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Abstract: A family of third-order partial differential equations (PDEs) is analyzed. This family
broadens out well-known PDEs such as the Korteweg-de Vries equation, the Gardner equation, and
the Burgers equation, which model many real-world phenomena. Furthermore, several macroscopic
models for semiconductors considering quantum effects—for example, models for the transmission of
electrical lines and quantum hydrodynamic models—are governed by third-order PDEs of this family.
For this family, all point symmetries have been derived. These symmetries are used to determine
group-invariant solutions from three-dimensional solvable subgroups of the complete symmetry
group, which allow us to reduce the given PDE to a first-order nonlinear ordinary differential equation
(ODE). Finally, exact solutions are obtained by solving the first-order nonlinear ODEs or by taking
into account the Type-II hidden symmetries that appear in the reduced second-order ODEs.

Keywords: third-order partial differential equations; lie symmetries; solvable symmetry algebras;
group invariant solutions

1. Introduction

The study of integrable equations that model real-world phenomena has attracted
a lot of attention from researchers in the last decades. In [1], Qiao and Liu proposed the
following equation

ut =
1
2

(
1
u2

)
xxx
− 1

2

(
1
u2

)
x
. (1)

They showed that Equation (1) has a bi-Hamiltonian structure and Lax pair, which
imply the integrability of the equation, and they stated that although the equation is
completely integrable, no smooth solitons have been found.

In [2], Gandarias and Bruzón considered the generalized equation

ut = (g(u))xxx + ( f (u))x, (2)

with f (u) and g(u) as arbitrary functions verifying f ′(u) 6= 0, g′(u) 6= 0, and they con-
structed conservation laws for some subclasses of partial differential equation (PDE) (2).

The purpose of this paper is to analyze the generalized equation

ut = (g(u))xxx + ( f (u))x + h(u)uxx, (3)

with f (u), g(u), and h(u) as arbitrary functions verifying f ′(u) 6= 0, g′(u) 6= 0. A special
subclass of family (3) was studied in [3].

The family of PDEs (3) that we are going to deal with includes the well-known
Korteweg-de Vries equation, the Gardner equation, and the Burgers equation, among others.
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Moreover, several macroscopic models for semiconductors considering quantum effects—
for instance, models for the transmission of electrical lines and quantum hydrodynamic
models, models of aqueous polymer solutions in a bounded domain, or two-dimensional
grade-two fluid models—are governed by third-order PDEs. Many of these models are
included in family (3). For further detailed examples, the reader is referred, for instance,
to [4–9].

Nonlinear evolution equations have attracted the attention of numerous researchers
during the last years because they turn out to be more realistic than their linear counterparts
in the applications to real-world phenomena which usually include diffusion, convection,
or dispersion processes as well as other nonlinear effects.

The main barrier to the systematic analysis of nonlinear PDEs involving arbitrary
functions or parameters is that often, there are no tools that can be applied in general
for a specific purpose. Indeed, there exist methods that only work for a particular set of
equations, but even so, the subsequent mathematics is often quite different from linear
PDEs, and they generally present an evident difficulty and complexity. In particular, various
direct methods have been developed to deal with the determination of exact solutions of
nonlinear PDEs, for instance, the extended simplest equation method [10–12], the tanh-sech
method [13–15], the Painlevé analysis [16,17], the variational iteration method [18], the
Hirota’s method [19], and other special methods.

Symmetries of a PDE are transformations that map the solution space of the PDE into
itself. The Lie symmetry method has been proved to be an effective method to analyze
PDEs. Symmetry groups have several well-known applications. For instance, invariance
solutions can be constructed taking into account the local symmetries admitted. Invariance
solutions emerge from solutions of a system of differential equations that involves a smaller
number of independent variables. In the case of PDEs with two independent variables, the
reduction procedure consists of obtaining a similarity variable that allows us to transform
the PDE into an ordinary differential equation (ODE), which is, in general, easier to solve.
Thus, symmetry groups can also be combined and applied with other methods to find exact
and numerical solutions [20–25]. However, in this paper, we focus only on the application
of solvable Lie groups and the reductions obtained from them.

The goal of this paper is to analyze PDE (3) from the viewpoint of Lie symmetries and
symmetry reductions. In particular, we focus our attention on deriving group-invariant
solutions from admitted three-dimensional solvable symmetry subalgebras of Equation (3),
which allow us to reduce the given third-order PDE into a first-order ODE. To the best of
our knowledge, the analysis performed in this paper for the PDE family (3) has not been
previously carried out. First, in Section 2, we have determined a complete classification of
the point symmetries admitted by PDE (3) depending on the arbitrary functions f (u), g(u),
and h(u). The results presented for all cases h(u) 6= 0 are new. Furthermore, in Section 3,
we determine a complete classification of the maximal symmetry groups along with its
non-zero commutator structure that PDE (3) admits depending on f (u), g(u), and h(u).
In Section 4, we have determined the solvable three- and four-dimensional subgroups of
the symmetry group of PDE (3). As far as we know, the analysis set forth in this paper
is novel. Although many well-known classes of PDEs, which have been studied over the
last years by using point symmetries, are included in family (3), the results obtained in
this paper not only include numerous other equations which have not previously studied
from the point of view of Lie symmetry reductions but also allow a global analysis of the
family considered. In Section 5, we determine group-invariant solutions of Equation (3)
from three-dimensional solvable symmetry algebras. Finally, in Section 6, we present
the conclusions.
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2. Point Symmetries

In order to determine the point symmetries of Equation (3), we consider a one-
parameter Lie group of infinitesimal transformations given by

t̂(t, x, u; ε) = t + ε τ(t, x, u) + O(ε2),
x̂(t, x, u; ε) = x + ε ξ(t, x, u) + O(ε2),
û(t, x, u; ε) = u + ε η(t, x, u) + O(ε2),

(4)

where ε is the group parameter. We recall that a point transformation group is a Lie point
symmetry of Equation (3) if and only if the action of the group (4) leaves the solution space
invariant. A general element of the associated Lie algebra of Equation (3) takes the form

X = τ(t, x, u)∂t + ξ(t, x, u)∂x + η(t, x, u)∂u. (5)

Point symmetries are obtained by applying the symmetry invariance condition

pr(3)X(ut − (g(u))xxx − ( f (u))x − h(u)uxx) = 0 when ut − (g(u))xxx − ( f (u))x − h(u)uxx = 0,

where pr(3)X is the prolongation of generator X to the space of the derivatives of the de-
pendent variable up to third order. Third-order prolongations are complicated to compute,
and they involve a great number of calculations. However, there exists a geometrical way
to avoid these prolongations [26,27]. The action of the vector field (5) on the solution space
of Equation (3) is similar to the action of the generator

X̂ = η̂∂u, η̂ = η − τut − ξux,

which is known as the characteristic form of the point symmetry. Consequently, the set of
solutions of Equation (3) is preserved under the transformation (4) provided that

pr(3)X̂(ut − (g(u))xxx − ( f (u))x − h(u)uxx) = 0, (6)

when Equation (3) holds. Here, pr(3)X̂ = X̂+(Dtη̂)∂ut +(Dx η̂)∂ux +
(

D2
x η̂
)
∂uxx +

(
D3

x η̂
)
∂uxxx

is the third prolongation of the vector field X̂, and Dt and Dx represent the total derivatives
with respect to t and x, respectively.

The symmetry determining Equation (6) leads to a linear system of determining
equations. By simplifying this system, we obtain that τ = τ(t), ξ = ξ(t, x), η = η(t, x, u),
f (u) , g(u), and h(u) must satisfy the following conditions:

ηguu + gu(τt − 3ξx) = 0,
ηuug2

u + ηuguguu + η
(

guguuu − g2
uu
)
= 0,

ηxxxgu + ηxxh + ηx fu − ηt = 0,
3ηuxg2

u + 3ηxguguu + η(guhu − guuh)− 3ξxxg2
u + ξxguh = 0,

3ηuuxgu + ηuuh + 6ηuxguu + 3ηxguuu − 3ξxxguu = 0,
3ηuxxg2

u + 2ηuxguh + 3ηxxguguu + η( fuugu − fuguu)− ξxxxg2
u − ξxxguh + 2ξx fugu + ξtgu = 0.

(7)

We notice that family (3) is preserved under the equivalence transformation given by

ũ −→ u + u0, u0 constant.

This allows us to simplify the results achieved on point symmetries. From system (7),
if f (u), g(u) and h(u) are arbitrary, we obtain

X1 = ∂x, X2 = ∂t.

Additional generators are admitted by the generalized third-order Equation (3) in the
following cases:
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1. For arbitrary g(u), h(u) = 0, f (u) = f1u + f2,

X3 = 3t∂t + (x− 2 f1t)∂x.

2. For g(u) = g0uq + g1,

2.1. For h(u) = h0um

2.1.1. For f (u) = f0u2m−q+2 + f1u + f2, we obtain

X4 = (3m− 2q + 2)t∂t + ((m− q + 1)x− f1(2m− q + 1)t)∂x − u∂u.

Moreover:

2.1.1.1. If m = 0 and q = 1 (we suppose f0 = 0 without losing generality),
we also obtain

X5 = 9g0t∂t + (3g0x + 2(h2
0 − 3 f1g0)t)∂x − h0(x + f1t)u∂u,

Xβ = β∂u,

where β(t, x) verifies βt − f1βx − h0βxx − g0βxxx = 0.
2.1.1.2. If h0 = f0 = 0, we also obtain X3.
2.1.1.3. If h0 = f0 = 0, q = − 1

2 , we also obtain X3 and

X6 = (x + f1t)2∂x − 4(x + f1t)u∂u.

2.1.1.4. If h0 = 0, q = − 1
2 , m = − 3

2 , f0
g0

> 0, we obtain

X7 = sin
(√

f0
g0
(x + f1t)

)
∂x − 2

√
f0
g0

cos
(√

f0
g0
(x + f1t)

)
u ∂u,

X8 = cos
(√

f0
g0
(x + f1t)

)
∂x + 2

√
f0
g0

sin
(√

f0
g0
(x + f1t)

)
u ∂u.

2.1.1.5. If h0 = 0, q = − 1
2 , m = − 3

2 , f0
g0

< 0, we obtain

X9 = sinh
(√
− f0

g0
(x + f1t)

)
∂x − 2

√
− f0

g0
cosh

(√
− f0

g0
(x + f1t)

)
u ∂u,

X10 = cosh
(√
− f0

g0
(x + f1t)

)
∂x − 2

√
− f0

g0
sinh

(√
− f0

g0
(x + f1t)

)
u ∂u.

2.1.2. For f (u) = f0u2 + f1u + f2, f0 6= 0 and m = 0, q = 1,

X11 = 2 f0t∂x − ∂u.

Moreover, if h0 = 0, we also obtain

X12 = 3t∂t + x∂x − (2u + f1
f0
)∂u.

2.1.3. For f (u) = f0u ln u + f1u + f2, f0 6= 0 and m = q−1
2 , we obtain

X13 = (q− 1)t∂t + ((q− 1)x− 2 f0t)∂x + 2u∂u.

2.1.4. For f (u) = f0 ln u + f1u + f2, f0 6= 0 and m = q−2
2 , we obtain

X4|m=
q−2

2
≡ (q + 2)t∂t + (qx− 2 f1t)∂x + 2u∂u.

2.2. For h(u) = h0emu, f (u) = f0e2mu + f1u + f2, m 6= 0 and q = 1, and where f0 and
h0 are not simultaneously zero, we obtain

X14 = 3mt∂t + m(x− 2 f1t)∂x − ∂u.
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3. For g(u) = g0equ + g1

3.1. For h(u) = h0emu, f (u) = f0e(2m−q)u + f1u + f2, we obtain

X15 = (3m− 2q)t∂t + ((m− q)x− f1(2m− q)t)∂x − ∂u.

Moreover, if h0 = f0 = 0, we also obtain X3.
3.2. If h(u) = h0e

q
2 u, f (u) = f0u2 + f1u + f2, we obtain

X16 = qt∂t + (qx− 4 f0t)∂x + 2∂u.

Moreover, if h0 = f0 = 0, we also obtain X3.

4. For g(u) = g0 ln(u) + g1

4.1. For h(u) = h0um, f (u) = f0u2m+2 + f1u + f2, we obtain

X17 = (3m + 2)t∂t + ((m + 1)x− f1(2m + 1)t)∂x − u∂u.

Moreover, if h0 = f0 = 0, we also obtain X3.
4.2. If h(u) = h0u−

1
2 , f (u) = f0u ln u + f1u + f2, f0 6= 0, we obtain

X18 = t∂t + (x + 2 f0t)∂x − 2u∂u.

4.3. If h(u) = h0u−1, f (u) = f0 ln u + f1u + f2, f0 6= 0,

X19 = t∂t − f1t∂x + u∂u.

In the above, f0, f1, f2, g0 6= 0, g1, h0, q 6= 0, and m represent arbitrary constants.
When h0 = 0, without loss of generality, we can set m = 0.

3. Maximal Point Symmetry Groups

At this point, it would be very valuable to know the most general symmetry Lie
algebra A that the equation admits depending on the form of the arbitrary functions f (u),
g(u), and h(u). We suppose that A is a r-dimensional Lie algebra with basis X1, . . . , Xr.
Each Xi ∈ A defines a linear operator ad Xi : A −→ A, ad Xi(Xj) =

[
Xi, Xj

]
, where [ , ]

represents the Lie bracket. Lie algebras can be represented in tabular form by means of the
commutator table forAwhich is a r× r table whose (i, j)-th entry represents the Lie bracket[
Xi, Xj

]
. Given Xi, Xj ∈ A,

[
Xi, Xj

]
= −

[
Xj, Xi

]
, therefore, this table is always skew-

symmetric. The commutator table is useful to determine an optimal system of subalgebras
or to construct a solvable Lie subalgebra.

As a result of the great number of maximal Lie algebras that Equation (3) admits and in
order not to exceed unnecessarily the length of this paper, we do not show the commutator
tables. Instead, we will show a basis of generators for each maximal Lie algebra along with
the corresponding non-zero Lie brackets. The maximal point symmetry groups for the
generalized third-order Equation (3) are generated by:

(i) Two-dimensional
arbitrary g(u), h(u), f (u)
A1 = span(X1, X2).

(ii) Three-dimensional

• arbitrary g(u), h(u) = 0, f (u) = f1u + f2,
A2 = span(X1, X2, X3),
[X1, X3] = X1, [X2, X3] = −2 f1X1 + 3X2.

• g(u) = g0uq + g1, h(u) = h0um, f (u) = f0u2m−q+2 + f1u + f2,
A3 = span(X1, X2, X4),
[X1, X4] = (m− q + 1)X1, [X2, X4] = − f1(2m− q + 1)X1 + (3m− 2q + 2)X2.
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• g(u) = g0u + g1, h(u) = h0, f (u) = f0u2 + f1u + f2, f0 6= 0,
A4 = span(X1, X2, X11),
[X2, X11] = 2 f0X1.

• g(u) = g0uq + g1, h(u) = h0u
q−1

2 , f (u) = f0u ln u + f1u + f2, f0 6= 0
A5 = span(X1, X2, X13),
[X1, X13] = (q− 1)X1, [X2, X13] = −2 f0X1 + (q− 1)X2.

• g(u) = g0uq + g1, h(u) = h0u
q−2

2 , f (u) = f0 ln u + f1u + f2, f0 6= 0
A6 = span(X1, X2, X4|m=

q−2
2
),[

X1, X4|m=
q−2

2

]
= − q

2 X1,
[

X2, X4|m=
q−2

2

]
= f1X1 − q+2

2 X2.

• g(u) = g0u + g1, h(u) = h0emu, f (u) = f0e2mu + f1u + f2,
m 6= 0, f0 and h0 not simultaneously zero,
A7 = span(X1, X2, X14),
[X1, X14] = mX1, [X2, X14] = −2 f1mX1 + 3mX2.

• g(u) = g0equ + g1, h(u) = h0emu, f (u) = f0e(2m−q)u + f1u + f2,
A8 = span(X1, X2, X15),
[X1, X15] = (m− q)X1, [X2, X15] = − f1(2m− q)X1 + (3m− 2q)X2.

• g(u) = g0equ + g1, h(u) = h0e
q
2 u, f (u) = f0u2 + f1u + f2,

A9 = span(X1, X2, X16),
[X1, X16] = qX1, [X2, X16] = −4 f0X1 + qX2.

• g(u) = g0 ln(u) + g1, h(u) = h0um, f (u) = f0u2m+2 + f1u + f2,
A10 = span(X1, X2, X17),
[X1, X17] = (m + 1)X1, [X2, X17] = − f1(2m + 1)X1 + (3m + 2)X2.

• g(u) = g0 ln(u) + g1, h(u) = h0u−
1
2 , f (u) = f0u ln u + f1u + f2,

A11 = span(X1, X2, X18),
[X1, X18] = X1, [X2, X18] = 2 f0X1 + X2.

• g(u) = g0 ln(u) + g1, h(u) = h0u−1, f (u) = f0 ln u + f1u + f2,
A12 = span(X1, X2, X19),
[X2, X19] = − f1X1 + X2.

(iii) Four-dimensional

• g(u) = g0uq + g1, q 6= 1, h(u) = 0, f (u) = f1u + f2,
A13 = span(X1, X2, X3, X4|m=0),
[X1, X3] = X1, [X1, X4|m=0] = (1− q)X1,
[X2, X3] = −2 f1X1 + 3X2, [X2, X4|m=0] = (q− 1)( f1X1 − 2X2).

• g(u) = g0u + g1, h(u) = 0, f (u) = f0u2 + f1u + f2,
A14 = span(X1, X2, X11, X12),
[X1, X12] = X1, [X2, X11] = 2 f0X1, [X2, X12] = 3X2, [X11, X12] = −2X11.

• g(u) = g0equ + g1, h(u) = 0, f (u) = f1u + f2,
A15 = span(X1, X2, X3, X15|m=0),
[X1, X3] = X1, [X1, X15|m=0] = −qX1, [X2, X3] = −2 f1X1 + 3X2,
[X2, X15|m=0] = q( f1X1 − 2X2).

• g(u) = g0 ln u + g1, h(u) = 0, f (u) = f1u + f2,
A16 = span(X1, X2, X3, X17|m=0),
[X1, X3] = X1, [X1, X17|m=0] = X1, [X2, X3] = −2 f1X1 + 3X2,
[X2, X17|m=0] = − f1X1 + 2X2.

(iv) Five-dimensional

• g(u) = g0√
u + g1, h(u) = 0, f (u) = f1u + f2,

A17 = span(X1, X2, X3, X4|q=− 1
2 ,m=0, X6),

[X1, X3] = X1,
[

X1, X4|q=− 1
2 ,m=0

]
= 3

2 X1, [X1, X6] = 4
(

X4|q=− 1
2 ,m=0 − X3

)
,

[X2, X3] = −2 f1X1 + 3X2,
[

X2, X4|q=− 1
2 ,m=0

]
= − 3

2 f1X1 + 3X2,
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[X2, X6] = 4 f1

(
X4|q=− 1

2 ,m=0 − X3

)
,

[X3, X6] = X6,
[

X4|q=− 1
2 ,m=0, X6

]
= 3

2 X6.

• g(u) = g0√
u + g1, h(u) = 0, f (u) = f0√

u + f1u + f2, f0
g0

> 0
A18 = span(X1, X2, X4|q=− 1

2 ,m=− 3
2
, X7, X8),

[X1, X7] =
√

f0
g0

X8, [X1, X8] = −
√

f0
g0

X7,[
X2, X4|q=− 1

2 ,m=− 3
2

]
= 3

2 ( f1X1 − X2),

[X2, X7] = f1

√
f0
g0

X8, [X2, X8] = − f1

√
f0
g0

X7, [X7, X8] = −
√

f0
g0

X1.

• g(u) = g0√
u + g1, h(u) = 0, f (u) = f0√

u + f1u + f2, f0
g0

< 0
A19 = span(X1, X2, X4|q=− 1

2 ,m=− 3
2
, X9, X10),

[X1, X9] =
√
− f0

g0
X10, [X1, X10] =

√
− f0

g0
X9,[

X2, X4|q=− 1
2 ,m=− 3

2

]
= 3

2 ( f1X1 − X2),

[X2, X9] = f1

√
− f0

g0
X10, [X2, X10] = f1

√
− f0

g0
X9, [X9, X10] = −

√
− f0

g0
X1.

(v) ∞-dimensional

g(u) = g0u + g1, h(u) = h0, f (u) = f1u + f2,
A20 = span(X1, X2, X4|q=1,m=0, X5, Xβ).

4. Solvable Lie Algebras

It is well known that when a PDE with two independent variables admits infinitesimal
symmetries, this can be useful to reduce the PDE to an ODE; for details about this reduction
procedure, see, e.g., [28]. Nevertheless, it is not always obvious how to solve this ODE. In
fact, not all third-order nonlinear ODEs can be solved in explicit form. One alternative is
to prove if the third-order nonlinear ODE inherits a three-dimensional solvable Lie group
from Equation (3). In this way, Equation (3) can be reduced to quadrature. We recall that the
necessary condition to determine a quadrature of Equation (3) is that the starting reduction
results from invariance under a point symmetry which belongs to a four-dimensional
solvable Lie group. Following reference [27], Ak is a k-dimensional solvable Lie algebra
if there is a chain of subalgebras A(1) ⊂ A(2) ⊂ . . . ⊂ A(k−1) ⊂ A(k) = Ak, with A(m)

an m-dimensional Lie algebra, being A(m−1) an ideal of A(m), m = 1, 2, . . . , k. This result
can be alternatively formulated as A ⊃ A(1) ⊃ A(2) ⊃ . . . ⊃ A(k) ⊃ A(k+1) = 0, with
A(m) =

[
A(m−1),A(m−1)

]
, m = 1, 2, . . . , k ≤ dim A.

We focus our attention on three-dimensional solvable symmetry algebras of Equation (3).
We denote AS as the possible three-dimensional solvable symmetry algebras and G as
the related solvable symmetry groups. The generators that belong to AS can be taken
so that the starting generator leads to an ODE that inherits a two-dimensional symmetry
algebra. This condition is similar to the one requiring that the initial one-dimensional
symmetry group belongs to a three-dimensional symmetry group spanned by X, Y, Z
whose commutator structure is given by

[X, Y] = k1X, [X, Z] = k2X, [Y, Z] = k3Y, (8)

where k1, k2, and k3 are constants. Let us take a generator X in the abelian subalgebra
A(k); in that case, AX = AS/span(X) = span(Y, Z) will provide us a two-dimensional
symmetry algebra spanned by Y and Z, which will be inherited by the third-order nonlinear
ODE obtained for the initial reduction X. Thus, we will be able to transform Equation (3)
to a first-order nonlinear ODE. If A(k) is one-dimensional or three-dimensional, X will
be any generator in A(k). However, in the case that A(k) is two-dimensional, the form of
generator X will be determined by the adjoint action of G onA(k). If such an action presents
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one-dimensional orbits, then X will be either one of the two orbits in G. On the contrary, if
the action leads to two-dimensional orbits, X will be any generator belonging to A(k).

We are interested in those three-dimensional solvable symmetry algebras such that
the starting generator X does not belong to span(X1) or span(X2), since in these cases, we
will obtain solutions u(t, x) = u(t) and u(t, x) = u(x), respectively. When this is possible,
a convenient choice of X, Y, and Z satisfying condition (8) is shown.

The generalized third-order Equation (3) admits the following three-dimensional
solvable symmetry subalgebras:

• Arbitrary g(u), h(u) = 0, f (u) = f1u + f2,

X1 = ∂x, X2 = ∂t, X3 = 3t∂t + (x− 2 f1t)∂x, (9)

A2 = span(X1, X2, X3), A(1)
2 = span(X1, X2), A(2)

2 = 0, (10)

X = − f1X1 + X2, Y = X1, Z = X3. (11)

• g(u) = g0uq + g1, h(u) = h0um, f (u) = f0u2m−q+2 + f1u + f2:

X1 = ∂x, X2 = ∂t, (12)

X4 = (3m− 2q + 2)t∂t + ((m− q + 1)x− f1(2m− q + 1)t)∂x − u∂u,

A3 = span(X1, X2, X4), A(1)
3 = span(X1, X2), A(2)

3 = 0, (13)

X = − f1X1 + X2, Y = X1, Z = X4. (14)

• g(u) = g0u + g1, h(u) = h0, f (u) = f0u2 + f1u + f2, f0 6= 0,

X1 = ∂x, X2 = ∂t, X11 = 2 f0t∂x − ∂u, (15)

A4 = span(X1, X2, X11), A(1)
4 = span(X1, X2), A(2)

4 = 0. (16)

• g(u) = g0uq + g1, h(u) = h0u
q−1

2 , f (u) = f0u ln u + f1u + f2, f0 6= 0,

X1 = ∂x, X2 = ∂t, X13 = (q− 1)t∂t + ((q− 1)x− 2 f0t)∂x + 2u∂u, (17)

A5 = span(X1, X2, X13), A(1)
5 = span(X1, X2), A(2)

5 = 0. (18)

• g(u) = g0uq + g1, h(u) = h0u
q−2

2 , f (u) = f0 ln u + f1u + f2, f0 6= 0,

X1 = ∂x, X2 = ∂t, X4|m=
q−2

2
≡ (q + 2)t∂t + (qx− 2 f1t)∂x + 2u∂u, (19)

A6 = span
(

X1, X2, X4|m=
q−2

2

)
, A(1)

6 = span(X1, X2), A(2)
6 = 0, (20)

X = − f1X1 + X2, Y = X1, Z = X4|m=
q−2

2
. (21)

• g(u) = g0u + g1, h(u) = h0emu, f (u) = f0e2mu + f1u + f2, m 6= 0,
f0 and h0 not simultaneously zero,

X1 = ∂x, X2 = ∂t, X14 = 3mt∂t + m(x− 2 f1t)∂x − ∂u, (22)

A7 = span(X1, X2, X14), A(1)
7 = span(X1, X2), A(2)

7 = 0, (23)

X = − f1X1 + X2, Y = X1, Z = X14. (24)

• g(u) = g0equ + g1, h(u) = h0emu, f (u) = f0e(2m−q)u + f1u + f2,

X1 = ∂x, X2 = ∂t, X15 = (3m− 2q)t∂t + ((m− q)x− f1(2m− q)t)∂x − ∂u, (25)

A8 = span(X1, X2, X15), A(1)
8 = span(X1, X2), A(2)

8 = 0, (26)

X = − f1X1 + X2, Y = X1, Z = X15. (27)
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• g(u) = g0equ + g1, h(u) = h0e
q
2 u, f (u) = f0u2 + f1u + f2,

X1 = ∂x, X2 = ∂t, X16 = qt∂t + (qx− 4 f0t)∂x + 2∂u, (28)

A9 = span(X1, X2, X16), A(1)
9 = span(X1, X2), A(2)

9 = 0. (29)

• g(u) = g0 ln(u) + g1, h(u) = h0um, f (u) = f0u2m+2 + f1u + f2,

X1 = ∂x, X2 = ∂t, X17 = (3m + 2)t∂t + ((m + 1)x− f1(2m + 1)t)∂x − u∂u, (30)

A10 = span(X1, X2, X17), A(1)
10 = span(X1, X2), A(2)

10 = 0, (31)

X = − f1X1 + X2, Y = X1, Z = X17. (32)

• g(u) = g0 ln(u) + g1, h(u) = h0u−
1
2 , f (u) = f0u ln u + f1u + f2,

X1 = ∂x, X2 = ∂t, X18 = t∂t + (x + 2 f0t)∂x − 2u∂u, (33)

A11 = span(X1, X2, X18), A(1)
11 = span(X1, X2), A(2)

11 = 0. (34)

• g(u) = g0 ln(u) + g1, h(u) = h0u−1, f (u) = f0 ln u + f1u + f2,

X1 = ∂x, X2 = ∂t, X19 = t∂t − f1t∂x + u∂u, (35)

A12 = span(X1, X2, X19), A(1)
12 = span(X1, X2), A(2)

12 = 0, (36)

X = − f1X1 + X2, Y = X1, Z = X19. (37)

Furthermore, the generalized third-order Equation (3) also admits four four-dimensional
solvable symmetry algebras:

• g(u) = g0uq + g1, q 6= 1, h(u) = 0, f (u) = f1u + f2,

X1 = ∂x, X2 = ∂t, X3 = 3t∂t + (x− 2 f0t)∂x,

X4|m=0 = 2(1− q)t∂t + (1− q)(x− f1t)∂x − u∂u,

A13 = span(X1, X2, X3, X4|m=0), A(1)
13 = span(X1, X2), A(2)

13 = 0.

• g(u) = g0u + g1, h(u) = 0, f (u) = f0u2 + f1u + f2,

X1 = ∂x, X2 = ∂t, X11 = 2 f0t∂x − ∂u, X12 = 3t∂t + x∂x − (2u + f1
f0
),

A14 = span(X1, X2, X11, X12), A(1)
14 = span(X1, X2, X11), A(2)

14 = span(X1),

A(3)
14 = 0.

• g(u) = g0equ + g1, h(u) = 0, f (u) = f1u + f2,

X1 = ∂x, X2 = ∂t, X3 = 3t∂t + (x− 2 f0t)∂x,

X15|m=0 = −(2qt∂t + q(x− f1t)∂x + ∂u),

A15 = span(X1, X2, X3, X15|m=0), A(1)
15 = span(X1, X2), A(2)

15 = 0.

• g(u) = g0 ln u + g1, h(u) = 0, f (u) = f1u + f2,

X1 = ∂x, X2 = ∂t, X3 = 3t∂t + (x− 2 f0t)∂x,

X17|m=0 = 2t∂t + (x− f1t)∂x − u∂u,

A16 = span(X1, X2, X3, X17|m=0),

A(1)
16 = span(X1, X2), A(2)

16 = 0.

It should be noted that algebras A13, A15, and A16 include the three-dimensional
solvable symmetry algebra A2 given by (9) and (10), which can be explicitly solved for the
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initial generator X (11) as will be shown in the next section. Further information about
four-dimensional solvable Lie symmetry algebras can be consulted in [26,27,29].

5. Symmetry Reductions and Exact Solutions

In this section, we determine group-invariant solutions of Equation (3) from the three-
dimensional solvable symmetry algebras obtained in the previous section such that the
starting generator X (8) is not included in span(X1) or span(X2).

5.1. Reduction by Using Solvable Lie Algebra A2

Let us consider the three-dimensional solvable symmetry group given by (9) and (10).
Taking into account the symmetry generator X (11), we obtain the invariants

z = x + f1t, U(z) = u, (38)

where U(z) must satisfy the third-order ODE

g′(U)U′′′ + 3g′′(U)U′U′′ + g′′′(U)U′3 = 0. (39)

Equation (39) inherits the two-dimensional solvable symmetry algebra spanned by Y
and Z (11) which, in terms of the new variables, are given by

Y = ∂z, Z = z∂z, (40)

satisfying [Y, Z] = Y. Therefore, Equation (39) can be integrated proceeding as follows. Y
admits the invariants

ω = U, χ = U′, (41)

from which ODE (39) can be transformed into a second-order ODE

g′(ω)
(

χ′2 + χχ′′
)
+ 3g′′(ω)χχ′ + g′′′(ω)χ2 = 0. (42)

Moreover, V = pr(1)Z
∣∣∣(ω,χ) = −χ∂χ is a symmetry of Equation (42). Invariants of V

are given by

φ = ω, γ =
χ′

χ
. (43)

By substituting invariants (43) into Equation (42), we obtain a first-order ODE

g′(φ)
(

2γ2 + γ′
)
+ 3g′′(φ)γ + g′′′(φ) = 0, (44)

whose general solution is given by

γ(φ) = −2 g(φ)g′′(φ)− g′(φ)2 + 2 c1g′′(φ)
2 g′(φ)(c1 + g(φ))

, (45)

where c1 is an arbitrary constant.
Undoing the change of variables (43), we obtain that

χ(ω) =
2c2
√

c1 + g(ω)

g′(ω)
,

where c2 is a constant of integration, and it is the general solution of Equation (42). Taking
into account (41), we determine the solution of Equation (39), which is given by

U(z) = g−1
(
(c2z + c3)

2 − c1

)
,

with c3 an arbitrary constant.
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Finally, by using invariants (38), we obtain the general solution of Equation (3) starting
from the symmetry X given by (37)

u(x, t) = g−1
(
(c2(x + f1t) + c3)

2 − c1

)
.

5.2. Reduction by Using Solvable Lie Algebra A3

Now, we consider the three-dimensional solvable symmetry group given by (12) and
(13). By using the symmetry generator X (14), we obtain the invariants

z = x + f1t, U(z) = u, (46)

where U(z) satisfies

g0qUqU′′′ + h0Um+1U′′ + 3g0q(q− 1)Uq−1U′U′′

+g0q(q− 1)(q− 2)Uq−2U′3 + f0(2m− q + 2)U2m−q+2U′ = 0,
(47)

which is a nonlinear third-order ODE. Equation (47) inherits the two-dimensional solvable
symmetry algebra spanned by Y and Z (14), which, after being written in the new variables,
are given by

Y = ∂z, Z = (m− q + 1)z∂z −U∂U , (48)

verifying [Y, Z] = (m− q + 1)Y. This allows us to integrate Equation (47) as follows. To
begin with, Y admits the invariants

ω = U, χ = U′, (49)

which implies that ODE (47) can be transformed into a second-order ODE

g0qωq(χ′2 + χχ′′
)
+
(
h0ωm+1 + 3g0q(q− 1)ωq−1χ

)
χ′

+g0q(q− 1)(q− 2)ωq−2χ2 + f0(2m− q + 2)ω2m−q+2 = 0.
(50)

Furthermore, V = pr(1)Z
∣∣∣(ω,χ) = −ω∂ω +(q−m− 2)χ∂χ is a symmetry of Equation (50).

Symmetry V yields the following invariants

φ = ωq−m−2χ, γ = ωq−m−1χ′. (51)

By substituting (51) into Equation (50), we obtain the following first-order ODE

g0qφ(γ + (q−m− 2)φ)γ′ + g0qγ2 + (h0 + g0q(2q + m− 2)φ)γ
+g0q(q− 1)(q− 2)φ2 + f0(2m− q + 2) = 0.

(52)

5.3. Reduction by Using Solvable Lie Algebra A6

Equation (3) admits the three-dimensional solvable symmetry group given by (19) and
(20). The symmetry generator X (21) yields the invariants

z = x + f1t, U(z) = u, (53)

where U(z) must satisfy the third-order ODE

g0qUq+2U′′′ + 3g0q(q− 1)Uq+1U′U′′

+h0U
q+4

2 U′′ + g0q(q− 1)(q− 2)UqU′3 + f0U2U′ = 0.
(54)

Equation (54) inherits the two-dimensional solvable symmetry algebra spanned by Y
and Z (21). First, we write the generators Y and Z in terms of the new variables

Y = ∂z, Z = qz∂z + 2U∂U , (55)
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which verify [Y, Z] = qY. Thus, we can integrate Equation (54) as follows. The generator Y
admits the invariants

ω = U, χ = U′, (56)

this allows us to transform (54) into a second-order ODE

g0qωq+2
(

χχ′′ + χ′2
)
+
(

h0ω
q+4

2 + 3g0q(q− 1)ωq+1χ
)

χ′ + g0q(q− 1)(q− 2)ωqχ2 + f0ω2 = 0. (57)

Furthermore, Equation (57) admits the generator V = pr(1)Z
∣∣∣(ω,χ) = 2ω∂ω + (2−

q)χ∂χ as a symmetry. Invariants of V are given by

φ = ω
q−2

2 χ, γ = ω
q
2 χ′. (58)

By substituting (58) into Equation (57), we obtain the following first-order ODE

g0qφ(2γ + (q− 2)φ)γ′ + 2g0qγ2 + (2h0 + g0q(5q− 6)φ)γ + 2g0q(q− 1)(q− 2)φ2 + 2 f0 = 0. (59)

If h0 = 0, the general solution of Equation (59) can be expressed as

γ(φ) =
2− q

2
φ− f0

g0q2φ
(1 + W∗), (60)

where W∗ represents the principal value of the Lambert W-function evaluated in−ec1−1+ g0q3φ2

2 f0 .
We recall that the Lambert W-function is the inverse function of

f (W) = WeW .

5.4. Reduction by Using Solvable Lie Algebra A7

Equation (3) admits the three-dimensional solvable symmetry group given by (22) and
(23). Taking into account X (24), we obtain the invariants

z = x + f1t, U(z) = u, (61)

where U(z) satisfies the third-order ODE

g0U′′′ + h0emUU′′ + 2 f0me2mUU′ = 0. (62)

The third-order ODE (62) inherits the two-dimensional solvable symmetry algebra
spanned by Y and Z, which in terms of the new variables are given by

Y = ∂z, Z = mz∂z − ∂U ,

verifying [Y, Z] = mY. Therefore, ODE (62) can be integrated as follows. By taking into
account generator Y, ODE (62) is reduced to the second-order ODE

g0
(
χχ′′ + χ′2

)
+ h0emωχ′ + 2 f0me2mω = 0, (63)

through the use of differential invariants

ω = U, χ = U′. (64)

Moreover, it is not difficult to check that ODE (63) inherits V = pr(1)Z
∣∣∣(ω,χ) =

∂ω + mχ∂χ. Invariants of V are given by φ = e−mωχ and γ = e−mωχ′, from which ODE
(63) is reduced to a first-order ODE for γ(φ)

g0φ(γ−mφ)γ′ + g0γ2 + (h0 + g0mφ)γ + 2 f0m = 0. (65)
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However, when h0 = 0, two new point symmetries, known as Type-II hidden symme-
tries of ODE (62),

V1 =
1
χ

∂χ, V2 =
ω

χ
∂χ,

are admitted by Equation (63). By using V1, ODE (63) can be reduced to quadrature.
We have {V, V1}, which constitutes a two-dimensional solvable symmetry algebra of
Equation (63), verifying [V, V1] = −2mV1. Invariants of V1 are given by

φ = ω, γ = χχ′. (66)

Such invariants allow us to reduce ODE (63) to a first-order ODE for γ(φ)

g0γ′ + 2 f0me2mφ = 0. (67)

This equation admits the symmetry V̂ = pr(1)V
∣∣∣(φ,γ) = ∂φ + 2mγ∂γ. The canonical

coordinates r, s, s1 [26–28], where s1 = ds
dr , associated with V̂ are given by

r =
e2mφ

γ
, s = φ, s1 =

1

r
(

2m− γ′

γ

) . (68)

Hence, the ODE (67) reduces to

ds
dr

=
g0

2mr(g0 + f0r)
. (69)

Integrating Equation (69), we obtain

s =
1

2m

(
ln
(

r
g0 + f0r

)
− ln c1

)
, (70)

which after undoing change of variable (68) yields the general solution of Equation (67)

γ(φ) =
c1 − f0e2mφ

g0
.

Reversing the change of variables (66) we find

χ(ω) = ±

√
− f0e2mω + 2mc1ω + c2

g0m
,

which is the general solution of Equation (63). Taking into account (64), we determine the
solution of Equation (62), which is given implicitly by

z±
∫ U(z)√ g0m

− f0e2my + 2mc1y + c2
dy + c3 = 0.

Lastly, the general solution of Equation (3) starting from generator X (24) is found by
using (61)

x + f1t±
∫ U(x+ f1t)√ g0m

− f0e2my + 2mc1y + c2
dy + c3 = 0.

In the above, c1, c2, and c3 are arbitrary constants.
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5.5. Reduction by Using Solvable Lie Algebra A8

Now, we take into account the three-dimensional solvable symmetry group given
by (25) and (26). Taking into account X (27), we obtain the invariants

z = x + f1t, U(z) = u, (71)

where U(z) satisfies the nonlinear third-order ODE

g0qeqUU′′′ + 3g0q2eqUU′U′′ + h0emUU′′ + g0q3eqUU′3 + f0(2m− q)e(2m−q)UU′ = 0. (72)

Equation (72) inherits the two-dimensional solvable symmetry algebra spanned by Y
and Z which, after being written in the new variables, are given by

Y = ∂z, Z = (m− q)z∂z − ∂U , (73)

with the commutator structure [Y, Z] = (m− q)Y. Hence, we integrate Equation (72) as
follows. From Y, we obtain the invariants

ω = U, χ = U′, (74)

from which ODE (72) is transformed into the second-order ODE

g0qeqω
(

χχ′′ + χ′2
)
+
(

h0emω + 3g0q2eqωχ
)

χ′ + g0q3eqωχ2 + f0(2m− q)e(2m−q)ω = 0. (75)

Moreover, V = pr(1)Z
∣∣∣(ω,χ) ≡ ∂ω + (m − q)χ∂χ is a symmetry of Equation (75).

Symmetry V yields the following invariants

φ = e−(m−q)ωχ, γ = e−(m−q)ωχ′. (76)

By substituting (76) into Equation (75), the following first-order ODE is obtained

g0qφ(γ− (m− q)φ)γ′ + g0qγ2 + (h0 + g0q(m + 2q)φ)γ + g0q3φ2 + f0(2m− q) = 0. (77)

5.6. Reduction by Using Solvable Lie Algebra A10

Now, we consider the three-dimensional solvable symmetry group given by (30)
and (31) and consider generator X (32), which yields the invariants

z = x + f1t, U(z) = u, (78)

where U(z) satisfies the third-order ODE

g0U2U′′′ − 3g0UU′U′′ + h0Um+3U′′ + 2g0U′3 + 2 f0(m + 1)U2m+4U′ = 0. (79)

Equation (79) inherits the two-dimensional solvable symmetry algebra spanned by Y
and Z, which can be written in the new variables as

Y = ∂z, Z = (m + 1)z∂z −U∂U ,

satisfying [Y, Z] = (m + 1)Y. This allows us to integrate Equation (79) as follows. From Y,
we obtain the invariants

ω = U, χ = U′, (80)

therefore, ODE (79) can be transformed into a second-order ODE

g0ω2(χχ′′ + χ′2
)
− 3g0ωχχ′ + g0ω2χ′2 + h0ωm+3χ′ + 2g0χ2 + 2 f0(m + 1)ω2m+4 = 0. (81)
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Furthermore, it can be easily checked that Equation (81) inherits V = pr(1)Z
∣∣∣(ω,χ) ≡

ω∂ω + (m + 2)χ∂χ. By using V, whose invariants are given by φ = ω−m−2χ and γ =
ω−m−1χ′, Equation (81) can be reduced to a first-order ODE for γ(φ)

g0φ(γ− (m + 2)φ)γ′ + g0γ2 + (h0 + g0(m− 2)φ)γ + 2g0φ2 + 2 f0(m + 1) = 0. (82)

Nevertheless, if h0 = 0, Equation (81) admits two Type-II hidden symmetries

V1 =
ω2

χ
∂χ, V2 =

ω2 ln ω

χ
∂χ.

We have {V, V1}, which constitute a two-dimensional solvable symmetry algebra
of Equation (81) satisfying [V, V1] = −2(m + 1)V1. From V1, we obtain the invariants

φ = ω, γ = χχ′ − χ2

ω
, (83)

from which ODE (81) becomes a first-order ODE for γ(φ)

g0(φγ′ − γ) + 2 f0(m + 1)φ2m+3 = 0. (84)

This equation admits the symmetry V̂ = pr(1)V
∣∣∣(φ,γ) = φ∂φ + (2m + 3)γ∂γ. The

canonical coordinates r, s, s1, associated with V̂ are given by

r = φ−2m−3γ, s = ln φ, s1 =
φ2m+3

φγ′ − (2m + 3)γ
. (85)

Hence, the ODE (84) reduces to

ds
dr

= − g0

2(m + 1)( f0 + g0r)
. (86)

Integrating Equation (86), we obtain

s =
1

2(m + 1)
ln
( c1

f0 + g0r

)
, (87)

which after undoing change of variable (85) yields the general solution of Equation (84)

γ(φ) =
φ
(
c1 − f0φ2m+2)

g0
.

Reversing the change of variables (83), we find

χ(ω) = ±ω

√
− f0ω2m+2 + 2(m + 1)c1 ln ω + c2

g0(m + 1)
,

which is the general solution of Equation (81). Taking into account (80), we determine the
solution of Equation (79), which is given implicitly by

z±
∫ U(z) 1

y

√
g0(m + 1)

− f0y2m+2 + 2(m + 1)c1 ln y + c2
dy + c3 = 0.
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Lastly, the general solution of Equation (3) starting from generator X (32) is found by
using (78)

x + f1t±
∫ U(x+ f1t) 1

y

√
g0(m + 1)

− f0y2m+2 + 2(m + 1)c1 ln y + c2
dy + c3 = 0.

In the above, c1, c2, and c3 are arbitrary constants.

5.7. Reduction by Using Solvable Lie Algebra A12

Finally, we consider the three-dimensional solvable symmetry group given by (35)
and (36). Here, by using the symmetry generator X (37), we obtain the invariants

z = x + f1t, U(z) = u, (88)

where U(z) satisfies the third-order ODE

g0U2U′′′ − 3g0UU′U′′ + h0U2U′′ + 2g0U′3 + f0U2U′ = 0. (89)

Equation (89) inherits the two-dimensional abelian symmetry algebra spanned by

Y = ∂z, Z = U∂U .

From Y, we obtain the invariants

ω = U, χ = U′, (90)

therefore, ODE (89) can be transformed into a second-order ODE

ω2(g0
(
χχ′′ + χ′2

)
+ h0χ′ + f0

)
− 3g0ωχχ′ + 2g0χ2 = 0. (91)

Moreover, Equation (91) inherits V = pr(1)Z
∣∣∣(ω,χ) ≡ ω∂ω + χ∂χ. By using V, whose

invariants are given by φ = χ
ω and γ = χ′, Equation (91) can be reduced to a first-order

ODE for γ(φ)

g0φ(γ− φ)γ′ + g0γ2 + (h0 − 3g0φ)γ + 2g0φ2 + f0 = 0. (92)

Moreover, if h0 = 0, Equation (91) admits three Type-II hidden symmetries

V1 =
ω2

χ
∂χ, V2 =

ω2 ln ω

χ
∂χ, V3 = ω ln ω∂ω + (ln ω + 1)χ∂χ.

We have {V, V1}, which constitutes a two-dimensional abelian algebra of Equation (91).
From V1, we obtain the invariants

φ = ω, γ = χχ′ − χ2

ω
, (93)

from which ODE (91) becomes a first-order ODE for γ(φ)

g0φγ′ − g0γ + f0φ = 0. (94)

which inherits the symmetry V̂ = pr(1)V
∣∣∣(φ,γ) = φ∂φ + γ∂γ. The canonical coordinates

r, s, s1, associated with V̂ are given by

r =
γ

φ
, s = ln φ, s1 =

φ

φγ′ − γ
. (95)
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Hence, the ODE (94) reduces to

ds
dr

= − g0

f0
. (96)

Integrating Equation (96), we obtain

s =
g0

f0
(c1 − r), (97)

which after undoing change of variable (95) yields the general solution of Equation (94)

γ(φ) =
φ(c1g0 − f0 ln φ)

g0
.

Reversing the change of variables (93), we find

χ(ω) = ±ω

√
− f0 ln2 ω + 2c1g0 ln ω + c2

g0
,

which is the general solution of Equation (91). Taking into account (90), we determine the
solution of Equation (89), which is given implicitly by

z±
∫ U(z) 1

y

√
g0

− f0 ln2 y + 2c1g0 ln y + c2
dy + c3 = 0.

Lastly, the general solution of Equation (3) starting from generator X (37) is found by
using (78)

x + f1t±
∫ U(x+ f1t) 1

y

√
g0

− f0 ln2 y + 2c1g0 ln y + c2
dy + c3 = 0.

In the above, c1, c2, and c3 are arbitrary constants.

6. Conclusions

In this work, a complete classification of the Lie point symmetries admitted by the
family of third-order PDEs (3) involving arbitrary functions f (u), g(u), and h(u) have
been determined. Additionally, we have derived all the maximal symmetry groups along
with its non-zero commutator structure that family (3) admits depending on its arbitrary
functions. Furthermore, taking into account the maximal symmetry groups, we have
derived the solvable symmetry groups of dimension three or higher admitted by the
family (3) for special forms of the functions f (u), g(u), and h(u). Therefore, we apply the
symmetry reduction method to determine some exact solutions for family (3) by using the
three-dimensional solvable symmetry groups. This allows us to reduce the given PDE (3)
into a third-order nonlinear ODE, which inherits a two-dimensional symmetry group.
Consequently, the nonlinear PDE is transformed into a first-order nonlinear ODE, even if,
unfortunately, it is not always obvious how to solve the first-order nonlinear ODE obtained.
Nevertheless, when h(u) = 0, the presence of Type-II hidden symmetries in the reduced
second-order ODEs yields a reduction of the given nonlinear PDE to a quadrature.

Although there are some PDEs included in family (3) that have been previously studied
from the point of view of Lie symmetries and reductions, the point symmetry classification
performed in this paper is a novel result itself. This classification not only allows one to
analyze the family of PDEs globally but also includes many other equations that have not
been previously studied. The same applies to the analysis of solvable Lie algebras and
reductions of family (3).
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In future work, it is intended to determine a complete classification of local low-order
conservation laws for family (3) by using the multiplier approach [30,31]. Moreover, taking
into account the conservation laws obtained, we will investigate the potential symmetries
that class (3) admits and determine new reductions from them. Finally, we will apply the
multi-reduction method proposed in [32] to find all symmetry-invariant conservation laws
admitted by PDE (3), which will allow us to reduce the given PDE to first integrals for the
ODE, which describes the symmetry-invariant solutions of the PDE.
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