
Citation: Ramalingam, R.;

Karunanidy, D.; Alshamrani, S.S.;

Rashid, M.; Mathumohan, S.; Dumka,

A. Oppositional Pigeon-Inspired

Optimizer for Solving the

Non-Convex Economic Load

Dispatch Problem in Power Systems.

Mathematics 2022, 10, 3315. https://

doi.org/10.3390/math10183315

Academic Editor: Jian Dong

Received: 29 July 2022

Accepted: 9 September 2022

Published: 13 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Oppositional Pigeon-Inspired Optimizer for Solving the
Non-Convex Economic Load Dispatch Problem in Power Systems
Rajakumar Ramalingam 1 , Dinesh Karunanidy 1 , Sultan S. Alshamrani 2 , Mamoon Rashid 3,* ,
Swamidoss Mathumohan 4 and Ankur Dumka 5,6

1 Department of Computer Science and Technology, Madanapalle Institute of Technology & Science,
Madanapalle 517325, Andhra Pradesh, India

2 Department of Information Technology, College of Computers and Information Technology,
Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia

3 Department of Computer Engineering, Faculty of Science and Technology, Vishwakarma University,
Pune 411048, Maharashtra, India

4 Department of CSE, Unnamalai Institute of Technology, Kovilpatti 628502, Tamil Nadu, India
5 Department of Computer Science and Engineering, Women Institute of Technology,

Dehradun 248007, Uttarakhand, India
6 Department of Computer Science and Engineering, Graphic Era Deemed to be University,

Dehradun 248007, Uttarakhand, India
* Correspondence: mamoon.rashid@vupune.ac.in; Tel.: +91-7814346505

Abstract: Economic Load Dispatch (ELD) belongs to a non-convex optimization problem that aims
to reduce total power generation cost by satisfying demand constraints. However, solving the ELD
problem is a challenging task, because of its parity and disparity constraints. The Pigeon-Inspired
Optimizer (PIO) is a recently proposed optimization algorithm, which belongs to the family of
swarm intelligence algorithms. The PIO algorithm has the benefit of conceptual simplicity, and
provides better outcomes for various real-world problems. However, this algorithm has the drawback
of premature convergence and local stagnation. Therefore, we propose an Oppositional Pigeon-
Inspired Optimizer (OPIO) algorithm—to overcome these deficiencies. The proposed algorithm
employs Oppositional-Based Learning (OBL) to enhance the quality of the individual, by exploring
the global search space. The proposed algorithm would be used to determine the load demand of a
power system, by sustaining the various equality and inequality constraints, to diminish the overall
generation cost. In this work, the OPIO algorithm was applied to solve the ELD problem of small-
(13-unit, 40-unit), medium- (140-unit, 160-unit) and large-scale (320-unit, 640-unit) test systems. The
experimental results of the proposed OPIO algorithm demonstrate its efficiency over the conventional
PIO algorithm, and other state-of-the-art approaches in the literature. The comparative results
demonstrate that the proposed algorithm provides better results—in terms of improved accuracy,
higher convergence rate, less computation time, and reduced fuel cost—than the other approaches.

Keywords: economic load dispatch; pigeon-inspired optimizer; oppositional-based learning;
swarm intelligence algorithm; oppositional-based pigeon-inspired optimizer

MSC: 68W50; 60G05; 60G51; 90C27

1. Introduction

With the rapid growth in technologies, ELD is considered one of the foremost chal-
lenging optimization problems in power systems. The main motive for addressing the
ELD problem is to reduce the cost of power generation, by sustaining the different con-
straints involved in the generation units [1]. Several researchers have applied mathematical
models, knowledge discovery and optimization techniques to resolve the ELD problem.
The standard techniques, like lambda-generation techniques, and base-point techniques

Mathematics 2022, 10, 3315. https://doi.org/10.3390/math10183315 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10183315
https://doi.org/10.3390/math10183315
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-0734-3423
https://orcid.org/0000-0001-9974-8075
https://orcid.org/0000-0001-8194-9354
https://orcid.org/0000-0002-8302-4571
https://doi.org/10.3390/math10183315
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10183315?type=check_update&version=2

Mathematics 2022, 10, 3315 2 of 24

from [2], provide optimal solutions, by incorporating the incremental cost curves of linear
functions. However, these methods have failed to solve highly non-linear functions, and
provide unsatisfactory solutions which result in huge losses in power generation costs.
The non-smooth functionalities of generating units contain various features, like prohib-
ited zones, different fuel options, value-point effects, ramp-rate limits and a start-up cost
function which converts linear into non-linear characteristics [3]. Owing to the large-scale
generating units, conventional methods have provided unreliable solutions, and have
taken a lot of computational time to solve ELD problems. In later studies, dynamic pro-
gramming techniques [4] have been used for ELD problems, but these have required high
computational efforts to solve large-scale generating units.

In recent studies, many researchers have utilized various optimization algorithms to
solve non-convex ELD problems with only value-point effects, viz., Particle Swarm Op-
timization with Sequential Quadratic Programming (PSO-SQP) [5], Genetic Algorithm
(GA) [6], Evolutionary Programming (EP) [7], Improved Group Search Optimization
(IGSO) [8], Incremental Artificial Bee Colony with Local Search (IABC-LS) [9], Hybrid Grey
Wolf Optimizer (HGWO) [10], Self-Organizing Hierarchical Particle Swarm Optimization
(SOH-PSO) [11], Genetic Algorithm with Pattern Search and SQP (GA-PS-SQP) [12], Modi-
fied Shuffled Frog-Leaping Algorithm (MSFLA) [13], Firefly Optimization (FA) [14], Chaotic
Self-Adaptive Particle Swarm Optimization Algorithm (CSAPSO) [15], Combined Social
Engineering Particle Swarm Optimization (SEPSO) [16], Starling Murmuration Optimizer
(SMO) [17], Improved Moth-Flame optimization (IMFO) [18] and Diversity-Maintained
Differential Evolution (DMDE) [19]. Among these search techniques, GA is considered
to be the least efficient technique, because its optimal individuals are generally trapped
in intensification rather than diversification, and it also suffers from the determination of
control parameters, which results in excessive simulation time. Several new techniques,
like IGSO, MSFLA, FA, HGWO, SOH-PSO, GA-PS-SQP and CSAPSO, have virtuoso compe-
tence in finding optimal solutions for non-convex generating units; however, the simulation
time of the system is quite long; specifically, for CSAPSO, several iterations are carried
out to specify the control parameter values; this limitation results in the technique having
excessive execution time, and a large number of runs.

In addition, some sets of optimization algorithms are considered to solve non-convex
ELD problems with only multi-fuel possibilities. These algorithms include Integer Coded
Differential Evolution-Dynamic Programming (ICDEDP) [20], Chaotic Ant Swarm Opti-
mization (CASO) [21], Bacteria Foraging Optimization (BFO) [22], Ant Colony Optimization
(ACO) [23], Biogeography-Based Optimization (BBO) [24] and Krill Herd (KH) [25]. Among
these techniques, ACO is the technique initially utilized for solving optimization problems
in the engineering domain, specifically in path-identifying and parameter-tuning in electri-
cal engineering. Although ACO and CASO have the cap potential of leading complicated
constraints and non-convex goal features, in addition to their simplicity of simulation for
optimization problems, they nevertheless suffer from numerous negative aspects, together
with low-quality optimization individual and lengthy simulation time. The modified DE
method, namely the ICDEDP technique, can be considered a more efficient technique than
the other techniques, because it can obtain a good-quality solution within a short span of
simulation; this DE technique has been globally utilized in power system optimization
problems. In addition, other techniques—such as BBO, KH and BFO—have good capability
in determining the optimal solutions for non-convex problems; however, the simulation
times of these techniques are longer, due to the vast number of control parameters.

In contrast to the aforementioned sets, the techniques in the set of neural networks
including the Adaptive Hopfield Neural Network (AHNN) [26], the Enhanced Augmented
Lagrange Hopfield Network (EALHN) [27] and the Augmented Lagrange Hopfield Net-
work (ALHN) [28] can impact on large-scale problems, but fail to deal with the ELD
problem with a non-convex objective function. In EALHN and ALHN, the Lagrange func-
tion is merged with the Hopfield network to enhance efficacy. This process will help the
techniques to converge towards the optimal more smoothly, and to obtain a good-quality

Mathematics 2022, 10, 3315 3 of 24

solution. However, in real-time power systems, both value points and fuel points need to
be considered, for accurate and practical ELD solutions.

In some studies, both the constraints of value points and different fuel possibilities
are considered for realistic ELD solutions comprising the Improved Particle Swarm Op-
timization (IPSO) [29], the Crisscross Optimization Algorithm (COA) [30], Differential
Evolution and Particle Swarm Optimization (DEPSO) [31], the Oppositional Grey Wolf Op-
timization algorithm (OGWO) [32], Estimation of Distribution and Differential Evolution
Cooperation (ED-DE) [33], the Real-Coded Chemical Reaction Algorithm (RCCRO) [34],
Synergic Predator–Prey Optimization (SPPO) [35], the One Rank Cuckoo Search Algorithm
(ORCSA) [36], the Real-Coded Genetic Algorithm (RCGA) [37] and the Improved Genetic
Algorithm [38]. By utilizing the pros of each search technique, these improved novel tech-
niques have adequate capability in finding good-quality solutions with better simulation
time. However, the improved technique can lead to more complications with vast control
parameters, and it can suffer from inappropriate selection of these parameters; in addition,
its performance is degraded when applied to large-scale power systems entailing n number
of generating units with various fuel possibilities and value-point effects.

A large portion of the above studies have focused on the adjustments of stochastic
search techniques. Nonetheless, they have, once in a while, given consideration to the
method of handling constraints. In reality, dealing with the constraints of ELD problems is
significant when working with stochastic search techniques, for enhancing the optimization
results. Our study aimed to fill the research gap, by contributing more towards addressing
the constraints of ELD problems. Our contributions were twofold: initially, an enhanced
PIO algorithm was introduced, to enrich the performance of the standard PIO algorithm;
subsequently, a constraint-handling technique was utilized, to appropriately handle the
equality constraints.

The Pigeon-Inspired Optimizer algorithm was inspired by the homing bias of pigeons,
and was proposed by Duan and Qiao in 2014. This optimization algorithm was used
because of its optimum performance at high merging speeds [39]. However, the PIO algo-
rithm suffers in regard to global exploration and premature convergence. In addition, its
performance is degraded when applied to high-dimensional problems. This problem can
be overcome by using the Opposition-Based Learning technique. The OBL technique is
widely used by researchers to boost convergence speed, by exploring the search space. In
this work, a new metaheuristic algorithm—namely, the Oppositional Pigeon-Inspired Opti-
mizer technique (OPIO)—was utilized, to solve non-convex ELD problems with various
fuel possibilities and value-point effects.

The major contribution of this work is illustrated as follows:
(1) The proposed OPIO algorithm solves the non-convex ELD problem with multi-fuel

possibilities and value-point effects, through two operators: namely, map and compass
operator, and landmark operator. These operators enhance the local search ability by
adopting the search boundary limits. Later, the Opposition-Based Learning strategy helps to
explore the search space, as well as to enhance the exploration ability for target search agents.
This process improves the search capability, and eradicates premature convergence, though
the large-scale test system holds both multiple fuel possibilities and value-point effects.

(2) The proposed OPIO algorithm has a unique adjustable parameter: jump rate Jr.
Parameter Jr helps to determine the global optimal solution, by influencing the adjustable
value, within the range of 0 to 0.4. This parameter promotes the OPIO algorithm, to be
robust and adaptable in solving ELD problems with different constraints.

(3) To validate the efficiency of the proposed OPIO algorithm, we used several test
cases, which varied according to three scales: small-scale (i.e., 13, 40); medium-scale
(i.e., 140, 160); and large-scale (i.e., 320, 640) generation units. The results of the various
test cases confirmed that the proposed technique is a better potential solution than the
state-of-the-art metaheuristic algorithms in the literature. The OPIO algorithm provided
better performance in the 320- and 640-unit generation systems. This shows that the

Mathematics 2022, 10, 3315 4 of 24

formulated technique is a superior and reliable solution for large-scale ELD problems over
multiple trials.

The rest of this work is categorized as follows: Section 2 delivers the mathematical
formulation of the ELD problem, with objective functions and multiple constraints. The
proposed Oppositional Pigeon-Inspired Optimizer algorithm is presented in detail in
Section 3. In Section 4, the implementation of the OPIO algorithm, in solving the ELD
problem, is presented. Section 5 provides proposed OPIO algorithm experimentation
details, from six different test cases that varied from small-scale to large-scale systems, and
the outcomes are compared with state-of-the-art metaheuristics algorithms. The conclusion
of this work is presented in Section 6.

2. ELD Problem Formulation

The main motive of ELD is to reduce the overall power generation cost, by solving
different disparity and parity constraints, to provide optimal generation among power
producing units [32]. The objective function and the different constraints of the ELD
problem are presented in this section.

2.1. Fitness Function

The fitness function of the ELD problem is to reduce the total power production cost
by solving various constraints, and to gratify the load demand over some reasonable stage.
A quadratic function is formulated, to approximate the fuel cost of the power-producing
unit. The mathematical formulation of the power-generating unit is formulated as below:

min ∑n
j=1 Fc

(
Ψj
)

(1)

Here Fc denotes the fuel cost of the generator (in $/h); Ψj denotes the output power of
generator j (in MW); n stands for the overall power-generating unit in the power system.

In view of the value-point effects, ELD cost functions will have non-smooth points
which provide inefficient results in practical generators. To process the practical generators,
sinusoidal functions are included in the quadratic functions. The cost function, with value
points of unit j, is represented as follows:

Fc = k jΨ2
j + ljΨj + mj +

∣∣∣aj × sin
(

bj ×
(

Ψlow
j −Ψj

))∣∣∣ (2)

Here, k j, lj and mj stand for the fuel cost coefficients of generator j; aj and bj stand
for the value-point loading coefficients of generator j; Ψlow

j is the low-level range power
production of generator j.

The overall fuel cost function of n generator in real-time ELD is mathematically
formulated as follows:

min ∑n
j=1 F̂c

(
Ψj
)
= ∑n

j=1

[
k jΨ2

j + ljΨj + mj +
∣∣∣aj × sin

(
bj ×

(
Ψlow

j −Ψj

))∣∣∣] (3)

where F̂c stands for the real-time fuel cost of the generator.
To attain an accurate and more appropriate solution for the ELD problem, both various

fuel possibilities and value-point effects are added with the cost functions. Most thermal
generating units utilize multiple fuel possibilities, using the load and suitability of the
power generation units. The cost function of generating unit j, with various fuel possibilities
(q) and value-point effects, is mathematically formulated and presented as follows:

Fc
(
Ψj
)
=

k j1
(
Ψj
)2

+ lj1
(
Ψj
)
+ mj1 +

∣∣∣aj1 × sin
(

bj1 ×
(

Ψlow
j −Ψj

))∣∣∣i f Ψlow
j ≤ Ψj ≤ Ψj1

k j2
(
Ψj
)2

+ lj2
(
Ψj
)
+ mj2 +

∣∣aj2 × sin
(
bj2 ×

(
Ψj2 −Ψj

))∣∣i f Ψj1 ≤ Ψj ≤ Ψj2

k jq
(
Ψj
)2

+ ljq
(
Ψj
)
+ mjq +

∣∣∣ajq × sin
(

bjq ×
(

Ψjq −Ψlow
j

))∣∣∣i f Ψjq ≤ Ψj ≤ Ψupper
j

(4)

Mathematics 2022, 10, 3315 5 of 24

2.2. Constraints of the ELD Problem

The fitness function in Section 2.1 is formulated with a set of constraints, which are
given below.

2.2.1. Operating Unit Limit

The power-generating unit must relay within the lower and upper boundary limits:

Ψlow
j ≤ Ψj ≤ Ψupper

j j = 1, 2, . . . , n (5)

where Ψupper
j and Ψlow

j denote the upper and lower boundary, respectively, of the output
power of the generator j.

2.2.2. Power-Stabilizing Constraints

The overall generated power should be the same as the overall losses and overall load
request of the units. This constraint is mathematically formulated as follows:

∑n
j=1 Ψj −ΨDemand −ΨLoss = 0 (6)

where ΨLoss and ΨDemand represent the overall power loss and power demand of the units.
Based on Kron’s loss technique, the transmission loss is given as follows:

ΨLoss = ∑n
j=1 ∑n

i=1 Ψjβ jiΨi + ∑n
j=1 β0jΨj + β00 (7)

where β ji represents the loss coefficient element j and i of the symmetric matrix β; β0j
denotes the loss coefficient vector of j symmetric matrix β; and β00 represents a fixed loss
coefficient concerning standard operating situations.

2.2.3. Restricted Operating Regions (RORs)

Due to oscillation or steam value process in the shaft bearing, the restricted operating
region is considered. To avoid these issues, choosing the best operating region will drasti-
cally increase the optimum economy of the generating units. The boundary constraints of
the standard operating section of generator j are formulated as follows:

Ψj ∈

Ψlow

j ≤ Ψj ≤ Ψl
j,1

Ψl
j,i−1 ≤ Ψj ≤ Ψl

j,i
Ψl

j,ni
≤ Ψj ≤ Ψupper

j

i = 2, 3, . . . , nj, j = 1, 2, . . . , n (8)

where l, u denotes the lower and upper limits of specific power generating units, and nj
determines the number of restricted regions of generating unit j.

2.2.4. Ramp-Rate (RR) Constraint

In view of the lower and upper power production of the generator, the ramp-rate limit
is considered. Each generating unit is controlled by the ramp-rate limit, which instructs
the generator to function continually for the two nearest operating regions. This ramp-rate
constraint is represented as follows:

max
(

Ψlow
j , Ψ0

j − LSLj

)
≤ Ψj ≤ min

(
Ψupper

j , Ψ0
j + USLj

)
(9)

where LSLj and USLj represent the lower and upper slope (or ramp) limit of the generating
unit j, and Ψ0

j denotes the current power generating unit j.

Mathematics 2022, 10, 3315 6 of 24

3. Preliminaries

In this section, we present three major mechanisms; firstly, the generic working process
of the Pigeon-Inspired Optimizer is presented, secondly, the core concept of the Opposition-
Based Learning technique is discussed; and, finally, the proposed methodology, with its
working process, is presented.

3.1. Overview of Pigeon-Inspired Optimizer

The Pigeon-Inspired Optimizer (PIO) belongs to the family of swarm intelligence
algorithms that were proposed by Haibin Duan and Peixin Qiao (2014) [39]. The PIO
algorithm mimics the homing behaviors of pigeons. Most researchers apply SI algorithms
to solve their domain-related NP-hard problems, in which search space is vast. SI algorithms
are inspired by the social behavior of the swarm, with intellectual learning to determine
high-quality solutions using mathematical formulations. The mathematical formulation of
the swarm includes the position and velocity of the swarm iteration by iterations.

Pigeons have the ability to explore for food over the course of long intervals. In
addition, pigeons exhibit intellectual homing behavior: for example, they carried messages
during the First and Second World Wars. The PIO algorithm works on the basis of two
unique operators, viz., map and landmark operators. This algorithm provides good
optimum performance and higher merge speed than the other state-of-the-art metaheuristic
algorithms like Ant Colony Optimization, Particle Swarm Optimization, Artificial Bee
Colony Optimization and Differential Evolution algorithms.

3.1.1. Map and Compass Operator

Pigeons have a natural ability to perceive the orbital meadow, with the aid of a
magnetic function that enables them to map. They utilize the altitude of the sun as a
compass to fine-tune their current directions. Generally, pigeons depend less on the sun
and on magnetic particles as they near their destinations. The map and compass operator
can be mathematically formulated as follows:

Vt+1
j = Vt

j × e−ρt + rand×
(

Xg − Xt
j

)
(10)

Xt+1
j = Xt

j + Vt+1
j (11)

where Vt
j and Xt

j represent the velocity and position of the j individuals in the t iterations;
ρ denotes the map and compass factor; rand determines the uniform random variable
within [0, 1]; Xg denotes the global best individual; and Xt+1

j and Vt+1
j represent the new

position and velocity of the j individual in the next t iteration.

3.1.2. Landmark Operator

A pigeon relies on natural landmarks once it has reached its destination. However,
if the pigeon is far away from its destination, then it relies on the adjacent pigeons to
adjust its position. In this algorithm, half of the pigeon population is allowed to adjust
position, with the aid of the centered pigeons, while the pigeons comprising the other half
of the population adjust their position in accordance with the desirable destination position.
Most pigeons will not be familiar with their landmark in this view, so they will follow the
top-ranked pigeons to determine their desired destination. The half-number of pigeons
adjust their position with the following mathematical formulations:

Nt+1
P =

Nt
p

2
(12)

Xt+1
c =

∑ Xt+1
j × Fit

(
Xt+1

j

)
Np ∑ Fit

(
Xt+1

j

) (13)

Mathematics 2022, 10, 3315 7 of 24

where Nt
p represents the number of pigeons or population size in the current iteration t;

and Fit
(
Xt+1

c
)

denotes the fitness of the centered pigeons in the t + 1 iteration. The new
pigeon position is represented as:

Xt+1
j = Xt

j + rand×
(

Xt+1
c − Xt

j

)
(14)

The generic flow of the PIO algorithm is represented in Algorithm 1. In this algorithm,
the map and compass operator is given in the initial while loop, and another loop is used
to access their route and its correction in position.

Algorithm 1: Standard Pigeon-Inspired Optimizer (PIO)

Input: Number of Population Np problem space D, Map and compass factor ρ, Number of
generations ng1, ng2 where ng1 > ng2.
Output: Xg–Global best solution
1: Randomly generate the solution Xj
2: Compute the fitness of solutions (X1, X2, . . . , XNp)
3: Determine the minimal fitness solution as Xg.
4: while (ng ≥ 1) do.
5: Determine the velocity and position for each solution by Equations (10) and (11).
6: Compute fitness values of solutions (X1, X2, . . . , XNp)
7: Update global best solution Xg.
8: end while
9: while (Np ≥ 1) do
10: Sort solutions by their fitness.
11: Np = Np/2
12: Compute the desired destination by Equation (13).
13: Update the position of the solution by Equation (14).
14: Update global best solution Xg
15: end while

3.2. Opposition-Based Learning Technique

The Opposition-Based Learning technique (OBL) was introduced by Tizhoosh [40]
to enhance the convergence speed of traditional metaheuristic algorithms. This method
utilizes the valuation of a current population against its opposite population, to deter-
mine the better solution for a specific problem. The OBL method has been utilized in
different metaheuristic algorithms, to boost convergence speed [41,42]. The mathematical
formulation of the OBL is defined as follows:

Let µ(µ ∈ [p, q]) be an actual integer. The contradictory integer µ0 is formulated as:

µ0 = p + q− µ0 (15)

For d–dimensional search space, the contradictory integer µ0 is defined as:

µ0
j = pj + qj − µj (16)

where µ1, µ2, . . . , µd is a point in d-dimensional search space, i.e., µi ∈
[
pj, qj

]
;

j = {1, 2, 3, . . . , d}, and d represents the number of decision variables.
The Oppositional-Based Learning technique is generally used in two stages: firstly, in

the initialization procedure; and secondly, in generating an opposite solution, using the
jumping rate Jr. The proposed OBL algorithm is given in Algorithm 2.

Mathematics 2022, 10, 3315 8 of 24

Algorithm 2: Oppositional-Based Learning Algorithm

1: Initially the solutions are randomly initialized within the upper and lower boundary regions.
2: Determine the opposite solutions:

2.1: for i = 1:N_p
2.2: for j = 1:d
2.3: µ_(i,j)ˆ0 = p_j + q_j − µ_(i,j)
2.4: end for
2.5: end for

3: Sort the current solutions and opposite solutions in ascending order.
4: Choose the N_p the number of best candidate solutions.
5: Update the control parameters.
6: Generate the opposite solutions from current solutions using jumping rate J_r:

6.1: for j = 1:N_p
6.2: for I = 1:d
6.3: if J_r > rand
6.4: opp(j,i) = min(i) + max(i) − P(j,i);
6.5: else
6.6: opp(j,i) = P(j,i);
6.7: end
6.8: end for
6.9: end for

7: Repeat steps 3 to 6 until the termination criterion is met.

4. Oppositional Pigeon-Inspired Optimizer Algorithm (Proposed)

The proposed Oppositional Pigeon-Inspired Optimizer algorithm is discussed in this
section. The common search strategy of the proposed OPIO algorithm is like the PIO.
However, the proposed OPIO algorithm utilizes a unique methodology to explore the
search space of the pigeon, to discover the position of its hiding location. Moreover, the
modified method provides better convergence in the pigeon population, which helps
to achieve the optimal solution. As part of enhancement by the proposed method, in
every iteration, the best pigeon is selected as the target. The selected pigeon position
will be updated with the Oppositional-Based Learning, to enhance the convergence rate.
However, selecting an arbitrary pigeon, from among the population, may result in a bad-
quality landmark solution, with a large value for the fitness function (in the minimization
problem), which leads to an unsuitable end point to move. In addition, selecting a random
pigeon for the exploration phase will tend towards a bad destination, which minimizes the
convergence rate. To select the best solution among the population at each iteration is a
challenging task.

In this work, a priority-based election mechanism was introduced. This mechanism
could be utilized for the minimization problem at each iteration for the pigeon i, so that ψ of
the best pigeons in the solution set were elected. The benefit of this election mechanism was
to elect the target pigeon among the list of the best pigeons in the stack. By this process, the
pigeons could perform better in improvising their positions, by following the better target
pigeons, and this resulted in a better convergence rate for the algorithm. Nevertheless,
electing the value of ψ was significant: electing a very trivial value of ψ among the pigeons i
could lead to being stuck in the local optima. In addition, selecting a large value for ψ could
cause the bad target pigeon to be tricked. To eradicate these issues, in the initial iterations ψ
started from a large value, for better diversification, and its number was reduced according
to Equation (17); over the course of the iterations, its tendency towards the local optimum
resulted in the ψ having a small value:

ψt = round
(

ψmax −
ψmax − ψmin

Ng
× t
)

(17)

where, ψt stood for the value for selecting the best pigeon in iteration t, and ψmax and ψmin
stood for the maximum and minimum values of ψ.

Mathematics 2022, 10, 3315 9 of 24

4.1. Constraint-Handling Technique

The ELD problem is complicated to solve, when considering the constraints. In past
decades, various techniques have been adopted, to handle the constraints. The penalty
function is considered to one of the most common constraint-handling techniques: it deals
with the constraint problem by including some additional value to the objective function in
(4). This function has been broadly utilized by various researchers, because of its simplicity
and efficiency. The objective function is the minimization of the following representation:

FCN = Fc + ϕ
∣∣∣∑n

j=1 Ψj −ΨDemand −ΨLoss

∣∣∣ (18)

where FCN stands for constraint-based objective function, and ϕ stands for the penalty
coefficient of a real integer. If constraint (6) is other than zero, then the value of the second
part in Equation (17) will be other than zero too, multiplied by the penalty value ϕ, and,
finally, will be added to the fuel cost Fc. In other words, if Equation (6) does not meet the
constraint, then this implies that the solution has a large objective function, and is likely to
be rejected. On the other hand, if the solution meets the constraint (6), this implies that the
solution holds a small objective function value, and is likely to be accepted. If the ϕ value
is fixed with a large value, then the performance of the algorithm will be reduced, and this
will lead to premature convergence. In addition, fixing the small value for ϕ fails to meet
the inequality constraints.

4.2. Implementation of the OPIO Algorithm for the ELD Problem

In this section, the strategies for applying the OPIO algorithm, to solve the ELD prob-
lem, are examined. The main objective of the ELD optimization problem is to reduce the
overall power generation cost. In the ELD problem, the total power generating unit (n) is
proportional to the total decision variable of the optimization problem (d). Each position of
the pigeon is represented as each anticipated power output of the generating units. In gen-
eral, the ELD problem consists of some impartiality and disparity constraints, as discussed
in Section 2.2. Each solution in the population should satisfy the constraints. For the smooth
process of constraint handling, the value of ϕ is fixed as 100 in Equation (17) for the entire
simulation, which attains an adequate performance with the power equality constraint.

The overall computational procedures of the proposed OPIO algorithm are described
in detail as follows. In addition, the flowchart of the proposed OPIO algorithm is rep-
resented in Figure 1, and the proposed OPIO algorithm for solving the ELD problem is
represented in Algorithm 3.

Step 1: Define the initial parameters with the characteristics of the generation units: ϕ;
number of pigeons; maximum generations (ng); other data, such as Jr, ρ.

Step 2: Initially, the arbitrary values for all generating units within the lower and upper
operating boundary are generated using (5), except for the last generating unit.
The computation of the last unit of power generation is calculated using (6), and it
is validated, to ensure whether it satisfies the inequality constraints (5) or not. If
the solution satisfies the constraints, then the solution is sustained; otherwise, it is
abandoned. The pigeon position X, concerning the generating units, is initialized
as follows:

X =

X1
...

Xi
...

XG

=

X1,1 · · · X1,b · · · X1,d
...

. . .
...

. . .
...

Xi,1 · · · Xi,b · · · Xi,d
...

. . .
...

. . .
...

XNp ,1 · · · XNp ,b · · · XNp ,d

i = 2, . . . Np; b = 1, 2, . . . , d (19)

where the component Xi,d is the power outcome of the bth unit in individual
Xi. For the OPIO algorithm, there is only one adjustable parameter: the jump-

Mathematics 2022, 10, 3315 10 of 24

ing rate Jr, which is fixed within the range of 0 to 0.4 for all test cases used in
the experimentation.

Step 3: For each pigeon in the population, the power generating unit must satisfy the
ramp-rate boundary, and not relay in the restricted operating zones. If the solution
does not meet the constraints, then power outputs should be altered near to the
boundary of the feasible solution. After processing the initialization, the main
procedure of the OPIO algorithm process is as follows:

Step 4: Determine the velocity of the pigeon, using Equation (10), and update the position
of the pigeon, using Equation (14). If the updated position of the pigeon does not
satisfy the constraints, then alter the pigeon’s position, as shown in Step 3.

Step 5: Compute the ψ factor, as in Equation (17).
Step 6: Choose the ψ of the best solutions from the population, and update the position for

the selected pigeon, using the OBL technique (Algorithm 2).
Step 7: Check this step for the pigeon i:

a. The output power of the generating units must not reside in the RORs (see (8))
or contravene the operating unit limit (see (5)).

b. The lower and upper boundary rates of each of the generating units, from
the preliminary state, should be in the satisfactory ranges, as given in (9). If
the preliminary output power of the generating units is not specified, then
the preliminary power of all power generating units should be within the
satisfactory ranges.

c. If the RORs and ramp-rate limits are contravened, adjust the power outputs
near to the feasible solution.

Step 8: Compute the overall power loss of the transmission lines for the pigeon i, as in (6).
Step 9: Compute the quality of the pigeon i, by interleaving its power outputs in the fitness

function, as in (17).
Step 10: Repeat steps 4–9, until the stop criterion is met.
Step 11: The ELD solution is the best solution in the last iteration.

Algorithm 3: Proposed OPIO algorithm for solving ELD

1: Generate the initial population.
2: Determine the preliminary parameters.
3: Arbitrarily initialize the position of the pigeon in the search boundary space.
4: Check the RR and RORs constraints.
5: While (ng ≥ 1) do
6: Determine the velocity and position of the pigeon.
7: Determine the ϕ factor.
8: Select ϕ of the best pigeons from the population.
9: Apply OBL technique, using Algorithm 2.
10: If (fit (Opp) < fit (X_(i,t))) then
11: Replace the Opp solution
12: Else
13: do nothing
14: End if
15: Check the feasibility of the new position of the pigeons.
16: Calculate the transmission loss.
17: Evaluate the fitness of the new position of the pigeons.
18: Update the global best solution.
19: End while
20: Output: Visualize the global best solution.

Mathematics 2022, 10, 3315 11 of 24Mathematics 2022, 10, x 10 of 25

Figure 1. Flowchart of Proposed OPIO algorithm.

Step 1: Define the initial parameters with the characteristics of the generation units: ;

number of pigeons; maximum generations (); other data, such as , .

Step 2: Initially, the arbitrary values for all generating units within the lower and upper

operating boundary are generated using (5), except for the last generating unit. The com‐

putation of the last unit of power generation is calculated using (6), and it is validated, to

ensure whether it satisfies the inequality constraints (5) or not. If the solution satisfies the

constraints, then the solution is sustained; otherwise, it is abandoned. The pigeon position

X, concerning the generating units, is initialized as follows:

Figure 1. Flowchart of Proposed OPIO algorithm.

5. Results and Discussion

The proposed OPIO algorithm was applied to solve ELD issues. Three various test
systems with three different fuel possibilities and non-linearities, such as ramp-rate ranges,
value-point consequences and interdicted working region, were studied, to assess the
execution of the formulated OPIO method. The formulated OPIO technique was written in
MATLAB R2016a, implemented on a 2.6 GHz Intel I5 PC. The execution of the formulated
OPIO algorithm was justified by utilizing three different test systems: small- (13-unit,
40-unit), medium- (140-unit, 160-unit) and large-scale (320-unit and 640-unit). The acquired
outcomes from the formulated OPIO technique were differentiated to various state-of-the-

Mathematics 2022, 10, 3315 12 of 24

art metaheuristic techniques reported in the literature. The different test systems, with the
number of generating units and their constraints, are outlined below:

(i) Test Case 1: Small-Scale Test Systems (13-Unit and 40-unit)

a. 13-unit test case: in this test case, a 13-unit generator system, with constraints
such as different fuel costs and value-point effects, was considered. The power
load demand (PD) of the system was fixed at PD = 2520 MW [7,43];

b. 40-unit test case: this test case held a 40-unit generator system, with value-
point effects considered, and the power load demand of the system was fixed
at PD = 10,500 MW [7,43].

(ii) Test Case 2: Medium-Scale Test Systems (140-unit and 160-unit)

a. 140-unit test case: in this test case, a 140-unit generator system, with constraints
such as value-point effects, ramp-rate limits, and prohibited accomplishment
unit, was considered. The power load demand (PD) of the system was fixed at
PD = 49,342 MW [44];

b. 160-unit test case: this test case held a 160-unit generator system, with value-
point effects considered. The power load demand of the system was fixed at
PD = 43,200 MW [45].

(iii) Test Case 3: Large-Scale Test Systems (320-unit and 640-unit)

a. 320-unit test case: a large-scale system with a 320-unit generator system, with
different fuel options and value-point loading effects, was considered here.
The power load demand of the system was fixed at PD = 86,400 MW. The input
data of the 10-unit system were duplicated 32 times in this system [46].

b. 640-unit test case: a test case with a 640-unit generator system, with multiple
fuel options and value-point load effects, was considered here. The load
demand of the system was increased by up to PD = 1,72,800 MW. The input
data of the 10-unit system were replicated 64 times in this system [30].

The convergence of metaheuristic algorithms mainly relies on the possibility of a
proper value. The proposed technique may deliver a different solution when the choice of
insert value is not appropriate. To select the proper input parameters, repeated simulation
is required. For the OPIO algorithm, after a repeated number of runs, the lower and
upper jumping rates were fixed within the range of 0 to 0.4. For effective simulation,
we considered a population size of 50, and 100 was selected as the maximum number of
iterations for the test systems.

5.1. Test Case 1a: 13-Unit

In this instance, the formulated OPIO technique was tested on a small-scale 13-unit
system, which held uneven fuel cost and value-point effects. The dataset of the fuel cost
and the limit utility of numerous vigorous energy providers were taken from [43], and
the load order was fixed as 2520 MW. To examine the execution of the proposed OPIO
technique and the conventional PIO algorithm, the assumed outcomes were differentiated
from the various metaheuristic algorithms, viz., Oppositional Grey Wolf Optimization
(OGWO) [32], Improved Particle Swarm Optimization (IPSO) [29], One Rank Cuckoo
Search Algorithm (ORCSA) [36], Crisscross Optimization Algorithm (COA) [30], Real-
Coded Genetic Algorithm (RCGA) [37], Improved Genetic Algorithm (IGA) [38] and
Pigeon-Inspired Optimization (PIO) [39].

Table 1 provides the comparative results of the OPIO and PIO algorithms for active
power generators along with other techniques. As shown in Table 1, the solution provided
by the OPIO algorithm reached a fuel cost of 24512.45$/hr, which was less than all the
compared algorithms; the outcomes of the formulated techniques conveyed that it was
superior in finding the best or near-best solution. To ensure the efficacy and effectiveness
of the technique, the simulation was carried out over 100 runs, on both the proposed OPIO
algorithm and the conventional PIO algorithm, and its result is given in Table 2. As shown

Mathematics 2022, 10, 3315 13 of 24

in Table 2, the OPIO produced a better solution for 97 runs, which was far better than all
compared algorithms. The statistical outcomes conveyed that the formulated OPIO algo-
rithm delivered better results compared with various algorithms. The convergence of the
minimization fuel-cost function over the iteration cycles of the proposed OPIO algorithm
and the standard PIO algorithm were noted, and are displayed in Figure 2. Figure 2 shows
that the proposed algorithm converged faster towards the optimal solution that did not
have further changes, which validated the active constancy of the formulated technique.

Table 1. Test outcomes of various algorithms for a 13-unit system with PD = 2520 MW.

Unit OGWO IPSO COA ORCSA PIO OPIO
(Proposed)

1 628.2948 628.1678 628.3451 628.4524 628.3124 628.5647
2 299.0451 298.8798 298.5478 298.3575 298.3567 298.9856
3 296.4501 297.6984 297.6874 297.3457 297.4254 297.6245
4 159.6421 159.2387 159.3564 159.2349 159.6548 159.7542
5 159.7154 159.1254 159.8957 159.5796 159.5347 159.6589
6 159.5484 159.3567 159.3567 159.2134 159.8975 159.3521
7 159.6879 159.8954 159.6542 159.6875 159.7543 159.1256
8 159.6877 159.6872 159.6513 159.3579 159.5421 159.2564
9 159.6542 159.9877 159.3542 159.7765 158.8578 159.3658
10 76.4854 77.6513 77.6854 77.5587 77.3567 77.6574
11 114.8742 113.3685 114.2314 114.2254 113.3687 114.8975
12 91.5874 92.6975 92.8674 92.6478 92.6898 92.8785
13 92.5412 92.3515 92.4578 92.3542 92.3277 92.8547
Fuel Cost ($/h) 24,513.4847 24,514.6875 24,512.8754 24,513.5464 24,514.5467 24,512.4578
Power loss
(MW) 40.2975 40.3051 40.3645 40.3897 40.5781 40.1584

Table 2. Comparison outcomes of different algorithms for a 13-unit system.

Algorithms Best ($/H) Mean
($/H)

Worst
($/H)

Standard
Deviation

Successful
Runs (%)

Test time
(S)

OGWO 24,512.72 24,512.86 24,514.65 0.1031 92 5.89
IPSO 24,517.68 24,517.96 24,518.21 0.3154 84 5.98
IGA 24,516.42 24,517.76 24,519.78 NA 82 6.21
RCGA 24,514.54 24,515.87 24,517.89 0.1578 88 6.89
COA 24,512.87 24,513.65 24,515.68 0.1047 93 5.47
ORCSA 24,513.54 24,513.54 24,516.67 NA 87 8.65
PIO 24520.54 24521.75 24532.95 0.2645 79 11.00
OPIO
(Proposed) 24512.45 24512.67 24513.54 0.0875 97 5.14

5.2. Test Case 1b: 40-Unit

To access the feasibility of the proposed OPIO algorithm, another small-scale test case,
of a 40-unit power generation system along with value-point belongings, was used. The
benchmark value of the 40-unit power system was approached from [43], and its load
demand was fixed as 10,500 MW. The outputs of the power generation and fuel cost of
various algorithms like OGWO, IPSO, IGA, RCGA, COA, ORCSA, PIO and OPIO are
shown in Table 3: the best cost of the PIO and OPIO algorithms reached 136,588.57 $/h and
136,447.87$/h, respectively; it is also notable that the OPIO algorithm provided the best solu-
tion among the compared techniques, by achieving the load demand and other constraints.

Mathematics 2022, 10, 3315 14 of 24

Mathematics 2022, 10, x 14 of 25

ORCSA 24,513.54 24,513.54 24,516.67 NA 87 8.65

PIO 24520.54 24521.75 24532.95 0.2645 79 11.00

OPIO (Pro‐

posed)
24512.45 24512.67 24513.54 0.0875 97 5.14

Figure 2. Convergence results of the OPIO and PIO algorithms for a 13‐unit system.

5.2. Test Case 1b: 40‐Unit

To access the feasibility of the proposed OPIO algorithm, another small‐scale test

case, of a 40‐unit power generation system along with value‐point belongings, was used.

The benchmark value of the 40‐unit power system was approached from [43], and its load

demand was fixed as 10,500 MW. The outputs of the power generation and fuel cost of

various algorithms like OGWO, IPSO, IGA, RCGA, COA, ORCSA, PIO and OPIO are

shown in Table 3: the best cost of the PIO and OPIO algorithms reached 136,588.57 $/h

and 136,447.87$/h, respectively; it is also notable that the OPIO algorithm provided the

best solution among the compared techniques, by achieving the load demand and other

constraints.

Table 3. Simulation outcomes of different algorithms for a 40‐unit system with PD = 10,500 MW.

Unit OGWO IPSO COA ORCSA PIO
OPIO

(Proposed)

1 114.2743 114.2876 113.8502 110.12 111.52 114.24

2 114.4501 114.4621 114.1203 112.28 112.34 114.12

3 120.3567 120.4212 119.7458 120.23 119.28 120.31

4 183.3685 181.5412 182.4127 188.54 182.45 190.54

5 87.1256 87.3542 88.5864 85.37 87.34 97.56

6 140.3645 140.3747 140.3289 140.24 139.52 140.25

7 300.1254 300.2346 299.6517 250.28 198.24 300.54

8 300.2349 300.3277 292.3428 290.74 186.38 300.26

9 300.4501 300.4578 299.6433 300.52 193.12 300.49

10 279.0451 279.3874 279.5423 282.31 179.41 205.49

11 243.3277 243.6752 168.2597 180.25 162.27 226.47

12 94.5874 94.3259 94.2355 168.52 94.39 204.56

13 484.3051 484.4578 484.2511 469.78 486.22 346.52

Figure 2. Convergence results of the OPIO and PIO algorithms for a 13-unit system.

Table 3. Simulation outcomes of different algorithms for a 40-unit system with PD = 10,500 MW.

Unit OGWO IPSO COA ORCSA PIO OPIO
(Proposed)

1 114.2743 114.2876 113.8502 110.12 111.52 114.24
2 114.4501 114.4621 114.1203 112.28 112.34 114.12
3 120.3567 120.4212 119.7458 120.23 119.28 120.31
4 183.3685 181.5412 182.4127 188.54 182.45 190.54
5 87.1256 87.3542 88.5864 85.37 87.34 97.56
6 140.3645 140.3747 140.3289 140.24 139.52 140.25
7 300.1254 300.2346 299.6517 250.28 198.24 300.54
8 300.2349 300.3277 292.3428 290.74 186.38 300.26
9 300.4501 300.4578 299.6433 300.52 193.12 300.49

10 279.0451 279.3874 279.5423 282.31 179.41 205.49
11 243.3277 243.6752 168.2597 180.25 162.27 226.47
12 94.5874 94.3259 94.2355 168.52 94.39 204.56
13 484.3051 484.4578 484.2511 469.78 486.22 346.52
14 484.1584 484.3277 484.6425 484.26 487.33 434.58
15 484.2314 484.3542 484.3266 487.39 483.26 431.29
16 484.5412 484.1564 484.6501 482.62 484.25 440.21
17 489.5781 489.6475 489.4523 499.16 494.61 500.34
18 489.4578 489.5423 489.6244 411.19 489.76 500.33
19 511.8785 511.6432 511.1289 510.27 512.34 550.27
20 511.8754 511.5428 511.6451 542.37 513.21 550.96
21 523.3228 523.5746 549.3347 544.29 543.18 550.14
22 546.3738 547.7433 549.6455 550.29 548.38 550.54
23 523.1035 523.4728 523.4589 550.37 521.56 550.32
24 523.0678 523.1532 523.4313 528.18 525.23 550.46
25 523.5181 523.4421 523.1204 524.67 529.67 550.28
26 523.4767 523.4775 523.4217 539.28 540.31 550.39
27 10.3344 10.1067 10.1265 10.34 12.46 11.27
28 10.8011 10.7836 10.1024 10.24 10.96 11.34
29 10.6445 10.4521 10.2301 10.22 10.34 11.16
30 87.302 87.9827 87.6658 96.42 89.45 97.16
31 190.5847 190.2498 190.1322 185.24 189.04 190.34
32 190.8664 190.3277 189.4582 189.26 189.47 190.28
33 190.9983 190.4562 190.4251 189.37 187.43 190.64
34 200.5471 200.2841 199.2217 199.16 198.27 200.34
35 200.5847 200.6128 200.7541 196.54 199.69 200.41
36 164.9983 164.9833 164.3242 185.28 165.34 200.67
37 110.2147 110.2348 110.2323 109.58 109.54 110.24
38 110.3341 110.4355 109.2344 110.76 109.31 110.11
39 110.4616 110.5436 110.3333 95.17 109.44 110.37
40 511.9904 511.2239 550.4219 532.59 548.23 550.16

Fuel Cost ($/h) 136,441.8527 136,446.7842 136,442.689 136,549.8756 136,588.5746 136,441.876
Power loss (MW) 964.75 963.2045 945.2143 958.39 979.85 940.12

Mathematics 2022, 10, 3315 15 of 24

The comparative outcomes of the overall fuel cost, success rate, standard deviation
and execution time acquired by the OPIO algorithm, along with the various techniques, are
given in Table 4. Based on Table 4, the OPIO algorithm achieved the best solution 96 times
out of 100 trials. In addition, the mean costs of the OPIO and IPSO algorithms were equal
to 136,441.87$/h and 136,542.87$/h, respectively. This clearly shows that the statistical
outcomes of the OPIO algorithm were more stable than those of the OGWO, IPSO, COA,
RCGA, ORCSA and PIO algorithms. In addition, the time required to achieve the minimal
fuel cost for the proposed algorithm was 10.14/sec, which was minimal in relation to other
algorithms. The convergence graph of the total fuel cost of the proposed OPIO algorithm
and the conventional PIO algorithm is given in Figure 3. Based on Figure 3, it can be
seen that the formulated OPIO procedure provides the best active rate compared to the
PIO algorithm.

Table 4. Comparison results of various algorithms for a 40-unit system.

Algorithms Best ($/H) Mean ($/H) Worst ($/H) Standard
Deviation

Successful
Runs (%) Test Time (S)

OGWO 136,441.85 136,445.87 136,447.54 0.1365 94 11.52
IPSO 136,446.78 136,542.87 136,588.55 0.2345 89 12.65
IGA 136,454.56 NA NA NA NA NA
RCGA 136,587.21 136,687.52 136,742.65 0.3874 84 13.41
COA 136,442.68 136,448.54 136,468.54 0.1865 92 12.87
ORCSA 136,549.87 NA NA NA NA NA
PIO 136,588.57 136,698.32 136,721.54 NA NA NA
OPIO (Proposed) 136,441.87 136,441.95 136,443.81 0.1021 96 10.14

Mathematics 2022, 10, x 16 of 25

RCGA 136,587.21 136,687.52 136,742.65 0.3874 84 13.41

COA 136,442.68 136,448.54 136,468.54 0.1865 92 12.87

ORCSA 136,549.87 NA NA NA NA NA

PIO 136,588.57 136,698.32 136,721.54 NA NA NA

OPIO (Proposed) 136,441.87 136,441.95 136,443.81 0.1021 96 10.14

Figure 3. Convergence results of the OPIO and PIO algorithms for a 40‐unit system.

5.3. Test Case 2a: 140‐Unit

In this instance, the formulated PIO algorithm was tested on the medium‐scale of a

140‐unit power generation system, and the load order was taken as 49,342 MW [46]. In

this test case, non‐smooth constraints, such as value‐point consequence, interdicted exe‐

cuting section and ramp‐limits were included. The execution was repeated for 100 trials,

to confirm the dominance of the proposed methods with the obtained results of the

OGWO, IPSO, COA, RCGA, ORCSA and PIO algorithms, which are presented in Table 5.

As shown in Table 5, the OPIO reached 1,559,498.78$/h, which was the minimum, com‐

pared to the other algorithms. In other words, the obtained outcomes clearly showed that

the OPIO algorithm achieved a low fuel‐cost value, compared to other methods.

Table 5. Test outcomes of various algorithms for a 140‐unit system with PD = 49,342 MW.

Unit PIO
OPIO

(Proposed)
Unit PIO

OPIO

(Proposed)
Unit PIO

OPIO

(Proposed)

1 114.3542 119.1244 48 250.2564 250.4159 95 978.1244 978.2456

2 189.2341 189.2344 49 250.3577 250.3648 96 682.3277 682.1247

3 190.2134 190.2333 50 250.4525 250.3014 97 720.2441 720.1689

4 190.2625 190.2455 51 165.2134 165.4258 98 718.2355 718.2245

5 168.7569 168.6479 52 165.3426 165.2486 99 720.2466 720.3144

6 190.2345 190.3247 53 165.5412 165.4857 100 964.2344 964.2188

7 490.2625 490.2655 54 165.5122 165.5574 101 958.3477 958.2177

8 490.3438 490.3677 55 180.3211 180.2675 102 1007.1255 1007.5248

9 496.5255 496.5829 56 180.2144 180.5974 103 1006.3425 1006.7413

10 496.5648 496.5574 57 103.2644 103.4428 104 1013.6487 1013.6944

11 496.6522 496.6548 58 198.4522 198.5674 105 1020.6666 1020.1024

12 496.7566 496.7742 59 312.3248 312.4295 106 954.2377 954.2188

13 506.2256 506.2389 60 280.9517 282.5479 107 952.1244 952.1277

14 509.3364 509.4861 61 163.3211 163.4287 108 106.3244 1006.2384

Figure 3. Convergence results of the OPIO and PIO algorithms for a 40-unit system.

5.3. Test Case 2a: 140-Unit

In this instance, the formulated PIO algorithm was tested on the medium-scale of
a 140-unit power generation system, and the load order was taken as 49,342 MW [46].
In this test case, non-smooth constraints, such as value-point consequence, interdicted
executing section and ramp-limits were included. The execution was repeated for 100 trials,
to confirm the dominance of the proposed methods with the obtained results of the OGWO,
IPSO, COA, RCGA, ORCSA and PIO algorithms, which are presented in Table 5. As shown
in Table 5, the OPIO reached 1,559,498.78$/h, which was the minimum, compared to the
other algorithms. In other words, the obtained outcomes clearly showed that the OPIO
algorithm achieved a low fuel-cost value, compared to other methods.

Mathematics 2022, 10, 3315 16 of 24

Table 5. Test outcomes of various algorithms for a 140-unit system with PD = 49,342 MW.

Unit PIO OPIO
(Proposed) Unit PIO OPIO

(Proposed) Unit PIO OPIO
(Proposed)

1 114.3542 119.1244 48 250.2564 250.4159 95 978.1244 978.2456
2 189.2341 189.2344 49 250.3577 250.3648 96 682.3277 682.1247
3 190.2134 190.2333 50 250.4525 250.3014 97 720.2441 720.1689
4 190.2625 190.2455 51 165.2134 165.4258 98 718.2355 718.2245
5 168.7569 168.6479 52 165.3426 165.2486 99 720.2466 720.3144
6 190.2345 190.3247 53 165.5412 165.4857 100 964.2344 964.2188
7 490.2625 490.2655 54 165.5122 165.5574 101 958.3477 958.2177
8 490.3438 490.3677 55 180.3211 180.2675 102 1007.1255 1007.5248
9 496.5255 496.5829 56 180.2144 180.5974 103 1006.3425 1006.7413

10 496.5648 496.5574 57 103.2644 103.4428 104 1013.6487 1013.6944
11 496.6522 496.6548 58 198.4522 198.5674 105 1020.6666 1020.1024
12 496.7566 496.7742 59 312.3248 312.4295 106 954.2377 954.2188
13 506.2256 506.2389 60 280.9517 282.5479 107 952.1244 952.1277
14 509.3364 509.4861 61 163.3211 163.4287 108 106.3244 1006.2384
15 506.2355 506.2479 62 95.2347 95.2261 109 1013.2311 1013.5244
16 505.2144 505.2498 63 160.2358 160.4521 110 1021.6322 1021.5644
17 506.3422 506.3451 64 160.3459 160.2349 111 1015.2344 1015.2988
18 506.9548 506.4692 65 490.2378 490.2587 112 94.2155 94.2577
19 505.2344 505.6498 66 196.4356 196.5477 113 94.3157 94.2188
20 505.3214 505.4582 67 490.5612 490.6287 114 94.4233 94.1024
21 505.4255 505.2398 68 490.6458 489.3017 115 244.5612 244.1657
22 505.5412 505.2179 69 130.2648 130.2688 116 244.6124 244.1287
23 505.5378 505.2489 70 234.8465 234.5144 117 244.8477 244.5218
24 505.6522 505.9548 71 137.2659 137.2955 118 95.3244 95.2476
25 537.4612 537.2144 72 325.5641 325.4872 119 95.6245 95.2348
26 537.2344 537.3499 73 195.2347 195.3488 120 116.2377 116.2478
27 549.6254 549.2674 74 175.4529 175.6247 121 175.4298 175.3489
28 549.3244 549.3014 75 175.2349 175.4277 122 2.2144 2.1758
29 501.2333 501.2648 76 175.8945 175.6648 123 4.3322 4.1689
30 501.4622 501.3478 77 175.5217 175.2486 124 15.4625 15.4873
31 506.2477 506.2018 78 330.2175 330.2487 125 9.2344 9.2481
32 506.2344 506.3014 79 531.2648 531.1248 126 12.9588 12.6475
33 506.2237 506.4251 80 531.2647 531.2476 127 10.2647 10.6598
34 506.8546 506.6517 81 398.4275 436.2186 128 112.6599 112.4581
35 500.2649 500.2689 82 56.1975 56.2874 129 4.2689 43275
36 500.2014 500.2478 83 115.2348 115.3495 130 5.2644 5.1694
37 241.3645 241.2349 84 115.4756 115.6248 131 5.6544 5.4572
38 241.6477 241.2847 85 115.2679 115.7749 132 50.2688 50.6489
39 774.2655 774.5842 86 207.6548 207.4568 133 5.2177 5.1483
40 769.8542 769.4158 87 207.1673 207.1168 134 42.6588 42.5976
41 3.9655 3.2685 88 175.9485 175.4906 135 42.7588 42.6577
42 3.8522 3.1749 89 175.2648 175.2681 136 41.2355 41.6572
43 250.3466 250.3489 90 175.3348 175.6489 137 17.6588 17.2954
44 246.5147 249.5681 91 175.2247 175.2213 138 17.4955 17.3597
45 250.3416 250.3189 92 580.2234 580.6477 139 7.2655 7.2265
46 250.3429 250.6475 93 645.1958 645.2188 140 26.5884 26.4621

47 240.3168 249.6257 94 984.2655 984.2377 Fuel Cost
($/H) 1,560,412.55 1,559,498.78

Moreover, the statistical outcomes of the formulated OPIO algorithm, and various
conventional procedures, are given in Table 6. Based on Table 6, the formulated OPIO algo-
rithm provided the best outcomes, in terms of best, worst and mean cost, and less execution
time compared to the various procedures. However, the best and mean costs of the OPIO
and COA algorithms were equal to 1,559,498.78 $/h, 1,559,499.21 $/h, 1,559,521.36 $/h and
1,559,521.88 $/h, respectively. Even though the COA algorithm competed with the OPIO
algorithm, the OPIO algorithm was quite efficient in achieving the best outcome in minimal

Mathematics 2022, 10, 3315 17 of 24

iterations, compared to the various procedures. The convergence of the formulated OPIO
algorithm and the conventional PIO methods with iteration cycles is displayed in fig 4.
From Figure 4, it can be seen that the OPIO technique attained the best solution within
20 iterations; this confirms that the OPIO algorithm had better convergence, because of its
magnificent diversification and intensification abilities.

Table 6. Statistical comparison results of test case 2a (140-unit system with PD = 49,342 MW).

Algorithms Best ($/H) Mean ($/H) Worst ($/H) Standard
Deviation

Successful
Runs (%) Test Time (S)

OGWO 1,559,710.65 1,559,715.64 1,559,751.21 0.1512 95 43.98
IPSO 1,560,453.89 NA NA NA NA NA
IGA 1,561,254.85 NA NA NA NA NA
RCGA 1,559,957.62 1,560,521.35 1,561,542.96 0.5641 84 49.54
COA 1,559,499.21 1,559,521.88 1,559,645.21 0.1234 92 44.66
ORCSA 1,559,987.42 1,560,387.36 1,561,662.54 NA NA NA
PIO 1,560,412.55 1,561,542.13 1,562,874.62 NA NA NA
OPIO (Proposed) 1,559,498.78 1,559,521.36 1,559,587.62 0.1123 96 40.21

Mathematics 2022, 10, x 18 of 25

Table 6. Statistical comparison results of test case 2a (140‐unit system with PD = 49,342 MW).

Algorithms Best ($/H) Mean ($/H) Worst ($/H)
Standard Devia‐

tion

Successful

Runs (%)
Test Time (S)

OGWO 1,559,710.65 1,559,715.64 1,559,751.21 0.1512 95 43.98

IPSO 1,560,453.89 NA NA NA NA NA

IGA 1,561,254.85 NA NA NA NA NA

RCGA 1,559,957.62 1,560,521.35 1,561,542.96 0.5641 84 49.54

COA 1,559,499.21 1,559,521.88 1,559,645.21 0.1234 92 44.66

ORCSA 1,559,987.42 1,560,387.36 1,561,662.54 NA NA NA

PIO 1,560,412.55 1,561,542.13 1,562,874.62 NA NA NA

OPIO (Proposed) 1,559,498.78 1,559,521.36 1,559,587.62 0.1123 96 40.21

Figure 4. Convergence results of the OPIO and PIO algorithms for a 140‐unit system.

5.4. Test Case 2b: 160‐Unit

To access the feasibility of the formulated OPIO technique, another medium‐scale

test case of a 160‐unit test system, along with non‐convex value‐point properties, was

used. As to validation, the viability and efficacy of the formulated technique transmission

loss was unnoticeable. For this medium‐scale unit, a replicated 10 different fuel‐option

values were taken from [41], the power load was increased by 16, and the power load was

fixed as 43,200 MW. Table 7 provides the attained better cost of the proposed OPIO algo‐

rithm, with other algorithms, by satisfying the constraints. Based on Table 7, the OPIO

achieved 9625.15 $/h, which was the best result, compared to the other algorithms. This

confirms that the least total fuel cost was for the 160‐unit generation system.

Table 7. Test outcomes of various algorithms for 160‐unit system with PD = 43,200 MW.

Unit PIO
OPIO

(Proposed)
Unit PIO

OPIO

(Proposed)
Unit PIO

OPIO

(Proposed)

1 211.1057 224.3218 55 207.3485 265.4215 109 402.5278 430.2109

2 208.4572 200.6548 56 254.6289 257.1026 110 272.9458 260.5614

3 335.6534 355.2671 57 294.3275 277.3041 111 199.2658 217.4259

4 243.9547 228.4601 58 245.2964 235.4216 112 204.7594 199.6504

5 266.1958 305.4286 59 420.3581 394.5027 113 251.4298 357.2169

Figure 4. Convergence results of the OPIO and PIO algorithms for a 140-unit system.

5.4. Test Case 2b: 160-Unit

To access the feasibility of the formulated OPIO technique, another medium-scale test
case of a 160-unit test system, along with non-convex value-point properties, was used.
As to validation, the viability and efficacy of the formulated technique transmission loss
was unnoticeable. For this medium-scale unit, a replicated 10 different fuel-option values
were taken from [41], the power load was increased by 16, and the power load was fixed
as 43,200 MW. Table 7 provides the attained better cost of the proposed OPIO algorithm,
with other algorithms, by satisfying the constraints. Based on Table 7, the OPIO achieved
9625.15 $/h, which was the best result, compared to the other algorithms. This confirms
that the least total fuel cost was for the 160-unit generation system.

Mathematics 2022, 10, 3315 18 of 24

Table 7. Test outcomes of various algorithms for 160-unit system with PD = 43,200 MW.

Unit PIO OPIO
(Proposed) Unit PIO OPIO

(Proposed) Unit PIO OPIO
(Proposed)

1 211.1057 224.3218 55 207.3485 265.4215 109 402.5278 430.2109
2 208.4572 200.6548 56 254.6289 257.1026 110 272.9458 260.5614
3 335.6534 355.2671 57 294.3275 277.3041 111 199.2658 217.4259
4 243.9547 228.4601 58 245.2964 235.4216 112 204.7594 199.6504
5 266.1958 305.4286 59 420.3581 394.5027 113 251.4298 357.2169
6 237.4295 249.5013 60 270.1485 278.1659 114 249.5048 251.4209
7 282.1473 309.4681 61 198.3475 240.3415 115 266.4175 267.2044
8 239.6475 218.4627 62 212.3458 213.1452 116 240.5219 252.3011
9 408.6427 335.2485 63 348.2571 241.6521 117 290.3584 290.4255

10 265.4581 270.4195 64 259.2543 248.6574 118 242.1507 233.4452
11 225.1049 187.2589 65 292.8594 232.2485 119 412.6259 329.5622
12 217.4685 195.4271 66 221.6579 245.6574 120 242.4957 300.4586
13 336.4216 353.2049 67 286.5419 310.2415 121 211.1048 237.5248
14 232.4582 241.6204 68 242.3859 232.5218 122 210.6247 207.6648
15 259.3248 273.4209 69 348.5796 353.2016 123 245.6284 237.5601
16 237.4581 228.1064 70 288.6473 281.4025 124 227.2094 210.6598
17 265.3482 277.4295 71 227.4961 219.4259 125 273.4587 241.2045
18 236.5219 224.1058 72 215.3333 220.4015 126 250.6418 246.5129
19 414.2188 404.6257 73 339.4857 343.2016 127 258.6458 293.3277
20 272.3158 314.2045 74 244.6589 250.4012 128 243.4109 245.2011
21 222.2507 205.4952 75 280.4276 273.5248 129 382.4692 431.2655
22 204.3258 200.4672 76 231.5942 217.5486 130 296.4108 248.5555
23 333.2429 374.1526 77 286.4957 305.4295 131 200.1472 199.7468
24 237.3854 234.1059 78 225.3489 243.4582 132 214.2845 217.4511
25 304.5521 284.1057 79 282.6472 253.6241 133 334.2074 242.6589
26 245.2965 221.4695 80 265.3485 271.9648 134 234.6248 229.3544
27 265.5421 253.1284 81 223.4685 223.4258 135 286.3049 250.3014
28 237.4951 223.6244 82 200.1479 191.3045 136 247.1658 236.1045
29 381.2659 241.5019 83 334.6517 349.5261 137 290.6547 305.1588
30 267.3204 280.6642 84 246.5923 234.5201 138 229.3104 230.4266
31 223.1584 175.4269 85 274.2986 275.2496 139 391.6248 430.2984
32 214.6549 203.6248 86 249.1634 208.4257 140 270.6248 257.1659
33 334.5671 348.2015 87 297.5842 282.5967 141 212.4286 228.4358
34 247.9547 219.5202 88 240.6713 255.3048 142 226.1958 184.2384
35 250.4682 283.4029 89 340.2986 409.4672 143 335.2648 370.5691
36 229.4572 244.1527 90 291.4726 269.3541 144 245.1382 219.4581
37 265.4953 313.2658 91 212.4589 192.3547 145 261.2017 263.1594
38 243.1572 236.1259 92 210.4976 201.1064 146 244.6218 235.4275
39 413.2685 340.2015 93 337.4682 350.2496 147 294.3581 300.6598
40 277.5878 333.3541 94 236.4196 258.6412 148 235.2481 242.1574
41 202.1574 230.5298 95 261.77165 290.3485 149 390.2571 387.4598
42 228.6257 209.9654 96 235.6279 226.4153 150 253.4192 267.4125
43 352.1469 341.4027 97 278.9648 299.4035 151 193.2488 184.5298
44 227.4583 233.6248 98 237.5944 223.4257 152 222.5027 212.4158
45 272.4159 299.1047 99 420.6519 366.6591 153 355.9418 376.1548
46 241.6051 263.5218 100 268.1695 288.4251 154 242.3158 248.5476
47 266.5384 243.6201 101 224.3186 227.2045 155 277.6428 278.1549
48 230.4572 212.3048 102 209.6581 210.5499 156 246.7128 223.2435
49 423.6514 362.4295 103 337.9547 363.2011 157 318.5472 264.6248
50 254.9571 303.2048 104 230.9528 222.3495 158 241.6014 234.5278
51 280.9654 181.4269 105 269.4681 234.1058 159 341.6547 390.4855
52 211.4582 211.5274 106 235.6428 232.4259 160 261.2485 286.4597
53 337.4692 364.6542 107 274.9648 282.3045 Fuel Cost

($/H) 9738.4526 9625.157354 238.4729 234.9512 108 244.3018 236.4159

Mathematics 2022, 10, 3315 19 of 24

The statistical results from over 100 trials of the proposed algorithm, compared to
the OGWO, IPSO, IGA, RCGA, COA, ORCSA and PIO algorithms, are shown in Table 8:
as can be seen, the OPIO algorithm performance—for example, best (9625.44 $/h), mean
(9647.62 $/h) and worst (9649.62 $/h)—was relatively acceptable, whereas the other algo-
rithms deteriorated, due to an increase in the number of generators and traps in the locally
optimal solutions. As per the acquired outcomes, we observed that the formulated OPIO
technique was more vigorous and systematically structured, compared to the conventional
and various algorithms. The active loop of formulated technique and conventional algo-
rithm with iteration cycle is displayed in Figure 5. Figure 5 shows that the formulated
procedure provided feasible convergence within 25 iterations, though there was an increase
in the number of generation units compared to the standard PIO algorithm.

Table 8. Statistical comparison results for test case 2b (160-unit with PD = 43,200 MW).

Algorithms Best ($/H) Mean
($/H)

Worst
($/H)

Standard
Deviation

Successful
Runs (%)

Test time
(S)

OGWO 9768.62 9772.21 9774.62 0.1421 94 18.52
IPSO 10,008.65 10,009.65 10,010.56 0.3654 85 36.95
IGA 10,009.82 10,010.98 10,011.26 NA NA NA

RCGA 9954.23 10,002.62 10,004.63 0.4521 90 27.62
COA 9664.32 9702.36 9776.85 0.1262 94 16.85

ORCSA 9845.45 9898.12 9902.42 NA NA NA
PIO 9738.45 9812.64 9836.95 0.3641 88 44.34

OPIO
(Proposed) 9625.15 9647.62 9649.62 0.1145 96 16.21

Mathematics 2022, 10, x 20 of 25

The statistical results from over 100 trials of the proposed algorithm, compared to the

OGWO, IPSO, IGA, RCGA, COA, ORCSA and PIO algorithms, are shown in Table 8: as

can be seen, the OPIO algorithm performance—for example, best (9625.44 $/h), mean

(9647.62 $/h) and worst (9649.62 $/h)—was relatively acceptable, whereas the other algo‐

rithms deteriorated, due to an increase in the number of generators and traps in the locally

optimal solutions. As per the acquired outcomes, we observed that the formulated OPIO

technique was more vigorous and systematically structured, compared to the conven‐

tional and various algorithms. The active loop of formulated technique and conventional

algorithm with iteration cycle is displayed in Figure 5. Figure 5 shows that the formulated

procedure provided feasible convergence within 25 iterations, though there was an in‐

crease in the number of generation units compared to the standard PIO algorithm.

Table 8. Statistical comparison results for test case 2b (160‐unit with PD = 43,200 MW).

Algorithms Best ($/H)
Mean

($/H)

Worst

($/H)

Standard

Deviation

Successful

Runs (%)
Test time (S)

OGWO 9768.62 9772.21 9774.62 0.1421 94 18.52

IPSO 10,008.65 10,009.65 10,010.56 0.3654 85 36.95

IGA 10,009.82 10,010.98 10,011.26 NA NA NA

RCGA 9954.23 10,002.62 10,004.63 0.4521 90 27.62

COA 9664.32 9702.36 9776.85 0.1262 94 16.85

ORCSA 9845.45 9898.12 9902.42 NA NA NA

PIO 9738.45 9812.64 9836.95 0.3641 88 44.34

OPIO (Pro‐

posed)
9625.15 9647.62 9649.62 0.1145 96 16.21

Figure 5. Convergence results of the OPIO and PIO algorithms for a 160‐unit system.

5.5. Test Case 3a: 320‐Unit

In this instance, a wide scale 320‐unit generation system, that included a value‐point

effect and three various fuel possibilities, was used to evaluate the execution of the for‐

mulated OPIO technique. For this 320‐unit system, 32 times replicated, 10 different fuel

options were taken from [41], and the power load was considered as 86,400 MW. Simula‐

tion results were carried out for 1000 iterations, for the 320‐unit generation system, and

its comparative results are illustrated in Table 9. Table 9 shows that the OPIO algorithm

provided 19,968.95$/h, which was the minimal production cost compared to different

Figure 5. Convergence results of the OPIO and PIO algorithms for a 160-unit system.

5.5. Test Case 3a: 320-Unit

In this instance, a wide scale 320-unit generation system, that included a value-point
effect and three various fuel possibilities, was used to evaluate the execution of the for-
mulated OPIO technique. For this 320-unit system, 32 times replicated, 10 different fuel
options were taken from [41], and the power load was considered as 86,400 MW. Simulation
results were carried out for 1000 iterations, for the 320-unit generation system, and its com-
parative results are illustrated in Table 9. Table 9 shows that the OPIO algorithm provided
19,968.95$/h, which was the minimal production cost compared to different state-of-the-art
algorithms. On the other hand, the test times of the COA and OPIO algorithms were nearly
equal, at 412.95/sec and 410.65/sec, respectively. However, the OPIO algorithm showed a
unique performance, in attaining the best fuel cost for 96 runs out of 100 trials. This proves

Mathematics 2022, 10, 3315 20 of 24

that the formulated OPIO algorithm was vigorous, and deliberately well-organized, com-
pared to the PIO algorithm and the different approaches presented in this study. To ensure
the efficacy of the formulated OPIO technique, the convergence over different iterations is
shown in Figure 6. From Figure 6, it can be seen that the execution of the OPIO technique
provided the best convergence over the standard PIO algorithm.

Table 9. Statistical comparison results of test case 3a (320-unit system with PD = 86,400 MW).

Algorithms Best ($/H) Mean ($/H) Worst ($/H) Standard
Deviation

Successful
Runs (%) Test Time (S)

OGWO 19,985.62 19,989.41 19,992.34 0.5465 86 489.35
COA 19,971.43 19,986.37 19,990.75 0.7248 92 412.95
ORCSA 20,045.29 NA NA NA NA NA
PIO 20,254.42 20,267.95 20,312.61 NA NA 527.24
OPIO
(Proposed) 19,968.95 19,972.16 19,978.91 0.4087 96 410.65

Mathematics 2022, 10, x 21 of 25

state‐of‐the‐art algorithms. On the other hand, the test times of the COA and OPIO algo‐

rithms were nearly equal, at 412.95/sec and 410.65/sec, respectively. However, the OPIO

algorithm showed a unique performance, in attaining the best fuel cost for 96 runs out of

100 trials. This proves that the formulated OPIO algorithm was vigorous, and deliberately

well‐organized, compared to the PIO algorithm and the different approaches presented

in this study. To ensure the efficacy of the formulated OPIO technique, the convergence

over different iterations is shown in Figure 6. From Figure 6, it can be seen that the execu‐

tion of the OPIO technique provided the best convergence over the standard PIO algo‐

rithm.

Table 9. Statistical comparison results of test case 3a (320‐unit system with PD = 86,400 MW).

Algorithms Best ($/H) Mean ($/H) Worst ($/H)
Standard De‐

viation

Successful

Runs (%)
Test Time (S)

OGWO 19,985.62 19,989.41 19,992.34 0.5465 86 489.35

COA 19,971.43 19,986.37 19,990.75 0.7248 92 412.95

ORCSA 20,045.29 NA NA NA NA NA

PIO 20,254.42 20,267.95 20,312.61 NA NA 527.24

OPIO (Proposed) 19,968.95 19,972.16 19,978.91 0.4087 96 410.65

Figure 6. Convergence results of the OPIO and PIO algorithms for a 320‐unit system.

5.6. Test Case 3b: 640‐Unit

To ensure the efficacy of the formulated OPIO method, we tested it on another large‐

scale generation system, a 640‐unit system with value‐point properties and three various

fuel possibilities. This 640‐unit system included the data of 10 multiple‐fuel systems from

[41], which were duplicated 64 times, and the load demand was fixed at 172,800 MW. The

simulation results of the 640‐unit system were iterated over 1000 iterations, and its com‐

parative results are shown in Table 10, where it can be seen that the OPIO algorithm

achieved minimum fuel cost related to the various state‐of‐the‐art techniques. The statis‐

tical results achieved, by performing 100 trials of the different algorithms and their com‐

parative outcomes, are illustrated in Table 10, which shows that the OPIO algorithm

reached 39,963.78 $/h by balancing the local search and global search, as well as converg‐

ing faster towards the optimal solution. Moreover, the OPIO algorithm achieved the best

solution for almost 96 runs out of 100 trials, which clearly demonstrates that the proposed

algorithm can sustain the best position for various runs. The convergence results of the

proposed OPIO algorithm and the PIO algorithm are displayed in Figure 7. In Figure 7,

the formulated OPIO technique provided better convergence, which demonstrates its su‐

Figure 6. Convergence results of the OPIO and PIO algorithms for a 320-unit system.

5.6. Test Case 3b: 640-Unit

To ensure the efficacy of the formulated OPIO method, we tested it on another large-
scale generation system, a 640-unit system with value-point properties and three various
fuel possibilities. This 640-unit system included the data of 10 multiple-fuel systems
from [41], which were duplicated 64 times, and the load demand was fixed at 172,800 MW.
The simulation results of the 640-unit system were iterated over 1000 iterations, and its
comparative results are shown in Table 10, where it can be seen that the OPIO algorithm
achieved minimum fuel cost related to the various state-of-the-art techniques. The statistical
results achieved, by performing 100 trials of the different algorithms and their comparative
outcomes, are illustrated in Table 10, which shows that the OPIO algorithm reached
39,963.78 $/h by balancing the local search and global search, as well as converging faster
towards the optimal solution. Moreover, the OPIO algorithm achieved the best solution for
almost 96 runs out of 100 trials, which clearly demonstrates that the proposed algorithm can
sustain the best position for various runs. The convergence results of the proposed OPIO
algorithm and the PIO algorithm are displayed in Figure 7. In Figure 7, the formulated
OPIO technique provided better convergence, which demonstrates its superiority over the
standard PIO algorithm and other state-of-the-art techniques. The overall experimentation
outcomes convey that the proposed OPIO algorithm achieved better efficiency, along with
a trade-off between exploration and exploitation.

Mathematics 2022, 10, 3315 21 of 24

Table 10. Comparison results of various algorithms on a 640-unit system.

Algorithms Best ($/H) Mean ($/H) Worst ($/H) Standard
Deviation

Successful
Runs (%) Test time (S)

OGWO 40,123.65 40,132.85 40,152.18 0.8542 90 704.85
COA 39,968.81 39,970.52 39,974.32 0.3419 94 682.54
ORCSA 40,189.62 NA NA NA NA NA
PIO 41,072.28 NA NA NA NA NA
OPIO
(Proposed) 39,963.78 39,964.75 39,967.82 0.2451 96 677.27

Mathematics 2022, 10, x 22 of 25

periority over the standard PIO algorithm and other state‐of‐the‐art techniques. The over‐

all experimentation outcomes convey that the proposed OPIO algorithm achieved better

efficiency, along with a trade‐off between exploration and exploitation.

Table 10. Comparison results of various algorithms on a 640‐unit system.

Algorithms Best ($/H) Mean ($/H) Worst ($/H)
Standard De‐

viation

Successful

Runs (%)
Test time (S)

OGWO 40,123.65 40,132.85 40,152.18 0.8542 90 704.85

COA 39,968.81 39,970.52 39,974.32 0.3419 94 682.54

ORCSA 40,189.62 NA NA NA NA NA

PIO 41,072.28 NA NA NA NA NA

OPIO (Proposed) 39,963.78 39,964.75 39,967.82 0.2451 96 677.27

Figure 7. Convergence results of the OPIO and PIO algorithms for a 640‐unit system.

5.7. The Result Analysis of Wilcoxon Signed‐Rank Test

In this work, a non‐parametric test—namely, the Wilcoxon signed‐rank test—was

utilized, to perform the statistical comparison of the proposed algorithm with the com‐

pared algorithms. The best solutions were attained by each technique for the correspond‐

ing test cases during 30 independent runs. In this study, the Wilcoxon signed‐rank test

was performed with a significance level 0.05. The results, analyzed by the Wilcoxon

signed‐rank test, are presented in Table 11 for test cases of 13, 40, 140, 160, 320 and 640‐

generating units. In Table 11, the significance differences of the proposed algorithm and

compared algorithms are marked with the value of H (i.e., H with a value of 1 specifies

that there was a significance difference; otherwise, the H value is 0, if there was no signif‐

icance difference). In addition, the symbol S with “+”, “=” and “_” denotes that the pro‐

posed technique was superior, equal or inferior, respectively, to the compared algorithms.

Furthermore, we used four compared algorithms generically, to determine the signifi‐

cance difference with the proposed algorithm. It is clear from Table 11 that the proposed

OPIO algorithm provided results superior to those of the COA, ORCSA and PIO algo‐

rithms, and equal to the OGWO algorithm for the test case 13‐unit system. For the test

case 40‐unit system, the OPIO algorithm provided results superior to those of the COA,

ORCSA and PIO algorithms, but not to the OGWO algorithm. Finally, w/t/l specified the

Figure 7. Convergence results of the OPIO and PIO algorithms for a 640-unit system.

5.7. The Result Analysis of Wilcoxon Signed-Rank Test

In this work, a non-parametric test—namely, the Wilcoxon signed-rank test—was
utilized, to perform the statistical comparison of the proposed algorithm with the compared
algorithms. The best solutions were attained by each technique for the corresponding
test cases during 30 independent runs. In this study, the Wilcoxon signed-rank test was
performed with a significance level α = 0.05. The results, analyzed by the Wilcoxon signed-
rank test, are presented in Table 11 for test cases of 13, 40, 140, 160, 320 and 640-generating
units. In Table 11, the significance differences of the proposed algorithm and compared
algorithms are marked with the value of H (i.e., H with a value of 1 specifies that there was
a significance difference; otherwise, the H value is 0, if there was no significance difference).
In addition, the symbol S with “+”, “=” and “_” denotes that the proposed technique
was superior, equal or inferior, respectively, to the compared algorithms. Furthermore,
we used four compared algorithms generically, to determine the significance difference
with the proposed algorithm. It is clear from Table 11 that the proposed OPIO algorithm
provided results superior to those of the COA, ORCSA and PIO algorithms, and equal
to the OGWO algorithm for the test case 13-unit system. For the test case 40-unit system,
the OPIO algorithm provided results superior to those of the COA, ORCSA and PIO
algorithms, but not to the OGWO algorithm. Finally, w/t/l specified the win/tie/loss
count by Wilcoxon signed-rank test for the six test case generating unit systems. Thus, from
the above discussion, it is clear that the proposed OPIO algorithm attained better solutions,
and had better exploring capability, compared to the existing algorithms.

Mathematics 2022, 10, 3315 22 of 24

Table 11. Wilcoxon signed-rank test between OPIO and four compared algorithms for test case 13, 40,
140, 160, 320 and 640-unit systems.

Test Case

OPIO vs

OGWO COA ORCSA PIO

p-Value H S p-Value H S p-Value H S p-Value H S

13-unit 1.00 × 100 0 = 1.88 × 10−6 1 + 1.51 × 10−6 1 + 1.98 × 10−6 1 +
40-unit 3.85 × 10−1 0 − 1.00 × 100 0 = 1.88 × 10−6 1 + 1.75 × 10−6 1 +
140-unit 1.87 × 10−6 1 + 1.70 × 10−6 1 + 1.46 × 10−6 1 + 1.65 × 10−6 1 +
160-unit 1.55 × 10−6 1 + 1.00 × 100 0 = 1.65 × 10−6 1 + 1.75 × 10−6 1 +
320-unit 1.73 × 10−6 1 + 1.75 × 10−6 1 + 1.75 × 10−6 1 + 1.79 × 10−6 1 +
640-unit 1.55 × 10−6 1 + 1.11 × 10−6 1 + 1.73 × 10−6 1 + 1.75 × 10−6 1 +

w/t/l 4/1/1 4/2/0 6/0/0 6/0/0

6. Conclusions and Future Work

In this article, we have provided a novel metaheuristic algorithm named the Oppo-
sitional Pigeon-Inspired Optimizer (OPIO), which is formulated to deal with the ELD
problem, with value-point consequences and numerous fuel possibilities. From the litera-
ture, it can be seen that the standard PIO algorithm is considered a promising optimization
technique, which attracts the researcher by its superiority in addressing various opti-
mization problems. However, it suffers in regard to global search ability and premature
convergence when it is applied to large-scale optimization problems. Because of these
issues, we merged Opposition-Based Learning into a standard PIO algorithm, which helped
to eradicate early convergence, aided knowledge discovery and enhanced comprehensive
searchability. The formulated OPIO algorithm was applied to non-convex ELD problems
with different constraints, such as multiple fuel possibilities, value-point consequence,
interdicted zones and ramp-rate. The experimentation was carried out on three different
ELD test cases, viz., small-scale (13-unit and 40-unit), medium-scale (140-unit and 160-unit)
and large-scale (320-unit and 640-unit) test cases. The exploratory outcomes showed the
superiority of the formulated OPIO technique—in relation to higher potential solutions,
better convergence rate, robustness and better computational efficiency—over the PIO
algorithm and other state-of-the-art metaheuristic algorithms. In future, this work could be
used in other fields of optimization, owing to the technique’s high potential for dealing
with the problematic optimization issues of many practical power systems. In addition,
the outcome of the results can be compared with potential algorithms such as SEPSO [16],
SA-QSFS [42] and QANA [47].

Author Contributions: Conceptualization, R.R.; methodology, R.R. and D.K.; validation, S.S.A. and
M.R.; formal analysis, A.D.; writing—original draft preparation, R.R.; writing—review and editing,
M.R. and S.M.; supervision, R.R. and D.K; funding acquisition, S.S.A. All authors have read and
agreed to the published version of the manuscript.

Funding: This study was funded by the Deanship of Scientific Research, Taif University Researchers
Supporting Project number (TURSP-2020/215), Taif University, Taif, Saudi Arabia.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data in this research paper will be shared upon request to the corre-
sponding author.

Conflicts of Interest: The authors declare no conflict of interest.

Mathematics 2022, 10, 3315 23 of 24

References
1. Balamurugan, R. Application of Shuffled Frog Leaping Algorithm for Economic Dispatch with Multiple Fuel Options. In

Proceedings of the 2012 International Conference on Emerging Trends in Electrical Engineering and Energy Management
(ICETEEEM), Chennai, India, 13–15 December 2012; pp. 191–197. [CrossRef]

2. Aravindhababu, P.; Nayar, K.R. Economic dispatch based on optimal lambda using radial basis function network. Int. J. Electr.
Power Energy Syst. 2002, 24, 551–556. [CrossRef]

3. Wood, A.J.; Wollenberg, B.F.; Sheblé, G.B. Power Generation, Operation, and Control; John Wiley & Sons: Hoboken, NJ, USA, 2013.
4. Liang, Z.X.; Glover, J.D. A zoom feature for a dynamic programming solution to economic dispatch including transmission losses.

IEEE Trans. Power Syst. 1992, 7, 544–550. [CrossRef]
5. Victoire, T.A.A.; Jeyakumar, A.E. Hybrid PSO-SQP for economic dispatch with valve-point effect. Electr. Power Syst. Res. 2004, 71,

51–59. [CrossRef]
6. Chiang, C.L. Genetic-based algorithm for power economic load dispatch. IEE Proc. Gener. Trans. Distrib. 2007, 1, 261–269.

[CrossRef]
7. Sinha, N.; Chakrabarti, R.; Chattopadhyay, P.K. Evolutionary programming techniques for economic load dispatch. IEEE Evol.

Comput. 2003, 7, 83–94. [CrossRef]
8. Tan, Y.; Li, C.; Cao, Y.; Lee, K.Y.; Li, L.; Tang, S.; Zhou, L. Improved group search optimization method for optimal power flow

problem considering valve-point loading effects. Neurocomputing 2015, 148, 229–239. [CrossRef]
9. Aydin, D.; Ozyon, S. Solution to non-convex economic dispatch problem with valve point effects by incremental artificial bee

colony with local search. Appl. Soft Comput. 2013, 13, 2456–2466. [CrossRef]
10. Jayabarathi, T.; Raghunathan, T.; Adarsh, B.R. Ponnuthurai Nagaratnam Suganthan. Economic dispatch using hybrid grey wolf

optimizer. Energy 2016, 111, 630–641. [CrossRef]
11. Chaturvedi, K.T.; Pandit, M.; Srivastava, L. Self-organizing hierarchical particle swarm optimization for nonconvex economic

dispatch. IEEE Trans. Power Syst. 2008, 23, 1079–1087. [CrossRef]
12. Alsumait, J.S.; Sykulski, J.K.; Al-Othman, A.K. A hybrid GA-PS-SQP method to solve power system valve-point economic

dispatch problems. Appl. Energy 2010, 87, 1773–1781. [CrossRef]
13. Roy, P.; Roy, P.; Chakrabarti, A. Modified shuffled frog leaping algorithm with genetic algorithm crossover for solving economic

load dispatch problem with valve-point effect. Appl. Soft Comput. 2013, 13, 4244–4252. [CrossRef]
14. Yang, X.; Hosseini, S.S.S.; Gandomi, A.H. Firefly Algorithm for solving non-convex economic dispatch problems with valve

loading effect. Appl. Soft Comput. 2012, 12, 1180–1186. [CrossRef]
15. Wang, Y.; Zhou, J.; Lu, Y.; Qin, H.; Wang, Y. Chaotic self-adaptive particle swarm optimization algorithm for dynamic economic

dispatch problem with valvepoint effects. Expert Syst. Appl. 2011, 38, 14231–14237.
16. Faisal, A.N.; Cao, M.; Shen, L.; Fu, R.; Šumarac, D. The combined social engineering particle swarm optimization for real-world

engineering problems: A case study of model-based structural health monitoring. Appl. Soft Comput. 2022, 123, 108919.
17. Zamani, H.; Nadimi-Shahraki, M.H.; Gandomi, A.H. Starling murmuration optimizer: A novel bio-inspired algorithm for global

and engineering optimization. Comput. Methods Appl. Mech. Eng. 2022, 392, 114616. [CrossRef]
18. Nadimi-Shahraki, M.; Ali Fatahi, H.Z.; Abualigah, L. An improved moth-flame optimization algorithm with adaptation mecha-

nism to solve numerical and mechanical engineering problems. Entropy 2021, 23, 1637. [CrossRef]
19. Nadimi-Shahraki, M.; Zamani, H. DMDE: Diversity-maintained multi-trial vector differential evolution algorithm for non-

decomposition large-scale global optimization. Expert Syst. Appl. 2022, 198, 116895. [CrossRef]
20. Balamurugan, R.; Subramanian, S. Hybrid integer coded differential evolution dynamic programming approach for economic

load dispatch with multiple fuel options. Energy Convers. Manag. 2008, 49, 608–614. [CrossRef]
21. Cai, J.; Mab, X.; Li, Q.; Li, L.; Peng, H. A multi-objective chaotic ant swarm optimization for environmental/economic dispatch.

Int. J. Electr. Power Energy Syst. 2010, 32, 337–344. [CrossRef]
22. Ghoshal, S.P.; Chatterjee, A.; Mukherjee, V. Bio-inspired fuzzy logic based tuning of power system stabilizer. Expert Syst. Appl.

2009, 36, 9281–9292. [CrossRef]
23. Pothiya, S.; Ngamroo, I.; Kongprawechnon, W. Ant colony optimisation for economic dispatch problem with non-smooth cost

functions. Int. J. Electr. Power Energy Syst. 2010, 32, 478–487. [CrossRef]
24. Roy, P.K.; Ghoshal, S.P.; Thakur, S.S. Biogeography-based optimization for economic load dispatch problems. Elect. Power Compon.

Syst. 2010, 38, 166–181. [CrossRef]
25. Mandal, B.; Roy, P.K.; Mandal, S. Economic load dispatch using krill herd algorithm. Int. J. Electr. Power Energy Syst. 2014,

57, 1–10. [CrossRef]
26. Lee, K.Y.; Sode-Yome, A.; Park, J.H. Adaptive Hopfield neural networks for economic load dispatch. IEEE Trans. Power Syst. 1998,

13, 519–525. [CrossRef]
27. Vo, D.N.; Ongsakul, W. Economic dispatch with multiple fuel types by enhanced augmented Lagrange Hopfield network. Appl.

Energy 2012, 91, 281–289. [CrossRef]
28. Vo, N.D.; Ongsakul, W.; Polprasert, J. The augmented Lagrange Hopfield network for economic dispatch with multiple fuel

options. Math. Comput. Model. 2013, 57, 30–39.
29. Barisal, A.K. Dynamic search space squeezing strategy based intelligent algorithm solutions to economic dispatch with multiple

fuels. Int. J. Electr. Power Energy Syst. 2013, 45, 50–59. [CrossRef]

http://doi.org/10.1109/ICETEEEM.2012.6494457
http://doi.org/10.1016/S0142-0615(01)00063-1
http://doi.org/10.1109/59.141757
http://doi.org/10.1016/j.epsr.2003.12.017
http://doi.org/10.1049/iet-gtd:20060130
http://doi.org/10.1109/TEVC.2002.806788
http://doi.org/10.1016/j.neucom.2013.09.065
http://doi.org/10.1016/j.asoc.2012.12.002
http://doi.org/10.1016/j.energy.2016.05.105
http://doi.org/10.1109/TPWRS.2008.926455
http://doi.org/10.1016/j.apenergy.2009.10.007
http://doi.org/10.1016/j.asoc.2013.07.006
http://doi.org/10.1016/j.asoc.2011.09.017
http://doi.org/10.1016/j.cma.2022.114616
http://doi.org/10.3390/e23121637
http://doi.org/10.1016/j.eswa.2022.116895
http://doi.org/10.1016/j.enconman.2007.07.039
http://doi.org/10.1016/j.ijepes.2010.01.006
http://doi.org/10.1016/j.eswa.2008.12.004
http://doi.org/10.1016/j.ijepes.2009.09.016
http://doi.org/10.1080/15325000903273379
http://doi.org/10.1016/j.ijepes.2013.11.016
http://doi.org/10.1109/59.667377
http://doi.org/10.1016/j.apenergy.2011.09.025
http://doi.org/10.1016/j.ijepes.2012.08.049

Mathematics 2022, 10, 3315 24 of 24

30. Meng, A.; Li, J.; Yin, H. An efficient crisscross optimization solution to large-scale non-convex economic load dispatch with
multiple fuel types and valve-point effects. Energy 2016, 113, 1147–1161. [CrossRef]

31. Sayah, S.; Hamouda, A. A hybrid differential evolution algorithm based on particle swarm optimization for nonconvex economic
dispatch problems. Appl. Soft Comput. 2013, 13, 1608–1619. [CrossRef]

32. Pradhan, M.; Roy, P.K.; Pal, T. Oppositional based grey wolf optimization algorithm for economic dispatch problem of power
system. Ain Shams Eng. J. 2017, 9, 2015–2025. [CrossRef]

33. Wang, Y.; Li, B.; Weise, T. Estimation of distribution and differential evolution cooperation for large scale economic load dispatch
optimization of power systems. Inf. Sci. 2010, 180, 2405–2420. [CrossRef]

34. Bhattacharjee, K.; Bhattacharya, A.; Dey, S.H.N. Chemical reaction optimization for different economic dispatch problems. IET
Gener. Transm. Dis. 2014, 8, 530–541. [CrossRef]

35. Singh, N.J.; Dhillon, J.S.; Kothari, D.P. Synergic predator-prey optimization for economic thermal power dispatch problem. Appl.
Soft Comput. 2016, 43, 298–311. [CrossRef]

36. Thang, T.N.; Dieu, N.V. The application of one rank cuckoo search algorithm for solving economic load dispatch problems. Appl.
Soft Comput. 2015, 37, 763–773.

37. Amjady, N.; Nasiri-Rad, H. Nonconvex economic dispatch with AC constraints by a new real coded genetic algorithm. IEEE
Trans. Power Syst. 2009, 24, 1489–1502. [CrossRef]

38. Chiang, C.-L. Improved Genetic Algorithm for Power Economic Dispatch of Units with Valve-Point Effects and Multiple Fuels.
IEEE Trans. Power Syst. 2005, 20, 4. [CrossRef]

39. Duan, H.; Qiao, P. Pigeon-inspired optimization: A new swarm intelligence optimizer for air robot path planning. Int. J. Intell.
Comput. Cybern. 2014, 7, 24–37. [CrossRef]

40. Tizhoosh, H.R. Opposition-Based Learning: A New Scheme for Machine Intelligence. In Proceedings of the International
Conference on Computational Intelligence for Modeling, Control and Automation, Vienna, Austria, 28–30 November 2005;
pp. 695–701.

41. Roy, P.K.; Paul, C.; Sultana, S. Oppositional teaching learning-based optimization approach for combined heat and power dispatch.
Int. J. Elect. Power Energy Syst. 2014, 57, 392–403. [CrossRef]

42. Alkayem, N.F.; Shen, L.; Asteris, P.G.; Sokol, M.; Xin, Z.; Cao, M. A new self-adaptive quasi-oppositional stochastic fractal search
for the inverse problem of structural damage assessment. Alex. Eng. J. 2022, 61, 1922–1936. [CrossRef]

43. Coelho, L.D.S.; Mariani, V.C. Combining of chaotic differential evolution and quadratic programming for economic dispatch
optimization with valve point effect. IEEE Trans. Power Syst. 2006, 21, 989–996.

44. Zou, D.; Li, S.; Wang, G.G.; Li, Z.; Ouyang, H. An improved differential evolution algorithm for the economic load dispatch
problems with or without valve-point effects. Appl. Energy 2016, 181, 375–390. [CrossRef]

45. Srinivasa Reddy, A.; Vaisakh, K. Shuffled differential evolution for large scale economic dispatch. Electr. Power Syst. Res. 2013, 96,
237–245. [CrossRef]

46. Sahoo, S.; Mahesh Dash, K.; Prusty, R.C.; Barisal, A.K. Comparative analysis of optimal load dispatch through evolutionary
algorithms. Ain Shams Eng. J. 2015, 6, 107–120. [CrossRef]

47. Mohammad, Z.H.; Nadimi-Shahraki, H.; Amir, H.G. QANA: Quantum-based avian navigation optimizer algorithm. Eng. Appl.
Artif. Intell. 2021, 104, 104314.

http://doi.org/10.1016/j.energy.2016.07.138
http://doi.org/10.1016/j.asoc.2012.12.014
http://doi.org/10.1016/j.asej.2016.08.023
http://doi.org/10.1016/j.ins.2010.02.015
http://doi.org/10.1049/iet-gtd.2013.0122
http://doi.org/10.1016/j.asoc.2016.02.042
http://doi.org/10.1109/TPWRS.2009.2022998
http://doi.org/10.1109/TPWRS.2005.857924
http://doi.org/10.1108/IJICC-02-2014-0005
http://doi.org/10.1016/j.ijepes.2013.12.006
http://doi.org/10.1016/j.aej.2021.06.094
http://doi.org/10.1016/j.apenergy.2016.08.067
http://doi.org/10.1016/j.epsr.2012.11.010
http://doi.org/10.1016/j.asej.2014.09.002

	Introduction
	ELD Problem Formulation
	Fitness Function
	Constraints of the ELD Problem
	Operating Unit Limit
	Power-Stabilizing Constraints
	Restricted Operating Regions (RORs)
	Ramp-Rate (RR) Constraint

	Preliminaries
	Overview of Pigeon-Inspired Optimizer
	Map and Compass Operator
	Landmark Operator

	Opposition-Based Learning Technique

	Oppositional Pigeon-Inspired Optimizer Algorithm (Proposed)
	Constraint-Handling Technique
	Implementation of the OPIO Algorithm for the ELD Problem

	Results and Discussion
	Test Case 1a: 13-Unit
	Test Case 1b: 40-Unit
	Test Case 2a: 140-Unit
	Test Case 2b: 160-Unit
	Test Case 3a: 320-Unit
	Test Case 3b: 640-Unit
	The Result Analysis of Wilcoxon Signed-Rank Test

	Conclusions and Future Work
	References

