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Abstract: This paper introduces a new flexible probability tool for modeling extreme and zero-
inflated count data under different shapes of hazard rates. Many relevant mathematical and statistical
properties are derived and analyzed. The new tool can be used to discuss several kinds of data,
such as “asymmetric and left skewed”, “asymmetric and right skewed”, “symmetric”, “symmetric
and bimodal”, “uniformed”, and “right skewed with a heavy tail”, among other useful shapes. The
failure rate of the new class can vary and can take the forms of “increasing-constant”, “constant”,
“monotonically dropping”, “bathtub”, “monotonically increasing”, or “J-shaped”. Eight classical
estimation techniques—including Cramér–von Mises, ordinary least squares, L-moments, maximum
likelihood, Kolmogorov, bootstrapping, and weighted least squares—are considered, described, and
applied. Additionally, Bayesian estimation under the squared error loss function is also derived
and discussed. Comprehensive comparison between approaches is performed for both simulated
and real-life data. Finally, four real datasets are analyzed to prove the flexibility, applicability, and
notability of the new class.

Keywords: survival discretization; Gibbs sampler; Metropolis–Hastings technique; L-moment
structure; bootstrapping approach; Kolmogorov method; Bayesian analysis; Markov chain Monte
Carlo; extreme and zero-inflated count data

MSC: 62E99; 62E15

1. Introduction

The discretization of current continuous models has recently drawn significant interest.
This is due to the fact that the data must often be recorded on a discrete scale rather than a
continuous analog. Examples include the number of daily COVID-19 deaths, or the number
of renal cysts caused by steroid use, among others. In order to discuss such data, new
discrete models have been proposed and investigated in the statistical and mathematical
literature. For instance, the discrete Weibull (DW) (Nakagawa and Osaki [1]), discrete
Rayleigh (DR) (Roy [2]), discrete inverse Weibull (DIW) (Jazi et al. [3]), discrete expo-
nential (DE) (Gomez-Déniz [4]), discrete inverse Rayleigh (DR) (Hesterberg [5]), discrete
exponentiated Weibull (EDW) (Nekoukhou and Bidram [6]), discrete Lindley-II (DLy-II)
(Hussain et al. [7]), discrete Lomax (DLx) and discrete Burr XII (DBXII) (Para and Jan [8]),
discrete generalized Burr–Hatke distribution (for more details, see El-Morshedy et al. [9]),
discrete exponentiated Lindley (EDLy) (see El-Morshedy et al. [10]), discrete generalized
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Burr–Hatke distribution (see Yousof et al. [11]), and the discrete inverse Burr (DIB) distri-
bution (see Chesneau et al. [12]), among others.

On the other hand, another statistical approach has recently been followed up to define
new discrete G families of probability distributions. The statistical approach depends on
generating new discrete G families of probability distributions based on some existing con-
tinuous families. For example, following Bourguignon et al. [13], Aboraya et al. [14] defined
and studied the discrete Rayleigh G (DR-G) family of distributions, while Ibrahim et al. [15]
proposed a discrete analog of the Weibull G family. Following Steutel and van Harn [16],
Eliwa et al. [17] introduced and discussed the discrete Gompertz G (DGz-G) family of dis-
tributions. Recently, Yousof et al. [18] presented a new G family of continuous distributions
called the exponential generalized G (EG-G) family. The CDF of the EG-G family can be
expressed as follows:

Fα,γ(z) = 1− exp[−O(z; γ,ξ)] |(z∈R and α,γ>0), (1)

where
O(z; γ,ξ) =

.
G
−γ

ξ (z)− 1|z∈R,γ>0,

is the generalized odds ratio argument,
.

Gξ(z) = 1− Gξ(z) refers to the survival function
(SF) of any baseline model with the parameter vector ξ, α is a scale parameter, and γ is an
additional shape parameter. In this work and following Yousof et al. [18] and Steutel and
van Harn [16], we define and study a new discrete analog of the EG-G family called the
discrete exponential generalized G (DEG-G) family. We are motivated to introduce the DEG-G
family for the following reasons:

• Generating new probability mass functions that can be “asymmetric and left skewed”,
“asymmetric and right skewed”, “symmetric”, “symmetric and bimodal”, “uniformed”,
or “right skewed with a heavy tail”, among other useful shapes. The wide flexibility
of the probability mass function (PMF) for any new model allows us to employ the
new model for analyzing many different environmental datasets.

• Presenting some new special models with different types of hazard rate functions
(HRFs), such as “increasing-constant”, “constant”, “monotonically decreasing”, “bath-
tub”, “monotonically increasing”, “decreasing–increasing-decreasing”, and “J-shaped”.
The more forms of failure rates, the greater the elasticity of the distribution. These
shapes facilitate the work of many practitioners, who may use the new distribution in
statistical modeling and mathematical analysis. For this specific purpose, we give the
problem of checking the failure rate function a great deal of attention.

• The degrees of the skew coefficient, kurtosis coefficient, failure rate function, and
diversity in the PMF and failure rate functions all play a role in the flexibility of the new
distribution. Additionally, the probability distribution’s usability and effectiveness in
statistical modeling are crucial in this regard. Examining the novel PMF, we discovered
that it was quite adaptable in this and other areas. This is what motivated us to
investigate this probability distribution thoroughly.

• Proposing new discrete models for modeling “over-dispersed”, “equal-dispersed”,
and “under-dispersed” real data. As shown in this paper, the new discrete family has
shown a remarkable superiority in modeling these types of data, whether symmetric
or asymmetric, and containing outliers or not containing outliers.

• Introducing new discrete models for analyzing extreme and zero-inflated count data.
• Comparison of the estimation methods with both simulated and real-life data for

recommending the best method in each case.
• A zero-inflated probability distribution, or distribution that permits many zero-valued

observations, is the foundation of a statistical model known as a zero-inflated model
in statistics. For instance, individuals who have not purchased insurance against the
risk, and are therefore unable to make a claim, would cause the quantity of insurance
claims within a community for a particular type of risk to be zero-inflated. Often,
the zero-inflated Poisson regression model is used for modeling and predicting the
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zero-inflated count data; however, in this paper, we are motivated to use the DEG-G
family for this purpose.

• In statistical modeling of the bathtub hazard rate count data, the DEG-G family under
the Weibull baseline model provides adequate results; hence, the DEG-G family under
the Weibull baseline is recommended for modeling the bathtub hazard rate count data
(see Section 6.1). Moreover, the same baseline model is also suitable for modeling the
monotonically increasing failure rate count data with adequate fitting (see Section 6.2).

• In the case of zero-inflated medical data with a decreasing failure rate and some
outliers, the new family is an appropriate choice to deal with this type of data (see
Section 6.3).

• In case of zero-inflated agricultural data with a decreasing–increasing–decreasing
failure rate and some outliers, the new class is an appropriate choice for modeling this
kind of data (see Section 6.4).

• In fact, we empirically demonstrate that the proposed family of distributions fits
four real datasets more accurately than 16 other extended relevant distributions with
3–4 parameters (see Section 7).

• Through simulation experiments and relying on the new class, many of the classical es-
timation techniques and Bayesian approaches are tested and evaluated, and important
conclusions are reached in this regard, including the following:

The maximum likelihood estimation approach is still the most efficient and most
consistent of the rest of the classical methods; however, most of the other methods perform
well, except for the Kolmogorov estimation method.

i. Generally, the Bayesian technique and maximum likelihood estimation method can be
recommended for statistical modeling and applications.

ii. The Kolmogorov estimation method provides the worst results for all real datasets;
this problem still needs more investigation for understanding of its main reasons.

Many helpful statistical properties, such as the probability-generating function, central
and ordinary moment, moment-generating function, cumulant-generating function, and
dispersion index (Disp-Ix), are calculated and statistically examined in this article once
the new generator is defined. Some special discrete members, based on Weibull (W),
inverse Weibull (IW), Lomax (Lx), Burr X (BX), inverse Burr X (IBX), log-logistic (LL),
Rayleigh (R), inverse Rayleigh (IR), exponential (E), inverse Lindley (ILi), inverse Lomax
(ILx), inverse log-logistic (ILL), inverse exponential (IE), and Lindley (Li) distributions, are
listed in Table 1. Different classical (non-Bayesian) methods of estimation, including the
Cramér–von Mises estimation (CVME), maximum likelihood estimation (MLE), ordinary
least squares estimation (OLSE), bootstrapping (Bootst), L-moments (L-mom), Kolmogorov
estimates (KE), weighted least squares estimation (WLSE), and Anderson–Darling left-tail
from the second order (AD2LE), are considered. For more details about these methods, see
the works of Chesneau et al. [12], Yousof et al. [18], Aboraya et al. [14], and Ibrahim et al. [15].
The Bayesian estimation under the squared error loss function is also considered. The
well-known Markov chain Monte Carlo (MCMC) simulations are performed to compare
the classical and Bayesian methods. The applicability of the DEG-G family is explained and
discussed using four real-life datasets. The DEG-G family under the Weibull model case
provides a more adequate fit than many competitive models, due to the consistent Akaike
information criterion (CAICR), Akaike information criterion (AICR), chi-squared (χ2

V),
Kolmogorov–Smirnov (K–S), and corresponding p-value (P.V). For more detail about these
statistics, see the works of El-Morshedy et al. [9,10], Aboraya et al. [14], and Eliwa et al. [17].
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Table 1. Some new sub-models.

Baseline Model O(z;γ,ξ) Sub Model

LL (1 + z)γ − 1
∣∣
γ>0 DEG LL

W exp
(

γzθ
)
− 1
∣∣∣
γ,θ>0

DEGW

IW
[
1− exp

(
−z−θ

)]γ
− 1
∣∣∣
γ,θ>0

DEGIW

E exp(γz)− 1|γ>0 DEGE
IE

[
1− exp

(
−z−1)]γ − 1

∣∣∣
γ,θ>0

DEGIE

Lx (1 + z)γβ − 1
∣∣∣
γ,β>0

DEGLx

R exp(γz)2 − 1
∣∣∣
γ>0

DEGR

IR
[
1− exp

(
−z−2)]γ − 1

∣∣∣
γ>0

DEGR

2. The DEG-G Class

Starting with (1) and utilizing the discretization approach, the CDF of the DEG-G
family can be formulated as follows:

FW (z) = 1− pO(z+1;γ,ξ) |(p∈I=(0,1) and z∈N(0))
(2)

where W = (p, γ,ξ), exp(−α) = p, N(0) = N ∪ {0} and

O(z + 1; γ,ξ) = [1− Gξ(z + 1)]−γ − 1 =
.

G
−γ

ξ (z + 1) | (z∈N(0))
.

The corresponding SF to (2) can be derived as follows:

FW (z) = pO(z+1;γ,ξ) |(p∈I and z∈N(0))
. (3)

According to Kemp [19] and (3), the PMF of the DEG-G family can be expressed
as follows:

fW (z) = FW (z− 1)− FW (z), (4)

where
fW (z) = pO(z;γ,ξ) − pO(z+1;γ,ξ) |(p∈I and z∈N(0))

.

Based on (3) and (4), the hazard rate function (HRF) can then be proposed as follows:
HW (z) = fW (z)/FW (z− 1) = 1

pO(z;γ,ξ)

[
pO(z;γ,ξ) − pO(z+1;γ,ξ)

]
.

In Table 1, some members of the DEG-G family are provided. The new PMF in
(4) is most tractable when the CDF of the baseline member Gξ(z) has a simple ana-
lytic expression.

For the W model, we have O(z; γ,ξ) =
[
exp
(
γzθ
)
− 1
]1|γ,θ>0. Then, based on (3), the

PMF of the DEGW model can be expressed as follows:

fW (z) = pexp(γzθ)−1 − pexp[γ(z+1)θ ]−1 |(z∈N(0),p∈I and γ,θ>0). (5)

In Figures 1 and 2, some PMF and HRF plots of the DEGW model are sketched under
some selected parameter values. Based on Figure 1, it can be seen that the PMF of the DEGW
can be “asymmetric and left skewed”, “asymmetric and right-skewed”, “symmetric”,
“uniform”, or “right-skewed with heavy tail”, among other useful PMF shapes. Moreover,
it can be used as a probability tool to discuss zero-inflated data. According to Figure 2,
we can conclude that the HRF of the DEGW can be “increasing-constant”, “constant”,
“monotonically decreasing “, “bathtub or decreasing-constant-increasing “, “monotonically
increasing”, or “J-shaped”.
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Figure 1. The PMF of the DEGW model.

Figure 2. The HRF of the DEGW model.
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3. Main Properties
3.1. Moments

Theorem 1. Z is a non-negative random variable (RV), where Z ∼DEG-G (W) family, then the
rth moment of the RV Z can be expressed as follows:

µ′r,Z = E(Zr) =
+∞

∑
z=1

[
zr − (z− 1)r]pO(z;γ,ξ)|(z∈N(0),p∈I and r=1,2,3,...).

Proof. Since

µ′r,Z = E(Zr) =
+∞

∑
z=0

zr fW (z).

then,

µ′r,Z = E(Zr) =
+∞

∑
z=0

zr
[

pO(z;γ,ξ) − pO(z+1;γ,ξ)
]
=

+∞

∑
z=1

[
zr − (z− 1)r]FW (z− 1).

Thus,

µ′r,Z =
+∞

∑
z=1

[
zr − (z− 1)r]pO(z;γ,ξ)|(z∈N(0),p∈I and r=1,2,3,...). (6)

Using (5), the mean (µ1,Z), µ′2,Z, µ′3,Z, µ′4,Z, and variance (V(Z)), can be respectively
written as follows:

µ1,Z = µ′1,Z = E(Z) =
+∞

∑
z=1

pO(z;γ,ξ)|(z∈N(0),p∈I and r=1),

µ′2,Z = E
(

Z2
)
=

+∞

∑
z=1

(2z− 1)pO(z;γ,ξ)|(z∈N(0),p∈I and r=2),

µ′3,Z = E
(

Z3
)
=

+∞

∑
z=1

[
z3 − (z− 1)3

]
pO(z;γ,ξ)|(z∈N(0),p∈I and r=3,...),

µ′4,Z = E
(

Z4
)
=

+∞

∑
z=1

[
z4 − (z− 1)4

]
pO(z;γ,ξ)|(z∈N(0),p∈I and r=4)

and

V(Z) =
+∞

∑
z=1

(2z− 1)pO(z;γ,ξ) −
(

+∞

∑
z=1

pO(z;γ,ξ)

)2

|(z∈N(0),p∈I and r=2).�

Table 2 lists some numerical results for µ′1,Z, µ′2,Z, µ′3,Z, and µ′4,Z under the DEGW
model. It should be noted that the first four moments can be numerically evaluated,
although they have no closed forms. All numerical results in Table 2 were derived using
the R program, and the infinity problem was overcome by assuming a very large value
instead of it (108), since values beyond this value can be ignored because they are too small.
Therefore, the results of µ′1,Z, µ′2,Z, µ′3,Z, and µ′4,Z are approximated.

Table 2. µ′1,Z, µ′2,Z, µ′3,Z, and µ′4,Z of the DEGW distribution.

W ≈µ1,Z ≈µ’
2,Z ≈µ’

3,Z ≈µ’
4,Z

(0.10, 1.0, 1.0) 0.0191306 0.0191314 0.019133 0.0191363
(0.50, 1.0, 1.0) 0.3158439 0.3397145 0.387467 0.4830028
(0.99, 1.0, 1.0) 3.5744810 14.246690 60.28199 266.46120
(0.10, 0.5, 1.5) 0.2253027 0.2268436 0.2299255 0.2360891



Mathematics 2022, 10, 3348 7 of 29

Table 2. Cont.

W ≈µ1,Z ≈µ’
2,Z ≈µ’

3,Z ≈µ’
4,Z

(0.50, 0.5, 1.5) 0.7535885 0.9854351 1.4502100 2.3830030
(0.99, 0.5, 1.5) 3.4971860 13.014480 50.312590 200.27770
(0.75, 0.1, 1.0) 0.9713452 0.9736408 0.9782321 0.9874147
(0.75, 0.5, 1.0) 0.8297544 0.8297544 0.8297544 0.8297544
(0.75, 1.0, 1.0) 0.6099862 0.6099862 0.6099862 0.6099862
(0.75, 1.5, 1.0) 0.3672841 0.3672841 0.3672841 0.3672841
(0.1, 0.1, 1.0) 2.7581690 14.269410 94.86910 745.4975
(0.1, 0.1, 2.0) 1.1419800 1.9259440 3.704110 7.893829
(0.1, 0.1, 3.0) 0.8444187 0.9634029 1.2013710 1.677308
(0.1, 0.1, 4.0) 0.7850381 0.7852609 0.7857066 0.786598
(0.1, 0.1, 5.0) 0.7849267 0.7849267 0.7849267 0.7849267

3.2. Central Moment and Dispersion Index

The rth central moment of the RV Z, i.e., µr,Z, can be formulated as follows:

µr,Z = E(Z− µ′r,Z)
r
=

r

∑
ω=0

(
−µ′1,Z

)ω
(

r
ω

)
µ′r−ω |(|z∈N(0) ,p∈I and r=1,2,3,...)

.

Hence, the V(Z) can be expressed as follows:

E(Z− µ′r,Z)
2
= µ1,Z

2

∑
ω=0

(
−µ′1,Z

)ω
(

2
ω

)
µ′2−ω,Z|(|z∈N(0) ,p∈I and r=2)

,

or

µ2,Z = V(Z) = µ′2,Z − µ2
1,Z =

+∞

∑
z=1

(2z− 1)pO(z;γ,ξ) −
(

+∞

∑
z=1

pO(z;γ,ξ)

)2

|(z∈N(0),p∈I and r=2).

The dispersion index (Disp-Ix) of the DEG-G family can derived as follows:

Disp-Ix(Z) =
∑+∞

z=1(2z− 1)pO(z;γ,ξ)

∑+∞
z=1 pO(z;γ,ξ)

−
+∞

∑
z=1

pO(z;γ,ξ)|(z∈N(0) and p∈I). (7)

Some numerical results for the Disp-Ix(Z) are presented in Table 3, with useful com-
ments. The Disp-Ix, also known as the coefficient of dispersion, relative variance, or
variance-to-mean ratio (VMR), is a normalized measure of the dispersion of a probability
distribution that is used in probability theory and statistics to determine whether a set of
observed occurrences is clustered or dispersed in comparison to a common statistical model.
It is described as the variance-to-mean ratio. In order to establish whether the observed real
dataset can be modeled using a Poisson process, the Disp-Ix is used to measure whether
a particular collection of observations is clustered or dispersed compared to a particular
statistical model. When the Disp-Ix for any real dataset is less (greater) than 1, the dataset
is referred to as under (over)-dispersed phenomena. Table 3 displays a numerical analysis
and its associated computations for the Disp-Ix. The kurtosis, i.e., K(Z), and skewness, i.e.,
S(Z), of the RV Z can be obtained from the common relationships. Table 3 reports some
numerical results for E(Z), V(Z), S(Z), and K(Z) of the DEGW distribution. Based on
Table 3, it can be seen that E(Z) increases as p increases, and decreases as γ and θ increase.
The S(Z) ∈ (−1.053185, ∞). The K(Z) ranges from 1.02442 to ∞. The Disp-Ix(Z) ∈ (0, 1), or
“ > 1“, or “=1“, like the standard well-known Poisson distribution (see Poisson [20]). Thus,
the DEGW distribution could be useful in modeling “under-dispersed”, “equi-dispersed”,
or “over-dispersed” count data.
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Table 3. Numerical results for E(Z), V(Z), S(Z), and K(Z) of the DEGW distribution.

p γ θ E(Z) V(Z) S(Z) K(Z) Disp-Ix(Z)

0.99999 1 1 10.43584 1.726577 −1.053185 5.105638 0.1654468
0.9999 8.134137 1.719510 −1.025913 4.907183 0.2113943
0.999 5.837383 1.673887 −0.929210 4.331043 0.2867530
0.99 3.574481 1.469777 −0.645338 3.230067 0.4111861
0.75 0.773245 0.510106 0.430022 2.279438 0.6596955
0.5 0.315844 0.239957 1.093988 2.899762 0.7597332
0.1 0.019131 0.018765 7.021297 50.30325 0.9809121

0.99999 10 5 0.802314 0.158607 −1.518194 3.304912 0.1976864
0.9999 0.110509 0.098297 2.484605 7.173261 0.8894908
0.999 2.6895 × 10−10 2.6895 × 10−10 60976.45 ≈∞ 1
0.99 7.2967 × 10−97 7.2967 × 10−97 ≈∞ ≈∞ 1
0.5 0.001 2.5 12.741380 18.070030 −0.3936527 2.605803 1.4182170

0.01 4.771435 2.934613 −0.3801066 2.62509 0.615038
0.1 1.5940780 0.5300682 −0.2989435 2.847207 0.3325235

0.25 0.9368591 0.2902798 −0.0505357 3.385981 0.3098437
0.5 0.6378616 0.2310265 −0.5732478 1.329823 0.3621891

0.65 0.5301451 0.2490913 −0.1208001 1.014593 0.4698549
0.75 0.4610516 0.2484830 0.1562686 1.02442 0.5389484
1.5 0.08951734 0.08150398 2.875646 9.269339 0.9104827
2.5 0.00043026 0.00043009 48.17843 2322.161 0.9995697
5 4.21 × 10−45 4.21 × 10−45 ≈∞ ≈∞ 1

0.15 0.5 0.1 471.2272 47392362 51.07037 4085.929 100572.2
0.5 0.5872831 1.464822 3.011574 15.06166 2.494234
1 0.3318428 0.3039623 1.477674 4.494878 0.9159829
5 0.2920874 0.2067724 0.9144595 1.836236 0.7079126
20 0.2920874 0.2067724 0.9144595 1.836236 0.7079126

150 0.2920874 0.2067724 0.9144595 1.836236 0.7079126

3.3. Generating Functions

Theorem 2. Assume that Z is the non-negative RV, where Z ∼ DEG-G(W) class. Then, the
moment-generating function (MGF) of the RV Z can be derived as follows:

Mr,Z(t)|(z∈N(0),p∈I and r=1,2,3,...) = 1 +
+∞

∑
z=1
{exp(tz)− exp[t(z− 1)]}pO(z;γ,ξ). (8)

Proof. The MGF of the non-negative RV Z can be derived as follows:

Mr,Z(t) =
+∞

∑
z=0

exp(tz)
[

pO(z;γ,ξ) − pO(z+1;γ,ξ)
]
,

thus,

Mr,Z(t) = 1 +
+∞

∑
z=1
{exp(tz)− exp[t(z− 1)]}pO(z;γ,ξ)|(z∈N(0),p∈I and r=1,2,3,...).

The first r derivatives of (6), with respect to t at t = 0, yield the first r moments around
the origin, i.e.,

µ′r,Z|(t=0 and r=1,2,3,...) = E(Zr) =
dr

dtr Mr,Z(t),

where

µ′1,Z = E(Z) =
d
dt

Mr,Z(t)|t=0 =
+∞

∑
z=1

pO(z;γ,ξ)|(z∈N(0),p∈I and r=1),

µ′2,Z = E
(

Z2
)
=

d2

dt2 Mr,Z(t)|(t=0) =
+∞

∑
z=1

(2z− 1)pO(z;γ,ξ)|(z∈N(0),p∈I and r=2),
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µ′3,Z = E
(

Z3
)
=

d3

dt3 Mr,Z(t)|(t=0) =
+∞

∑
z=1

[3z(z− 1) + 1]pO(z;γ,ξ)|(z∈N(0),p∈I and r=3),

and

µ′4,Z = E
(

Z4
)
=

d4

dt4 Mr,Z(t)|(t=0) =
+∞

∑
z=1

[
z4 − (z− 1)4

]
pO(z;γ,ξ)|(z∈N(0),p∈I and r=4). �

The cumulant-generating function (CGF) is the logarithm of the MGF. Thus, the rth

cumulant, i.e., Cr,Z, can be derived as Cr,Z|(t=0, and r=1,2,3,...) = dr

dtr log[Mr,Z(t)]. In this
context, we can highlight some important mathematical results: The 1st cumulant is the
mean (C1,Z = µ1,Z). The 2nd cumulant is known as the variance (C2,Z = µ′2,Z− µ′21,Z = µ2,Z).
The 3rd cumulant is the same as the 3rd central moment C3,Z = µ′3,Z− 3µ′2,Zµ′1,Z + 2µ′31,Z = µ3,Z.
However, the 4th and higher-order cumulants are not equal to central moments. The
cumulants can be also expressed as follows:

Cr,Z|r≥1 = µ′r,Z −
r−1

∑
ω=0

(
r− 1
ω− 1

)
µ′r−ω,ZCω,Z.

It is possible to derive the probability-generating function (PGF) as follows:

PZ(s) = 1 +
+∞

∑
z=1

(
1− 1

s

)
sz pO(z;γ,ξ)|(z∈N(0),p∈I and r=1,2,3,...).

4. Estimation and Inference

In this section, we are concerned with the different estimation methods, including
classical methods and Bayesian methods. The classical methods are many and varied, some
of which depend on the theory of maximization, and some of which depend on the theory
of minimization. In any case, the classical methods on the whole differ from Bayes’ method
in their origin and methodology of estimation, as will be explained in detail in theory and
practice. The two subsections of this section cover Bayesian and non-Bayesian estimation
techniques. Eight non-Bayesian estimation techniques, including the MLE, CVME, OLSE,
WLSE, L-mom., KE, Bootst, and AD2LE methods, are taken into consideration in the first
subsection. Then, the Bayesian estimation approach under the well-known squared error
loss function (SELF) is taken into consideration in the second subsection.

4.1. Classical Estimation Techniques
4.1.1. The Maximum Likelihood Estimation Method

Maximum likelihood estimation (MLE) is a statistical technique for estimating the
parameters of a probability distribution that has been assumed given some observed data.
This is accomplished by maximizing a likelihood function to make the observed data
as probable as possible given the assumed statistical model. The maximum likelihood
estimate is the location in the parameter space where the likelihood function is maximized.
Maximum likelihood is a popular approach for making statistical inferences, since its
rationale is clear and adaptable.

The derivative test for figuring out maxima can be used if the likelihood function is
differentiable. The ordinary least squares estimator, for example, maximizes the likelihood
of the linear regression model, allowing the first-order requirements of the likelihood
function to be explicitly solved in some circumstances. However, in many cases, it is
essential to use numerical techniques to determine the probability function’s maximum.
MLE is typically comparable to maximum a posteriori (MAP) estimates under a uniform
prior distribution of the parameters from the standpoint of Bayesian inference. MLE is a
specific example of an extremum estimator in frequentist inference, with likelihood as the
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objective function. If we assume a random sample Z1, Z2, . . . , Zn from the presented class,
then the log-likelihood function for the vector W can be given as follows:

l(W) =
n

∑
t=0

ln
[

pO(zi,n ;γ,ξ) − pO(zi,n+1;γ,ξ)
]
|(p∈I and zi,n∈N(0))

.

The l(W) can then be maximized via statistical programs such as “R”, or by solving
the nonlinear system obtained from l(W) by differentiation. Then, the score vectors

U(W) =
(
∂l(W)/∂p, ∂l(W)/∂γ, ∂l(W)/∂ξj

)T |j=1,2,...,p,

can be easily derived as follows:

∂l(W)/∂p =
n

∑
t=0

O(zi,n; γ,ξ)p[O(zi,n ;γ,ξ)]−1 −O(zi,n + 1; γ,ξ)p[O(zi,n+1;γ,ξ)]−1

pO(zi,n ;γ,ξ) − pO(zi,n+1;γ,ξ)
,

∂l(W)/∂γ =
n

∑
t=0

∂O(zi,n ;γ,ξ)
∂γ pO(zi,n ;γ,ξ)ln(p)− ∂O(zi,n+1;γ,ξ)

∂γ pO(zi,n+1;γ,ξ)ln(p)

pO(zi,n ;γ,ξ) − pO(zi,n+1;γ,ξ)
,

and

∂l(W)/∂ξj =
n

∑
t=0

∂O(zi,n ;γ,ξ)
∂ξj

pO(zi,n ;γ,ξ)ln(p)− ∂O(zi,n+1;γ,ξ)
∂ξj

pO(zi,n+1;γ,ξ)ln(p)

pO(zi,n ;γ,ξ) − pO(zi,n+1;γ,ξ)
|j=1,2,...,p.

Setting

0 =
∂l(W)

∂p
, 0 =

∂l(W)

∂γ
, 0 =

∂l(W)

∂ξj
,

and simultaneously solving them produces the MLEs for the DEG-G family parameters.
For numerically addressing such problems, the Newton–Raphson algorithm is used.

4.1.2. The Cramér–von Mises Estimation Approach

Consider a random sample Z1, Z2, . . . , Zn from the proposed generator. Then, the
CVME of the parameter vector W (C(W)) can be obtained by minimizing

C(W) =
1

12
n−1 +

n

∑
i=1

[
FW (zi,n)−ω

[1]
(i,n)

]2
|(p∈I and zi,n∈N(0))

,

with respect to (w.r.t) p, γ, and ξ, respectively, where ω
[1]
(i,n) =

1
2n (2i− 1) and

C(W) =
n

∑
i=1

[
1− pO(zi,n+1;γ,ξ) −ω

[1]
(i,n)

]2
.

The three nonlinear equations below are then solved to yield the CVME of the param-
eters p, γ, and ξ:

0 =
n

∑
i=1

(
1− pO(zi,n+1;γ,ξ) −ω

[1]
(i,n)

)
ς(p)(zi,n + 1,W),

0 =
n

∑
i=1

(
1− pO(zi,n+1;γ,ξ) −ω

[1]
(i,n)

)
ς(γ)(zi,n + 1,W),

and

0 =
n

∑
i=1

(
1− pO(zi,n+1;γ,ξ) −ω

[1]
(i,n)

)
ς(ξj)

(zi,n + 1,W),
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where
ς(p)(zi,n + 1,W) = ∂FW (zi,n)/∂p, (9)

ς(γ)(zi,n + 1,W) = ∂FW (zi,n)/∂γ, (10)

and
ς(ξj)

(zi,n + 1,W) = ∂FW (zi,n)/∂ξj, (11)

are the first derivatives of the CDF of DEG-G distribution w.r.t p, γ, and ξj, respectively.

4.1.3. The Ordinary Least Squares Technique

Geometrically, this is defined as the total of the squared distances between each data
point in the set and its corresponding point on the regression surface, which are measured
parallel to the axis of the dependent variable. The lower the differences, the better the
model fits the data. Particularly in the case of a basic linear regression, when there is only
one regressor on the right-hand side of the regression equation, the resultant estimator can
be stated by a straightforward formula. If FW (zi,n) denotes the CDF of the DEG-G family
and Z1 < Z2 < · · · < Zn represents the n-ordered random sample, then the OLSEs(W) can
be obtained upon minimizing

OLSEs(W) =
n

∑
i=1

[
1−ω

[2]
(i,n) − pO(zi,n+1;γ,ξ)

]2
,

with respect to p, γ, and ξ, respectively, where ω
[2]
(i,n) =

i
n+1 . The OLSEs are obtained by

solving the following nonlinear equations:

0 =
n

∑
i=1

[
1− pO(zi,n+1;γ,ξ) −ω

[2]
(i,n)

]
ς(p)(zi,n + 1,W),

0 =
n

∑
i=1

[
1− pO(zi,n+1;γ,ξ) −ω

[2]
(i,n)

]
ς(γ)(zi,n + 1,W),

and

0 =
n

∑
i=1

[
1− pO(zi,n+1;γ,ξ) −ω

[2]
(i,n)

]
ς(ξj)

(zi,n + 1,W),

with respect to p, γ, and ξ, respectively, where ς(p)(zi,n + 1,W), ς(γ)(zi,n + 1,W), and
ς(ξj)

(zi,n + 1,W) are defined in (9), (10) and (11), respectively.

4.1.4. The Weighted Least Squares Estimation Method

Ordinary least squares and linear regression can be generalized into weighted least
squares (WLS), also known as weighted linear regression (WLR), which incorporates
knowledge of the variance of the observations into the regression. Another variation of
generalized least squares is WLS. If FW (zi,n) denotes the CDF of the DEG-G class, and we
assume that Z1 < Z2 < · · · < Zn is the n-ordered random sample, then the WLSE can be
derived by minimizing the function W(W) with respect to p, γ, and ξj, where

W(W) =
n

∑
i=1

d[3]
(i,n)

[
FW (zi,n)−ω

[2]
(i,n)

]2
,

and d[3]
(i,n) =

[
(1 + n)2(2 + n)

]
/[i(1 + n− i)]. Furthermore, the WLSEs can be reported

by solving

0 =
n

∑
i=1

d[3]
(i,n)

[
1− pO(zi,n+1;γ,ξ) −ω

[2]
(i,n)

]
ς(p)(zi,n + 1,W),
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0 =
n

∑
i=1

d[3]
(i,n)

[
1− pO(zi,n+1;γ,ξ) −ω

[2]
(i,n)

]
ς(γ)(zi,n + 1,W),

and

0 =
n

∑
i=1

d[3]
(i,n)

[
1− pO(zi,n+1;γ,ξ) −ω

[2]
(i,n)

]
ς(ξj)

(zi,n + 1,W),

with respect to p, γ, and ξ, respectively, where ς(p)(zi,n + 1,W), ς(γ)(zi,n + 1,W), and
ς(ξj)

(zi,n + 1,W) are defined in (9), (10) and (11), respectively.

4.1.5. L-Moments Estimation Approach

For a random sample taken from a certain population, the sample’s L-mom can be
established and utilized as estimators of the population’s L-mom. The L-mom for the
population can be obtained from

L(r) =
1
r

r−1

∑
m=0

(−1)m
(

r− 1
m

)
E(Zr−m:m)| (r≥1).

The first three L-mom can be expressed as follows:

L(1)(p, γ,ξ) = E(z1:1) = µ′1 = L(1),

L(2)(p, γ,ξ) =
1
2

E(z2:2 − z1:2) =
1
2
(
µ′2:2 − µ′1:2

)
= L(2),

and
L(3)(p, γ,ξ) =

1
3

E(z3:3 − 2z2:3 + z1:3) =
1
3
(
µ′3:3 − 2µ′2:3 + µ′1:3

)
= L(3),

where Li|(i=1.2.3) is the L-mom for the sample. Then, the L-mom estimators of the parame-
ters p, γ, and ξ can be obtained by solving the following three equations numerically

L(1)( p̂,γ̂,ξ̂) = L(1),L(2)
(

p̂,γ̂,ξ̂
)
= L(2),

and
L(3)

(
p̂,γ̂,ξ̂

)
= L(3).

4.1.6. The Kolmogorov Estimation Method

The Kolmogorov estimates (KEs) can be obtained by minimizing the following function:

K = K
(

p, γ,ξj
)
=

1≤i≤n
max

{
1
n

i− FW (zi,n), FW (zi,n)−
1
n
(i− 1)

}
.

For estimating each parameter, the KEs are obtained by comparing
[

1
n i− FW (zi,n)

]
|1≤i≤n

and FW (zi,n)− 1
n (i− 1) and selecting the maximum. However, for 1 ≤ i ≤ n, we minimize

the whole function K
(

p, γ,ξj
)
. For more detail about the KE approach, see the work of

Aguilar et al. [21].

4.1.7. Bootstrapping Technique

Bootst, which is a type of test or metric that mimics the sampling process by using ran-
dom sampling with replacement, belongs to the larger category of resampling techniques.
With Bootst, sample estimates are given accuracy ratings such as bias, variance, confidence
intervals, prediction error, etc. Using random sampling techniques, this strategy enables
estimation of the sample distribution for nearly any statistic. The observed data’s empirical
distribution function is a common option for an approximate distribution. A few resamples
with replacement of the observed dataset can be constructed in the case where a set of
observations can be believed to come from an independent and identically distributed
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population (and of equal size to the observed dataset). A potent statistical procedure,
the Bootst approach is particularly helpful with small sample size. The assumption of a
“normal” or “t” distribution cannot normally be utilized to cope with sample sizes smaller
than 40 (see Efron [22] and Hesterberg [5]). Techniques for Bootst perform very well with
samples that contain fewer than 40 observations. This is because Bootst requires resampling.
These methods make no assumptions regarding the distribution of our data. With the
increased accessibility of computational resources, Bootst has grown in popularity. This is
due to the necessity of using a computer for Bootst to be useful. In the application section,
we examine this in more detail.

4.1.8. The Anderson–Darling Left-Tail from the Second Order Approach

The AD2LEs of p, γ, and ξj can be obtained by minimizing

AD2LE(ξ) =
1
n

n

∑
i=1

2i− 1
FW (zi,n)

+ 2
n

∑
i=1

log[FW (zi,n)].

Thus, the AD2LEs can be derived by solving the following nonlinear equations:

∂[AD2LE(ξ)]/∂p = 0,∂
[
AD2LE

(
ξj
)]

/∂γ = 0

and
∂[AD2LE(ξ)]/∂ξj = 0.

4.2. Bayesian Estimation

Before we can even begin to discuss how a Bayesian approach might estimate a popu-
lation parameter, we must first recognize one important distinction between frequentist
and Bayesian statisticians. The distinction is whether a statistician views a parameter as
a random variable or as an unknowable constant. A Bayes estimator, also known as a
Bayes action, is an estimator or decision rule used in estimation theory and decision theory
that minimizes the posterior expected value of a loss function (i.e., the posterior expected
loss). In other words, it optimizes the utility function’s posterior expectation. Maximum
a posteriori estimation is a different approach to constructing an estimator in the context
of Bayesian statistics. We can assume the following prior distributions for the parameters
p, γ, and ξj, where

p1;(ς1,v1)
(p) ∼ beta(ς1, v1),p2;(ς2,v2)

(γ) ∼ Gamma(ς2, v2)

and
p3;(ς3,v3)

(
ξj
)
∼ Uniform(ς3, v3).

We can also assume that the parameters are independently distributed. The joint prior
distribution can be written as follows:

π(ςi ,vi)

(
p, γ,ξj

)
=

pς1(1− p)v1 v
ς2
2

(v3 − ς3)B(ς1, v1)Γ(ς2)
γ ς2−1exp[−(γv2)].

The posterior distribution p
(

p, γ,ξj|X
)

of the parameters is defined as follows:

p
(

p, γ,ξj|Z
)

∝ likelihood(W j|Z)× π(ςi ,vi)

(
p, γ,ξj

)
,

where the likelihood (W j|Z) = ∏n
i=1 fW (zi) and π(ςi ,vi)

(
p, γ,ξj

)
is the joint prior distribu-

tion. Under SELF, the Bayesian estimators of p, γ, and ξj are the means of their marginal
posteriors. Those marginal posteriors’ formulae cannot be utilized to derive the Bayesian
estimates. Hence, the numerical approximation is required. Markov chain Monte Carlo
(MCMC) methods are a class of algorithms used in statistics for probability distribution
sampling. One can obtain a sample of the desired distribution by building a Markov chain
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with the desired distribution as its equilibrium distribution and recording states from the
chain. The distribution of the sample closely resembles the real target distribution as the
number of steps increases. For building chains, a few algorithms are available—notably
the Metropolis–Hastings algorithm. In this work, we suggest using the Gibbs sampler and
Metropolis–Hastings (M–H) algorithm—two MCMC approaches. Since the conditional
posteriors of the parameters p, γ, and ξj cannot be obtained in any standard forms, it is
advisable to pull samples from the joint posterior of the parameters using a hybrid MCMC.
The full conditional posteriors of p, γ, and ξj can be easily calculated. The simulation
algorithm can be summarized in the following steps:

(1) Assume the initial values for p, γ, and ξj at the i(th) stage.
(2) Consider the elementary values for p, γ, and ξj at the ith stage.
(3) The M–H approach is utilized to derive

p(i) ∼ p1

(
p(i), X

)
|p(i−1), γ(i−1),ξj(i−1),

γ(i) ∼ p2

(
γ(i), X

)
|p(i), γ(i−1),ξj(i−1),

and
ξj(i) ∼ p2

(
γ(i), X

)
|p(i), γ(i),ξj(i−1).

(1) To obtain the samples of size from the relevant posteriors of interest, repeat steps 2–3
for M = 100,000 times.

(2) Obtain the Bayesian estimates of p, γ, and ξj using the following formulae:

p̂Bayes =
1

M−M0

M

∑
h=1+M0

p[h],

γ̂Bayes =
1

M−M0

M

∑
h=1+M0

γ[h] and ξ̂jBayes =
1

M−M0

M

∑
h=1+M0

ξj
[h],

respectively, where M0 ≈ 50, 000 is the burn-in period of the generated MCMC.

5. Simulations: Comparing Classical and Bayesian Estimation Methods

For comparing the classical and Bayesian methods, MCMC simulation studies were
performed. The results are presented in Table 4 (p = 0.1, γ = 0.2, θ = 0.9|n = 50, 100, 200,
300), Table 5 (p = 0.3, γ = 0.9, θ = 0.2|n = 50, 100, 200, 300), Table 6 (p = 0.5, γ = 0.3,
θ = 0.6|n = 50, 100, 200, 300), and Table 7 (p = 0.9, γ = 0.9, θ = 1.2|n = 50, 100, 200, 300).
The numerical assessments were performed based on the mean squared errors (MSEs).
First, we generated N = 1000 samples of the DEGW model. Based on Tables 4–7, it should
be noted that the performance of all estimation methods improves when n→ +∞ . The
value with “*” is the best estimation in its row for all estimation methods. Generally, it
should be noted that the MLE and the Bayesian methods are recommended for statistical
modeling and applications; this assessment, as shown in Tables 4–7, is mainly reliant on
a comprehensive simulation study, and the simulation, as is well known, precedes the
application on real data. Additionally, despite the diversity of classical methods and their
abundance, the MLE method is still the most efficient and most consistent of the rest of the
classical methods; however, most of the other methods perform well. In this section, we
use simulation studies to evaluate different estimation methods, and not to compare these
methods; this does not preclude the use of simulation for comparisons between different
estimation methods, but the real data are often used to compare the different estimation
methods, and this is what prompts us to present four applications for this specific purpose.
This is in addition to four other applications to compare the competing models.
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Table 4. Results of the MSEs where p = 0.1, γ = 0.2, θ = 0.9.

n MLE OLS WLS CVM Bayesian L-mom KE Bootst AD2LE

50 p0 0.00111 0.00116 0.00178 0.00126 0.00069 * 0.00140 0.00120 0.00155 0.00178
θ0 0.00160 * 0.02066 0.01452 0.01760 0.00430 0.00211 0.00885 0.00258 0.02066
γ0 0.00113 0.00080 0.00112 0.00071 0.00042 * 0.00144 0.00066 0.00130 0.00095

100 p0 0.00058 0.00068 0.00106 0.00072 0.00052 * 0.00082 0.00066 0.00096 0.00094
θ0 0.00067 * 0.00886 0.00508 0.00816 0.00415 0.00094 0.00456 0.00255 0.01008
γ0 0.00058 0.00040 0.00063 0.00038 0.00036 * 0.00083 0.00033 0.00076 0.00051

200 p0 0.00026 0.00036 0.00065 0.00037 0.00022 * 0.00037 0.00032 0.00032 0.00050
θ0 0.00030 * 0.00401 0.00186 0.00385 0.00254 0.00039 0.00221 0.00065 0.00493
γ0 0.00026 0.00020 0.00037 0.00020 0.00014 * 0.00037 0.00017 0.00028 0.00028

300 p0 0.00019 * 0.00025 0.00043 0.00025 0.00021 0.00024 0.00022 0.00023 0.00033
θ0 0.00020 * 0.00248 0.00118 0.00243 0.00078 0.00024 0.00154 0.00040 0.00315
γ0 0.00020 0.00013 0.00025 0.00013 0.00009 * 0.00024 0.00011 0.00017 0.00018

The value with “*” is the best estimation in its row for all estimation methods.

Table 5. Results of the MSEs where p = 0.5, γ = 0.3, θ = 0.6.

n MLE OLS WLS CVM Bayesian L-mom KE Bootst AD2LE

50 p0 0.00336 * 0.00403 0.00400 0.00391 0.00503 0.01825 0.00382 0.00679 0.00396
θ0 0.00468 0.03063 0.03013 0.01105 0.00613 0.01639 0.00448 * 0.00448 * 0.01126
γ0 0.00380 * 0.01173 0.01155 0.01050 0.02408 0.02421 0.01026 0.01313 0.01065

100 p0 0.00166 * 0.00194 0.00193 0.00190 0.00198 0.01294 0.00173 0.00204 0.00192
θ0 0.00178 0.00688 0.00524 0.00530 0.00099 * 0.01224 0.00140 0.00212 0.00548
γ0 0.00171 * 0.00543 0.00537 0.00513 0.00392 0.01420 0.00438 0.00243 0.00520

200 p0 0.00081 * 0.00101 0.00102 0.00100 0.00162 0.00930 0.00090 0.00135 0.00101
θ0 0.00083 0.00287 0.00175 0.00248 0.00039 * 0.00919 0.00067 0.00083 0.00259
γ0 0.00082 * 0.00274 0.00275 0.00268 0.00297 0.00944 0.00221 0.00220 0.00271

300 p0 0.00056 * 0.00066 0.00067 0.00065 0.00068 0.00649 0.00057 0.00134 0.00065
θ0 0.00057 0.00159 0.00080 0.00143 0.00035 * 0.00649 0.00049 0.00065 0.00151
γ0 0.00058 * 0.00177 0.00180 0.00173 0.00148 0.00650 0.00137 0.00214 0.00175

The value with “*” is the best estimation in its row for all estimation methods.

Table 6. Results of the MSEs where p = 0.5, γ = 0.3, θ = 0.6.

n MLE OLS WLS CVM Bayesian L-mom KE Bootst AD2LE

50 p0 0.00241 * 0.00333 0.00498 0.00312 0.01159 0.00347 0.00308 0.00320 0.00480
θ0 0.00242 0.00289 0.00189 * 0.00250 0.00442 0.00339 0.00299 0.00327 0.00499
γ0 0.00240 0.00119 0.00225 0.00105 * 0.00316 0.00337 0.00106 0.00322 0.00202

100 p0 0.00129 0.00175 0.00314 0.00170 0.00339 0.00181 0.00160 0.00111 * 0.00265
θ0 0.00130 0.00139 0.00074 0.00130 0.00042 * 0.00180 0.00149 0.00218 0.00248
γ0 0.00129 0.00059 0.00135 0.00056 0.00038 * 0.00180 0.00053 0.00116 0.00108

200 p0 0.00058 * 0.00084 0.00195 0.00082 0.00063 0.00083 0.00079 0.00067 0.00132
θ0 0.00059 0.00062 0.00032 0.00059 0.00019 * 0.00082 0.00071 0.00056 0.00111
γ0 0.00058 0.00027 0.00082 0.00026 0.00014 * 0.00082 0.00026 0.00056 0.00053

300 p0 0.00040 0.00049 0.00131 0.00049 0.00039 * 0.00055 0.00048 0.00043 0.00078
θ0 0.00040 0.00037 0.00018 0.00036 0.00014 * 0.00055 0.00045 0.00043 0.00065
γ0 0.00040 0.00016 0.00055 0.00016 0.00009 * 0.00055 0.00015 0.00043 0.00031

The value with “*” is the best estimation in its row for all estimation methods.

Table 7. Results of the MSEs where p = 0.9, γ = 0.9, θ = 1.2.

n MLE OLS WLS CVM Bayesian L-mom KE Bootst AD2LE

50 p0 0.00026 0.00028 0.00060 0.00026 0.00022 * 0.00023 0.00030 0.00268 0.00046
θ0 0.00041 0.00625 0.00578 0.00547 0.00271 0.00030 * 0.00428 0.01436 0.00725
γ0 0.00034 0.00342 0.01019 0.00318 0.00252 0.00026 * 0.00463 0.01624 0.00783

100 p0 0.00012 * 0.00015 0.00035 0.00014 0.00012 * 0.00012 * 0.00016 0.00021 0.00023
θ0 0.00012 * 0.00337 0.00270 0.00308 0.00269 0.00014 0.00264 0.00053 0.00435
γ0 0.00012 * 0.00189 0.00653 0.00181 0.00161 0.00013 0.00246 0.00097 0.00375

200 p0 0.00006 * 0.00007 0.00020 0.00007 0.00010 0.00006 * 0.00007 0.00006 0.00011
θ0 0.00006 * 0.00155 0.00107 0.00147 0.00105 0.00006 * 0.00132 0.00019 0.00222
γ0 0.00006 * 0.00091 0.00412 0.00090 0.00096 0.00006 * 0.00114 0.00018 0.00171

300 p0 0.00004 * 0.00004 * 0.00014 0.00004 * 0.00009 0.00004 * 0.00005 0.00006 0.00007
θ0 0.00004 * 0.00084 0.00059 0.00082 0.00103 0.00004 * 0.00084 0.00007 0.00138
γ0 0.00004 * 0.00055 0.00325 0.00055 0.00093 0.00004 * 0.00072 0.00012 0.00110

The value with “*” is the best estimation in its row for all estimation methods.

6. Comparing Various Estimation Techniques Via Real Data
6.1. Dataset I: Failure Times

This dataset represents the failure times of 50 devices, in weeks. The data observations
are available in the work of Bodhisuwan and Sangpoom [23], and were recently analyzed
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by Eliwa et al. [17], Aboraya et al. [14], and Ibrahim et al. [15]. Table 8 lists the estimates,
K–S, and P.V statistics for failure time data. Based on Table 8, it can be seen that the Bayesian
method is the best, with K–S = 0.14712 and P.V = 0.22927, followed by the MLE method,
with K–S = 0.163038 and P.V = 0.15266. The KE method provides undesirable results or
unexpected results (K–S = 0.51000 and P.V < 0.0001), and this may be due to the nature of
the data used, or to any other random reasons. In any case, these results need further study
and analysis, one way or another. Figure 3 gives the Kaplan–Meier (estimated survival
function) plots using failure time data for the nine estimation methods. The graphical
results in Figure 3 confirm and support the numerical results shown in Table 8.

Figure 3. Kaplan–Meier plots based on dataset I.

Table 8. Comparing methods using dataset I.

Method p γ θ K.S P.V

MLE 0.8450441207 0.1248812582 0.6840750167 0.163038 0.15266
OLS 0.9115300723 0.4505403055 0.4249120961 0.16907 0.11468
WLS 0.9273026987 0.4467200744 0.4572149891 0.20003 0.03659
CVM 0.9183256058 0.4514888661 0.4288501393 0.17538 0.09231

* Bayesian 0.8344024241 0.0987677765 0.7294684266 0.14712 0.22927
L-mom 0.8883682738 0.1303778446 0.7019449219 0.16801 0.11884

KE 0.0173097899 0.1619946274 0.0000203909 0.51000 <0.0001
Bootst 0.8465409851 0.1275235069 0.6948444678 0.21355 0.02092
AD2LE 0.6215684527 0.1341556153 0.5297912271 0.22093 0.01518

The value with “*” is the best estimation in its row for all estimation methods.
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6.2. Dataset II: Failure Times of 15 Electronic Components

This lifetime data gives the failure times for 15 electronic components in an acceleration
lifetime test (see Lawless et al. [24]). Table 9 gives the estimates, K–S, and P.V statistics
for second failure time data. Based on Table 9, it can be noted that the AD2LE method is
the best, with K–S = 0.09885 and P.V = 0.99855, followed by the Bayesian method, with
K–S = 0.09937 and P.V = 0.99843. Figure 4 gives the Kaplan–Meier plots using second
failure time data for the nine estimation methods. The graphical results in Figure 4 support
the results in Table 9. Again, the KE method provided undesirable results or unexpected
results (K–S = 0.53331 and P.V = 0.00039), and this may be due to the nature of the data
used, or to any other random reasons. In any case, these results need further study and
analysis, one way or another.

Figure 4. Kaplan–Meier plots under dataset II.

Table 9. Comparing methods using dataset II.

Method p γ θ K.S P.V

MLE 0.2738836678 0.012957314 1.0860441145 0.11998 0.98219
OLS 0.1985257104 0.0168180005 0.9854823405 0.11603 0.98761
WLS 0.2398746891 0.0180291436 0.9944931716 0.11229 0.99153
CVM 0.1327154712 0.0103680076 1.0482619245 0.10679 0.99553

Bayesian 0.3038462428 0.0199252587 0.9928028081 0.09937 0.99843
L-mom 0.5901252129 0.0522561583 0.8582513340 0.12438 0.97446

KE 0.0000033106 0.0586353219 0.0001265448 0.53331 0.00039
Bootst 0.2244536022 0.0101742641 1.3246956780 0.31898 0.09447

* AD2LE 0.0070230912 0.0024977558 1.2480067543 0.09885 0.99855
The value with “*” is the best estimation in its row for all estimation methods.
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6.3. Dataset III: Counts of Kidney Cysts

The data on kidney cyst counts reflect the number of cysts in lymphogenic kidneys
caused by corticosteroids, which are linked to the expression of recognized cytogenic
molecules and Indian hedgehog (see the works of Chan et al. [25], Eliwa et al. [17],
Aboraya et al. [14], and Ibrahim et al. [15]). Table 10 gives the estimates, K–S, and P.V
statistics for the kidney dataset. Based on Table 10, we can observe that the AD2LE method
is the best, with K–S = 0.09885 and P.V = 0.99855, followed by the CVM method, with
K–S = 0.28412 and P.V = 0.86757. Figure 5 gives the Kaplan–Meier plots using kidney data
for all methods. The graphical results in Figure 5 confirm the results of Table 10. Moreover,
the KE method provided undesirable results or unexpected results (K–S = 134.915 and
P.V < 0.0001), and this may be due to the nature of the data used, or to any other random
reasons. In any case, these results need further study and analysis, one way or another.

Figure 5. Kaplan–Meier plots according to dataset III.

Table 10. Comparing methods using dataset III.

Method p γ θ K.S P.V

MLE 0.4459431905 0.7342772117 0.3800575939 0.35698 0.83653
OLS 0.3572219176 0.623814996 0.3861454942 0.33875 0.84419
WLS 0.3351236932 0.5963314357 0.3977530334 0.38168 0.82627
CVM 0.3559783727 0.616701488 0.3850433614 0.28412 0.86757

Bayesian 0.4334316130 0.6761278712 0.4033948113 0.61746 0.73438
L-mom 0.6508195705 1.0129827319 0.3676423109 1.69547 0.42838

KE 0.09858974996 0.5052793233 0.0933711548 134.915 <0.0001
Bootst 0.4502907161 0.7658835657 0.3892316532 1.15192 0.56216

* AD2LE 0.3560565879 0.6169232134 0.383446173 0.28323 0.86796
The value with “*” is the best estimation in its row for all estimation methods.
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6.4. Dataset IV: Number of European Corn Borer Larvae

These data represent the number of European corn borer larvae in the field (see the
works of Bebbington et al. [26], Eliwa et al. [17], and Aboraya et al. [14]). Table 11 gives
the estimates, K–S, and P.V statistics for dataset IV. Based on Table 11, the L-mom method
is the best, with K–S = 1.34090 and P.V = 0.51148, followed by the CVM method, with
K–S = 2.21687 and P.V = 0.36774. Figure 6 gives the Kaplan–Meier plots using corn borer
larvae data for all methods. The plots in Figure 6 confirm the results in Table 11. The KE and
Bootst methods provided undesirable results or unexpected results (K–S = 8.69× 106 and
P.V < 0.0001), and this may be due to the nature of the data used, or to any other random
reasons. In any case, these results need further study and analysis, one way or another.

Figure 6. Kaplan–Meier plots for dataset IV.

Table 11. Comparing methods for dataset IV.

Method p γ θ K.S P.V

MLE 0.0421915321 0.1441660755 0.8986850359 2.07337 0.35463
OLS 0.207451888 0.2600860974 0.9026929140 2.06132 0.35677
WLS 0.0328021927 0.1224019888 1.0741417897 2.57368 0.27614
CVM 0.2560193547 0.2955407600 0.8642332727 2.00076 0.36774

Bayesian 0.0388192223 0.1299953255 0.9335014673 2.21687 0.33007
* L-mom 0.0000162586 0.0427720724 1.0054904684 1.34090 0.51148

KE 0.0268390486 0.2732464266 7.22789×10−6 8.69×106 <0.0001
Bootst 0.0305812278 0.0787811852 1.0371758772 117.888 <0.0001
AD2LE 0.4094146417 0.4016848541 0.8725794897 4.33318 0.11457

The value with “*” is the best estimation in its row for all estimation methods.
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7. Competitive Models: Comparative Study and Interpretation

We used four real data applications to demonstrate the adaptability, usefulness, and
significance of the DEGW distributions. The fitted distributions were analyzed and com-
pared using the log-likelihood function, AICR, CAICR, χ2

V with degree of freedom (d.f) P.V,
and K–S and its P.V. Table 12 shows the competitive models and their abbreviations.

Table 12. The competitive models.

Discrete Model Abbreviations

Exponential DE
Inverse Rayleigh DIR

Weibull DW
Lindley-II DLy-II
Rayleigh DR

Inverse Weibull DIW
Generalized exponential-II DGE-II

Burr type XII DBXII
Lindley DLi

Log-logistic DLL
Lomax DLx
Poisson Poisson

Exponentiated Lindley EDLy
Pareto DPa

Exponentiated Weibull EDW
Negative binomial (see Dougherty [27]) NB

7.1. Dataset I: Failure Time Data of 50 Devices

Using the data of Bebbington et al. [26], we compared the fits of the DEGW distri-
bution with some competitive discrete models, such as EDW, DW, DIW, DLy-II, EDLy,
DLL, and DPa. The failure time data are shown in Figure 7 together with the quantile–
quantile (Q-Q) plot (middle panel), boxplot (left panel), and total time on test (TTT) plot
(right panel). Table 13 displays the MLEs and associated standard errors (St.Ers). Table 14
displays the goodness-of-fit test statistics. The MATHCAD application was used to gen-
erate the results for Table 13, Table 14, and all other comparable results in the following
subsections. Based on Table 14, the DEGW provides the best fits against all competi-
tive models, with −l = 233.467, AICR = 472.933, CAICR = 473.455, K–S = 0.16304, and
P.V = 0.15266. Figure 8 gives the fitted HRF (FHRF), fitted SF (FSF) (also called the Kaplan–
Meier SF), and probability–probability (P–P) plots for failure time data. Based on Table 13,
we have E(Z) = 17.7667, V(Z) = 811.8649, S(Z) = 1.359128, K(Z) = 3.271034, and
Disp-Ix(Z) = 45.6957.

Table 13. The MLEs (and their corresponding St.Ers) for dataset I.

Model p γ θ

DEGW 0.84504 0.12488 0.68408
(0.1316) (0.1337) (0.1787)

EDW 0.98914 1.13934 0.78444
(0.1644) (3.2274) (3.0535)

DW 0.98126 1.02342
(0.0114) (0.1322)

DIW 0.01832 0.58244
(0.0131) (0.063)

DLy-II 0.96934 0.0585
(0.00504) (0.0274)

EDLy 0.97222 0.48020
(0.0053) (0.0873)
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Table 13. Cont.

Model p γ θ

DLLc 1.00010 0.43941
(0.3213) (0.0623)

DPa 0.73922
(0.03212)

Table 14. The goodness-of-fit test statistics for comparing the competitive models for dataset I.

DEGW EDW DW DIW DLy-II EDLy DLLc DPa

−l 233.47 240.24 241.65 261.94 240.67 240.38 294.99 275.99
AICR 472.93 486.76 487.25 527.89 485.23 484.69 593.84 553.74

CAICR 473.46 487.29 487.59 528.18 485.44 484.88 594.0 553.84
K–S 0.1630 0.1957 0.1872 0.2587 0.1868 0.1954 0.5354 0.3354
P.V 0.1527 0.0457 0.0619 0.0036 0.06499 0.045 <0.001 <0.0013

Figure 7. Box, Q-Q, and TTT plots for dataset I.

Figure 8. The FHRF, ESF, and P–P plots for dataset I.
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7.2. Dataset II: Failure Times of 15 Electronical Components

We compared the DEGW distributions’ fits to some models, including the DGE-II,
DEx, DR, DIW, DIR, DLx, DPa, and DBXII, using data pertaining to electronic compo-
nents. Table 15 exhibits both the MLEs and St.Ers. The test statistics are presented in
Table 16. Based on Table 16, the DEGW provides the best fit compared to all discrete
competitive models, with −l = 63.791, AICR = 133.581, CAICR = 135.763, K–S = 0.11998,
and P.V = 0.98219. Figure 9 gives the Q–Q plot (middle panel), boxplot (left panel), and
TTT plot (right panel) for the data of the second failure times. Figure 10 gives the FHRF,
ESF, and P–P plots for second failure times. Based on Table 15, we have E(Z) = 4.873615,
V(Z) = 133.6553, S(Z) = 2.890644, K(Z) = 11.67092, and Disp-Ix(Z) = 27.42426.

Table 15. The MLEs (and their corresponding St.Ers) for dataset II.

Model p γ θ

DEGW 0.27388 0.01296 1.08604
(0.83537) (0.0426) (0.48154)

DGE-II 0.9561 1.4912
(0.0133) (0.535)

DIW 2.3 × 10−4 0.8752
(7.8 × 10−4) (0.164)

DLx 0.0123 104.506
(0.039) (84.409)

DBXII 0.9753 13.367
(0.051) (27.785)

DR 0.9992
(2.58 × 10−4)

DIR 1.832 × 10−7

(0.055)
DPa 0.7201

(0.061)

Table 16. The goodness-of-fit test statistics for comparing the competitive models for dataset II.

DEGW DE DGE-II DR DIR DIW DLo DB-XII

−l 63.7911 65.002 64.423 66.390 89.0964 68.703 65.864 75.724
AICR 133.581 134.02 134.88 134.83 180.191 141.413 135.728 155.45

CAICR 135.763 136.34 135.81 136.11 180.501 142.412 136.728 156.45
K–S 0.11998 0.1777 0.1291 0.2161 0.6982 0.20923 0.20524 0.3889
P.V 0.98219 0.6734 0.9373 0.4333 <0.0001 0.4821 0.4912 0.0159

Figure 9. Boxplot, Q-Q plot, and TTT plot for dataset II.
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Figure 10. The FHRF, ESF, and P–P plots for dataset II.

7.3. Dataset III: Counts of Kidney Data

We compared the DEGW distribution’s fits to some competing models, including the
DW, DIW, DR, DE, DLi, DLy-II, DLx, and Poisson models, for this set of data. Table 17
shows the MLEs and St.Ers. The goodness-of-fit statistics are provided in Table 18. Based on
Table 18, the DEGW provides the best fits against all competitive models, with−l = 167.047,
AICR = 340.094, CAICR = 340.321, χ2

V = 0.35698, and P.V=0.83653. Figure 11 provides
the boxplot, Q-Q plot, and TTT plot for the kidney data. Figure 12 gives the fitted PDF
(FPMF), fitted SF (FSF), fitted HRF (FHRF), and fitted CDF (FCDF) plots. Based on Table 17,
we have E(Z) = 1.432338, V(Z) = 4.86933, S(Z) = 2.018928, K(Z) = 7.255506, and
Disp-Ix(Z) = 3.399567.

Table 17. The MLEs (and their corresponding St.Ers) for dataset III.

Model p γ θ

DEGW 0.44594 0.73428 0.38006
(0.9079) (1.3168) (0.2637)

DW 0.7503 0.43143
(0.084) (0.3402)

DIW 0.5813 1.0492
(0.0483) (0.1463)

DLy-II 0.5814 0.0011
(0.0455) (0.058)

DLx 0.1505 1.8303
(0.0980) (0.9513)

DR 0.90133
(0.0093)

DE 0.5814
(0.0304)

DLi 0.4363
(0.0263)

Poi 1.3903
(0.1124)

Table 18. The goodness-of-fit test statistics for comparing the competitive models for dataset III.

Z OF DEGW DW DIW DR DEx DLi DLy-II DLx Poi

0 65 64.163 59.01 63.91 11.00 46.09 40.25 46.03 61.89 27.42
1 14 15.626 19.84 20.70 26.83 26.78 29.83 26.77 21.01 38.08
2 10 9.184 10.78 8.050 29.55 15.56 18.36 15.57 9.650 26.47
3 6 6.038 6.260 4.230 22.23 9.040 10.35 9.050 5.240 12.26
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Table 18. Cont.

Z OF DEGW DW DIW DR DEx DLi DLy-II DLx Poi

4 4 4.169 4.190 2.60 12.49 5.250 5.530 5.270 3.170 4.260
5 2 2.955 2.010 1.750 5.420 3.050 2.860 3.060 2.060 1.180
6 2 2.127 1.990 1.260 1.850 1.770 1.440 1.780 1.420 0.270
7 2 1.545 1.320 0.950 0.520 1.030 0.710 1.040 1.020 0.050
8 1 1.128 0.990 0.740 0.110 0.600 0.350 0.600 0.760 0.010
9 1 0.827 0.860 0.590 0.020 0.350 0.170 0.350 0.580 0.000

10 1 0.606 0.760 0.480 0.000 0.200 0.080 0.200 0.460 0.000
11 2 0.445 1.990 4.740 0.000 0.280 0.070 0.280 2.740 0.000

−l 167.047 170.14 172.93 277.78 178.77 189.1 178.8 170.48 246.21
AICR 340.094 344.28 349.87 557.56 359.53 380.2 361.5 344.96 494.42

CAICR 340.321 344.39 349.98 557.59 359.57 380.3 361.6 345.07 494.46
χ2

V 0.35698 3.125 6.463 321.07 22.88 43.48 22.89 3.316 294.10
d.f 2 3 3 4 4 4 3 3 4
P.V 0.83653 0.373 0.091 <0.0001 0.0001 <0.0001 <0.0001 0.345 <0.0001

Figure 11. Boxplot, Q-Q plot, and TTT plot for dataset III.

Figure 12. The FPMF, FSF, FHRF, and FCDF plots for dataset III.
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7.4. Dataset IV: European Corn Borer Data

In this section, we compare the DEGW distributions’ fits to those of other rival models,
including the DGIW, DIW, DBXII, DIR, DR, NB, DPa, and Poisson model. Table 19 displays
the MLEs and St.Ers. The goodness-of-fit statistics are shown in Table 20. Based on
Table 20, the DEGW provides the best fits against all competitive models, with−l = 200.956,
AICR = 407.912, CAICR = 408.119, χ2

V = 2.07337, and P.V = 0.35463. Figure 13 gives the
boxplot, Q-Q plot, and TTT plot. Figure 14 gives the FPMF, FSF, FHRF, and FCDF plots
for corn borer larvae data. Based on Table 19, we have E(z) = 1.44422, V(z) = 2.811083,
S(z) = 1.329544, K(z) =4.446335, and Disp-Ix(Z) = 1.946437.

Table 19. The MLEs (and their corresponding St.Ers) for dataset IV.

Model p γ θ λ

DEGW 0.04222 0.14417 0.89869
(0.12268) (0.13283) (0.1634)

DGW 0.04503 2.539324 2.1593 0.47933
(0.4293) (4.70345) (2.6988) (0.4655)

DIW 0.34523 1.54132
(0.0433) (0.1564)

DBXII 0.51933 2.35811
(0.0513) (0.3663)

NB 0.87013 9.95623
(0.0364) (0.09623)

DIR 0.31923
(0.0422)

DR 0.86721
(0.01244)

DPa 0.3299
(0.0344)

Poi 1.48344
(0.0254)

Figure 13. Boxplot, Q-Q plot, and TTT plot for dataset IV.
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Figure 14. The FPMF, FSF, FHRF, and FCDF plots for dataset IV.

Table 20. The goodness-of-fit test statistics for comparing the competitive models for dataset IV.

Z OF DEGW DIW DBXII DIR DR NB DPa Poi DEGW

0 43 46.551 41.37 43.84 38.28 15.92 30.12 64.45 27.23 46.551
1 35 28.238 41.85 39.61 51.90 36.17 38.87 20.15 40.38 28.238
2 17 18.318 15.42 15.62 15.51 34.58 27.61 9.690 29.95 18.318
3 11 11.588 7.170 7.200 6.040 21.03 14.26 5.650 14.81 11.588
4 5 7.030 3.940 3.910 2.910 8.890 5.990 3.680 5.490 7.030
5 4 4.052 2.420 2.370 1.610 2.700 2.170 2.580 1.630 4.052
6 1 2.202 1.610 1.560 0.980 0.600 0.700 1.900 0.400 2.202
7 2 1.120 1.130 1.090 0.640 0.090 0.210 1.460 0.090 1.120
8 2 0.530 5.090 4.800 2.140 0.020 0.060 10.44 0.020 0.530

−l 200.956 204.810 204.293 208.440 235.23 211.52 220.63 219.19 200.956
AICR 407.912 413.621 412.587 418.881 472.45 427.05 443.24 440.38 407.912

CAICR 408.119 413.723 412.689 418.915 472.49 427.14 443.27 440.41 408.119
χ2

V 2.07337 5.511 4.664 14.274 70.688 20.367 32.462 38.478 2.07337
d.f 2 3 3 4 4 3 4 4 2
P.V 340.321 344.39 349.98 557.59 359.57 380.3 361.6 345.07 494.46

8. Concluding Remarks

The discrete exponential generalized G (DEG-G) family is a new discrete variation
of the exponential family that we suggest in this study. Numerous pertinent DEG-G
family features—including the dispersion index, central and ordinary moments, cumulant-
generating function, probability-generating function, and moment-generating function—
were developed and studied, with numerical illustrations. After the new family was
proposed, the DEGW model was introduced and studied in detail. The skewness ∈
(−1.053185, ∞). The spread of its kurtosis was from 1.02442 to ∞. The dispersion index
∈ (0, 1), or “> 1”, or “=1”. In order to simulate “under-dispersed”, “equi-dispersed”, or
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“over-dispersed” count data, the DEGW distribution may be helpful. In addition to being
“symmetric”, “symmetric and bimodal”, “uniform”, or “right skewed with long tail”, the
probability mass function of the DEGW distribution can also be “asymmetric and right-
skewed”, “asymmetric and left-skewed”, “symmetric”, or “symmetric and bimodal”. The
DEGW distribution’s failure rate can take one of five different forms: “constant,” “growing-
constant,” “bathtub,” “monotonically increasing”, or “J-shapeed”. The DEGW parameters
were estimated via various techniques to determine the best estimator for each data. A
thorough comparison of the various methodologies was conducted for both simulated and
real-life data. Finally, four real-life datasets were analyzed, and the following results can be
concluded:

• In modeling the asymmetric failure time count data (the data of 50 devices), it
can be seen that the Bayesian method is the best method, with K–S = 0.14712 and
P.V = 0.22927, followed by the MLE method, with K–S = 0.163038 and P.V = 0.15266.
However, for this dataset, the discrete exponential generalized G family provides the
best fit under the Weibull baseline, with−l = 233.467, AICR = 472.933, CAICR = 473.455,
K–S = 0.16304, and P.V = 0.15266.

• In modeling the asymmetric failure time count data (the data of 15 electronic compo-
nents), the Anderson–Darling (left-tail second-order) method is the best method,
with K–S = 0.09885 and P.V = 0.99855, followed by the Bayesian method, with
K–S = 0.09937 and P.V = 0.99843. However, for this dataset, the discrete exponential
generalized G family provides the best fit under the Weibull baseline, with−l = 63.791,
AICR = 133.581, CAICR = 135.763, K–S = 0.11998, and P.V = 0.98219.

• In modeling the asymmetric counts of kidney data, the Anderson–Darling (left-tail
second-order) method is the best, with K–S = 0.09885 and P.V = 0.99855, followed by the
Cramér–von Mises estimation method, with K–S = 0.28412 and P.V = 0.86757. However,
for this dataset, the discrete exponential generalized G family provides the best fit
under the Weibull baseline, with −l = 167.047, AICR = 340.094, CAICR = 340.321,
χ2

V = 0.35698, and P.V = 0.83653.
• In modeling the asymmetric European corn borer larvae data, the L-moment method

is the best, with K–S = 1.34090 and P.V = 0.51148, followed by the Cramér–von Mises
estimation method, with K–S = 2.21687 and P.V = 0.36774. However, for this dataset,
the discrete exponential generalized G family provides the best fit under the Weibull
baseline, with −l = 200.956, AICR = 407.912, CAICR = 408.119, χ2

V = 2.07337, and
P.V = 0.35463.

Discrete distributions still need more studies and applications, especially with regard
to the statistical testing of hypotheses and validation, whether in the case of complete data
or in the case of censored data. In this regard, the reader may find a guide in the works of
Goual and Yousof [28], Yousof [29], Yadav et al. [30], Yadav et al. [31], and Mansour [32].
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Abbreviations
RV Random variable
PMF Probability mass function
CDF Cumulative distribution function
EG-G Exponential generalized G
DEG-G Discrete exponential generalized G
exp-G Exponential G
SF Survival function
HRF Hazard rate function
Disp-Ix Dispersion index
MLEs Maximum likelihood estimations
CVME Cramér–von Mises estimation
OLSE Ordinary least squares estimation
Bootst Bootstrapping
KE Kolmogorov estimation
WLSE Weighted least squares estimation
AD2LE Anderson–Darling method of left-tail second-order estimation
MSE Mean square error
St.Ers Standard errors
MCMC Markov chain Monte Carlo
l Log-likelihood
AICR Akaike information criterion
CAICR Consistent Akaike information criterion
BIC Bayesian information criterion
HQIC Hannan–Quinn information criterion
K–S Kolmogorov–Smirnov
P.V p-value
P–P Probability–probability
TTT Total time in test
Q-Q Quantile–quantile
FHRF Fitted hazard rate function
FSF Fitted survival function
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