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Abstract: When encountering the black-box dynamic co-design and optimization (BDCDO) problem
in the multidisciplinary dynamic system, the finite difference technique is inefficient or even infeasible
to provide approximate numerical gradient information for the optimization algorithm since it
requires numerous original expensive evaluations. Therefore, a solving framework based on the
surrogate model of the state equation is introduced to optimize BDCDO. To efficiently construct the
surrogate model, a sequential sampling method is presented on the basis of the successive relative
improvement ratio. Meanwhile, a termination criterion is suggested to quantify the convergence
of the solution. Ultimately, the newly proposed sampling strategy and termination criterion are
incorporated into the BDCDO solving framework to optimize two numerical examples and two
engineering examples. The results demonstrate that the framework integrating the proposed sampling
strategy and termination criterion has the best performance in terms of the accuracy, efficiency, and
computational budget compared to the existing methods.

Keywords: black-box dynamic system; co-design and optimization; surrogate model; sequential
sampling; termination criterion

MSC: 93-10

1. Introduction

Differing from the dynamic optimization problem (DOP), also known as the optimal
control problem, in which only the control strategy decision is optimized to improve the
performance of the dynamic system [1–3], the dynamic co-design and optimization (DCDO)
problem accounts for the bi-directional dependency of physical system design and control
system design and includes two types of design variables: plant (or physical) and con-
trol [4]. Two categories of co-design methods, nested (or multi-layer optimization) method
and simultaneous method, are developed and deployed on the DCDO problem in the
engineering applications [5–8]. In those two co-design methods, though the optimization
structures are different, the DCDO problem should be transcribed into a finite-dimensional
nonlinear programming (NLP) problem via direct transcription [9] to optimize.

However, when solving the DCDO problem of the sophisticated dynamic systems
involving multiple disciplines or multiple subsystems, co-design schemes inevitably en-
counter obstructions such as high computational consumption incurred from the time-
consuming system simulations [10]. Moreover, in some engineering practices, dynamic
system models are constructed by industrial simulation software or platforms, and the
explicit equations of the state in dynamic systems expressed by differential algebraic equa-
tions cannot be extracted directly from the dynamic models [11]. The DCDO involving such
dynamic system models is referred to as the black-box dynamic co-design and optimization
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(BDCDO) problem. Due to the lack of explicit state equation, the finite-difference tech-
nique, rather than the automatic differentiation technique, provides approximate Jacobian
information matrices for NLP solvers to iteratively optimize BDCDO, which demands
significant computational resources to evaluate the dynamic systems and definitely further
increases the computational budget of the co-design schemes.

The response surface methods (RSMs) have been proven to be effective tools to address
computationally expensive problems in complex static black-box systems [12–16]. There-
fore, RSMs are introduced to approximate the black-box dynamic system to alleviate the
number of the original system valuations and save computational costs. In attempting to
reduce the modeling difficulty and preserve the dynamic properties of the dynamic system,
Deshmukh et al. [17] presented the derivative function surrogate modeling methodology
to construct surrogate models for the derivative functions of the dynamic system rather
than construct surrogate models of the whole system responses [18–20]. In order to build
high-fidelity model surrogate models of the derivative functions, Deshmukh et al. [17]
used the Latin Hypercube Sampling (LHS) method for sequential sampling in the min-
imal hypercube space containing the current optimal trajectory to update the surrogate
model. Lefebvre et al. [21] averaged the errors of the KRG model after integrating the
errors along the current optimal trajectory and then used the values of state variables ob-
tained by inverse error integral of each segment as new samples to update the KRG model.
Qiao et al. [22] proposed EFDC sampling method based on KRG model to filter the current
trajectory discrete points after error analysis, combine the spatial distance to cluster these
discrete points, and select the points with the largest prediction error to update the model.
At the same time, some reasonable solution termination criteria also have been investigated
to avoid redundant iterations, which contribute little to the accuracy improvement of the
solution result. Deshmukh et al. [17] determined whether the solution process stops or not
based on the discrepancy between the current and previous iterates. Lefebvre et al. [21]
proposed a new metric, dynamical mismatch, to identify whether the solution process is
terminated or not. However, computing the dynamical mismatch needs additional sample
points and consumes more computational resources. Qiao et al. [22] adopted the accuracy
of the surrogate model and the successive relative improvement of the objective function as
the stopping plan to assess the convergence of the solution process more comprehensively.

Admittedly, the BDCDO solving framework combined with the above-mentioned
sampling strategies and termination criteria indeed reduce the number of samples for
constructing the surrogate models of derivative functions to different degrees, but the
efficiency of modeling and the robustness of the optimal solution still require further im-
provement. To this end, a new sequential sampling strategy based on the successive relative
improvement ratio of the discrete trajectory points and maximizing distances between the
nearest sample points, called SRIRMD, is proposed in this work to effectively improve the
accuracy of the surrogate models by selecting the points with a large successive relative
improvement ratio among the discrete trajectory points as new samples. Meanwhile, max-
imizing the minimum distances between new samples and existing samples can ensure
the uniform distribution of all sample points. In addition, according to the fundamental
observation that the state trajectories tend to coincide during the solving process of dynamic
optimization problems, a new termination criterion, named the state trajectory overlap ratio
(STOR), is presented to quantify the convergence and intuitively reflect the convergence
trend of the solution in the iterative process. Finally, two numerical examples, one 3-DOF
robot co-design and optimization problem and one horizontal axis wind turbine co-design
and optimization problem, are solved by the means of the BDCDO solving framework
integrated with the SRIRMD sampling strategy and the STOR termination criterion. The
results demonstrate that the BDCDO solving framework combining the SRIRMD sampling
strategy and the STOR termination criterion has the best performance compared to existing
methods and can obtain more accurate and robust solutions with fewer sample points,
improving the solution efficiency and reducing the computational budget.
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The rest of this paper is organized as follows. Section 2 reviews the dynamic optimiza-
tion problem and its direct solving method and the Kriging technique. Section 3 introduces
the BDCDO solving framework combining the new sampling strategy and termination
criterion. Section 4 verifies the feasibility and efficiency of the BDCDO solving framework
through two numerical examples and two engineering examples. The conclusions are
revealed in the last section.

2. Background
2.1. Dynamic Co-Design and Optimization Problem and Its Direct Solving Method

The objective of the dynamic co-design and optimization (DCDO) problem is to solve
the optimal input vectors of physical design parameters x∗p and control variables u∗(t)
that minimizes the system performance index. The standard form of DCDO based on the
simultaneous method is described as follows [23,24]:

min
xp ,u(t)

J(xp, u(t)) = φ(xp,ξ(t0),ξ(t f ), t0, t f ) +
∫ t f

t0
L(xp,ξ(t), u(t), t)dt

s.t.
.
ξ(t) = f(xp,ξ(t), u(t), t)
Ψ(ξ(t0), t0,ξ(t f ), t f ) = 0
g(xp,ξ(t), u(t), t) ≤ 0
uL ≤ u(t) ≤ uU
xL ≤ xp ≤ xU

(1)

where J is the response of a cost function that consists of a Mayer term φ(·) and Lagrange
term L(·). t ∈ [t0, t f ] denotes the time horizon, and t0 and t f are initial time and terminal
times. ξ(t0) and ξ(t f ) indicate the initial and terminal states of the system, while ξ(t) and
u(t) are vectors of the state variables and control inputs at moment t. DCDO is subject
to several different constraints such as state equations

.
ξ(t) = f(xp,ξ(t), u(t), t), boundary

constraints Ψ, and path constraints g. Among these three constraints, the state equations
and path constraints are continuous constraints that must be satisfied during the entire
time period, while the boundary constraints are discrete constraints that only need to be
satisfied at the moments t0 and t f . Finally, the vectors of the physical design parameters xp
and control inputs u(t) enforce the interval constraints [xL, xU ] and [uL, uU ], respectively.

In the direct solving approach of the DCDO, the vectors of the state variables ξ(t),
plant design parameters xp, and control inputs u(t) are discretized at the time grid nodes
by means of the DT. Thus, the DCDO is transformed into an NLP, as shown below.

min
xp ,Ξ,Θ

J(xp, Ξ, Θ) = φ(xp,ξ(t0),ξ(t f ), t0, t f ) +
N
∑

k=0
ωk · L(t, xp, Ξ(k), Θ(k))

s.t. D · Ξ = f(xp, Ξ, Θ)
Ψ(ξ(t0), t0,ξ(t f ), t f ) = 0
g(xp, Ξ, Θ) ≤ 0

(2)

where Ξ and Θ are the discrete matrices of the state variables and control inputs in the time
domain, ωk is the integration weight, and D is the differential matrix specified in different
pseudospectral methods [25,26]. When solving the BDCDO of the dynamic system based
on the surrogate models of the derivative functions, the right hand-side functions of the
state equations are approximated by the surrogate models. Hence, replacing the deriva-

tive function f(·) in Equation (2) with the surrogate model
^
f(·) forms a computationally

inexpensive expression:

D · Ξ =
^
f(xp, Ξ, Θ) (3)

2.2. Kriging Technique

In view of the efficiency and effectiveness of the Kriging technique in approximating
low-dimensional problems, as well as providing prediction errors at arbitrary points [27],
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the Kriging technique is adopted to construct the surrogate model in the BDCDO. When
training the model, the state variables, physical design parameters, and control variables
X = [xp,ξ, u]T are fed into the model, and the output are the valuations of the derivative
functions f(X) in the state equation.

The standard Kriging model has two main components: the regression function and
the stochastic process [28]. The expression is formulated as follows:

f̂ (X) = FT(X)β+ z(X) (4)

where FT(X) contains a series of regression functions, and β is a trend coefficient vector.
z(X) denotes a random process with a mean of 0 and variance σ2

z . The spatial covariance
function between the stochastic processes z(Xi) and z(Xj) can be expressed as

cov[z(Xi), z(Xj)] = σ2
z G(θ, Xi, Xj) (5)

where Xi and Xj are two different points in the design space, G is the Gaussian spatial
correlation function, and θ is the corresponding vector of correlation coefficients. The
values of G and F at sample points constitute matrices R = G(Xi, Xj) and S = F(Xi).
According to the unbiased estimator theory, the least squares solution of the regression
model is

^
β = (STR−1S)

−1
STR−1Y (6)

and the maximum likelihood estimation of variance is

σ̂2
z =

1
m
(Y− S

^
β)

T

R−1(Y− S
^
β) (7)

where Y = [ f̂ (Xi)], i = 1, 2, . . . , m.
Thus, Equation (4) is translated into

f̂ (X) = FT(X)β+ rT(X)R−1(Y− S
^
β), r(X) = [G(θ, X, X1), . . . , G(θ, X, Xm)]

T (8)

Suppose d = STR−1r− S, the predictor of the mean square error (MSE) is calculated
as follows:

MSE = σ2
z (1 + dT(STR−1S)

−1
d− rR−1r) (9)

3. The BDCDO Solving Framework

The BDCDO solving framework based on the surrogate model of the derivative func-
tion mainly consists of two parts: refining the surrogate model for the right hand-side
function of the state equation and solving the black-box dynamic co-design and opti-
mization (BDCDO) problem based on the surrogate model. In the loop of approximating
the derivative function, the initial model is built according to the initial samples set and
then updated by the sequential sampling method. In the loop of solving the BDCDO,
the BDCDO is discretized into NLP at time grid nodes, then the approximate Jacobian
information matrices based on the model are delivered for the SQP algorithm to solve
the NLP. For the purpose of efficiently constructing the surrogate model of the derivative
function, the new sampling method based on the successive relative improvement ratio
of the discrete trajectory points and maximize the distances between the sample points,
termed SRIRMD, is elaborated in this section. Meanwhile, to quantify the convergence and
intuitively reflect the convergence trend of the solution, a new termination criterion on
the basis of the fact that the state trajectories tends to coincide during the solving process,
called the state trajectory overlap ratio (STOR), is also introduced in this section. Finally,
the newly proposed sampling strategy, SRIRMD, and termination criterion, STOR, are
integrated into the solving framework of BDCDO.
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3.1. Adaptive Sequential Sampling Strategy

In the static optimization problem, the optimal result is a point; hence, single sampling
strategies that focus on improving the accuracy of the surrogate model near the current
optimal point are widely used, while batch sampling strategies are evidenced to be unable
to enhance the performance of updating model [29]. However, the scenario is quite different
in the dynamic optimization problem since the optimal results are time-dependent control
curves and the corresponding state trajectories. Adding a new sample point during each
iteration contributes less to improving the convergence rate of the state trajectory but
instead increases the number of modeling and optimization throughout the solution process
and consumes more computational resources.

Motivated by the sequential sampling strategy in the static optimization problem, the
adaptive sampling strategy applied to the DOP should concentrate on how to improve
the accuracy of the local region where the current state trajectory is located in order
to avoid redundant sampling in the uninteresting area. To this end, it is necessary to
pick informative points in the vicinity of the current trajectory to update the surrogate
model of the derivative function. Fortunately, the discrete trajectory points (DTPs) on
the current state trajectory offer a large number of candidate samples. However, it is
not wise to add all DTPs to the samples set, because (a) the expensive evaluation of
all DTPs requires a lot of computational effort, and (b) closer DTPs are less helpful to
improving the accuracy but increase the complexity of the model. Hence, a new sequential
sampling strategy based on the successive relative improvement ratios of the DTPs and
maximizing the distances between the sample points, called SRIRMD, is presented in this
work. The SRIRMD sampling strategy prioritizes picking the points with large successive
relative improvement ratios among the DTPs as new samples to refine the surrogate
model. Meanwhile, maximizing the minimum distances between new samples and existing
samples can guarantee that all sample points are distributed uniformly. The specific steps
of the SRIRMD method are listed below.

Step 1: Obtain the initial values VI and the optimal values VO at the discrete points of
the current state trajectory and calculate the successive relative improvement ratios (srir) of
all discrete points.

SRIR =
{

srir
∣∣∣srir =

∣∣∣Vi
O −Vi

I

∣∣∣/∣∣∣Vi
O

∣∣∣, i = 1, 2, . . . , m
}

(10)

where m is the number of discrete points of the current trajectory.
Step 2: Generate the candidate samples set SSRIR by eliminating the points whose srir

is smaller than the allowable deviation factor β from the DTPs.

SSRIR = {DTPi|sriri ≥ β, sriri ∈ SRIR} (11)

Step 3: Calculate the distance matrix Dmin of all candidate samples in SSRIR to the
nearest point in the existing samples set S(l).

Step 4: Select new sample xnew by the following sampling criterion.

max srir(xnew) ·Dmin(xnew) (12)

Step 5: Add the new sample xnew into samples set S(l) and delete xnew in SSRIR.
Step 6: Repeat Step 3–5 until the required number of samples are picked, and the

samples set is updated to S(l+1).
Step 7: Terminate the current round of sampling.
Figure 1 exhibits the process of selecting new sample points from the DTPs employing

the SRIRMD strategy. The dotted lines are the previous state trajectories, the dots are the
discrete points of those previous state trajectories, and the red solid lines are the current
optimal state trajectories. The new points sampled by SRIRMD method are plotted in
the form of black stars, and these samples are mainly distributed in the areas with large
successive relative improvement ratios while being evenly spread.
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3.2. Termination Criterion: The State Trajectory Overlap Ratio

The state trajectory overlap ratio, STOR, is designed to intuitively assess the conver-
gence of state trajectories and serve as the termination criterion. The formula for STOR is
expressed as follows:

A =
d

∏
i=1

αi (13)

where d is dimension of state variables. αi means the state component trajectory overlap
ratio, which reflects the trajectory overlap ratio of the ith state component in two successive
iterations. As shown in Figure 2, S∗ is the trajectory of the state component ξi obtained in
the previous iteration, and S∗∗ is the trajectory of ξi in the current iteration. The αi of the

state component ξi can be calculated by the lengths of
_

AB and
_

AC, and the specific formula
is expressed in Equation (14).

αi =
L _

AB
L _

AC

(14)

Mathematics 2022, 10, x FOR PEER REVIEW 7 of 30 
 

 

1

d

i
i

α
=

Α = ∏  (13)

where d  is dimension of state variables. iα  means the state component trajectory over-

lap ratio, which reflects the trajectory overlap ratio of the thi  state component in two suc-

cessive iterations. As shown in Figure 2, *S  is the trajectory of the state component iξ  

obtained in the previous iteration, and **S  is the trajectory of iξ  in the current iteration. 

The iα  of the state component iξ  can be calculated by the lengths of AB  and AC , 
and the specific formula is expressed in Equation (14). 





AB
i

AC

L
L

α =  (14)

 
Figure 2. Schematic diagram of the state component trajectory overlap ratio. 

Equation (14) denotes the formula for calculating the iα  in the state space. However, 

the lengths of the trajectories AB  and AC  are not convenient to calculate in the actual 
computation procedure. To facilitate the calculation, Equation (14) can be mapped from 
the state space to the time domain since the state trajectories and time points correspond 
(i.e., each time point corresponds to a specific trajectory value). Hence, Equation (14) is 
replaced by Equation (15) to compute iα . 





AB
i

AC

L
L

α =  (15)

t

S*
S**A

B

C

Figure 2. Schematic diagram of the state component trajectory overlap ratio.



Mathematics 2022, 10, 3239 7 of 26

Equation (14) denotes the formula for calculating the αi in the state space. However,

the lengths of the trajectories
_

AB and
_

AC are not convenient to calculate in the actual
computation procedure. To facilitate the calculation, Equation (14) can be mapped from the
state space to the time domain since the state trajectories and time points correspond (i.e.,
each time point corresponds to a specific trajectory value). Hence, Equation (14) is replaced
by Equation (15) to compute αi.

αi =
L _

AB
L _

AC

(15)

where T0 and T1 are represent the overlap and non-overlap periods of trajectories S∗ and S∗∗

in the time domain T, respectively. T0 and T1 can be computed by the following expression.

T0 =

{
t|
∣∣∣ .
ξ i(x

∗∗
p (t),ξ∗∗(t),u∗∗(t);SM∗∗)−

.
ξ i(x

∗
p(t),ξ

∗(t),u∗(t);SM∗)
∣∣∣∣∣∣ .

ξ i(x∗∗p (t),ξ∗∗(t),u∗∗(t);SM∗∗)
∣∣∣ > β, t ∈ T

}

T1 =

{
t|
∣∣∣ .
ξ i(x

∗∗
p (t),ξ∗∗(t),u∗∗(t);SM∗∗)−

.
ξ i(x

∗
p(t),ξ

∗(t),u∗(t);SM∗)
∣∣∣∣∣∣ .

ξ i(x∗∗p (t),ξ∗∗(t),u∗∗(t);SM∗∗)
∣∣∣ ≤ β, t ∈ T

} (16)

where SM∗ and SM∗∗ are surrogate models of derivative function in the previous and
current iterations. β is the allowable deviation factor of the trajectory, which indicates
trajectories S∗ and S∗∗ are also regarded as coincide when their error rate at moment t are
not greater than β. It is worth noting that β = 0.01 in this research. The time domain T is a
continuous time series, and it could be uniformly discretized as T =

{
t0, t1, . . . , tτ , . . . , t f

}
to accelerate computations. Thus, Equation (16) is converted into Equation (17).

T′0 =

{
tτ |

∣∣∣ .
ξ i(x

∗∗
p (t),ξ∗∗(tτ),u∗∗(tτ);SM∗∗)−

.
ξ i(x

∗
p(t),ξ

∗(tτ),u∗(tτ);SM∗)
∣∣∣∣∣∣ .

ξ i(x∗∗p (t),ξ∗∗(tτ),u∗∗(tτ);SM∗∗)
∣∣∣ > β, τ = 0, 1, 2, . . . , f

}

T′1 =

{
tτ |

∣∣∣ .
ξ i(x

∗∗
p (t),ξ∗∗(tτ),u∗∗(tτ);SM∗∗)−

.
ξ i(x

∗
p(t),ξ

∗(tτ),u∗(tτ);SM∗)
∣∣∣∣∣∣ .

ξ i(x∗∗p (t),ξ∗∗(tτ),u∗∗(tτ);SM∗∗)
∣∣∣ ≤ β, τ = 0, 1, 2, . . . , f

}
(17)

Furthermore, Equation (14) for calculating αi is transformed into Equation (18).

αi =
nT′1

nT′0
+ nT′1

(18)

where nT′0
and nT′1

denote the number of elements in the sets T′0 and T′1, respectively.
According to the above series of transformations, including mapping and discretiza-

tion, the calculation of αi is finally transformed into the statistics of the elements in the sets.
Obviously, the denser the time domain T is divided in Equation (17), the more accurate αi
is in Equation (18). At the same time, the following two theorems are derived on the basis
of the above definition about A and αi.

Theorem 1. The sufficient condition for the convergence of the state trajectory overlap ratio A is
that all the state component trajectory overlap ratio αi converge.

Proof: From the definitions of A and αi, it follows that A ∈ [0, 1], αi ∈ [0, 1]. From the
perspective of the mathematics, convergences of A and αi implies that the values of A and
αi converge to 1, i.e.,

A and αi converge <=> A→ 1, αi → 1 (19)

i. If the dimension of the state variables d = 1, A = α1, the theorem is established.
ii. If the dimension of the state variables d > 1, suppose
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Ak = ∏
i=1,2,..,k−1,k+1,..,d

αi (20)

When k = d,
A = Ad−1 · αd (21)

where Ad−1 ∈ [0, 1] and αd ∈ [0, 1]. Without considering the specific value of Ad−1, only
αd → 1 , then A may converge to 1. Conversely, if αd → 1, then A definitely does not
converge to 1 whether or not Ad−1 converges to 1. Similarly, let k be d − 2, d − 3, .., 2,
respectively, so that the sufficient condition for A→ 1 is αi → 1, i = 1, 2, .., d . That means
the sufficient condition for the convergence of A is that all αi converge. �

Theorem 2. When the state trajectory overlap ratio A converges, every state component trajectory
overlap ratio αi is greater than or equal to A.

Proof:

i. If the dimension of the state variables d = 1, A = α1, the theorem is established.
ii. If the dimension of the state variables d > 1, Equation (18) can be obtained based

on Equations (20) and (21).

αk =
A
Ak (22)

Suppose A is converged, then Ak is also converged (i.e., Ak → 1), since Ak ⊂ A.
Obviously, αk ≥ A can be deduced from Equation (22). Similarly, let k be 1, 2, . . . , d,
respectively, then αi ≥ A, i = 1, 2, . . . , d can be proved. That means when A converges, all
αi are greater than or equal to A.

According to the definition of the state trajectory overlap ratio A and the proving pro-
cedures of the above two theorems, it could be concluded that taking A as the convergence
criterion for the BDCDO solving framework has the following advantages: (a) directly re-
flects the convergence trend of state trajectory in the iterative solving process, and A ∈ [0, 1],
which also quantifies the convergence; and (b) guarantees the convergences of state compo-
nent trajectories. The state solution of the BDCDO converges only if all the state component
trajectories converge. �

3.3. The BDCDO Solving Framework Combined with SRIRMD and STOR

By integrating the SRIRMD sampling strategy and the STOR termination criterion
proposed in this work into the BDCDO solving framework, a new BDCDO solving method,
named SRIRMD-STOR, is generated as depicted in Figure 3. The input and output of the
SRIRMD-STOR method are shown in Table 1, and the specific realization of the SRIRMD-
STOR method is listed in Table 2.

Table 1. Input and output of the SRIRMD-STOR method.

Input

The upper and lower bounds of physical design parameters xp, state
variables ξ and control inputs u.

The initial guess values [x(0)p , Ξ(0), Θ(0)] of physical design parameters
xp, state variables ξ and control inputs u.
The termination criterion threshold A0 for the SRIRMD-STOR method.
The solving tolerance and max iteration for the DOP solvers [30].

Output
The optimal design point of physical design parameters xp.
The optimal trajectories of state variables ξ.
The optimal curves of control inputs u.
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Table 2. The specific realization of the SRIRMD-STOR method.

The SRIRMD-STOR Method

Step 1: Apply LHS method to sample initial points set S0 in the design domain consisting of
feasible regions of physical design parameters xp, state variables ξ and control inputs u.
Step 2: Construct the initial surrogate model f̂ (0) of the derivative function by Kriging
technique [31] with the initial samples set S0.
Step 3: Transcribe the BDCDO into the NLP at the time grid nodes via DT, then solve NLP based

on the initial guess values of [x(0)p , Ξ(0), Θ(0), f̂ (0)] and obtain the current optimal plant design

parameters, state trajectories, control curves, and performance index [x(1)p , Ξ(1), Θ(1), J(1)].
Step 4: Calculate the state component trajectory overlap ratios αi of all state variables according to
the initial guess trajectories and the current optimal trajectories, then calculate the state trajectory
overlap ratio A. If A > A0, terminate the solving process; otherwise, go to Step 5.
Step 5: Employ the SRIRMD strategy to select new samples xnew from the current DTPs, update
the samples set S1, and rebuild the surrogate model f̂ (1).
Step 6: Update the time grid nodes using the grid optimization algorithm and translate the
BDCDO into the NLP at the new time grid nodes.
Step 7: Solve NLP based on the current values of plant design parameters; state trajectories and

control inputs, and current model [x(l)p , Ξ(l), Θ(l), f̂ (l)]; and acquire the latest optimal plant
parameters, state trajectories, control curves, and performance index. Note: l starts from 1.
Step 8: Calculate αi and A. If A > A0, stop the solving process; otherwise, go to Step 5.
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4. Numerical Examples

In this section, two numerical examples are used to verify the feasibility and effec-
tiveness of the BDCDO solving framework combined with the SRIRMD sampling strategy
and the STOR termination criterion, also called the SRIRMD-STOR method for short. The
first numerical example is a classical multidimensional nonlinear dynamic optimization
problem involving six state variables and two control inputs. The second example is a
numerical nonlinear dynamic co-design and optimization problem that is sensitive to the
accuracy of the grid optimization, i.e., it has high requirements on the number and location
of the discrete grid nodes of the optimization problem. To solve those two numerical tests,
STOR A is regarded as the termination criterion, and the threshold of A is set to 0.95.

4.1. Example 1: A Mathematical Nonlinear Dynamic Optimization Problem

The mathematical model of the this nonlinear dynamic optimization problem [32] can
be described as follows:

min J =
∫ t f

0 [L2 + I2 +
1
2 B1u2

1 +
1
2 B2u2

2]dt
s.t.

.
S = Λ− 13

30000 SI1 − 0.029
30000 SI2 − 0.0143S

.
T = 2u1L1 − 0.0143T + (1− 0.5(1− u2))I1 − 13

30000 TI1 − 0.029
30000 TI2.

L1 = 13
30000 SI1 − 0.6143L1 − 2u1L1 + 0.4(1− u2)I1 +

13
30000 TI1 − 0.029

30000 L1 I2.
L2 = 0.1(1− u2)I1 − 1.0143L2 +

0.029
30000 (S + L1 + T)I2.

I1 = 0.5L1 − 1.0143L1.
I2 = L2 − 0.0143I2
N = S + L1 + L2 + I1 + I2 + T = 30000

(23)

where the state variables ξ = [S, T, L1, L2, I1, I2]
T . The upper and lower bounds of control

inputs u = [u1, u2]
T are uU = [0.95, 0.95]T and uL = [0.05, 0.05]T . The finial time t f is

set as 5. To solve this DOP based on the mathematical model, the maximum number
of iterations of the NLP solver is set to 15 and the solution accuracy is set to 10−4 to
obtain the exact solution 5152.1. Although the mathematical model provides the explicit
expressions of the state equation, it can still be treated as a black-box dynamic optimization
problem and solved using the BDCDO solving framework. Hence, in addition to the
SRIRMD sampling strategy, the HS [15], TEI [19], and EFDC [20] sampling strategies are
also utilized to construct the surrogate models for the derivative functions of the state
equation. The termination criterion working with those sampling strategies are the model
accuracy at DTPs ε < 0.001 and the successive relative improvement of the objective
function ∆J < 0.1, called MASRI. Hence, the BDCDO solving methods combined with
those sampling strategies and MASRI are named HS-MASRI, TEI-MASRI, EFDC-MASRI,
and SRIRMD-MASRI, respectively. To validate the robustness of these methods, each
method is tested ten times. In each test, the initial samples for those methods are the same,
the number of initial points N0 = 50, and maximum number of new samples per iteration
∆N = 20.

The test results of different methods are listed in Table 3, and the comparisons are
depicted in Figure 4. NoS denotes the sample point size (or number of expensive valuations),
and J is the value of the performance index. From Table 1 and Figure 4, it can be observed
that the HS-MASRI, TEI-MASRI, EFDC-MASRI, and SRIRMD-MASRI methods require
an average of 350, 320, 223, and 170 samples to construct the surrogate models of the
derivative functions, respectively. the average performance indexes are 5187.0, 5156.0,
5157.8, and 5152.7. While the SRIRMD-STOR method only needs 145 samples to construct
the surrogate models, the average performance index is 5152.9. Compared to HS-MASRI,
TEI-MASRI, and EFDC-MASRI, SRIRMD-STOR has the smallest error with the exact
value. In SRIRMD-MASRI and SRIRMD-STOR, the sampling strategies are the same,
and the termination criterion are different. SRIRMD-MASRI has a little higher solving
accuracy than SRIRMD-STOR, while needing many more samples to construct the surrogate
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models, which indicates that the termination criterion for STOR is more effective than the
termination criterion for MASRI by avoiding redundant iterations. As a result, for this
numerical example, the BDCDO solving framework combined with SRIRMD and STOR
can obtain a more robust and accurate approximate solution with less samples compared
to the other methods.

Table 3. The test results of the different methods in Example 1.

Method HS-MASRI TEI-MASRI EFDC-MASRI SRIRMD-MASRI SRIRMD-STOR

Index NoS J NoS J NoS J NoS J NoS J

Test

1
2
3
4
5
6
7
8
9

10

350
350
350
350
350
350
350
350
350
350

5161.4
5186.3
5177.1
5166.0
5170.8
5178.0
5162.8
5184.7
5224.6
5258.2

346
240
325
319
315
345
346
267
346
346

5152.3
5157.5
5169.4
5156.4
5152.4
5154.3
5155.5
5152.6
5156.3
5153.3

185
249
230
225
238
215
225
231
197
230

5153.4
5159.7
5153.3
5155.0
5165.7
5155.0
5160.7
5157.6
5155.7
5161.9

153
207
193
183
177
184
150
152
145
150

5152.4
5153.0
5152.8
5152.6
5152.8
5152.7
5153.0
5152.3
5152.4
5152.5

130
170
150
159
159
167
130
130
121
130

5153.1
5153.6
5153.1
5152.6
5153.1
5153.0
5153.2
5151.8
5152.6
5153.0
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be observed that the new sample points in the TEI, EFDC, and SRIRMD sampling strate-
gies are located in the vicinity of the state trajectories, except for the HS strategy. 
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To visualize the sampling outcomes of the HS-MASRI, TEI-MASRI, EFDC-MASRI,
and SRIRMD-STOR methods, the distribution of sample points in different methods and
the phase diagrams of optimal trajectories between some state variables are displayed in
Figures 5 and 6. The black dots are the initial sample points, the black stars are the new
samples obtained via different sampling methods, and the red solid lines are the state
trajectories optimized based on the surrogate models. From Figures 5 and 6, it can be
observed that the new sample points in the TEI, EFDC, and SRIRMD sampling strategies
are located in the vicinity of the state trajectories, except for the HS strategy.

Figure 7 draws the iterative processes of the trajectories of partial state components in
the SRIRMD-STOR method. As can be viewed from Figure 7, the trajectories of different
state components converge gradually with the iterations.

Figure 8 records the convergence processes of the state component trajectory overlap
ratio and the state trajectory overlap ratio in the SRIRMD-STOR method, α1, α2, α3, α4, α5, α6,
and A are the trajectory overlap ratios of the state components S, T, L1, L2, I1, I2, and state
ξ, respectively. According to Figure 8, the state trajectory overlap ratio A converges to 1
with the convergences of all state components αi, and αi ≥ A, which verifies Theorem 1
and Theorem 2.
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Moreover, to better compare the exact solution based on the mathematical model
and the approximate solution based on the surrogate model, Figures 9 and 10 show the
comparison of the trajectories of the exact and approximate solutions about the state
variables and control curves in Example 1, with the dashed lines being the exact solution
and the thick solid lines being the approximate solution obtained by the SRIRMD-STOR
method. Although the approximate and exact solutions of the control variables do not
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completely coincide, the trends remain consistent, and the effects on the trajectories of state
variables are within acceptable limits.
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4.2. Example 2: A Mathematical Nonlinear Dynamic Codesign and Optimization Problem

Example 2 is a dynamic co-design and optimization problem with one physical design
parameter, one control input, and three state variables, the mathematical model of the
problem is as follows

min
xp ,u(t)

J = sin(xp) · cos(xp) · t f

s.t.
.
x = v · sin(u)
.
y = −v · cos(u)
.
v = 10 cos(u)
xp ∈ [−π/2, π/2], u ∈ [−π/2, π/2],
x ∈ [50,−50], y ∈ [0,−50], v ∈ [0, 6]

(24)

where only the objective function contains the plant design parameter xp. The state vari-
ables ξ include [x, y, v], and the initial value and final value of ξ are ξ(t0) = [0, 0, 0] and
ξ(t f ) = [2,−2, 6], respectively. To solve this DOP based on the mathematical model, the
maximum number of iterations of the NLP solver is set to 20, the solution accuracy is
set to 10−6, the optimal plant design parameter is −0.7854, and the optimal performance
index is −50.00. Similar to Example 1, the SRIRMD-STOR, TEI-MASRI, EFDC-MASRI, and
SRIRMD-MASRI methods are utilized to solve this example.

The optimal physical design parameters and optimal objective values by different
methods are listed in Table 4. As can be observed from Table 2, the approaches based on the
surrogate model significantly reduce the number of valuations of the mathematical model
and save computational budget. The TEI-MASRI, SRIRMD-MASRI, and SRIRMD-STOR
methods obtain the optimal physical parameters and objective values, and the SRIRMD-
STOR method performs better in terms of efficiency with the assistant of the termination
criterion STOR.

Table 4. The computational cost, optimal plant parameters, and optimal objective values in Example 2.

Mathematical Model TEI-MASRI EFDC-MASRI SRIRMD-MASRI SRIRMD-STOR

NoS 1255262 93 55 100 90

XP −0.7854 −0.7854 1.5708 −0.7854 −0.7854

J −50.00 −50.00 0.0000 −50.00 −50.00

To intuitively demonstrate the sampling effect of the SRIRMD sampling strategy, the
distribution of sample points and the phase diagram of the optimal trajectory between y
and v are drawn in Figure 11. The left figure plots the distribution of all sample points
(initial sample points and new sample points), and the right figure displays the positions of
new samples, as well as a local zoomed-in view of the left figure near the optimal trajectory.
It can be found from Figure 11 that the new sample points in the SRIRMD sampling strategy
are all located in the vicinity of the state trajectory.

Figure 12 is the iteration processes of the trajectories of the state components x and
v in the SRIRMD-STOR method. As it can be observed in Figure 12, the trajectories of
different state components converge gradually with the iterations, and the trajectories of
the 12th and 13th iterations tend to coincide. Meanwhile, Figure 13 exhibits the control
curves obtained using the SRIRMD-based method.

Figure 14 records the convergence processes of the state component trajectory overlap
ratio and the state trajectory overlap ratio in the SRIRMD-STOR method. α1, α2, α3 and A
are the trajectory overlap ratios of the state components x, y, v, and state ξ, respectively. In
light of Figure 14, the state trajectory overlap ratio A converges to 1 with the convergences
of all αi, and αi ≥ A, which verifies Theorem 1 and Theorem 2.
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5. Engineering Examples

In this section, the SRIRMD-STOR method is applied to optimize the 3-DOF Manutec
r3 system and the horizontal axis wind turbine (HAWT) system. Different from the numeri-
cal examples, the derivative functions of the state equations are unknown in those dynamic
systems, since only the simulation models can be accessed. In addition to the methods
proposed in this work, other existing methods are also used to optimize the 3-DOF Manutec
r3 system and HAWT system.

5.1. The BDCDO of 3-DOF Manutec r3 System

The industrial robot Manutec r3 [33], as shown in Figure 15, has six links, and only
the three degrees of freedom associated with positioning are considered in this research,
simplifying the robotic system to a three degrees of freedom (DOF) dynamic system. The
goal of the 3-DOF robot co-design and optimization problem is to identify the optimal
solution in the design space and state space so that the robot can move from the initial
position to the specified position in the minimum time while satisfying the associated state
equation constraints, upper and lower bound constraints of plant parameters, and state and
control variables. The trajectory optimization formulation of the 3-DOF Manutec r3 system
is described as follows:

min
xp ,u(t)

J = t f

s.t.
.
ξ(t) = f(xp,ξ(t), u(t), t)
xp ∈ [xL, xU ]
ξ(t) ∈ [ξL,ξU ]
u(t) ∈ [uL, uU ]

(25)

where the plant design parameters xp are the lengths of link 1 and link 2 [L1, L2]. The
state variables ξ consists of the relative angles of rotation [α, β, γ] and the relative angu-
lar velocities [

.
α,

.
β,

.
γ] between the connecting links, and the control variables u includes

the standardized torque controls [u1, u2, u3]. The design intervals of the plant parame-
ters xp are L1 ∈ [0.4, 0.5] and L2 ∈ [0.9, 1.0]. The initial value and final value of ξ are
ξ(t0) = [−2,−2.5,−2, 0, 0, 0] and ξ(t f ) = [2, 2.5, 2, 0, 0, 0], and the upper and lower bounds
of ξ are ξU = [3, 3, 3, 5, 10, 15] and ξL = [−3,−3,−3,−5,−10,−15]. The control variables
are subject to interval constraints uU = [10, 10, 10] and uL = [−10,−10,−10]. To solve this
problem, the maximum number of iterations of the NLP solver is set to 20, and the solution
accuracy is set to 10−6. In the original dynamic model, the physical design parameters
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are xp = [0.4500, 0.9500], and the optimal solution yields the objective value as 0.9082. As
with the above example, in addition to the SRIRMD-STOR method, the TEI-MASRI and
EFDC-MASRI methods are also applied to optimize the 3-DOF Manutec r3 system. In the
SRIRMD-STOR method, the number of initial points is N0 = 25, and the maximum number
of new samples per iteration is ∆N = 20. It is notable that ε < 0.001 and ∆J < 0.0001 in the
termination criterions of the TEI-MASRI and EFDC-MASRI methods.
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The optimal physical design parameters and optimal objective values by different
methods are presented in Table 5. It can be observed from Table 5 that the surrogate-
model-based approaches greatly reduce the number of valuations of the dynamic system
and save computational costs compared to the original dynamic-model-based approach.
Meanwhile, compared with the original physical design parameters, the optimal physical
design parameters obtained by the TEI-MASRI, EFDC-MASRI, SRIRMD-MASRI, and
SRIRMD-STOR methods shorten the working time to complete the specified task to a
certain extent and improve the efficiency and performance of the robot arm. Among those
surrogate model-based methods, the SRIRMD-STOR method obtains the best performance
metrics using less samples. Therefore, the BDCDO solving framework combined with
SRIRMD and STOR is a better alternative for the co-design and optimization problem of
the 3-DOF Manutec r3 system.

Table 5. The computational cost, optimal plant parameters, and optimal objective values in the 3-DOF
Manutec r3 system.

Dynamic Model TEI-MASRI EFDC-MASRI SRIRMD-MASRI SRIRMD-STOR

NoS 3422 215 256 228 203

[L1,L2] [0.4500, 0.9500] [0.4151, 1.0000] [0.4121, 0.9339] [0.4019, 0.9982] [0.4019,0.9982]

J 0.9082 0.9067 0.9064 0.9060 0.9060
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To graphically demonstrate the sampling outcome of the SRIRMD sampling strategy,
the distribution of sample points and the phase diagram of the optimal trajectory between
different state variables are shown in Figure 16. The black dots are the initial samples, the
black stars are the new samples obtained via SRIRMD, and the red solid lines are the state
trajectories optimized based on the surrogate models. As Figure 16 reveals, the new sample
points in the SRIRMD sampling strategy are all situated nearby the state trajectories.
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Figure 16. The phase diagrams of the optimal trajectories and distribution of samples between
different state variables.

Figure 17 graphs the trajectory iteration processes for the state components α, β, γ,
.
α,

.
β,

and
.
γ in the SRIRMD-STOR method. As visible in Figure 17, the trajectories of the different

state components converge gradually as the iterations proceed, and the trajectories of the
17th and 18th iterations tend to coincide. Meanwhile, Figure 18 exhibits the control curves
obtained by the SRIRMD method.
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Figure 18. The solution of the control inputs u1, u2, u3.

Figure 19 records the convergence processes of the state component trajectory overlap
ratio and the state trajectory overlap ratio in the SRIRMD-STOR method, α1, α2, α3, α4, α5, α6,
and A are the trajectory overlap ratios of the state components α, β, γ,

.
α,

.
β,

.
γ, and state ξ,

respectively. According to Figure 19, the state trajectory overlap ratio A converges to 1 with
the convergences of all αi, and αi ≥ A, which verifies Theorem 1 and Theorem 2.
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5.2. The BDCDO of the Horizontal Axis Wind Turbine (HAWT)

The design optimization problem of the HAWT system [4,15,20] is a complex co-design
BDOP involving structural parameters and control variables, which can be simulated and
estimated by the Advanced Wind Turbine program blade 27 (AWT27) in the Open FAST
project. As shown in Figure 20, the structural parameters xp in this paper mainly include
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the hub radius Rh, blade length Lb, and tower height Ht. The control variable u is the
generator torque Gt. The fore-aft tower-top displacement ξ1, the side-to-side tower-top
displacement ξ2, the fore-aft tower-top velocity v1, the side-to-side tower-top velocity v2,
and rotor speed ω are regard as the state variables ξ. The co-design formulation of the
HAWT system is expressed as follows:

min
xp ,u(t)

J = w1ms(xp) + w2
∫ t f

0 (λ(t)− λ∗(t))
2dt

s.t.
.
ξ(t) = f (ξ(t), xp, u(t), t)
‖ ξ1(t)‖∞ − ξ1max ≤ 0
‖ξ2(t)‖∞ − ξ2max ≤ 0
P(Ve)− Pemin ≥ 0
xp ∈ [xL, xU ]

(26)

where ms(xp) is the mass of the wind turbine,
∫ t f

0 (λ(t)− λ∗(t))
2dt is the sum of the

deviations of the wind blade tip tangential velocity ratio λ(t) and the optimal velocity
ratio λ∗(t) over a period of time, λ is the ratio of leaf tip tangential velocity ω · Lb to wind
speed v, λ∗ can be calculated by the power coefficient function, and w1 and w2 are the
weights of the two terms, respectively. Therefore, the optimization objective of the system
is to minimize the sum of the mass and the deviations of speed ratios. What is more, the
HAWT system needs to satisfy the structural deflection constraints and ‖ξ2(t)‖∞. When
the wind speed reaches the rated wind speed Ve, the system has to reach the minimum
rated power Pemin. Since the simulation of the HAWT system involves several disciplines,
the RHS function

.
ξ(t) = f (ξ(t), Xp, u(t), t) of the system is highly nonlinear, and AWT27

takes several seconds to execute a simulation valuation.
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The co-design and optimization problem of HAWT is optimized based on the finite
difference technique without using the surrogate model, and the standard optimal ob-
jective 805.4801, hub radius Rh = 1.2000, blade length Lb = 13.7330, and tower height
Ht = 32.3944 are obtained. Qiao et al. [20] adopted the HS-MASRI, EFDC-MASRI, and
TEI-MASRI methods to solve this problem, while the SRIRMD method is used to build
the surrogate model of a derivative function in the HAWT system. In the SRIRMD-STOR
method, the number of initial points N0 = 100, and maximum number of new samples
per iteration ∆N = 10. The optimization outcomes of those different methods are listed
in Table 6. Obviously, the original system-based optimization solution method is costly
and necessitates extensive simulation evaluations of AWT27. In contrast, the surrogate
model-based optimization methods significantly reduce the number of running valuations
of AWT27 and decrease the computational costs. In these model-based optimization so-
lutions, the plant parameters converge to the standard solution [1.2000, 13.7330, 32.3944].
Due to the accuracy of the surrogate models, the objective values obtained by various
methods are different. Nevertheless, the errors with the standard solution are within the
allowed range. More importantly, it is clear that the SRIRMD-STOR method uses the least
number of samples in addressing the co-design problem of the HAWT system while it
has the higher solution accuracy, improving the solution efficiency and conserving the
computational resources.

Table 6. The computational cost, optimal plant parameters, and optimal objective values in the
HAWT system.

Original System HS-MASRI EFDC-MASRI TEI-MASRI SRIRMD-MASRI SRIRMD-STOR

NoS 546400 540 291 460 240 210

[Rh Lb Ht] [1.2000,13.7330,32.3944]

J 805.4801 806.0783 806.3677 807.1469 805.3558 805.3550

Absolute
Error 0 0.5982 0.8876 1.6668 0.1243 0.1251

The wind speed curve input to the HAWT system for a certain time period is displayed
in Figure 21. The evolution of the generator torque Gt, the fore-aft tower-top displacement
ξ1, the side-to-side tower-top displacement ξ2, and the rotor speed ω with this wind speed
curve are shown in Figure 22. As can be observed from the figure, in order to optimize the
HAWT system, the trend of the control and state variables obtained from the optimization
solution is highly consistent with the trend of the wind speed.
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Figure 22. The trends of the state and control variables.

Figure 23 records the convergence processes of the state component trajectory overlap
ratio and the state trajectory overlap ratio in the SRIRMD-STOR method, and α1, α2, α3, α4, α5,
and A are the trajectory overlap ratios of the state components ξ1, ξ2, v1, v2, ω, and state ξ,
respectively. According to Figure 23, the state trajectory overlap ratio A converges to 1 with
the convergences of all αi in the 11th iteration. αi ≥ A, which verifies Theorems 1 and 2.
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Figure 23. The convergence processes of A and all αi in the HAWT system.

6. Conclusions

The BDCDO solving framework based on the surrogate models of the derivative func-
tions in the state equation is an effective approach to solve the black-box dynamic co-design
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and optimization problem. For efficient construction of the surrogate models for the right
hand-side functions of the state equation, a novel adaptive sequential sampling strategy,
called SRIRMD, was proposed in this work. This strategy refines the surrogate models
by selecting suitable sample points from the trajectory discrete points. At the same time,
to quantify the convergence and intuitively reflect the convergence trend of the solution
during the solving process, a new termination criterion, called the state trajectory overlap
ratio (STOR), was also introduced. Finally, the BDCDO solving framework combined with
SRIRMD and STOR was utilized to address two numerical optimization problems and
two engineering co-design and optimization problems. The numerical examples indicate
that the SRIRMD sampling strategy proposed in this work was superior to the existing
sampling strategies with respect to both the solution accuracy and robustness. The 3-DOF
robot co-design and optimization problem and the horizontal axis wind turbine co-design
and optimization problem revealed that the BDCDO solving framework combined with
SRIRMD and STOR is a feasible and efficient tool to optimize the black-box dynamic sys-
tems. In summary, the proposed sampling strategy and the termination criterion in this
research not only improve the efficiency of the BDCDO solving framework but also save
the computational budget.
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