ)},

where zi = [log(− log(xi))− µ]/σ.
The elements of the score function U(θ) = (U(µ), U(σ), U(λ), U(α))>, and defined

as the derivative of the log-likelihood function with respect to the parameters, that is,
U(θi) = ∂`(θ)/∂θi, for i = 1, 2, 3, 4, where θ1 = µ, θ2 = σ, θ3 = λ and θ4 = α, they can be
expressed by:

U(µ) =
1
σ

n

∑
i=1

zi −
λ

σ

n

∑
i=1

wi −
α− 1

σ

n

∑
i=1

w1i,

U(σ) = −n
σ
+

1
σ

n

∑
i=1

z2
i −

λ

σ

n

∑
i=1

ziwi −
α− 1

σ

n

∑
i=1

ziw1i,

U(λ) =
n

∑
i=1

ziwi −
√

2
π

(α− 1)
1 + λ2

n

∑
i=1

wi(λ)

U(α) =
n
α
+

n

∑
i=1

log{ΦSN(zi, λ)}

where wi = φ(λzi)/Φ(λzi), w1i = φSN(zi; λ)/ΦSN(zi; λ) and wi(λ) = φ
(√

1 + λ2zi

)
/

ΦSN(zi; λ), for i = 1, . . . , n.
By setting each of these functions equal to zero, the score equations are obtained and

their respective solutions are obtained by using iterative numerical methods, leading to
estimates of the distribution parameters. From the score equation U(α) = 0, we have

α = α(µ, σ, λ) =
n

−∑n
i=1 log{ΦSN(zi, λ)} ,

we arrive to the profiled log-likelihood, except for the constant,
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`p(µ, σ, λ) = −n log(σ)−
n

∑
i=1

log(xi log(x−1
i ))− n log

(
−

n

∑
i=1

log{ΦSN(zi; λ)}
)
− 1

2

n

∑
i=1

z2
i

+
n

∑
i=1

log{Φ(λzi)} −
n

∑
i=1

log{ΦSN(zi, λ)}, (8)

whose maximization leads to the ML estimates of the parameters µ, σ and λ, where α̂ =
α(µ̂, σ̂, λ̂).

The observed (Ω) and expected (Σ) information matrices can be obtained, respectively,
by finding −H(θ) and E(−H(θ)), where H(θ) is the Hessian of `(θ). It can be shown that
for λ 6= 0 the information matrix of this distribution is non-singular (the matrix Σ for the
case (λ, α) = (0, 1) was studied in Salinas et al. [18]). Thus, for large sample sizes and
under regular estimation conditions, that is, continuity and existence of the pdf and its first
three derivatives, consistency of the estimator and existence of the information matrix, we
have that the vector θ̂ converges to a normal N4(θ, Σ−1).

Let us remember that, the exponentiated-normal family of distribution is regular,
see [19]. In addition, Martínez-Flórez et al. [20] showed that the family of EFAN distribu-
tions satisfies all the regularity conditions; therefore, the exponentiated-normal family also
satisfy them, since this is a particular case of the EFAN model by taking α = 0.

3. The USPN Regression Model

In many situations, the response variable X is explained by a set of exogenous variables
v1, v2, . . . , vp through the intrinsically linear relationship

log(− log(xi)) = β0 + β1vi1 + β2vi2 + · · ·+ βpvip = v>i β + εi, for i = 1, 2, . . . , n,

where vi = (1, vi1, vi2, . . . , vip)
>, being vij the response for the jth variable measured on

the ith individual, for i = 1, . . . , n and j = 1, . . . , p; β = (β0, β1, β2, . . . , βp)> is a vector of
unknown parameters that must be estimated, and εi ∼ PSN(0, σ, λ, α). It follows that, for
i = 1, 2, . . . , n, Xi ∼ UPSN(v>i β, σ, λ, α).

From this perspective, this model could be seen as a generalized linear model g(µi) =
v>i β with log− log link function and random component PSN(0, σ, λ, α). Even here, this
model could be extended to the non-linear case in the parameters by making g(µi) =
f (vi, β) a doubly differentiate continuous function. Similar to the case without covariates,
for cases α = 1 and λ = 0 a unit–normal–regression model is obtained, whereas for λ = 0
a unit–power–normal regression model is obtained. The unit–skew–normal regression
model is followed when α = 1.

The log-likelihood function of the parameter vector of the model θ = (β>, σ, λ, α)> is
given by:

`(θ) =
n

∑
i=1
{log(α)− log(σ) + log(φSN(z∗i )) + (α− 1) log(ΦSN(z∗i ))}, (9)

where z∗i = (log(− log(xi)) − v>i β)/σ. The score function corresponding to the log-
likelihood function is given by (for j = 0, 1, 2, . . . , p)

U(β j) = −
1
σ

n

∑
i=1

xij

[
−z∗i + λ

φ
(
λz∗i
)

Φ
(
λz∗i
) + (α− 1)

φSN
(
z∗i ; λ

)
ΦSN

(
z∗i ; λ

)],

U(σ) = − 1
σ

n

∑
i=1

[
1− z∗i

2 + λz∗i
φ
(
λz∗i
)

Φ
(
λz∗i
) + (α− 1)zi

φSN
(
z∗i ; λ

)
ΦSN

(
z∗i ; λ

)],

U(λ) =
n

∑
i=1

z∗i
φ
(
λz∗i
)

Φ
(
λz∗i
) −√ 2

π

α− 1
1 + λ2

φ
(√

1 + λ2z∗i
)

ΦSN
(
z∗i ; λ

)


U(α) =
n
α
+

n

∑
i=1

log(ΦSN(z∗i ; λ)).
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Similar to the case without covariates, by matching the score functions to zero, we
obtain the system of score equations, whose solution, using iterative numerical methods,
leads to the maximum likelihood estimates of the model parameters.

After intensive calculations, the elements of the observed information matrix, Ω, for
the parameter vector θ = (β>, σ, λ, α)> were obtained. These elements are defined as
minus the second derivative of the log-likelihood function with respect to the parameters,
this is,

ωθkθl = −
∂`(θ)

∂θk∂θl
, for k 6= l = 1, . . . , 4, (10)

The elements of the Ω matrix are presented explicitly in the Appendix A.
For large n, the observed information matrix converges to the expected information

matrix. Thus, from the elements of the Ω matrix, the errors of the model parameters can
be estimated, for λ 6= 0, calculating the square root of the diagonal elements of Ω̂−1. By
denoting by η̂θk the kth element of the Ω̂−1 matrix, confidence intervals can be obtained
for model parameters, especially for β j, j = 0, 1, 2, . . . , p. For a confidence level of 95%, the
confidence intervals for the parameters β j are given by: β̂ j ∓ 1.96η̂β j for j = 0, 1, 2, . . . , p.

4. Simulation Study

To study the behavior of the maximum likelihood estimators (MLE) of the parameters
of the UPSN distribution and the UPSN regression model, we conducted two Monte Carlo
simulation studies. In the first simulation, we considered the UPSN(λ, α) distribution with
values for the parameters: µ = 0.0, 0.5; σ = 0.5, 1.0; λ = 0.75, 1.75; and α = 0.5, 1.5 and 2.5.
The considered sample sizes were n = 30, 60, 100, 200, 500 and 1000, and the number of
samples for each scenario was 5000.

To evaluate the performance of the estimators, the absolute value of the bias (AVB)
and the root–mean–square error (RMSE =

√
MSE) were considered, which are given by:

AVB(θi) =
1

5000

∣∣∣∣∣5000

∑
k=1

(
θ̂
(k)
j − θj

)∣∣∣∣∣; RMSE(θi) =

√√√√ 1
5000

5000

∑
k=1

(
θ̂
(k)
j − θj

)2

respectely, where θ̂
(k)
j is the estimator od θj for the jth sample, for θi ∈ θ. In the two simula-

tions, the maxLik function [21] of the statistical software R Development Core Team [22]
was used and the optimization of the likelihood function was performed by using iterative
methods based on the Newton–Rapshon algorithm.

The obtained results for each estimator for the UPSN distribution can be seen in
Table 2. In can be observed that, as the sample size increase, the bias (in absolute value) and
the square root of the mean square error decrease, indicating a good behavior of the MLE
of the parameters of the UPSN distribution. This guarantees the asymptotic consistency of
the MLE of the parameters of the distribution in question.

Table 2. MLE behaviors for the UPSN Distribution.

λ = 0.75, α = 0.5 λ = 0.75, α = 1.5 λ = 0.75, α = 2.5

n θ Mean AVB RMSE Mean AVB RMSE Mean AVB RMSE

30 µ 0.6506 0.1506 0.4237 0.6768 0.1768 0.4078 0.6597 0.1597 0.4037
σ 0.4440 0.0560 0.1567 0.4299 0.0701 0.1804 0.4332 0.0668 0.1769
λ 0.8910 0.1410 0.6898 0.9203 0.1703 0.5639 0.3099 0.4401 0.5298
α 0.3984 0.1016 0.5215 1.2813 0.2187 0.6199 3.1366 0.6366 1.4737

60 µ 0.6406 0.1406 0.4039 0.6515 0.1515 0.3674 0.6468 0.1468 0.3756
σ 0.4459 0.0541 0.1495 0.4389 0.0611 0.1655 0.4396 0.0604 0.1679
λ 0.6253 0.1247 0.6437 0.5848 0.1652 0.5464 0.3305 0.4195 0.5056
α 0.4110 0.0890 0.4748 1.2823 0.2177 0.5985 2.9701 0.4701 1.4212
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Table 2. Cont.

λ = 0.75, α = 0.5 λ = 0.75, α = 1.5 λ = 0.75, α = 2.5

n θ Mean AVB RMSE Mean AVB RMSE Mean AVB RMSE

100 µ 0.6385 0.1385 0.3692 0.5879 0.0879 0.2940 0.6029 0.1029 0.2887
σ 0.4478 0.0522 0.1352 0.4622 0.0378 0.1218 0.4495 0.0505 0.1352
λ 0.6670 0.0830 0.5847 0.8580 0.1080 0.5392 0.4133 0.3367 0.4972
α 0.4118 0.0882 0.3813 1.6264 0.1264 0.4824 2.8683 0.3683 1.2378

200 µ 0.5877 0.0877 0.3138 0.5645 0.0645 0.2211 0.5635 0.0635 0.2175
σ 0.4706 0.0294 0.1167 0.4681 0.0319 0.1038 0.4529 0.0471 0.1118
λ 0.8229 0.0729 0.4998 0.8210 0.0710 0.4885 0.5241 0.2259 0.4776
α 0.5583 0.0583 0.2650 1.5756 0.0756 0.3926 2.6427 0.1427 0.5351

500 µ 0.5696 0.0696 0.2446 0.5163 0.0163 0.2096 0.5580 0.0580 0.1957
σ 0.4761 0.0239 0.0909 0.4763 0.0237 0.0751 0.4603 0.0397 0.0851
λ 0.8119 0.0619 0.3837 0.8101 0.0601 0.4085 0.5558 0.1942 0.4038
α 0.5218 0.0218 0.1911 1.4280 0.0720 0.3156 2.6220 0.1220 0.4011

1000 µ 0.5409 0.0409 0.2006 0.5141 0.0141 0.1644 0.5137 0.0137 0.1691
σ 0.4817 0.0183 0.0755 0.4794 0.0206 0.0701 0.4661 0.0339 0.0789
λ 0.7166 0.0334 0.3332 0.7222 0.0278 0.3480 0.6104 0.1396 0.3183
α 0.4842 0.0158 0.1550 1.4566 0.0434 0.2120 2.4661 0.0339 0.3358

λ = 1.75, α = 0.5 λ = 1.75, α = 1.5 λ = 1.75, α = 2.5

n θ Mean AVB RMSE Mean AVB RMSE Mean AVB RMSE

30 µ 0.5896 0.0896 0.3380 0.5723 0.0723 0.3102 0.5496 0.0496 0.1738
σ 0.4339 0.0661 0.1531 0.4362 0.0638 0.1041 0.4273 0.0727 0.0967
λ 1.5976 0.1524 0.9985 1.3001 0.4499 0.9439 1.1366 0.6134 0.9404
α 0.7603 0.2603 0.6934 1.7636 0.2636 1.0633 3.2798 0.7798 1.7809

60 µ 0.5454 0.0454 0.3287 0.5701 0.0701 0.1902 0.5470 0.0470 0.1571
σ 0.4606 0.0394 0.1280 0.4549 0.0451 0.0847 0.4431 0.0569 0.0802
λ 1.6007 0.1493 0.9031 1.4843 0.2657 0.8709 1.3276 0.4224 0.9213
α 0.6992 0.1992 0.6830 1.7410 0.2410 1.0213 2.9975 0.4975 1.3429

100 µ 0.4647 0.0353 0.3202 0.5457 0.0457 0.1627 0.5431 0.0431 0.1472
σ 0.4731 0.0269 0.1150 0.4636 0.0364 0.0716 0.4477 0.0523 0.0756
λ 1.6283 0.1217 0.8332 1.6066 0.1434 0.7931 1.3702 0.3798 0.8113
α 0.6892 0.1892 0.6424 1.6735 0.1735 0.8120 2.8614 0.3614 1.1754

200 µ 0.4688 0.0312 0.2901 0.5430 0.0430 0.1490 0.5269 0.0269 0.1195
σ 0.4892 0.0108 0.0857 0.4647 0.0353 0.0648 0.4654 0.0346 0.0583
λ 1.6442 0.1058 0.6433 1.6129 0.1371 0.6854 1.4212 0.3288 0.7109
α 0.6569 0.1569 0.5690 1.6657 0.1657 0.6672 2.6302 0.1302 0.7226

500 µ 0.4740 0.0260 0.2329 0.5357 0.0357 0.1236 0.5222 0.0222 0.1099
σ 0.4900 0.0100 0.0598 0.4659 0.0341 0.0494 0.4754 0.0246 0.0527
λ 1.6586 0.0914 0.4897 1.6325 0.1175 0.4413 1.5372 0.2128 0.5628
α 0.6379 0.1379 0.3211 1.5969 0.0969 0.4985 2.5863 0.0863 0.5885

1000 µ 0.5159 0.0159 0.1810 0.5342 0.0342 0.1111 0.5184 0.0184 0.1083
σ 0.4910 0.0090 0.0437 0.4704 0.0296 0.0458 0.4795 0.0205 0.0413
λ 1.6688 0.0812 0.3953 1.6650 0.0850 0.2996 1.5617 0.1883 0.4205
α 0.5945 0.0945 0.1736 1.4568 0.0432 0.3738 2.5172 0.0172 0.4406
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Table 2. Cont.

λ = 0.75, α = 0.5 λ = 0.75, α = 1.5 λ = 0.75, α = 2.5

n θ Mean AVB RMSE Mean AVB RMSE Mean AVB RMSE

30 µ 0.5737 0.5737 0.6592 0.5661 0.5645 0.6358 0.4793 0.4793 0.6734
σ 0.5968 0.4032 0.4357 0.6872 0.3128 0.4435 0.6703 0.3297 0.3509
λ 1.0611 0.3111 0.5648 0.9955 0.2455 0.5976 1.1023 0.3523 0.5404
α 0.1375 0.3625 0.3916 1.1393 0.3607 0.5370 3.1742 0.6742 1.5315

60 µ 0.4343 0.4343 0.5254 0.4231 0.4231 0.5391 0.3144 0.3144 0.5439
σ 0.6806 0.3133 0.3272 0.7931 0.2069 0.3615 0.7054 0.2946 0.3164
λ 0.8679 0.1179 0.5093 0.9029 0.1529 0.5193 1.0026 0.2526 0.5291
α 0.1515 0.3485 0.3508 1.1894 0.3106 0.3882 3.0385 0.5385 1.3574

100 µ 0.2642 0.2642 0.3248 0.2971 0.2971 0.4935 0.2814 0.2814 0.4957
σ 0.7550 0.2450 0.2623 0.8172 0.1828 0.2664 0.7765 0.2235 0.2470
λ 0.8274 0.0774 0.4850 0.8551 0.1051 0.4881 0.8792 0.1292 0.4937
α 0.2171 0.2829 0.3239 1.2403 0.2597 0.3478 2.9743 0.4743 1.1732

200 µ 0.1635 0.1635 0.1749 0.2306 0.2306 0.2583 0.2119 0.2119 0.2984
σ 0.8887 0.1113 0.1701 0.8748 0.1252 0.1915 0.8091 0.1909 0.2197
λ 0.8144 0.0644 0.3377 0.843 0.0930 0.3463 0.8427 0.0927 0.3148
α 0.3005 0.1995 0.2270 1.3985 0.1015 0.2628 2.8337 0.3337 0.8188

500 µ 0.0788 0.0788 0.1596 0.0979 0.0979 0.1691 0.1698 0.1698 0.1924
σ 0.9040 0.0960 0.1038 0.8846 0.1154 0.1363 0.8569 0.1431 0.1621
λ 0.8109 0.0609 0.2538 0.8333 0.0833 0.2643 0.8232 0.0732 0.2447
α 0.3745 0.1255 0.1429 1.4101 0.0899 0.1516 2.6476 0.1476 0.6138

1000 µ 0.0290 0.0290 0.0917 0.0326 0.0326 0.0954 0.0863 0.0863 0.1001
σ 0.9762 0.0238 0.0935 0.9192 0.0808 0.1004 0.9417 0.0583 0.1189
λ 0.8056 0.0556 0.1314 0.7877 0.0377 0.1278 0.8032 0.0532 0.1336
α 0.4697 0.0303 0.0938 1.5201 0.0201 0.0822 2.4629 0.0371 0.3673

λ = 1.75, α = 0.5 λ = 1.75, α = 1.5 λ = 1.75, α = 2.5

n θ Mean AVB RMSE Mean AVB RMSE Mean AVB RMSE

30 µ 0.1971 0.1971 0.4550 0.1850 0.1850 0.3728 0.1604 0.1604 0.2049
σ 0.8510 0.1490 0.1777 0.8728 0.1272 0.2246 0.8671 0.1329 0.1539
λ 1.5506 0.1994 1.0690 1.2949 0.4551 1.0988 0.9859 0.7641 0.9582
α 0.6483 0.1483 0.7022 1.3317 0.1683 1.1201 3.3513 0.8513 1.8968

60 µ 0.1421 0.1421 0.3338 0.1517 0.1717 0.3036 0.1331 0.1331 0.1760
σ 0.8978 0.1022 0.1452 0.9093 0.0907 0.1322 0.8926 0.1074 0.1230
λ 0.9620 0.1680 0.9952 1.4597 0.2903 0.9984 0.9859 0.5675 0.8969
α 0.6336 0.1336 0.4824 1.3353 0.1647 1.0635 3.0780 0.5780 1.3369

100 µ 0.0828 0.0828 0.2756 0.1082 0.1082 0.2617 0.0948 0.0948 0.1644
σ 0.9196 0.0804 0.1106 0.9135 0.0865 0.1124 0.9142 0.0858 0.1073
λ 1.5820 0.1366 0.7072 1.5925 0.1575 0.8673 1.3115 0.4385 0.6356
α 0.6052 0.1052 0.4096 1.3815 0.1185 0.7321 2.8817 0.3817 1.1426

200 µ 0.0698 0.0698 0.2390 0.0713 0.0713 0.2451 0.0649 0.0649 0.1240
σ 0.9212 0.0788 0.1038 0.9274 0.0726 0.1013 0.9236 0.0764 0.0993
λ 1.6134 0.1250 0.4245 1.6446 0.1054 0.6505 1.3652 0.3848 0.4241
α 0.5840 0.0840 0.3182 1.4345 0.0655 0.5670 2.7755 0.2755 0.8005
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Table 2. Cont.

λ = 1.75, α = 0.5 λ = 1.75, α = 1.5 λ = 1.75, α = 2.5

n θ Mean AVB RMSE Mean AVB RMSE Mean AVB RMSE

500 µ 0.0495 0.0495 0.2003 0.0625 0.0625 0.1807 0.0531 0.0531 0.1033
σ 0.9608 0.0410 0.0917 0.9576 0.0424 0.0627 0.9461 0.0539 0.0721
λ 1.6437 0.1063 0.3592 1.6579 0.0921 0.4748 1.5415 0.2085 0.3599
α 0.5387 0.0387 0.2247 1.4589 0.0411 0.4683 2.6394 0.1394 0.6031

1000 µ 0.0236 0.0236 0.1513 0.0366 0.0366 0.1060 0.0309 0.0309 0.0964
σ 0.9608 0.0392 0.0501 0.9586 0.0414 0.0525 0.9633 0.0367 0.0499
λ 1.6734 0.0766 0.2748 1.6754 0.0746 0.3082 1.6455 0.1045 0.3042
α 0.5155 0.0155 0.1770 1.4725 0.0275 0.3470 2.5846 0.0846 0.3987

In the second simulation study, we considered the UPSN regression model defined
in Section 3. We considered the following simulation scenarios: β = (0.5,−0.25)> and
σ = 0.5 for λ = 0.75, 1.5, and α = 0.5, 2.5; and β = (1.5,−1.25)> and σ = 1.0 for λ = −1.0,
and α = 0.75, 2.0. The covariate vector was v = (1, v)>, with v being generated from
a uniform distribution U(0.1, 10). For each simulation scenario and the sample sizes
n = 50, 100, 200, 500 and 1000, 5000, we generated random samples of the UPSN regression
model UPSN(v>i β, σ, λ, α), i = 1, . . . , n. To evaluate the performance of the estimators, the
AVB and RMSE were again used. The results of the estimates are found in Table 3.

Table 3. MLE behaviors for the UPSN regression model.

λ = 0.75, α = 0.5 λ = 1.5, α = 0.5

n Parameter Mean AVB RMSE Mean AVB RMSE

50 β0 0.6175 0.1175 0.6485 0.4611 0.0389 0.4966
β1 −0.2482 0.0018 0.0275 −0.2492 0.0008 0.0224
σ 0.4877 0.0123 0.2282 0.4935 0.0065 0.1729
λ 0.8919 0.1419 0.7919 1.7263 0.2263 1.0481
α 0.6024 0.1024 0.8522 0.7327 0.2327 0.9243

100 β0 0.6036 0.1036 0.4774 0.4704 0.0296 0.4174
β1 −0.2490 0.0010 0.0190 −0.2492 0.0008 0.0154
σ 0.4764 0.0236 0.1648 0.5001 0.0054 0.1332
λ 0.8450 0.0950 0.5350 1.6721 0.1721 0.7987
α 0.5823 0.0823 0.5159 0.6850 0.1850 0.6117

200 β0 0.5800 0.0800 0.3833 0.4770 0.0230 0.3589
β1 −0.2497 0.0003 0.0135 0.2497 0.0003 0.0110
σ 0.4833 0.0167 0.1254 0.5062 0.0062 0.1052
λ 0.8202 0.0702 0.4365 1.5804 0.0804 0.6419
α 0.5684 0.0684 0.4232 0.6554 0.1554 0.5388

500 β0 0.5605 0.0605 0.2543 0.4807 0.0193 0.2709
β1 −0.2497 0.0003 0.0084 −0.2497 0.0003 0.0068
σ 0.4861 0.0139 0.0822 0.5051 0.0051 0.0690
λ 0.7286 0.0214 0.3298 1.5286 0.0286 0.4120
α 0.5186 0.0186 0.2752 0.6060 0.1060 0.4932

1000 β0 0.5517 0.0517 0.1775 0.5014 0.0014 0.2268
β1 −0.2499 0.0001 0.0061 −0.2500 0.0000 0.0050
σ 0.4889 0.0111 0.0572 0.5037 0.0037 0.0504
λ 0.7692 0.0192 0.3008 1.5071 0.0071 0.1944
α 0.5165 0.0165 0.1679 0.5988 0.0988 0.3594
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Table 3. Cont.

.

λ = 0.75, α = 2.5 λ = 1.5, α = 2.5

n Parameter Mean AVB RMSE Mean AVB RMSE

50 β0 0.7776 0.2776 0.5389 0.7434 0.2434 0.4115
β1 −0.2493 0.0007 0.0168 −0.2495 0.0005 0.0160
σ 0.4480 0.0520 0.1452 0.4482 0.0518 0.1151
λ 1.0718 0.3218 0.8425 1.8451 0.3451 1.1519
α 2.2659 0.2341 1.5676 2.0723 0.4277 1.7081

100 β0 0.6693 0.1693 0.4420 0.6672 0.1672 0.3362
β1 −0.2497 0.0003 0.0121 −0.2498 0.0002 0.0107
σ 0.4755 0.0245 0.1146 0.4650 0.0350 0.0825
λ 1.0339 0.2839 0.6331 1.7549 0.2549 0.8520
α 2.3699 0.1301 1.2486 2.3240 0.1760 1.1974

200 β0 0.6480 0.1480 0.3686 0.5925 0.0925 0.2727
β1 −0.2499 0.0001 0.0086 −0.2496 0.0004 0.0076
σ 0.4781 0.0219 0.0906 0.4799 0.0201 0.0674
λ 0.8652 0.1152 0.4715 1.6440 0.1440 0.7637
α 2.4300 0.0700 0.8364 2.3895 0.1105 0.9520

500 β0 0.5848 0.0848 0.2614 0.5323 0.0323 0.2302
β1 −0.2500 0.0000 0.0057 −0.2497 0.0003 0.0049
σ 0.4869 0.0131 0.0630 0.4935 0.0065 0.0497
λ 0.7307 0.0193 0.3958 1.5929 0.0929 0.5241
α 2.4326 0.0674 0.6236 2.4007 0.0993 0.7516

1000 β0 0.5615 0.0615 0.1929 0.5194 0.0194 0.1965
β1 −0.2498 0.0002 0.0037 −0.2500 0.0000 0.0034
σ 0.4891 0.0109 0.0476 0.4942 0.0058 0.0417
λ 0.7647 0.0147 0.2799 1.5553 0.0553 0.2087
α 2.5099 0.0099 0.3908 2.4265 0.0735 0.4818

λ = −1.0, α = 0.75 λ = −1.0, α = 2.0

n Parameter Mean AVB RMSE Mean AVB RMSE

50 β0 1.1623 0.3377 0.6241 1.2291 0.2709 1.6432
β1 −1.2188 0.0312 0.0503 −1.1914 0.0586 0.0797
σ 1.2412 0.2412 1.1329 1.3723 0.3723 1.4677
λ −1.2501 0.2501 1.2071 −1.6629 0.6629 1.2754
α 2.4308 0.4308 1.2951 2.9961 0.9961 1.0634

100 β0 1.2536 0.2464 0.5187 1.2683 0.2317 0.9353
β1 −1.2189 0.0311 0.0410 −1.1922 0.0578 0.0688
σ 1.1736 0.1736 0.8932 1.2712 0.2712 1.1367
λ −1.0871 0.0871 1.0619 −1.4176 0.4176 0.8482
α 2.3665 0.3665 1.0342 2.5931 0.5931 0.7679

200 β0 1.3286 0.1714 0.3911 1.3558 0.1442 0.6150
β1 −1.2193 0.0307 0.0357 −1.1924 0.0576 0.0633
σ 1.1380 0.1380 0.7142 1.2128 0.2128 0.9740
λ −1.0575 0.0575 0.8866 −1.1219 0.1219 0.4114
α 2.1937 0.1937 0.6706 2.2563 0.2563 0.5772

500 β0 1.3859 0.1141 0.3370 1.4233 0.0767 0.4100
β1 −1.2195 0.0305 0.0335 −1.2027 0.0473 0.0609
σ 1.0777 0.0777 0.5193 1.0905 0.0905 0.6165
λ −1.0125 0.0125 0.5773 −0.9892 0.0108 0.2880
α 2.1253 0.1253 0.4165 2.1159 0.1159 0.3816
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Table 3. Cont.

λ = −1.0, α = 0.75 λ = −1.0, α = 2.0

n Parameter Mean AVB RMSE Mean AVB RMSE

1000 β0 1.4333 0.0667 0.1833 1.4479 0.0521 0.1916
β1 −1.2350 0.0150 0.0245 −1.2188 0.0312 0.0513
σ 1.0605 0.0605 0.3021 1.0523 0.0523 0.3285
λ −1.0089 0.0089 0.2698 −1.1000 0.1000 0.1516
α 2.0652 0.0652 0.3773 2.0609 0.0609 0.2671

It can be seen from the tables that the bias and the RMSE tend to decrease when the
value of n increases, indicating that the estimates based on the ML method have good
asymptotic properties. It can also be seen that for small sample sizes (n = 30, 60), the
estimators presented large RMSE, which is due to the alpha parameter; however, when
the sample size increases, the estimates become more stable. In general, this problem is
very common in this type of models, see for example, Martínez-Flórez et al. [23], so we
recommend moderate and large sample sizes in these types of models.

5. Illustrations

In this section, we present two illustrative examples with sets of real data, the first data
set is related to the percentage of teachers of the fundamental level of the municipalities of
Brazil which in the year 2000 had a higher education, while the second data set is related to
the food/income taxa, explained by two covariates. These data were analyzed by Ferrari
and Cribari-Neto [11].

5.1. Model Without Covariates

Our first illustration refers to a data set of 645 observations of the Brazilian indicators
for the year 2000. The variable of interest X, is related to the percentage of teachers of pri-
mary and lower secondary education with higher education (level of teacher qualification)
in the Brazilian municipalities. The data is found in the United Nations database, through
the atlas of human development program (UNDP) in Brazil, and is available on the website:
https://www.br.undp.org/content/brazil/pt/home/ (accessed on 1 February 2022).

Descriptive statistics of the response variable show an average of x̄ = 0.32093, a
standard deviation of s = 0.14209, a bias of

√
b1 = 0.4408 and a robust estimate of the

kurtosis b2 = 4.2116. The histogram for the dataset, which is omitted, has inverted “J”-
shaped, that is, it peaks at the lower end (values close to zero) and decreases when the
values of the response variable increase and approach to one. In addition, the response
variable clearly exhibits certain degree of skewness and kurtosis that can be modeled by
the UPSN distribution.

The Figure 3 shows the data set under analysis. To fit this set of observations
we used the unit–Birnbaum–Saunder (UBS) and unit–Weibull (UW) distributions (see
Mazucheli [5], Mazucheli et al. [6], respectively), the beta distribution and the proposed
unit–power–skew–normal family, that is the UN, USN, UPN and UPSN distributions. The
PDF of the fitted distribution are summarized in Table 4.

https://www.br.undp.org/content/brazil/pt/home/
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Figure 3. Fitted distributions (a) UPSN (solid line), USN (dotted line), UPN (dashed line) and UN
(dashed and dotted line), (b) Beta (solid line), UW (dotted line) and UBS (dashed line).

Table 4. PDF of the distribution fitted to dataset.

Distribution PDF Parameters

Beta f (x; µ, φ) =
Γ(φ)

Γ(µφ)Γ((1−µ)φ)
xµφ−1(1− x)(1−µ)φ−1 0 < µ < 1, φ > 0

UBS f (x; α, β) = 1
2xαβ

√
2π

[(
− β

log x

)1/2
+
(
− β

log x

)3/2
]

exp
[

1
2α2

(
log x

β +
β

log x + 2
)]

α, β > 0

UW f (x; α, β) = 1
x αβ(− log x)β−1 exp[−α(− log x)β] α, β > 0

UN f (x; µ, σ) = 1
σx log(x−1)

φ
(

log(− log(x))−µ
σ

)
µ ∈ R, σ > 0

USN f (x; µ, σ, λ) = 1
σx log(x−1)

φSN

(
log(− log(x))−µ

σ ; λ
)

µ, λ ∈ R, σ > 0

UPN f (x; µ, σ, α) = α
σx log(x−1)

φ
(

log(− log(x))−µ
σ

){
Φ
(

log(− log(x))−µ
σ

)}α−1
µ ∈ R, α, σ > 0

UPSN f (x; µ, σ, λ, α) = α
σx log(x−1)

φSN

(
log(− log(x))−µ

σ ; λ
){

ΦSN

(
log(− log(x))−µ

σ ; λ
)}α−1

µ, λ ∈ R, α, σ > 0

To compare the distributions in question, we used the Akaike information criterion
(AIC) of [24], the Bayesian information criterion (BIC) of [25], the AIC corrected (AICc)
of [26] and the Hannan–Quinn information criterion by [27], defined respectively by

AIC =− 2`(θ̂) + 2p

BIC =− 2`(θ̂) + p log(n),

AICc =− 2`(θ̂) + (2p(p + 1))/(n− (p + 1)),

HQC =− 2`(θ) + 2p log(log(p)),

where p is the number of parameters of the model in question.
The ML estimates, with standard errors in parentheses, are given in the Table 5.

According to the results shown by the AIC, AICc, BIC and HQC criteria, the two best
distributions, those with the best fit, are the UPSN and beta distributions, respectively. The
table also shows the results of the Anderson–Darling (AD) goodness-of-fit test statistic for
the fitted models, with the respective p-values in parentheses. Note that in particular in the
UN, USN, UPN and UPSN distributions, the good fit hypothesis is not rejected.
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Table 5. Estimation of the parameters, with their standard errors, of the beta, UBS, UW, USN, UN,
UPN and UPSN distributions.

Estimator Beta UBS UW USN UN UPN UPSN

µ̂ 0.3204 0.4919 0.1406 0.3835 0.2759
(0.0266) (0.0428) (0.0174) (0.1061) (0.0641)

φ̂ 8.9858
(0.4789)

σ̂ 0.5657 0.4437 0.3566 1.7801
(0.0310) (0.0123) (0.0396) (0.5384)

α̂ 0.4742 2.1965 0.5088 6.2984
(0.0132) (0.0574) (0.1650) (2.5197)

β̂ 1.1364 1.4266
(0.0206) (0.0271)

λ̂ −1.262 −4.249
(0.2160) (1.3631)

`(θ̂) 341.40 306.49 283.63 341.01 334.72 336.94 347.98
AIC −678.80 −608.98 −563.26 −676.03 −665.45 −667.89 −687.95
BIC −669.86 −600.04 −554.32 −662.65 −656.51 −654.48 −670.07

AICc −678.78 −608.96 −563.24 −675.99 −665.43 −667.85 −687.88
HQC −675.33 −605.51 −559.79 −670.82 −661.98 −662.68 −681.01

AD 4.6189 3.6969 11.133 1.0053 1.3967 1.2588 0.3915
(p−value) (0.0043) (0.0122) (0.0000) (0.3545) (0.2032) (0.2462) (0.8571)

We now compare the members of the UPSN family. We initially do the comparison of
the UN distribution with the UPSN distribution by using the hypothesis test

H0 : (λ, α) = (0, 1) versus H1 : (λ, α) 6= (0, 1).

with the likelihood ratio statistic,

Λ =
`UN(θ̂)

`UPSN(θ̂)

we obtain
−2 log(Λ) = 26.500

which is greater than the value χ2
2,95% = 5.99. Then, the UPSN distribution is a good

alternative for fitting the teacher set data. Now, for comparing the UPSN distribution with
the UPN and USN distributions, we use the set of hypotheses

H01 : λ = 0 versus H11 : λ 6= 0, and H02 : α = 1 versus H12 : α 6= 1,

respectively, with the likelihood-ratio statistics

Λ1 =
`UPN(θ̂)

`UPSN(θ̂)
and Λ2 =

`USN(θ̂)

`UPSN(θ̂)
.

After numerical evaluations, we obtained

−2 log(Λ1) = 22.061 and − 2 log(Λ2) = 13.915,

which is greater than the value χ2
1,95% = 3.84. The best fitting, regarding the UN, UPN

and USN distributions, is shown by the UPSN distribution. The graphs in Figure 3a,b
show that the fitted distributions obtained from the estimates of the parameters of the
UPSN distribution presents a better fit, compared to the UPN, beta, and UN distributions.
Therefore, the graphs in the Figure 4a,b show the distribution function and the QQplot for
the UPSN distribution, where the good fit of the UPSN distribution can be observed for
the data set of teacher qualification of the basic level of teachers in the municipalities of
Brazil. Likewise, the graphs in Figure 5 show the distribution functions of the remaining of
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the fitted models, in these it can be seen that the UN, USN and UPN distributions also fit
the data set quite well, but the UPSN distribution fits much better. Making a Kolmogorov–
Smirnov goodness-of-fit test, the statistic D = 0.032558 with p-value = 0.8839 is obtained,
which indicates that the fit of the UPSN distribution to the data set is good, as long as the
fit for the beta distribution showed a value D = 0.062016 with p-value = 0.1673, that is,
the UPSN distribution better fits the data set of teacher qualification of the fundamental
level of teachers in the municipalities of Brazil.
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Figure 4. (a) Empiric CDF (solid line) and UPSN distribution (dashed line), (b) QQplot UPSN
distribution.
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Figure 5. CDF (a) USN (dashed line), UPN (dotted line) and UN (dashed and dotted line), (b) Beta
(dashed line), UW (dotted line) and UBS (dashed and dotted line).

5.2. Model with Covariates

This data set was considered in Ferrari and Cribari-Neto [11], and it consists of family
food expenses over 38 h taken from Griffiths et al. [28]. The data are available in the betareg
library by Cribari-Neto and Zeileis [29] the R Development Core Team [22] software. The
response or dependent variable is the quotient or tax food/income, that is, the proportion
of the family income spent on food, while the explanatory or independent variables are:
the family income mentioned above and the number of people living at home. Ferrari
and Cribari-Neto [11] fitted a beta regression model to explain the relationship between
the response and the explanatory variables. For this data set, we fitted the following
family of unit distributions: UN, USN, UPN and UPSN. The MLEs, with standard errors in
parentheses, are given in Table 6. According to the results shown by the AIC, AICc, BIC and
HQC criteria, the three regression models that present the best fit for the data are beta, UPN
and UPSN, respectively. According to the AIC and BIC criteria, the UPSN regression model
presents the best fit, followed by the UPN and the beta regression model, in that order.



Mathematics 2022, 10, 3035 17 of 24

Table 6. Estimations of the parameters, with their standard errors, of the regression models beta, UN,
USN, UPN and UPSN.

Estimator Beta UN USN UPN UPSN

β̂0 −0.6225 0.0646 −0.1296 0.1462 0.3107
(0.2238) (0.1414) (0.1412) (0.1250) (0.0778)

β̂1 −0.0122 0.0070 0.0072 −0.0677 −0.0533
(0.0030) (0.0016) (0.0016) (0.0145) (0.0035)

β̂2 0.1184 −0.0715 −0.0900 0.0130 0.0128
(0.0353) (0.0219) (0.0191) (0.0029) (0.0012)

σ̂ 35.610 0.2274 0.3345 0.2809 0.4971
(8.080) (0.0260) (0.0590) (0.1440) (0.2396)

λ̂ 2.9405 −4.4582
(1.7310) (1.1941)

α̂ 9.8208 7.1738
(1.6700) (3.2247)

`(θ̂) 45.33 44.77 46.11 54.11 69.77
AIC −82.66 −81.54 −82.23 −98.22 −127.54
BIC −76.10 −74.99 −74.04 −90.03 −117.12

AICc −81.44 −80.32 −80.35 −96.34 −124.83
BIC −80.32 −79.20 −79.31 −95.30 −124.04

The UN regression model was compared with the UPSN regression model by using
the hypothesis tests

H0 : (λ, α) = (0, 1) versus H1 : (λ, α) 6= (0, 1).

Using the likelihood-ratio statistic:

Λ =
`UN(θ̂)

`UPSN(θ̂)
,

we obtainied
−2 log(Λ) = 49.41,

which is greater than the value χ2
2,95% = 5.99. Then, the UPSN regression model is a good

alternative for fitting the data set. The UPSN regression model is also compared with the
UPN regression model and the USN regression models by using the hypothesis tests

H01 : λ = 0 versus H11 : λ 6= 0, and H02 : α = 1 versus H12 : α 6= 1,

respectively, using the likelihood-ratio statistics:

Λ1 =
`UPN(θ̂)

`UPSN(θ̂)
and Λ2 =

`USN(θ̂)

`UPSN(θ̂)
.

After numerical evaluations, we obtained

−2 log(Λ1) = 30.73 and − 2 log(Λ2) = 46.71,

which is greater than the value of the χ2
1,95% = 3.84. The best fitting, with respect to the

other models, is shown by the UPSN regression model.
The QQplots of the statistic µ̂i for the beta regression model and log(− log(x̂i)) UN

regression model are presented in the Figure 6a,b, respectively. Figure 7a,b show the
QQplots for the UPN and UPSN regression models. From these figures, it can be noted
that the UPSN regression model presents a better fit, compared to the UPN, beta and UN
regression models.
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Figure 6. QQplot: (a) beta regression model and (b) UN regression model.
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Figure 7. QQplot: (a) UPN regression model and (b) USPN regression model.

We analyzed the transformed martingale residual rMTi by Barros et al. [30] given by

rMTi = sign(rMi)
√
−2[rMi + κi log(κi − rMi)], i = 1, 2, · · · , n,

where rMi = κi + log(S(ei, θ̂)) is the martingal residual proposed introducen by Ortega et al. [31],
where κi = 0, 1 indicate whether the ith observation is censored or not, respectively,
sign(rMi) denotes the sign of rMi and S(ei; θ̂) represents the survival function evaluated at
ei (the standardized classical residuals), where θ̂ being the MLE for θ. This analysis allows
to identify atypical observations and/or model misspecification. To verify the assumptions
of the model, the distribution of errors, adjustment problems and the presence of possible
outliers, we generate confidence bands through simulations for the residual martingale,
known in the literature of diagnostic analysis as envelopes.

Figure 8a,b show the graphs of the residuals rMTi and the respective envelope, where
some atypical observations can be observed (see observations #30 and #38). We remove
these observations and again fit the regression model (see Figure 8c). Table 7 shows the
estimates of the model parameters (with standard errors in parentheses) without outliers,
while Table 8 shows the comparison criteria (log-likelihood, AIC, BIC, AICC and HQC)
and the Shapiro–Wilk, Kolmogorov–Smirnov and Anderson–Darling good fit tests (with
p-values in parentheses) for the model residuals.
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Figure 8. (a) Plots of the residuals rMTi for the UPSN regression model. Envelope for the UPSN
regression model with outliers (b), and without outliers (c).

Table 7. Estimations of the parameters, with their standard errors, of the regression model UPSN.

β̂0 β̂1 β̂2 σ̂ λ̂ α̂

0.1692 −0.0460 0.0127 0.2919 −3.8809 9.7419
(0.0410) (0.0025) (0.0007) (0.0699) (0.1632) (2.2619)

Table 8. Comparison criteria and Shapiro–Wilk, Kolmogorov–Smirnov and Anderson–Darling
normality test.

`(θ̂) AIC BIC AICC HQC SW KS AD

77.1739 −142.34 −132.84 −139.44 −139.03 0.9746 0.1141 0.3418
(0.5653) (0.6934) (0.9031)

Figure 8c shows the envelope plot of the martingale residuals for the fitted model
without outliers, in which a good fit of the corrected model is observed.

6. Bivariate Extension of the UPSN Distribution

In this section, we explore and present some preliminary results of the extension to
the bivariate case of the UPSN distribution. These previous results can be extended to the
case of regression models for bivariate proportion data, being able to be a viable alternative
to existing methods such as the one proposed by Lemonte and Moreno-Arenas [32].

Let us suppose a vector (X1, X2) ∈ (0, 1) × (0, 1) on the Cartesian plane. For the
construction of the bivariate extension of the UPSN distribution, the methodology of
conditionally specified distributions given by Arnold et al. [33] and Arnold et al. [34] is
used. Thus, a bivariate vector (X1, X2) ∈ (0, 1)× (0, 1) is conditionally specified, if for
any random variable X1, the conditional distribution of the random variable X2 | X1 = x1
belongs to some parametric family of distributions. Thus, assuming that the random
variables X1 | X2 = x2 and X2 | X1 = x1 are members of the family of the univariate UPSN
distributions, that is,

X1 | X2 = x2 ∼ UPSN(µ1, σ1, λ1, κ1(x2)) (11)

and
X2 | X1 = x1 ∼ UPSN(µ2, σ2, λ2, κ2(x1)), (12)

where κ1 and κ2 are unknown positive dependency functions to be determined, namely,

ψX1|X2
(x1 | X2 = x2) = κ1(x2)φSN(x1; λ1){ϕ(x1; λ1)}κ1(x2)−1 (13)

and
ψX2|X1

(x2 | X1 = x1) = κ2(x1)φSN(x2; λ2){ϕ(x2; λ2)}κ2(x1)−1, (14)
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where ϕ(·) is the CDF of the SN distribution. Letting v(Xj) for j = 1, 2 the marginal
densities, then the joint PDF is given by

ψX1X2(x1, x2) = ψX1|X2
(x1 | X2 = x2)v(x2) = ψX2|X1

(x2 | X1 = x1)v(x1). (15)

Following Arnold’s Theorems in [34], according to Martínez et al. [35], applying Suto’s
Theorem for the alpha-power family, the dependency functions have the form:

κ1(x2) = γ1 − δ log(ϕ(x2; λ2))

and
κ2(x1) = γ2 − δ log(ϕ(x1; λ1)),

where γ1, γ2 are positive constants and δ ∈ R+ ∪ {0} is a dependence parameter.
So, using the Theorems given in Arnold and Strauss [36] and Arnold et al. [34], we

arrive at the joint PDF of the bivariate vector (X1, X2), which can be written as:

ψX1X2(x1, x2) =
K(λ, γ, δ)

γ1γ2
ψX1(x1)ψX2(x2) exp(δ log(ϕ(x1; λ1)) log(ϕ(x2; λ2))) (16)

where ψXj(xj) for j = 1, 2 is defined in (4). We denoted it by BUPSN(µ, σ, λ, α, δ). Note that,
δ = 0 implies

ψX1X2(x1, x2) = ψX1(x1)ψX2(x2),

that is, independence between X1 and X2. Thus, the conditional density functions can be
written as:

ψX1|X2
(x1 | X2 = x2) =

κ1(x2)

γ1 ϕ(x1; λ1)δ log(ϕ(x2;λ2))
ψX1(x1) (17)

and

ψX2|X1
(x2 | X1 = x1) =

κ2(x1)

γ2 ϕ(x2; λ2)δ log(ϕ(x1;λ1))
ψX2(x2). (18)

Then, the marginal density functions have the form

v(x1) =
K(λ, γ, δ)

γ1(γ2 − δ log(ϕ(x2; λ2)))
ψX1(x1) (19)

and

v(x2) =
K(λ, γ, δ)

γ2(γ1 − δ log(ϕ(x1; λ1)))
ψX2(x2). (20)

For the estimation of the parameters of the BUPSN distribution, we do not use maxi-
mum likelihood due to the proportionality constant involved in the distribution, which
makes it difficult to estimate the parameters with the double integral involved in this pro-
cess. It is proposed to use the method of maximum pseudo-likelihood, based on conditional
density functions. Thus, for the parameter vector Θ = (µ, σ, λ, γ, δ), the pseudo-likelihood
is given by

LP(Θ) =
n

∏
i=1

ψX1|X2
(xi1 | Xi2 = xi2)ψX2|X1

(xi2 | Xi1 = xi1).

Then, the maximum pseudo-likelihood estimators are given by the maximization of
the log-pseudo-likelihood function given by
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`P(Θ) =
n

∑
i=1

log
(

ψX1|X2
(xi1 | Xi2 = xi2)

)
+

n

∑
i=1

log
(

ψX2|X1
(xi2 | Xi1 = xi1)

)
= `(θ1) + `(θ2) + δ

n

∑
i=1

2

∑
j=1

2

∑
k=1, k 6=j

log(ϕ(xi1; λ1)) log(ϕ(xi2; λ2))

+
n

∑
i=1

2

∑
j=1

log
(
κ(xij)

)
− n

2

∑
j=1

log(γj), (21)

where `(θj), for j = 1, 2 is the log-likelihood function of the univariate UPSN distribution
with parameters θj = (µj, σj, λj, αj). The MLEP can be obtained by equating to zero the
pseudo-score function,

UP(Θ) = (UP(µ), UP(σ), UP(λ), UP(γ), UP(δ)),

and solving this system of non-linear equations. According to Arnold and Strauss [36],
the MLEP are consistent and asymptotically normal with asymptotic covariance matrix
Σ where:

Σ̂ =
1
n

Γ̂−1
n ΨnΓ̂−1

n

where Γ̂n = − 1
n ∑n

i=1
∂

∂Θ>Ui(Θ)|Θ̂ and Ψ̂n = − 1
n ∑n

i=1 Ui(Θ)U>i (Θ)|Θ̂.

7. Conclusions

This article presents a distribution based on the skew–normal–power (PSN) distri-
bution to fit proportions and rates on the (0, 1) unit interval as an alternative not only
to the beta distribution, but also to other distributions that have been studied recently,
such as unit–Lindley, unit–Weibull and unit–Birnbaum–Saunders. The unit–PSN or UPSN
distribution is extended by adding covariates that explain the response variable. The esti-
mating process of the parameters of the proposed distribution is presented for both cases,
with and without covariates. The observed and expected information matrices are also
addressed. The UPSN distribution showed great flexibility to model taxes and proportions
in important practical scenarios. The introduced model presented a better fit than those
beta and unit–Weibull, unit–Birnbaum–Saunder and unit–Lindley distributions in the case
without covariates. Aditionally, UPSN showed better results than the beta regression model
in the case with covariates.

Author Contributions: Conceptualization, G.M.-F.; Data curation, G.M.-F. and R.B.A.-F.; Formal
analysis, G.M.-F., R.B.A.-F. and R.T.-F.; Funding acquisition, R.T.-F.; Investigation, G.M.-F. and R.B.A.-
F.; Methodology, G.M.-F., R.B.A.-F. and R.T.-F.; Project administration, R.T.-F.; Resources, R.T.-F.;
Software, G.M.-F. and R.B.A.-F.; Supervision, G.M.-F. and R.B.A.-F.; Visualization, R.B.A.-F. and
R.T.-F.; Writing—original draft, G.M.-F. and R.T.-F.; Writing—review & editing, G.M.-F., R.B.A.-F. and
R.T.-F. All authors have read and agreed to the published version of the manuscript.

Funding: The research of G. Martínez-Flórez and R. Tovar-Falón was supported by project: Resolu-
ción de Problemas de Situaciones Reales Usando Análisis Estadístico a través del Modelamiento
Multidimensional de Tasas y Proporciones; Esquemas de Monitoreamiento para Datos Asimétricos
no Normales y una Estrategia Didáctica para el Desarrollo del Pensamiento Lógico-Matemático.
Universidad de Córdoba, Colombia, Acta de Compromiso FCB-05-19.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Details about data available are given in Section 5.

Acknowledgments: G. Martínez-Flórez and R. Tovar-Falón acknowledge the support given by
Universidad de Córdoba, Montería, Colombia.

Conflicts of Interest: The authors declare no conflict of interest.



Mathematics 2022, 10, 3035 22 of 24

Appendix A. Elements of the Observed Information Matrix

In this section, the elements of the observed information matrix for the USPN regres-
sion model are presented. They were obtained from the Formula (10).
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ωλσ =
1
σ

n

∑
i=1

z∗i

(1− λ2z∗i
2)

φ
(
λz∗i
)

Φ
(
λz∗i
) − z∗i

(
φ
(
λz∗i
)

Φ
(
λz∗i
))2

+
√

2
π

α− 1
σ

n

∑
i=1

z∗i φ
(√

1 + λ2z∗i
)

ΦSN(z∗i )

[
z∗i +

1
1 + λ2

φSN(z∗i )
ΦSN(z∗i )

]
,

ωλλ =
1
σ

n

∑
i=1

z∗i

λz∗i
2 φ
(
λz∗i
)

Φ
(
λz∗i
) +( φ

(
λz∗i
)

Φ
(
λz∗i
))2

+
√

2
π

α− 1
1 + λ2

n

∑
i=1

φ
(√

1 + λ2z∗i
)

ΦSN(z∗i )

−( 2δ√
1 + λ2

+ λz∗i
2
)
+

√
2
π

1
1 + λ2

φ
(√

1 + λ2z∗i
)

ΦSN(z∗i )

,

ωαλ =

√
2
π

1
1 + λ2

n

∑
i=1

φ
(√

1 + λ2z∗i
)

ΦSN
(
z∗i ; λ

) ,

ωσσ = −
√

2
π

λ(α− 1)
σ2

n

∑
i=1

z∗i
2φ
(√

1 + λ2z∗i
)

ΦSN(z∗i )

+
1
σ

n

∑
i=1

−1 + 3z∗i
2 + λz∗i (2 + λ2z∗i

2)
φ
(
λz∗i
)

Φ
(
λz∗i
) + λ2z∗i

2

(
φ
(
λz∗i
)

Φ
(
λz∗i
))2

+
α− 1

σ

n

∑
i=1

zi
φSN

(
z∗i ; λ

)
ΦSN

(
z∗i ; λ

) [2 + z∗i
2 + z∗i

φSN(z∗i )
ΦSN(z∗i )

]
,

ωασ =
1
σ

n

∑
i=1

z∗i
φSN

(
z∗i ; λ

)
ΦSN

(
z∗i ; λ

) and ωαα =
n
α2 .

where δ = λ/
√

1 + λ2:
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