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Abstract: In this paper, we totally discard the traditional trial-and-error algorithms of choosing the
acceptable shape parameter c in the multiquadrics −

√
c2 + ‖x‖2 when dealing with differential

equations, for example, the Poisson equation, with the RBF collocation method. Instead, we choose
c directly by the MN-curve theory and hence avoid the time-consuming steps of solving a linear
system required by each trial of the c value in the traditional methods. The quality of the c value
thus obtained is supported by the newly born choice theory of the shape parameter. Experiments
demonstrate that the approximation error of the approximate solution to the differential equation is
very close to the best approximation error among all possible choices of c.
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1. Introduction

The generalized multiquadrics are defined as

φ(x) := (−1)dβ/2e(c2 + ‖x‖2)β/2, β ∈ R \ 2N≥0, c > 0, x ∈ Rd, (1)

where dβ/2e denotes the smallest integer greater than or equal to β/2 and the constant c is
called the shape parameter. These are the most popular radial basis functions (RBFs) and are
frequently used in the collocation method of solving partial differential equations. In this
paper, we let β = 1. In the collocation method, an approximate solution to a differential
equation is of the form

û(x) :=
N

∑
i=1

λiφ(x− xi) + p(x), (2)

where p(x) ∈ Pm−1, the space of polynomials of a degree less than or equal to m− 1 in Rd,
and X = {x1, . . . , xN} is a set of points scattered in the domain. For m = 0, Pm−1 := {0}.
The integer m := dβ/2e. Since we let β = 1, here m = 1 and p(x) is a constant λ0.
An unorthodox way even drops λ0 and lets it be 0.The constants λi, i = 0, . . . , N, are
chosen so that û(x) satisfies the differential equation (including the boundary conditions)
at the points xi, i = 1, . . . , N, called the collocation points.

The function û(x) originates from the interpolation theory of the radial basis func-
tions, where û(x) interpolates a given function f (x) at x1, . . . , xN . It is required that
∑N

i=1 λi pl(xi) = 0 for l = 1, . . . Q, where {p1, · · · , pQ} is a basis of Pm−1. Besides this, the
only requirement for X = {x1, . . . , xN} is that it should be Pm−1-unisolvent. Namely, if
p ∈ Pm−1 and p(xi) = 0 for i = 1, . . . , N, then p(x) is a zero polynomial. Further details
can be observed in Section 8.5 of Wendland [1]. This origin has to be mentioned because
we need it in the design of û(x).
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This approach of solving the differential equation was first introduced by E. Kansa [2,3].
A huge amount of experiments demonstrate that it works very well. The main advantage
of this approach, namely the collocation method (or Kansa method), is that the data points
are scattered in the domain without meshes. Moreover, its high accuracy is also very
attractive. However, the choice of the shape parameter c contained in the multiquadrics is
a big problem. Experts in this field only know that it is very influential, but do not know
how to choose it. G. Fasshauer [4] pointed out that only trial-and-error algorithms were
available. Some people even give up using mutiquadrics to solve differential equations
due to this problem. This greatly lowers the power of the collocation method. The purpose
of this paper is to handle this problem.

2. Materials and Methods
2.1. Sobolev Error Estimates

We need a space that plays an intermediate role in our approximating work.

Definition 1. For any positive number γ,

Bγ :=
{

f ∈ L2(Rd) : f̂ (ξ) = 0 i f ‖ξ‖ > γ
}

where f̂ denotes the Fourier transform of f . For each f ∈ Bγ, its norm is

‖ f ‖Bγ :=
{∫
| f̂ (ξ)|2dξ

}1/2
.

Here, f ∈ L2(Rd) means that f (x)2 is integrable. Our main interest is in the Sobolev
space Wτ

2 (Rd) because it contains the solutions of a lot of important differential equations.
The Sobolev space is defined as follows.

Definition 2. For any positive integer τ,

Wτ
2 (Rd) =

{
f ∈ L2(Rd) : Dk f (x1, . . . , xd) ∈ L2(Rd) f or |k| ≤ τ

}
where k = (k1, . . . , kd) and |k| = ∑d

i=1 ki. The Sobolev norm is

‖ f ‖Wτ
2 (Rd) :=

 ∑
0≤|k|≤τ

∫
|Dk f (x)|2dx


1/2

.

In the preceding definition, the derivatives are more general than the classical deriva-
tives, called the distributional derivatives. The vector k can even have negative or non-
integer coordinates. Further details can be observed in Yosida [5] and any textbooks of
functional analysis.

Before introducing Sobolev error estimates, some necessary ingredients should be
defined. Suppose X = {x1, . . . , xN} ⊆ Ω is a finite subset of a bounded set Ω in Rd. Then,
the separation radius is defined by

qX :=
1
2

min
i 6=j
‖xi − xj‖.

Then, we have the following core theorem, which is just Theorem 3.4 of Narcowich et al. [6].
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Theorem 1. Let β, t ∈ R satisfy β > d/2 and t ≥ 0. If f ∈Wβ+t
2 (Rd), then there exists fγ ∈ Bγ

such that fγ|X = f |X and

‖ f − fγ‖Wβ
2 (Rd)

≤ 5 · κ−tqt
X‖ f ‖

Wβ+t
2 (Rd)

, (3)

with γ = κ/qX , where κ ≥ 1 depends only on β and d.

This theorem clearly shows that any function in the Sobolev space, possibly a solution
to an important differential equation, can be interpolated by a Bγ function with a good
error bound. In the next subsection, we will demonstrate that any Bγ function can be
interpolated by a function of the form (2), also with a good error bound.

2.2. MN-Curve Theory

We need some basic definitions.

Definition 3. For any positive number σ,

Eσ :=
{

f ∈ L2(Rd) :
∫
| f̂ (ξ)|2e|ξ|

2/σdξ < ∞
}

where f̂ denotes the Fourier transform of f . For each f ∈ Eσ, its norm is

‖ f ‖Eσ :=
{∫
| f̂ (ξ)|2e|ξ|

2/σdξ

}1/2
.

Obviously, for any γ, σ > 0, Bγ ⊆ Eσ. We are going to demonstrate how Eσ functions
can be approximated by functions of the form (2).

For any set Ω ⊆ Rd and any set X = {x1, . . . , xN} of sample points contained in Ω,
the fill distance is defined by

δ(Ω, X) := sup
x∈Ω

inf
i=1,...,N

‖x− xi‖,

abbreviated as δ, which measures the spacing of the sample points in Ω. The smaller δ is,
the more sample points are needed. In this paper, Ω denotes the function domain.

Definition 4. Let d and β be as in (1). The numbers ρ and ∆0 are defined, as follows.

(a) Suppose β < d− 3. Let s = d(d− β− 3)/2e. Then

(i) if β < 0, ρ = (3 + s)/3 and ∆0 = (2+s)(1+s)···3
ρ2 ;

(ii) if β > 0, ρ = 1 + s
2dβ/2e+3 and ∆0 = (2m+2+s)(2m+1+s)···(2m+3)

ρ2m+2

where m = dβ/2e.

(b) Suppose d− 3 ≤ β < d− 1. Then ρ = 1 and ∆0 = 1.

(c) Suppose β ≥ d− 1. Let s = −d(d− β− 3)/2e. Then

ρ = 1 and ∆0 =
1

(2m + 2)(2m + 1) · · · (2m− s + 3)
where m = dβ/2e.

For any f ∈ Eσ and x ∈ Ω, the upper bound of | f (x)− û(x)| is a very complicated
expression involving both ρ and ∆0, as can be observed in Luh [7]. A modified theory for
a purely scattered data setting can be observed in Luh [8]. In this paper, we only need to
extract its essential part

| f (x)− û(x)| ≤ MN(c)‖ f ‖Eσ (4)
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where c is just the shape parameter defined in (1) and MN(c) is the MN function to be
defined below, as in [8].

In the MN-curve theory, we require that the diameter r of the function domain Ω
satisfy b0/2 ≤ r ≤ b0 where b0 is a parameter determined by us. Once b0 is fixed, there are
three cases for the definition of MN(c).

Case 1 : β < 0, |d + β| ≥ 1 and d + β + 1 ≥ 0 Let f ∈ Eσ and φ(x) be as in (1). For any
fixed fill distance δ satisfying 0 < δ ≤ b0/2, the optimal value of c in [24ρδ, ∞) is the
number minimizing

MN(c) :=


√

8ρc(β−d−1)/4
{
(ξ∗)(d+β+1)/2ecξ∗−(ξ∗)2/σ

}1/2
( 2

3 )
c/(24ρδ) if c ∈ [24ρδ, 12b0ρ),√

2
3b0

c(β−d+1)/4
{
(ξ∗)(d+β+1)/2ecξ∗−(ξ∗)2/σ

}1/2
( 2

3 )
b0/(2δ) if c ∈ [12b0ρ, ∞),

where

ξ∗ =
cσ +

√
c2σ2 + 4σ(d + β + 1)

4
.

Remark 1. Note that limc→0+ MN(c) = ∞ and limc→∞ MN(c) = ∞.
Case 2 : β = −1 and d = 1 Let f ∈ Eσ and φ(x) be as in (1). For any fill distance δ satisfying

0 < δ ≤ b0/2, the optimal value of c in [24ρδ, ∞) is the number minimizing

MN(c) :=


√

8ρc(β−1)/2
{

1
ln 2 + 2

√
3M(c)

}1/2
( 2

3 )
c/(24ρδ) if c ∈ [24ρδ, 12b0ρ),√

2
3b0

cβ/2
{

1
ln 2 + 2

√
3M(c)

}1/2
( 2

3 )
b0/(2δ) if c ∈ [12b0ρ, ∞),

where

M(c) :=

 e1−1/(c2σ) if 0 < c ≤ 2√
3σ

,

g( cσ+
√

c2σ2+4σ
4 ) if 2√

3σ
< c,

g being defined by g(ξ) :=
√

cξecξ−ξ2/σ.

Remark 2. The same as Case 1, we have limc→0+ MN(c) = ∞ and limc→∞ MN(c) = ∞.
Case 3 : β > 0 and d ≥ 1 Let f ∈ Eσ and φ(x) be as in (1). For any fixed fill distance δ

satisfying 0 < δ ≤ b0/2, the optimal value of c in [24ρδ, ∞) is the number minimizing

MN(c) :=


√

8ρc(β−d−1)/4
{

(ξ∗)(1+β+d)/2ecξ∗

e(ξ∗)2/σ

}1/2
( 2

3 )
c/(24ρδ) if c ∈ [24ρδ, 12b0ρ),√

2
3b0

c(1+β−d)/4
{

(ξ∗)(1+β+d)/2ecξ∗

e(ξ∗)2/σ

}1/2
( 2

3 )
b0/(2δ) if c ∈ [12b0ρ, ∞),

where

ξ∗ =
cσ +

√
c2σ2 + 4σ(1 + β + d)

4
.

Remark 3. (a) If β− d− 1 > 0, limc→0+ MN(c) = 0. (b) If β− d− 1 < 0, limc→0+ MN(c)
= ∞. (c) If β− d− 1 = 0, limc→0+ MN(c) is a finite positive number. (d) limc→∞ MN(c) = ∞.
Practically, we never let β− d− 1 ≥ 0. Hence (a) and (c) will not happen.

In all the three cases, the requirement c ≥ 24ρδ is harmless because the value 24ρδ is
usually quite small and a huge amount of experiments demonstrate that the optimal choice
of c never lies in the interval (0, 24ρδ).

The function û(x) in (4) in fact interpolates f (x) at the sample points. Hence, strictly
speaking, MN(c) can only be used to measure the quality of the function interpolation.
Nevertheless, collocation is in spirit a kind of interpolation, not just approximation. We
require that û(x) satisfy the given differential equation at the sample points. Theoretically,
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the value c minimizing MN(c) should also be the optimal choice of c in the definition of
û(x) when dealing with differential equations. Another point is that in (4), it is required that
f ∈ Eσ, which is mathematically just a subset of the Sobolev space Wτ

2 (Rd). Fortunately,
the Formula (3) offers a bridge for our approximating f ∈Wτ

2 (Rd) with û(x). For a fixed
set X = {x1, . . . , xN} of sample points in Ω ⊆ Rd, any f ∈Wτ

2 (Rd) can be interpolated by
an fγ ∈ Bγ ⊆ Eσ. Then fγ can be interpolated by û. Both happen in X. The influence of c
happens in the latter part of the interpolations. Hence, we can directly predict the optimal
value of c with the curve of MN(c). No search is needed.

2.3. Problem Setting

We try to handle Poisson equations. A standard 3D Poisson equation is of the form{
uxx(x, y, z) + uyy(x, y, z) + uzz(x, y, z) = f (x, y, z) for (x, y, z) ∈ Ω\∂Ω,
u(x, y, z) = g(x, y, z) for (x, y, z) ∈ ∂Ω,

(5)

where Ω is the domain with boundary ∂Ω, and f , g are given functions. A natural extension
to d dimensions can be easily understood by replacing (x, y, z) with (x1, . . . , xd) and letting
Ω ⊆ Rd.

Our goal is to find an approximate solution û(x) of the form (2). Our approach is to
find real numbers λ0, . . . , λN such that û(x) := ∑N

i=1 λiφ(x− xi) + λ0 satisfies (5) in Rd at
the sample points x1, . . . , xN ∈ Rd, called collocation points. The constant c appearing in φ
is determined by the MN-curve theory. Of course, this process involves solving a system of
linear equations with unknowns λ0, . . . , λN , by requiring that

∑N
j=1 λjL[φ(xi − xj)] = f (xi) for i = 1, . . . , Nint,

∑N
j=1 λj = 0,

∑N
j=1 λjφ(xi − xj) + λ0 = g(xi) for i = Nint + 1, . . . , N,

(6)

where L denotes the differential operator of the Poisson equation. The sample points
xi, . . . , xNint are located in the interior of the domain cube, and xNint+1, . . . , xN on the bound-
ary. The requirement ∑N

j=1 λj = 0 results from the interpolation theory, as explained in the
introduction section. We thus have an (N + 1)× (N + 1) system of linear equations.

Although its coefficient matrix is not sparse, it can be efficiently solved because its
scale is not large, as long as the shape parameter c is well chosen. For a long time, the
RBF collocation method has been severely criticized for the full matrix induced by the
multiquadrics. Fortunately, now we know that the amount of sample points needed can
be greatly reduced by choosing the shape parameter c according to our theory. This is
exciting. As for the collocation points, they are scattered in the domain and boundary
without meshes. Theoretically, if the exact solution u(x) lies in the Sobolev space, the
approximate solution û(x) thus found should be quite good. Experiments demonstrate
that the approximation error |u(x)− û(x)| is indeed very small.

3. Results

The crux of this approach is the choice of the parameter σ in the definition of MN(c).
Once fγ ∈ Bγ in (3) is given, in order to measure | fγ(x)− û(x)|, there are infinitely many
possible choices of σ for the implementation of the inequality (4). If σ is too large, the value
of MN(c) will be very large, making the MN curve meaningless. If σ is very small, the
value of MN(c) is usually very small. However, ‖ f ‖Eσ will become extremely large, also
making (4) meaningless. Fortunately, after analyzing the MN curves, we can always find a
suitable σ without much effort, as demonstrated in our experiments.
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3.1. 1D Model

Although our main interest is in two and three-dimensional problems, in order to help
the reader use our approach, we still include the 1D problem.

Let u(x) = e−x with domain Ω = {x : 0 ≤ x ≤ 1} be the test function. We are going
to solve

uxx(x) = e−x

for 0 < x < 1 with u(0) = 1 and u(1) = e−1.
The approximate solution will be of the form û(x) = ∑N

i=1 φ(x − xi) + λ0, where
φ(x) = −

√
c2 + x2 and λi, i = 0, . . . , N are constants to be determined. The sample points

xi, i = 1, . . . , N, are randomly generated and scattered in the unit interval, except that two
of them are 0 and 1, respectively. The choice of c will be made according to Case 3 of the
MN curves.

The MN function value greatly depends on the parameter σ in the definition of MN(c).
We present three curves for σ = 10−1 and three for σ = 10−5 in Figures 1–3 and 4–6,
respectively. In the figures, δ denotes the fill distance, b0 denotes the domain diameter, d is
the dimension, and β is the parameter in the definition of the multiquadrics (1).

12 14 16 18 20
c

2.×10-16

4.×10-16

6.×10-16

8.×10-16

MN(c)
MN curve for �=0.005

Figure 1. MN curve for δ = 0.005 where d = 1, β = 1, b0 = 1 and σ = 10−1.

12 14 16 18 20
c

5.×10-28

1.×10-27

1.5×10-27

2.×10-27

MN(c)
MN curve for �=0.003

Figure 2. MN curve for δ = 0.003 where d = 1, β = 1, b0 = 1 and σ = 10−1.
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12 14 16 18 20
c

1.×10-86

2.×10-86

3.×10-86

4.×10-86

5.×10-86

6.×10-86
MN(c)

MN curve for �=0.001

Figure 3. MN curve for δ = 0.001 where d = 1, β = 1, b0 = 1 and σ = 10−1.

12 14 16 18 20
c

3.5×10-20

4.×10-20

4.5×10-20

MN(c)
MN curve for �=0.005

Figure 4. MN curve for δ = 0.005 where d = 1, β = 1, b0 = 1 and σ = 10−5.

12 14 16 18 20
c

6.×10-32

7.×10-32

8.×10-32

9.×10-32

MN(c)
MN curve for �=0.003

Figure 5. MN curve for δ = 0.003 where d = 1, β = 1, b0 = 1 and σ = 10−5.
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12 14 16 18 20
c

2.×10-90

3.×10-90

4.×10-90

5.×10-90

6.×10-90

MN(c)
MN curve for �=0.001

Figure 6. MN curve for δ = 0.001 where d = 1, β = 1, b0 = 1 and σ = 10−5.

Note that in these figures, c = 12 always corresponds to the minimal value of MN(c).
It suggests that one should choose c = 12 in our approximate solution to the Poisson
equation. We present the experimental results in Table 1. In the table, Nd denotes the
number of data points used, and Nint, Nbdy denote the number of interior and boundary
data points, respectively. We use Nt test points to measure the quality of the approximation

RMS := {(
Nt

∑
i=1
|u(x)− û(xi)|2)/Nt}1/2.

As in our previous papers, b0 denotes the diameter of the domain, and COND denotes
the condition number of the system of the linear Equation (6).

Table 1. 1D experiment, c = 12, b0 = 1, Nt = 501.

Nd 7 12 22 42 82

Nint 5 10 20 40 80

Nbdy 2 2 2 2 2

RMS 3.2 · 10−6 2.5 · 10−11 2.7 · 10−24 4.9 · 10−52 3.2 · 10−127

COND 1.3 · 1023 1.4 · 1039 6.8 · 1069 3.3 · 10133 2.0 · 10281

In order to cope with the problem of ill-conditioning, enough effective digits were
adopted for each step of the calculations. For example, for Nd = 82, we adopted 300 ef-
fective digits to the right of the decimal point to handle its huge corresponding condition
number. Even so, it took only one second for the computer to solve the linear system.
All these were achieved in virtue of the computer software Mathematica.

If c is chosen arbitrarily, say c = 1, then the RMS will be 4.3 · 10−30 for Nd = 82. As for
the comparison with other choices of c values, we are not going to present in this subsection
for three reasons. Firstly, the results for c = 12 are already quite good. Secondly, in our
theory, the prediction is reliable only when enough data points are used, and then the
condition number will be extremely large for d = 1 and b0 = 1. For example, experimentally,
we found that the optimal value of c is 1600 for Nd = 162, when COND= 1.5 · 101211 and
RMS= 7.96 · 10−359. In order to obtain the predicted value c = 12, we have to increase
the number of data points so that Nd >> 162, as in the experiments for interpolation.
Then, the condition number will become much larger than 1.5 · 101211, although the RMS
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will be smaller than 7.96 · 10−359. In practice we do not need such accuracy. Thirdly, such
comparisons can be perfectly handled in the 2D and 3D experiments.

3.2. 2D Model

Our test function is now u(x, y) = e−x−y on Ω = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}.
This function obviously lies in the Sobolev space. The Poisson equation is then{

uxx(x, y) + uyy(x, y) = 2e−x−y for (x, y) ∈ Ω\∂Ω,
u(x, y) = g(x, y) for (x, y) ∈ ∂Ω,

(7)

where g(0, y) = e−y, g(x, 0) = e−x, g(1, y) = e−1−y, g(x, 1) = e−x−1 for 0 ≤ x ≤ 1 and
0 ≤ y ≤ 1.

We are trying to find an approximate solution û(x, y) = ∑N
i=1 λiφ(x− xi, y− yi) + λ0,

where φ(x, y) = −
√

c2 + x2 + y2 and λi, i = 0, . . . , N, are constants to be determined. The
sample points (xi, yi), i = 1, . . . , N, are scattered in the domain Ω. Our focus is the choice
of c.

Now, let us analyze the MN curves. We first let σ = 10−1 and list five MN curves with
different fill distances δ.

In Figures 7–11, it is clearly observed that as the fill distances decrease, the lowest
points of the curves move to a fixed value c = 17 which is just 12b0ρ in Case 3 of the
definition of MN(c). Now, we investigate σ = 10−5.

Figures 12–14 also demonstrate that the optimal choice of c is 17. In fact, if we test
other σ’s, the same result will appear. In order to save space, we do not list them.

All the MN curves strongly suggest that one should choose c = 17 whenever enough
data points are used. Thus, we investigate its quality and present the results in Table 2.
Here, Nbdy and Nint denote the numbers of data points located on the boundary and interior
of the domain, respectively. Then, Nd and Nt denote the total numbers of data points and
test points, respectively. The root-mean-square error, used to measure the approximation
error, is defined by

RMS := {(
Nt

∑
i=1
|u(xi, yi)− û(xi, yi)|2)/Nt}1/2.

As before, b0 denotes the diameter of the domain Ω and COND is the condition
number of the linear system involved. The most time-consuming work of solving the linear
system took only two seconds for 341 data points. Hence, we did not put the computer
time into the table.

Table 2. 2D experiment, c = 17, b0 =
√

2, Nt = 961.

Nd 46 91 141 191 341

Nint 5 50 100 150 300

Nbdy 41 41 41 41 41

RMS 2.3 · 10−5 2.4 · 10−12 2.4 · 10−16 7.2 · 10−20 9.2 · 10−25

COND 1.0 · 1040 6.5 · 1044 5.4 · 1053 1.3 · 1064 4.8 · 1087
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16 17 18 19 20
c

1

2

3

4

5

6

MN(c)
MN curve for �=0.1

Figure 7. MN curve for δ = 0.1 where d = 2, β = 1, b0 =
√

2 and σ = 10−1.

16 17 18 19 20
c

0.10

0.15

0.20

0.25

0.30

0.35

MN(c)
MN curve for �=0.05

Figure 8. MN curve for δ = 0.05 where d = 2, β = 1, b0 =
√

2 and σ = 10−1.
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5.×10-11

6.×10-11

7.×10-11

MN(c)
MN curve for �=0.01

Figure 9. MN curve for δ = 0.01 where d = 2, β = 1, b0 =
√

2 and σ = 10−1.
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c

2.×10-23

4.×10-23

6.×10-23

8.×10-23

1.×10-22

MN(c)
MN curve for �=0.005

Figure 10. MN curve for δ = 0.005 where d = 2, β = 1, b0 =
√

2 and σ = 10−1.
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c

2.×10-122

4.×10-122

6.×10-122

8.×10-122

1.×10-121

MN(c)
MN curve for �=0.001

Figure 11. MN curve for δ = 0.001 where d = 2, β = 1, b0 =
√

2 and σ = 10−1.
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0.0000800
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MN(c)
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Figure 12. MN curve for δ = 0.1 where d = 2, β = 1, b0 =
√

2 and σ = 10−5.
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c
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5.5×10-16

6.×10-16

6.5×10-16

7.×10-16

7.5×10-16

8.×10-16

8.5×10-16
MN(c)

MN curve for �=0.01

Figure 13. MN curve for δ = 0.01 where d = 2, β = 1, b0 =
√

2 and σ = 10−5.

16 18 20 22 24 26 28
c

1.8×10-28

2.×10-28

2.2×10-28

2.4×10-28

MN(c)
MN curve for �=0.005

Figure 14. MN curve for δ = 0.005 where d = 2, β = 1, b0 =
√

2 and σ = 10−5.

For simplicity, the test points were evenly spaced in the domain. The interior data
points were purely scattered and generated randomly by Mathematica in the domain, but
the boundary data points were evenly spaced just for ease of programming. The problem
of ill-conditioning was overcome by keeping enough effective digits to the right of the
decimal point for each step of the computation. For example, when Nd = 341, we adopted
200 digits and successfully defeated the large condition number 4.8× 1087. In fact, 110
digits are already good enough and will lead to the same result. Even with 200 digits, it
took only two seconds to solve the linear system. All these were achieved by the help of
the arbitrarily precise computer software Mathematica.

Although c = 17 leads to satisfactory results, a comparison with other choices of c
is also needed. Table 3 offers such a comparison. We fix Nint = 300 and Nbdy = 41 for all
choices of c.

Table 3. 2D experiment, b0 =
√

2, Nd = 341, Nt = 961.

c 1 10 17 30 50

RMS 1.1 · 10−8 5.2 · 10−22 9.2 · 10−25 1.4 · 10−24 4.1 · 10−24

COND 1.8 · 1028 7.0 · 1075 4.8 · 1087 1.6 · 10100 2.0 · 10111

c 70 90 110 130 150

RMS 2.2 · 10−23 2.4 · 10−22 3.2 · 10−22 2.8 · 10−22 3.6 · 10−22

COND 1.2 · 10119 1.8 · 10125 2.9 · 10129 5.9 · 10132 5.8 · 10135
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In Table 3, it is clear that our theoretically predicted optimal value c = 17 coincides
exactly with the experimentally optimal value. Moreover, as depicted by the MN curves in
Figures 12–14, the approximation errors become large very slowly for c > 17. This is fully
reflected by our experimental results.

The three-dimensional experiment is more challenging and is expected to be much
more time-consuming. Fortunately, it takes only five minutes to compute the linear system,
as we shall see in the next subsection.

3.3. 3D Model

The test function is now u(x, y, z) = e−x−y−z on Ω = {(x, y, z) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,
0 ≤ z ≤ 1}. It lies in the Sobolev space. The Poisson equation is{

uxx(x, y, z) + uyy(x, y, z) + uzz(x, y, z) = 3e−x−y−z for (x, y, z) ∈ Ω\∂Ω,
u(x, y, z) = g(x, y, z) for (x, y, z) ∈ ∂Ω,

(8)

where g(x, y, z) is just the restriction of u(x, y, z) to the six surfaces of the domain cube.
In other words, the Dirichlet condition is adopted.

The approximate solution will be of the form û(x, y, z) = ∑N
i=1 λiφ(x− xi, y− yi, z−

zi) + λ0 where φ(x, y, z) = −
√

c2 + x2 + y2 + z2 and λi, i = 0, . . . , N, are constants to be
determined. The sample points (xi, yi, zi), i = 1, . . . , N, are still scattered in the interior of
the domain cube and evenly spaced on the boundary. We are going to find c such that the
approximation error |u(x, y, z)− û(x, y, z)| is as small as possible.

In order to find a suitable c, one has to analyze the MN curves first. Again, Case 3
of MN(c) applies. However, for 3D MN functions, different σ’s indicate different optimal
values of c. For σ = 10−1, the optimal values of c are shown in Figures 15–19. These figures
show that as long as δ is small enough, the optimal value of c is 20.7846, which is just 12b0ρ
in the definition of MN(c).

Now, we test σ = 10−5. The MN curves are presented in Figures 20–22. They
demonstrate that one should choose c = 129.

The MN curves for σ = 10−10 are as in Figures 23–25. They indicate that one should
let c = 40,800.

The three different optimal values of c are all logically correct. However, when σ is
very small, ‖ f ‖Eσ in (4) will be extremely large, making (4) meaningless. Hence, we should
choose c = 20.7846 according to Figures 15–19, where σ = 10−1 is larger and the MN(c)
values are reasonably small.

For c = 20.7846, we compare different numbers of data points. The results are
presented in Table 4.
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MN(c)
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Figure 15. MN curve for δ = 0.05 where d = 3, β = 1, b0 =
√

3 and σ = 10−1.
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c

0.0007

0.0008

0.0009

0.0010

0.0011

0.0012

MN(c)
MN curve for �=0.03

Figure 16. MN curve for δ = 0.03 where d = 3, β = 1, b0 =
√

3 and σ = 10−1.
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c
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2.5×10-6

3.×10-6

3.5×10-6

MN(c)
MN curve for �=0.02

Figure 17. MN curve for δ = 0.02 where d = 3, β = 1, b0 =
√

3 and σ = 10−1.
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20.5 21.0 21.5 22.0
c

5.×10-14

6.×10-14

7.×10-14

8.×10-14

9.×10-14

1.×10-13

MN(c)
MN curve for �=0.01

Figure 18. MN curve for δ = 0.01 where d = 3, β = 1, b0 =
√

3 and σ = 10−1.
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c

2.×10-150

4.×10-150

6.×10-150

8.×10-150

MN(c)
MN curve for �=0.001

Figure 19. MN curve for δ = 0.001 where d = 3, β = 1, b0 =
√

3 and σ = 10−1.
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c

9.614×10-8

9.616×10-8

9.618×10-8

9.62×10-8

9.622×10-8

MN(c)
MN curve for �=0.05

Figure 20. MN curve for δ = 0.05 where d = 3, β = 1, b0 =
√

3 and σ = 10−5.
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c

8.904×10-10

8.906×10-10

8.908×10-10

8.91×10-10

MN(c)
MN curve for �=0.03

Figure 21. MN curve for δ = 0.03 where d = 3, β = 1, b0 =
√

3 and σ = 10−5.

125 130 135 140
c

6.067×10-20

6.068×10-20

6.069×10-20

6.07×10-20

6.071×10-20

MN(c)
MN curve for �=0.01

Figure 22. MN curve for δ = 0.01 where d = 3, β = 1, b0 =
√

3 and σ = 10−5.
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c

1.7095×10-11

1.70955×10-11

1.7096×10-11

1.70965×10-11

MN(c)
MN curve for �=0.05

Figure 23. MN curve for δ = 0.05 where d = 3, β = 1, b0 =
√

3 and σ = 10−10.
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40500 41000 41500 42000
c

1.58325×10-13

1.5833×10-13

1.58335×10-13

MN(c)
MN curve for �=0.03

Figure 24. MN curve for δ = 0.03 where d = 3, β = 1, b0 =
√

3 and σ = 10−10.

40500 41000 41500 42000
c

1.07872×10-23

1.07874×10-23

1.07876×10-23

1.07878×10-23

1.0788×10-23

1.07882×10-23

MN(c)
MN curve for �=0.01

Figure 25. MN curve for δ = 0.01 where d = 3, β = 1, b0 =
√

3 and σ = 10−10.

Table 4. 3D experiment, c = 20.7846, b0 =
√

3.

Nd 616 666 766 966 1366

Nint 50 100 200 400 800

Nbdy 566 566 566 566 566

Nt 1200 1200 1200 1200 1800

RMS 6.7 · 10−9 1.5 · 10−11 3.1 · 10−13 1.8 · 10−15 7.0 · 10−19

COND 2.4 · 1071 2.6 · 1071 3.0 · 1071 3.7 · 1071 5.5 · 1071

The computation is very efficient. Even though we adopted 200 effective digits for
each step of the calculations, the most time-consuming work of solving the linear system
took only two seconds for Nd = 616 and five minutes for Nd = 1366. In fact, keeping only
100 effective digits would have obtained the same RMS’s and COND’s. We stopped adding
more data points at Nd = 1366 because the RMS is already good enough.

The comparison among different values of c is presented in Table 5. We fixed Nd = 1366,
Nint = 800 and Nbdy = 566. In order to cope with the problem of ill-conditioning, enough
effective digits were adopted for the calculations. For c = 1, we used 50 digits, and for
c = 220, 140 digits were used. The most time-consuming work of solving the linear system
always took less than six minutes’ computer time.
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Table 5. 3D experiment, b0 =
√

3, Nd = 1366, Nt = 1800.

c 1 15 20.7846 30 40

RMS 8.7 · 10−7 2.6 · 10−7 7.0 · 10−19 7.6 · 10−18 1.0 · 10−19

COND 4.6 · 1021 6.4 · 1065 5.5 · 1071 2.5 · 1078 4.7 · 1083

c 60 80 100 120 140

RMS 3.4 · 10−19 8.7 · 10−19 6.8 · 10−19 1.4 · 10−19 3.8 · 10−19

COND 1.1 · 1091 1.9 · 1096 2.5 · 10100 5.1 · 10103 3.2 · 10106

c 180 220

RMS 1.7 · 10−18 3.7 · 10−19

COND 1.2 · 10111 5.6 · 10114

Note that Figures 15–19 show that if δ is small enough, or, equivalently, if the number of
data points is large enough, the values of MN(c) become large very slowly for c > 20.7846.
Numerical investigations also demonstrate this. Figures 20–25 even tend to move the
optimal value of c to the right. All these are supported by the RMS’s in Table 5. Although
for c > 20.7846, the choice of c does not influence the approximation error much, one still
has to choose c = 20.7846 because its corresponding condition number is smaller. In other
words, the theoretically predicted optimal value of c coincides with the experimentally
optimal one.

4. Discussion

In our experiments, the exact solution function u(x1, . . . , xd) is a natural function
contained in the Sobolev space Wτ

2 (Rd) for any τ ≥ 0. An approximate solution function
û(x1, . . . , xd) could always be efficiently found with a very small approximation error.
The optimality of our choice of the shape parameter c has also been corroborated. It
means that, in the process of the RBF collocation method, any differential equation may
be effectively handled by our approach, as long as its solution belongs to Sobolev space,
such as the Poisson equation in our experiment. This is exciting. However, how to apply
our approach to solving various important but hard differential equations is still very
challenging, especially when the solution does not lie in the Sobolev space.
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