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Abstract: In this paper, adaptive immune algorithm based on a global search strategy (AIAGS) and
auxiliary model recursive least square method (AMRLS) are used to identify the multiple-input
multiple-output fractional-order Hammerstein model. The model’s nonlinear parameters, linear
parameters, and fractional order are unknown. The identification step is to use AIAGS to find the
initial values of model coefficients and order at first, then bring the initial values into AMRLS to
identify the coefficients and order of the model in turn. The expression of the linear block is the
transfer function of the differential equation. By changing the stimulation function of the original
algorithm, adopting the global search strategy before the local search strategy in the mutation
operation, and adopting the parallel mechanism, AIAGS further strengthens the original algorithm’s
optimization ability. The experimental results show that the proposed method is effective.

Keywords: adaptive immune algorithm; multiple-input multiple-output; fractional-order model;
Hammerstein model; system identification

1. Introduction

In recent years, with the rapid economic and social development, the complexity of
industry has been increasing. In order to understand and control these industrial pro-
cesses more accurately, it is necessary to study system identification. However, in real
life, nonlinear processes are inevitable and widespread. Nowadays, there is no definite
characterization for nonlinear processes. A block-oriented model is a description of non-
linear model, which is the result of the interaction between the dynamic linear module
and static nonlinear module. These model components can be connected in series, parallel,
or feedback [1]. Hammerstein model is a typical block-oriented model that consists of a
static nonlinear block in cascade with a dynamic linear block [2]. Because the dynamic
behavior of the model is only included in the linear block, and the nonlinear block is static,
this feature is conducive to identifying and controlling the nonlinear system constructed by
the Hammerstein model [3]. Hammerstein model is extensively used to identify nonlinear
systems [4–7]. As the model is widely used, the identification methods are also inten-
sively discussed. These methods include neural networks [8,9], piecewise linear model [6],
least square method [10], support vector machine [11], combined prior information [12],
and so on.

In real life, it is evident that the dynamic linear block based on integer order cannot
fully simulate the real model [13]. The fractional-order model extends the order of the
model from the integer level to the fractional level. Therefore, the study of the fractional-
order nonlinear model is essential [14]. At present, fractional-order models have been
discussed in many fields, such as molecular materials [15,16], the voltage and current of
the drive end impedance [17], industrial battery [18–20], and so on.

With the wide application of the fractional-order model, the problem of model iden-
tification has also been intensively discussed. However, the current methods have some
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limitations. The particle swarm optimization algorithm can be used to identify the pa-
rameters of the fractional Hammerstein model [21]. This method excessively depends on
the optimization ability of the algorithm and does not consider the internal relationship
between system parameters. Once the optimization algorithm has problems, it will signifi-
cantly impact the identification results. The Levenberg–Marquardt algorithm developed by
combining the two decomposition principles [22] can only be applied to the theoretical envi-
ronment. Once the system is affected by noise, the model’s parameters will not be identified
exactly. Reference [23] also requires an ideal environment. Some scholars pay attention to
the fractional-order Hammerstein model with single-input single-output [24–28]. Some pay
attention to the fractional-order Hammerstein model with multiple-input multiple-output,
but most use the state space equation as the linear block of the model [29,30]. However,
fractional-order calculus is a whole concept [31]. Using the transfer function of differential
equation to construct the linear block of the Hammerstein model can better integrate the
two concepts.

Based on the above background, this paper discusses a new method to identify the
nonlinear coefficients, linear coefficients, and fractional order of the MIMO fractional
Hammerstein model. In this method, AIAGS greatly improves the optimization ability by
improving the immune algorithm’s stimulation function and search strategy. Then, the al-
gorithm estimates the initial values of all MIMO fractional Hammerstein model parameters,
including fractional order. The estimated result provides relatively accurate initial values for
the subsequent algorithm. It solves the problem that the two-step method [28], which iden-
tifies coefficient and order, depends on the initial values. Then, using AMRLS, a method for
accurate parameter identification of the MIMO fractional-order model is proposed. Finally,
the effectiveness of the proposed method is verified by numerical simulation.

The main contribution of this paper is to propose an adaptive immune algorithm
with a global search strategy to accurately identify the initial parameters of the fractional
Hammerstein system. Secondly, a new recursive identification method for coefficients
and fractional order of MIMO fractional-order nonlinear system with differential equation
transfer function as linear block model is derived using an auxiliary model. Due to the
different ways of selecting the optimal solution, the AIAGS algorithm proposed in this
paper has higher reliability than the classical immune algorithm. Based on the auxiliary
model, the recursive identification algorithm for the MIMO fractional Hammerstein model
is given using the recursive least square method. The method in this paper solves the
initial value problem of previous methods and provides more accurate initial values. This
initial value cooperates with AMRLS, making the result of parameters identification of
multi-input and multi-output fractional Hammerstein model closer to reality.

In this paper, an improved immune algorithm is proposed in Section 2. In Section 3,
a new recursive identification method for MIMO fractional-order Hammerstein model with
differential equation transfer function as linear block model is derived by using auxiliary
model is discussed. In Section 4, numerical simulations show the effectiveness of the
proposed method. Finally, Section 5 gives some conclusions.

2. Adaptive Immune Algorithm Based on Global Search Strategy
2.1. Review of Immune Algorithms

The immune algorithm is an adaptive intelligent system inspired by immunology and
simulates the functions and principles of the biological immune system to solve complex
problems. It retains several characteristics of the biological immune system, including
global search capability, diversity maintenance mechanism, strong robustness, and parallel
distributed search mechanism. The immune algorithm automatically generates the initial
population by uniform probability distribution. After initialization, the population evolves
and improves by the following steps: calculation of stimulation, selection, cloning, mutation,
clonal inhibition, etc. [32].
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2.2. AIAGS
2.2.1. Stimulation Improvement

Individual stimulation is the evaluation result of individual quality, which needs
to be comprehensively considered individual affinity and concentration. The individual
stimulation can usually be obtained by a simple mathematical calculation based on the
evaluation results of individual affinity and concentration. In the traditional immune
algorithm [33], the stimulation is expressed as

fsim(xi) = a· fa f f (xi)− b· fden(xi) (1)

where xi means the ith individual of the population; fa f f (xi) is affinity, which represents the
Euclidean distance between the current individual and the optimal individual; fden(xi) is
the concentration, indicating the number of other individuals whose Euclidean distance be-
tween the current individual and other individuals is within a certain threshold; fsim(xi) is
the stimulation; a and b is the calculation parameter. The algorithm will sort the individuals
according to the stimulation and make the next choice.

This paper made the following changes to the coefficients of affinity and concentration.
Firstly, the minus sign of Equation (1) is changed on the plus sign. Because the concentration
represents the quality of population diversity, and too high concentration means that there
are many very similar individuals in the population, the key point of the immune algorithm
is to suppress the individuals with a high concentration to achieve global optimization.
However, in both the original algorithm and various improved immune algorithms today,
the coefficient b is non-negative, which leads to a minor incentive for individuals with low
affinity and high concentration [34–38]. This improvement conforms to the core concept of
the algorithm.

Secondly, this paper designs a parameter β related to the current population’s max-
imum, minimum, and individual affinity values. In the original algorithm, the a and b
are constants. In various improved algorithms [34–38], the adaptive coefficients are only
related to the number of current iterations. Because the comparison of stimulations be-
tween individuals is carried out in the population of the current iteration, these adaptive
coefficients are not different from constants. They will not affect the stimulation ranking
of the population. In this paper, because β is quadratic when selecting individuals based
on stimulations, individuals with low affinity and individuals with high affinity will be
considered, increasing the global searchability. The parameter is expressed as

β =

(
fa f f (xi)− fa f f a

fa f f max − fa f f a

)2

(2)

where fa f f a is the average of fa f f max and fa f f min
.

Finally, after a certain number of iterations, the population will move closer to the
optimal global individual. If the concentration problem is also considered, it may give
up the found optimal range and select the new random individual when selecting the
individuals. Therefore, a monotone decreasing adaptive operator is designed in this paper.
In the middle and later iteration stages, the concentration effect is negligible.

To sum up, the stimulation for this paper is expressed as

fsim(xi) = (1− β)· fa f f (xi) + [1−
√

2gen
G
−
( gen

G

)2
]·0.5β· fden(xi) (3)

where gen means the current number of iterations and G is the total number of iterations.
After improvement, the approximate trend of individual stimulations is shown in

Figure 1a. The approximate trend of the stimulations of the original or other improved
immune algorithm is shown in Figure 1b. The x-axis is 100 individuals sorted from smallest
to largest according to affinity, and the y-axis is individual stimulation. It can be seen
from Figure 1 that the original algorithm and other improved algorithms generally only
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select individuals with low affinity. In contrast, the algorithm in this paper can consider
individuals with high affinity.
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2.2.2. Mutation Strategy Improvement

The original algorithm has a single strategy in the mutation stage. The algorithm
improved by others will enrich the mutation strategy and improve the probability of all
individuals for mutation. However, the mutation strategy is selected only by random
numbers, which makes the algorithm not flexible [38].

The algorithm of this paper has two minor changes in the mutation stage. First,
an adaptive operator pm that changes from algebra is designed, and its value decreases
monotonically between 0 and 0.8. The parameter can be expressed as

pm = 0.8·(1− gen
G

)
(4)

Secondly, when setting the global optimization step, a variable sv is added based on
adaptation, gradually changing the mutation step. The optimal individual is selected for
retention of the individuals after several mutations, which greatly enhances the global
search ability.

To sum up, the mutation strategy for this paper can be expressed as

xi,j =

{
xbest,j + pm·

(
xr1,j − xr2,j

)
, rand > pm

xr1,j + (pm + sv)·
(
xr2,j − xr3,j

)
, otherwise

(5)

where i means the sequence of individuals in the population; j denotes the sequence of
dimensions in the individual; xr1, xr2, and xr3 are different individuals randomly selected
from the population except for the xi.

Obviously, in the early stage of the iteration, the mutation strategy will mostly choose
the second mutation strategy, edge mutation strategy, which will enhance the global
optimization ability of the algorithm. In the middle and later stages of the iteration, the first
mutation strategy, the optimal individual mutation strategy, will be selected for local search.

2.2.3. Simulated Annealing Strategy

The simulated annealing algorithm mimics the annealing process in metallurgy and is
classified as a single-based solution method. After comparing the current optimal solution
with the previous optimal solution, if the fitness of the current optimal solution is greater
than that of the previous one, it may abandon the current result and choose the previous
result [39].
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At the end of the improved algorithm, simulated annealing is added to avoid the
algorithm falling into the local optimum. Some people have done similar work, but both
the initial algorithm and others’ improved algorithm use stimulus to evaluate the optimal
solution [33]. This paper uses affinity to evaluate the optimal solution at the end. However,
the stimulation of the optimal individual of the previous generation may be slightly big,
resulting in not being selected during mutation selection, so the affinity of the optimal
individual of the current generation may be greater than that of the previous generation.
At this time, the effect of simulated annealing will likely jump back to the result to optimize
further. The replacement for such a case depends on the probability p as defined as

p = e−∆F∆F =
fa f f (xi

′)

fa f f (xi)
− 1 (6)

where xi
′ is the current optimal solution; xi denotes the previous optimal solution. This

part will replace the solution if p < rand(0, 1).

2.2.4. Pseudo Code of AIAGS

To sum up, there are some innovations of this paper on the existing immune algorithms.
The pseudo code of AIAGS is explained in detail in Algorithm 1. The flowchart of AIAGS
is explained in detail in Figure 2.

Algorithm 1: AIAGS

Step.1 Define the objective function F(x);
Step.2 Initialize population X;
Step.3 Evaluate all the individuals xi by the objective function F(x);
Step.4 Calculate the affinity fa f f (xi) and concentration fden(xi) of each individual;
Step.5 Initialize the number of iteration m = 1;
Step.6 While m < max number of iterations M;
Step.7 Calculate the stimulation fsim(xi) of each individual by the Equation (3);
Step.8 Select the individuals in the population by stimulation and clone the individuals;
Step.9 Mutate the cloned individuals by the Equation (5);

Step.10
If the generated mutation vector exceeds the boundary, a new mutation vector is

generated randomly until it is within the boundary;
Step.11 Inhibit cloning and calculate the affinity of each new individual;
Step.12 Generate optimal individual by Simulated Annealing by the Equation (6);
Step.13 End;
Step.14 m = m + 1;
Step.15 End while;
Step.16 Return the best solution.

2.3. Benchmark Function

Due to the limitations of intelligent optimization algorithms, unlike the traditional
algorithm, which has a mathematical theoretical basis, it is not strict. After improving
the optimization algorithm, most people use the classical benchmark function to test the
algorithm’s effectiveness. This article uses eight classical and four CEC2017 benchmark
functions to evaluate AIAGS. The u() of F6 and F7 is expressed as

u(xi, a, k, m) =


K(xi − a)m, if xi > a
0, −a 6 xi > a
K(−xi − a)m, −a 6 xi

(7)

These classical functions are divided into three groups: unimodal (F1–F4), multimodal
(F5–F7), and fixed-dimension multimodal (F8). The unimodal benchmark function has only
one optimal solution, which can verify the development and convergence. The multimodal
benchmark function has many optimal solutions. However, there is only one global optimal
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solution, and the rest are local optimal solutions. The fixed dimensional multimodal func-
tions can define the desired number of design variables and could provide a different search
space. Therefore, the multimodal functions are responsible for testing exploration and
avoiding the entrapment in the optimal local solution. Hybrid and composition functions
can reflect some problems that are closer to reality [40]. In Table 1, the corresponding prop-
erties of these functions are listed, where dim represents the dimensions of the functions
and range indicates the scope of the search space.
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Table 1. Benchmark functions.

Name Formula Range fmin

Sphere F1(x) = ∑D
i=1 x2

i [−20, 20] 0

Schwefel 1.2 F2(x) = ∑D
i=1

(
∑i

j=1 xj

)2 [−100, 100] 0

Rosenbrock F3(x) = ∑D−1
i=1 [100·

(
x2

i − xi+1
)2

+ (xi − 1)2] [−30, 30] 0
Step F4(x) = ∑D

i=1(xi + 0.5)2 [−100, 100] 0

Ackley F5(x) = −20 exp (−0.2
√

1
n ∑D

i=1 x2
i )− exp

[
1
D ∑D

i=1 cos(2πxi)
]
+ 20+ e [−40, 40] 0

Generalized penalized 1
F6(x) = π

n [10 sin(πy1)] + ∑D−1
i=1 (yi − 1)2[1 + 10 sin2(πyi+1)+

∑D
i=1 u(xi, 10, 100, 4)],yi = 1 + xi+1

4
[−50, 50] 0

Generalized penalized 2 F7(x) = 0.1{sin2(3πx1) + ∑D
i=1(xi − 1)2[1 + sin2(3πxi + 1)

]
+

(xD − 1)21 + sin2(2πxD)}+∑n
i=1 u(xi, 5, 100, 4)

[−50, 50] 0

Shekel’s Foxholes F8(x) = [ 1
500 + ∑25

j=1
1

j+∑2
i=1

(
xi − aij

)
]
−1 [−70, 70] 1

Hybrid function 4 (N = 4) F9(x) [−100, 100] 1400
Hybrid function 7 (N = 5) F10(x) [−100, 100] 1700
Composition function 1 (N = 3) F11(x) [−100, 100] 2100
Composition function 4 (N = 4) F12(x) [−100, 100] 2400

2.3.1. Comparison of AIAGS with Other Algorithms

In order to reflect the improvement effect of the immune algorithm in this paper,
this section compares AIAGS with the original immune algorithm two improved immune
algorithms: improved artificial immune algorithm (IAIA) [28] and modified artificial
immune algorithm (MAIA) [29], and two new algorithms: Harris hawks optimization
(HHO) [41] and Aquila optimizer (AO) [42]. The parameter settings of the counterparts’
algorithms are given in Table 2. The comparison results are shown in Table 3. However,
intelligent algorithms are highly accidental. After several tests, this paper calculates
the average value and standard deviation of each test result to avoid misleading the
experimental results and the practical application of the algorithm.

Table 2. Parameter settings.

Algorithm Parameter Settings

AIAGS δ = 0.1, sv = 0.2
AO α = 0.5, δ = 0.5
IA α = 2, β = 1, δ = 0.2, pm = 0.7

IAIA α = 2, β = 1, δ = 0.613, pm = 0.7
MAIA δ = 0.8, pm = 0.8, cr = 0.8
HHO α = 0.5, δ = 0.5

Table 3. Comparison of results obtained for the benchmark functions.

AIAGS AO IA IAIA MAIA HHO

F1
worst 0 2.86 × 10−71 0.000124 0.000145 0.030882 1.98 × 10−46

best 0 7.37 × 10−76 7.65 × 10−5 3.54 × 10−5 0.001683 2.62 × 10−58

Avg 0 5.74 × 10−72 9.86 × 10−5 7.71 × 10−5 0.012509 1.99 × 10−47

Std 0 1 × 10−71 1.46 × 10−5 3.28 × 10−5 0.009914 5.95 × 10−47

F2
worst 0 2.82 × 10−56 0.006578 0.022761 16.07011 1.71 × 10−42

best 0 1.72 × 10−73 0.002606 0.013182 0.812125 1.15 × 10−51
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Table 3. Cont.

AIAGS AO IA IAIA MAIA HHO

Avg 0 2.82 × 10−57 0.003962 0.017273 4.565824 3.78 × 10−43

Std 0 8.93 × 10−57 0.001401 0.003087 4.947259 6.69 × 10−43

F3
worst 6.39 × 10−7 0.001305 433.5283 696.2436 83.41411 0.008889
Best 5.5 × 10−9 5 × 10−6 0.99727 0.762353 4.4702 2.1 × 10−5

Avg 9.99 × 10−8 0.000319 80.76008 143.8289 29.75245 0.002238
Std 1.83 × 10−7 0.000424 143.8194 240.8117 30.68641 0.002581

F4
worst 0 6.97 × 10−5 0.004139 0.00329 0.00329 9.33 × 10−5

Best 0 2.3 × 10−7 0.001612 0.00174 0.00174 7.93 × 10−10

Avg 0 1.87 × 10−5 0.003066 0.002567 0.002567 2.05 × 10−5

Std 0 2.32 × 10−5 0.00077 0.00053 0.00053 2.64 × 10−5

F5
worst 8.88 × 10−16 8.88 × 10−16 4.663342 3.223428 1.019824 8.88 × 10−16

Best 8.88 × 10−16 8.88 × 10−16 0.017455 0.019081 0.137416 8.88 × 10−16

Avg 8.88 × 10−16 8.88 × 10−16 1.139553 0.342006 0.437464 8.88 × 10−16

Std 0 0 1.617355 1.012431 0.323219 0

F6
worst 4.71 × 10−32 3.84 × 10−5 4.772913 6.250579 0.005788 2.07 × 10−5

Best 4.71 × 10−32 7.83 × 10−8 1.16 × 10−5 0.335882 0.000107 1.56 × 10−7

Avg 4.71 × 10−32 7.48 × 10−6 1.984778 3.781554 0.001743 6.34 × 10−6

Std 0 1.16 × 10−5 1.830602 2.512286 0.002048 6.86 × 10−6

F7
worst 1.35 × 10−32 0.000281 0.000101 8.19 × 10−5 0.039677 0.000501
best 1.35 × 10−32 1.31 × 10−6 5.21 × 10−5 3.87 × 10−5 0.002672 1.18 × 10−7

Avg 1.35 × 10−32 4.25 × 10−5 8.01 × 10−5 5.89 × 10−5 0.017996 8.5 × 10−5

Std 2.88 × 10−48 8.69 × 10−5 1.55 × 10−5 1.58 × 10−5 0.01293 0.000143

F8
worst 0.998004 2.982105 1.992031 0.998004 0.999027 1.992031
best 0.998004 0.998004 0.998004 0.998004 0.998004 0.998004
Avg 0.998004 1.593234 1.166875 0.998004 0.998107 1.196819
Std 2.34 × 10−16 0.958412 0.362935 2.01 × 10−15 0.000323 0.397606

F9
worst 1528.366 5142.015 2215.496 2302.871 5755.439 4349.2
best 1472.889 1557.776 1443.205 1428.962 1488.148 1450.039
Avg 1503.786 2462.484 1580.193 1655.434 2510.73 1833.8
Std 19.26844 978.4552 223.2629 287.2931 1264.939 843.7423

F10
worst 1794.68 1838.131 1763.443 1782.14 2200.955 1840.59
Best 1744.138 1731.296 1722.813 1725.397 1766.414 1744.772
Avg 1774.579 1781.842 1738.947 1748.674 1898.936 1781.998
Std 17.10128 32.03933 10.8574 22.15373 122.3724 30.2191

F11
worst 2260.104 2338.993 2264.487 2288.434 2319.733 2388.341
Best 2209.787 2204.09 2200.005 2200.003 2201.822 2205.34
Avg 2236.802 2272.26 2211.444 2211.249 2265.511 2272.888
Std 18.17673 56.04231 18.0651 25.8142 44.29724 71.44948

F12
worst 2717.367 2778.692 2772.984 2762.261 2824.593 2857.503
Best 2521.748 2746.416 2500.074 2500.073 2505.906 2770.847
Avg 2626.946 2767.838 2669.676 2629.372 2710.07 2799.953
Std 61.88762 9.524766 114.739 111.2591 104.6337 28.32715
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2.3.2. Convergence

Convergence is the ability of the algorithm to search and converge to an acceptable
solution in a certain time. Convergence is an important index to evaluate the performance
of the algorithm. An algorithm has high convergence, which means fast optimization speed
and high precision. Generally, the convergence speed can be measured by the number of
iterations, and the convergence value can measure the accuracy.

The convergence curves of AIAGS and the other five algorithms in 12 benchmark
functions are shown in Figure 3. It can be seen from Table 2 and Figure 3 that the con-
vergence speed and optimization ability of AIAGS are not the strongest in individual
benchmark functions. On the whole, AIAGS is far better than other immune algorithms
in terms of convergence speed and optimization ability, and it is also better than the other
two algorithms.

2.4. Summary

In this chapter, the immune algorithm’s stimulation function and mutation strategy are
improved, and simulated annealing is added to the final step to select the optimal solution.
The core idea of these improvements is to avoid finding the optimal local solution. After
improving the algorithm, 12 different types of benchmark functions are used to evaluate
the algorithm’s performance. Experiments show that the development and exploration
ability of AIAGS is significantly improved compared with the previous immune algorithm.
These conclusions provide substantial proof for the following system identification work.
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3. Identification Method of MIMO Fractional Order Hammerstein Model
3.1. MIMO Fractional Order Hammerstein Model
3.1.1. Fractional Order Differentiation

At present, there are three definitions widely used in the field of fractional calculus:
Grünwald–Letnikov (GL), Riemann–Liouville (RL), and Caputo definitions. Because the
GL is easy to program [43], this paper considers it the research object. The definition of
fractional order calculus can be expressed as

Dα
t f (t) = lim

h→0

1
hα ∑[

t−t0
h ]

j=0 (−1)j
(

α
j

)
f (t− jh) (8)

where α is the fractional order. Because this paper explores differential equations, α > 0. h

is the sampling time; [] means that the integer part is reserved; (−1)j
(

α
j

)
is the binomials

of (1− z)α. By denoting wα
j to replace the binomials, so wα

j can be expressed as

wα
j = (−1)j

(
α
j

)
=

(−1)jΓ(α + 1)
Γ(j + 1)Γ(α− j + 1)

(9)

Finally, when t0 = 0, the definition of fractional order calculus can be expressed as

Dα
t f (t) =

1
hα ∑[ t−a

h ]

j=0 wα
j f (t− jh) (10)
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3.1.2. MIMO Fractional-Order Hammerstein System

The MIMO Hammerstein model of this paper can be schematically represented in
Figure 4. Hammerstein model is a typical nonlinear model composed of static nonlinear
block and dynamic linear block. the dynamic linear block can be expressed as

y1(t)
y2(t)

...
yN(t)

 =


G1,1 G1,2 . . . G1,M
G2,1 G2,2 . . . G2,M

...
GN,1 GN,2 . . . GN,M




u′1(t
)

u′2(t)
...

u′M(t
)
 (11)

where yk(t) is the kth system output; u′l(t
)

is generated by the lth system input ul(t)
through the nonlinear block, which can be expressed as

u′l(t
)
= cl,1· fl,1(ul(t)) + cl,2· fl,2(ul(t)) + . . . + cl,nlc

· fl,nlc
(ul(t))

= ∑nlc
m=1 cl,m· fl,m(ul(t))

(12)

where cl,· are coefficients to be identified; fl,·() are a series of basic functions. Gk,l is
a fractional-order transfer function, which can reflect the relationship between u′l(t

)
and

yk(t); it is defined as

Gk,l(s) =
bk,l,msmα + bk,l,m−1s(m−1)α + · · ·+ bk,l,0

ak,l,nsnα + ak,l,n−1s(n−1)α + · · ·+ ak,l,0
(13)

where ak,l,· and bk,l,· are coefficients to be identified; α is the fractional order to be identified.
For the convenience of calculation and programming, in this paper ak,l,0 is assumed to be 1.
According to Equations (11) and (13), the kth system output can be expressed as

yk = Gk,1u′1 + Gk,2u′2 + · · ·+ Gk,Mu′M

=
bk,1,mSmα+bk,1,m−1S(m−1)α+···+bk,1,0

ak,1,nSnα+ak,1,n−1S(n−1)α+···+ak,1,1Sα+1
u′1

+
bk,2,mSmα+bk,2,m−1S(m−1)α+···+bk,2,0

ak,2,nSnα+ak,2,n−1S(n−1)α+···+ak,2,1Sα+1
u′2

+ · · ·+ bk,M,mSmα+bk,M,m−1S(m−1)α+···+bk,M,0

ak,M,nSnα+ak,M,n−1S(n−1)α+···+ak,M,1Sα+1
u′M

(14)
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By reduction of fractions to a common denominator and simplifying Equation (14),
we can get an equation described as(

Ak,NA SNAα + Ak,NA−1
S(NA−1)α + · · ·+ Ak,1Sα + 1

)
yk

=
(

Bk,1,NB SNBα + Bk,1,NB−1S(NB−1)α + · · ·+ Bk,1,0

)
u′1+(

Bk,2,NB SNBα + Bk,2,NB−1S(NB−1)α + · · ·+ Bk,2,0

)
u′2 + · · ·+(

Bk,M,NB SNBα + Bk,M,NB−1S(NB−1)α + · · ·+ Bk,M,0

)
u′M

(15)
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where A is the polynomial containing a; B is the polynomial containing a and b; the
coefficient of fractional order NA = M ∗ n, NB = (M− 1) ∗ n + m. To sum up, the MIMO
fractional-order Hammerstein system discussed in this paper can be expressed as{

yk(t) + ∑nA
i=1 Ak,iDiαyk(t) = ∑M

l=0 ∑nB
j=0 Bk,l,jDjαu′l(t)

y′k(t) = yk(t) + v(t)
(16)

where v(t) is the Gaussian white noise; y′k(t) is the measured output containing noise.
According to Equations (10) and (16), the MIMO fractional-order Hammerstein system can
be expressed as

y′k(t) =
1(

1+∑
nA
i=1 Ai/hiα

) ·
[

M
∑

l=0

nB
∑

i=0

nlc
∑

m=1

Bk,l,i
hiα cl,m·

[t/h]
∑

j=0
wiα

j fl,m(ul(t− jh))

−
nA
∑

i=1

Ai
hiα

[t/h]
∑

j=1
wiα

j yk(t− jh)

]
+ v(t)

(17)

3.2. Parameter Identification Based on Auxiliary Model Recursive Least Square Method

In the MIMO fractional-order Hammerstein model, all the coefficients and the frac-
tional order are needed to be identified. Previous articles usually considered only part
of coefficients or for the SISO system. The work of this paper is rarely concerned before.
The identification work is divided into coefficient identification and order identification.
However, the two results affect each other, which cannot identify coefficients precisely
without a precise fractional order. This paper will first use a series of input and output data
to obtain the initial values of coefficients and the fractional order by the AIAGS algorithm
mentioned above. The initial value is a little precise. Then, the initial value will be used to
get the parameter identification result of the fractional-order Hammerstein model through
the auxiliary model recursive least squares (AMRLS) algorithm.

3.2.1. Coefficient Identification

According to the basic knowledge of system identification, the input–output relations
can be expressed as

yk
′(t) = yk(t) + v(t) = ∅k(t)·θk

T + v(t) (18)

where ∅k(t) is the variable vector including input–output data, which is expressed as

∅k(t) =
[
∅k,A(t),∅Bk,1,0(t),∅Bk,1,1(t), . . . ,∅Bk,1,nB

(t), . . . ,∅Bk,M,0(t),∅Bk,M,1(t), . . . ,∅Bk,M,nB
(t)
]

∅k,A(t) =
[
−∑

[t/h]
j=1 wα

j yk(t− jh) , . . . ,−∑
[t/h]
j=1 wnAα

j yk(t− jh)
]

∅Bk,l,i (t) =
[
∑
[t/h]
j=0 wiα

j fl,1(ul(t− jh)), . . . , ∑
[t/h]
j=0 wiα

j fl,M(ul(t− jh))
] (19)

According to Equations (16) and (17), the vector θk is found and expressed as

θk =
[
θk,A, θBk,1,0 , . . . , θBk,1,nB

, . . . , θBk,M,0 , . . . , θBk,M,nB

]
θk,A =

[
Qk,1, Qk,2, . . . , Qk,nA

]
θBk,l,i =

[
Wk,1,ic1,1, . . . , Wk,1,ic1,nlc , . . . , Wk,M,icM,1, . . . , Wk,M,icM,nlc

] (20)

where

Qk,i =

Ak,i
hiα

1+∑
nA
i=1

Ak,i
hiα

Wk,l,j =

Bk,l,j
hjα

1+∑
nA
i=1

Ak,i
hiα

(21)
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It can be clearly seen that θk contains coefficients that need to be identified. It is worth
mentioning that yk(t− jh) is unknown so that θk,A cannot be identified directly by ∅k,A(t).
According to references [44], an auxiliary model is used to estimate the unknown variable
yk(t− jh). The auxiliary model of this paper can be schematically represented in Figure 5.
The main idea of the auxiliary model is that the real output of the system yk

′(t) is replaced
by the output of the auxiliary model yamk(t). Then, the identification problem has changed
from the relationship between yk

′(t) and ul to the relationship between yamk(t) and ul .
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According to Figure 5, the input–output relations of the auxiliary model can be writ-
ten as

yamk(t) = ∅amk(t)·θamk
T (22)

where

∅amk(t) =
[
∅amk,A(t),∅Bk,1,0(t),∅Bk,1,2(t), . . . ,∅Bk,1,nB

(t), . . . ,∅Bk,M,0(t),∅Bk,M,2(t), . . . ,∅Bk,M,nB
(t)
]

∅amk,A(t) =
[
−∑

[t/h]
j=1 wα

j yamk(t− jh) , . . . ,−∑
[t/h]
j=1 wnAα

j yamk(t− jh)
]
θamk = θ̂k

(23)

The estimate of ∅k(t) can be used as the value of the auxiliary model information
vector ∅amk(t) and the parameter identification of θk can be used as the value of the
auxiliary model parameter vector θamk. Define the criterion function as

J
(

θ̂k
T
)
=

1
2 ∑t

i=1

[
yk
′(i)−∅amk(i)θ̂k

T
]2

(24)

By finding the minimum value of the criterion function, the value of ∅amk(i)θ̂k
T

can
approach the value of yk

′(i) to identify θ̂k. The minimum value can be obtained by the
following equation.

∂J
(

θ̂k
T
)

∂θ̂k
T = −∑t

i=1 ∅amk
T(i)·[yk

′(i)−∅amk(i)θ̂k
T
] = 0 (25)

When ∑t
i=1 ∅amk

T(i− 1)·∅amk(i− 1) can be inversed, the value of θ̂k can be identified
by the recursive least squares as follows:
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θ̂k
T
(t) =

[
∑t

i=1 ∅amk
T(i− 1)·∅amk(i− 1)

]−1·∑t
i=1 ∅amk

T(i)yk
′(i)

θ̂k
T
(t) = θ̂k

T
(t− 1) + L(t)

[
yk
′(t)−∅amk(t)θ̂k

T
(t− 1)

]
L(t) = P(t− 1)∅amk

T(t)
[
1 +∅amk(t)P(t− 1)∅amk

T(t)
]−1

P(t) = [I − L(t)∅amk(t)]P(t− 1)

(26)

where P(0) is a diagonal matrix in which the main diagonal elements are huge and equal.
According to the above equations, the elements of θ̂k are all identified. Without losing

generality, assuming cl,1 as 1 can facilitate calculation and ensure the uniqueness of the
final parameters. Then, the unique values of Wk,l,j and cl,m are calculated; they can be
expressed as

Wk,l,j = θBk,l,i [(l − 1) ∗ nlc + 1
]

cl,m = ∑nlc
i=0

θBk,l,i
(k)

Wk,l,j

(27)

So far, the estimates of A, B, and c have been obtained.

3.2.2. Order Identification

In the previous section, this paper discusses the identification of coefficients. Substi-
tuting the accurate estimated value of the coefficients into Equation (17) can identify the
order accurately. Define the criterion function as

J(α) =
1
2 ∑t

i=1

[
yk
′(i)− ŷk(i)

]2 (28)

By finding the minimum value of the criterion function, the value of ŷk(i) can approach
the value of yk

′(i). The minimum value can be obtained by the following equation:

∂J(α)
∂α

= −∑t
i=1

∂ŷk(i)
∂α
·
[
yk
′(i)− ŷk(i)

]
= 0 (29)

where

∂ŷk(t)
∂α = − ∂

∂α ( ˆGk,1(sα)u′1(t) + ˆGk,2(sα)u′2(t) + · · ·+ ˆGk,M(sα)u′M(t))

=
M
∑

l=0

[(
Bk,l,NB

SNBα+···+Bk,l,0(
Ak,NA

SNAα+···+1
)2

)

·
(

NA·Ak,NA SNAα + · · ·+ Ak,1sα
)
− NB ·Bk,l,NB

SNBα+···+Bk,l,1sα

Ak,NA
SNα

A+···+1

]
· ln(s)·u′l(t)

(30)

According to references [24], ln(s)·u′l(t) can be replaced by sα·(ln(s)/sα)·u′l(t). The in-
verse Laplace transform of ln(s)/sα is a digamma function can be expressed as

L−1
(

ln(s)
sα

)
=

tα−1

Γ(α)

[
1

Γ(α)
dΓ(α)

dα
− ln(t)

]
(31)

Then, ln(s)·u′l(t) can be expressed as

Dα

[
1

Γ(α)
dΓ(α)

dα
Dαu′l(t)−

1
Γ(α)

∫ t

0
(t− τ)α−1 ln(t− τ)u′l(t)dτ

]
(32)

It’s easy to see that α can be calculated by Equations (28)–(32).
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3.3. Summary

So far, the estimates of A, B, c, and α have been obtained. Because A are polynomials
about a, B are polynomials about a and b, it is feasible to estimate the value of nA a by the
value of nA A. Then, it is feasible to estimate the value of b by the value of a and B. To sum
up, all estimates work has been completed.

4. Experimental Results

In this section, two numerical examples will demonstrate the validity of the pro-
posed method.

4.1. Example 1

Consider the following model, which is expressed as[
y1(t)
y2(t)

]
=

[
G1,1 G1,2

G2,1 G2,2

][
u′1(t

)
u′2(t)

]
y′(t) = y(t) + v(t) (33)

where
G1,1 = 4

5s0.3+1 , G1,2 = 3
3s0.3+1 ,

G2,1 = 4
6s0.3+1 , G2,2 = 5

2s0.3+1 .

u′1(t
)
= u1(t) + 0.5u1

2(t) + 0.3u1
3(t) + 0.1u1

4(t)
u′2(t) = u2(t) + 0.4u2

2(t) + 0.2u2
3(t) + 0.1u2

4(t)

(34)

The inputs u1 and u2 are persistent excitation signal sequences with unit variance
and zero mean. v(t) is the stochastic Gaussian noise with zero mean and variance is 0.005.
Then, the outputs y(t) are generated by their respective transfer functions of the MIMO
fractional-order Hammerstein model.

According to the model, the θ to be identified are

θ = [a1,1,1, a1,2,1, b1,1,0, b1,2,0, a2,1,1, a2,2,1, b2,1,0, b2,2,0, c1,1, c1,2, c1,3, c2,1, c2,2, c2,3, α]

= [5, 3, 4, 3, 6, 2, 4, 5, 0.5, 0.3, 0.1, 0.4, 0.2, 0.1, 0.3]
(35)

The identification steps are described in Section 3. At first, the intelligent optimization
algorithm identifies the initial value of the model. Then, using AMRLS to identify the model
coefficients, and at this time regarding the initial value of fractional order as the model’s
actual value. When the coefficients are estimated, the estimated values of the coefficients
are considered to be the true value to identify the fractional order. Finally, identifying
coefficients and order is repeated until the iteration’s end or satisfactory results are obtained.
The pseudo-code of the identification process is explained in detail in Algorithm 2.

Algorithm 2: Identification process

Step.1 Collect the dates of all inputs, outputs;
Step.2 Obtain the initial of unknown parameters by using intelligent optimization algorithm;
Step.3 While m < max number of iterations M;
Step.4 Estimate the value of model coefficients according to Equation (25);
Step.5 Estimate the value of fractional order according to Equation (29);
Step.6 If the two criterion function values J within the actual accuracy requirements;
Step.7 Break;
Step.8 End;
Step.9 m = m + 1;
Step.10 End while;
Step.11 Return the best solution.

In order to reflect the importance of the initial value of fractional order, in this section,
the initial value is identified by three different optimization algorithms: AIAGS, HHO,
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and AO. The next identification work is carried out under four initial values. This section
evaluates the final identification results from two aspects: RQE and MSE. They can be
expressed as

RQE =

√
(θ̂−θ)

2

θ2

MSE= ∑i=1
n (yi−ŷi)

2

n

(36)

where θ̂ and ŷi are estimated values; θ and yi are true values.
The final identification results obtained by Algorithm 2 are shown in Table 4, and the

RQE and MSE of the results are shown in Table 5. The outputs of the real model and the
outputs of the model obtained through identification are shown in Figures 6 and 7. Figure 8
shows the estimated fractional-order convergence curve.

Table 4. The final identification results.

Method
(and

AMRLS)
a1,1,1 a1,2,1 b1,1,0 b1,2,0 a2,1,1 a2,2,1 b2,1,0 b2,2,0 c1,1 c1,2 c1,3 c2,1 c2,2 c2,3 α α0

AIAGS 5.127 3.120 3.976 2.959 6.118 2.017 3.996 4.970 0.501 0.289 0.095 0.400 0.200 0.100 0.299 0.333
AO 4.619 3.325 3.887 3.465 5.377 1.760 4.196 5.272 0.509 0.297 0.098 0.404 0.198 0.098 0.275 0.391

HHO 4.641 3.329 3.882 3.448 5.289 1.757 4.152 5.283 0.508 0.296 0.097 0.404 0.198 0.099 0.278 0.382

Table 5. The RQE and MSE of the results.

Method
(and AMRLS) AIAGS AO HHO

RQE 0.1360 0.2931 0.2987
MSE 0.0144 0.0944 0.1019
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4.2. Example 2

Consider the following model, which is expressed as[
y1(t)
y2(t)

]
=

[
G1,1 G1,2
G2,1 G2,2

][
u′1(t

)
u′2(t)

]
y′(t) = y(t) + v(t)

(37)

where
G1,1 = 5

2s0.7+1 , G1,2 = 1.7s0.7+1.9
1.5s1.4+1.3s0.7+1 ,

G2,1 = 1.8sα+1.5
2.2s1.4+2.1s0.7+1 , G2,2 = 1

1.6s0.7+1 .

u′1(t
)
= u1(t) + 0.5u1

2(t) + 0.2u1
3(t) + 0.1u1

4(t)
u′2(t) = u2(t) + 0.4u2

2(t) + 0.3u2
3(t) + 0.1u2

4(t)

(38)

The parameter meanings are similar to that of Example 1, so θ can be expressed as

θ = [a1,1,1, a1,2,2, a1,2,1, b1,1,0, b1,2,1, b1,2,0, a2,1,2, a2,1,1, a2,2,1, b2,1,1, b2,1,0, b2,2,0, c1,1, c1,2, c1,3, c2,1, c2,2, c2,3, α]

= [2, 1.5, 1.3, 5, 1.7, 1.9, 2.2, 2.1, 1.6, 1.8, 1.5, 1, 0.5, 0.2, 0.1, 0.4, 0.3, 0.1, 0.7]
(39)

By repeating the identification process similar to Example 1, the final identification
results are shown in Table 6, and the RQE and MSE of the results are shown in Table 7.
The outputs of the real model and the outputs of the model obtained through identification
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are shown in Figures 9 and 10. Figure 11 shows the estimated fractional-order convergence
curve.

Table 6. The final identification results.

Method
(and

AMRLS)
a1,1,1 a1,2,2 a1,2,1 b1,1,0 b1,2,1 b1,2,0 a2,1,2 a2,1,1 a2,2,1 b2,1,1 b2,1,0 b2,2,0 c1,1 c1,2 c1,3 c2,1 c2,2 c2,3 α

AIAGS 2.002 1.501 1.297 5.033 1.703 1.915 2.164 2.215 1.766 1.675 1.564 1.029 0.504 0.191 0.095 0.385 0.293 0.101 0.700
AO 2.946 1.453 1.174 5.642 1.127 1.832 2.459 2.544 0.733 4.680 1.626 1.122 0.483 0.188 0.100 0.347 0.290 0.106 0.582

HHO 3.182 1.42 1.197 5.697 1.004 1.808 2.463 2.605 0.691 4.962 1.631 1.132 0.482 0.188 0.100 0.344 0.288 0.106 0.570

Table 7. The RQE and MSE of the results.

Method
(and AMRLS) AIAGS AO HHO

RQE 0.1819 0.6579 0.6935
MSE 0.0351 0.5133 0.6626
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