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Abstract: We explore an exchangeably weighted bootstrap of the general function-indexed empirical
U-processes in the Markov setting, which is a natural higher-order generalization of the weighted
bootstrap empirical processes. As a result of our findings, a considerable variety of bootstrap
resampling strategies arise. This paper aims to provide theoretical justifications for the exchangeably
weighted bootstrap consistency in the Markov setup. General structural conditions on the classes of
functions (possibly unbounded) and the underlying distributions are required to establish our results.
This paper provides the first general theoretical study of the bootstrap of the empirical U-processes
in the Markov setting. Potential applications include the symmetry test, Kendall’s tau and the test
of independence.
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1. Introduction

U-statistics are a class of estimators, initially explored in association with unbiased
estimators by [1] and officially introduced by [2], and are defined as follows: let {Xi}∞

i=1 be
a sequence of random variables defined on a measurable space (E, E ), and let h : Em → R
be a measurable function, the U-statistics of order m and kernel h based on the sequence
{Xi} are

Un(h) =
(

n
m

)−1

∑
(i1,...,im)∈Im

n

h
(
Xi1 , . . . , Xim

)
, n ≥ m,

where
Im
n =

{
(i1, . . . , im) : ij ∈ N, 1 ≤ ij ≤ n, ij 6= ik if j 6= k

}
.

The empirical variance, Gini’s mean difference or Kendall’s rank correlation coefficient are
common examples of U-estimators, while a classical test based on a U-statistic is Wilcoxon’s
signed rank test for the hypothesis of the location at zero (see, e.g., [3], Example 12.4).The
authors in [1,2,4] provided, amongst others, the first asymptotic results for the case in which
the underlying random variables have independent and identical distributions. Extensive
literature works have treated the theory of U-statistics, for instance, see [5–8], etc. Complex
statistical issues are also amenable to being solved using U-processes. Examples include
tests for goodness-of-fit, nonparametric regression and density estimation. U-processes
are a set of U-statistics that are indexed by a family of kernels. U-processes might be
viewed as infinite-dimensional variants of U-statistics with a single kernel function or as
nonlinear stochastic extensions of empirical processes. Both thoughts have the following
advantages: first, considering a large group of statistics rather than a single statistic is
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more statistically interesting. Second, we may use ideas from the theory of empirical
processes to construct limit or approximation theorems for U-processes. Nevertheless,
achieving results in U-processes is not easy. Extending U-statistics to U-processes necessi-
tates a significant effort and distinct methodologies; generalizing empirical processes to
U-processes is quite challenging, especially when U-processes are presented in the station-
ary setting. We highlight that the U-processes are used often in statistics, such as when
higher order terms are a part of von Mises expansions. Particularly, the study of estimators
(including function estimators) with various smoothness degrees involves U-statistics.
For instance, Ref. [9] applied almost-sure uniform bounds for P-canonical U-processes to
analyze the product limit estimator for truncated data. Two new tests for normality based
on U-processes were also presented in [10]. Inspired by [11–13], they developed other tests
for normality that employed weighted L1-distances between the standard normal density
and local U-statistics based on standardized observations as test statistics. Estimating the
mean of multivariate functions in the case of possibly heavy-tailed distributions was ex-
plored by [14]; they presented the median-of-means too, and both explorations were based
on U-statistics. Moreover, other researchers emphasized the importance of U-processes;
refs. [15–17] used them for testing qualitative features of functions in nonparametric statis-
tics, ref. [18] represented the cross-validation for density estimation using U-statistics, in
addition to [6,7,19], where the authors established limiting distributions of M-estimators.
Since then, this discipline has made significant advancements, and the results have been
broadly interpreted. Asymptotic behaviors were demonstrated under weak dependence
assumptions, for example, in the works of [20–22] or more recently in [23] as well as more
generally in [24,25]. However, in practice, explicit computation is not always possible
due to the complexity of the U-processes’ limiting distributions or their functionals. We
suggest a general bootstrap of the U-processes in the Markov setting to solve this issue,
which is a challenging problem. The concept of the bootstrap, given by [26], in the case
of independent and identically distributed (iid) random variables, is to resample from
an original sample of observations of an unknown marginal distribution function F(x),
X1, . . . , Xn, a new i.i.d sample X∗1 , . . . , X∗n with the marginal distribution function Fn(x),
which represents the empirical distribution function constructed from the original sample.
Moreover, it is commonly known that the bootstrap approach gives a better approximation
to the statistic’s distribution, mainly when the sample size is small [27]. Bootstraps for
U-statistics of independent observations were studied by [28–31]. However, the bootstrap
technique is not the same for dependent variables because the dependence structure cannot
be conserved in the new sample. For this reason, other blockwise bootstrap methods were
introduced, aiming to keep the structure of dependence. Among those methods, we can
cite the circular block bootstrap introduced by [32] and the nonoverlapping block bootstrap
introduced by [33]. In [34], the authors proposed a bootstrap method related to the weakly
dependent stationary observation, the stationary bootstrap. This latter can be seen as an
expansion of the circular block bootstrap, where a random variable, such as a geometric
random variable, can be used for the block length. It is important to note that Efron’s initial
bootstrap formulation (see [26]) had a few flaws. To be more precise, certain observations
might be sampled several times while others might not be at all. A more generalized
version of the bootstrap, the weighted bootstrap, was developed to get around this issue
and was also demonstrated to be computationally more appealing in some applications.
This resampling strategy was initially described in [35] and thoroughly investigated by
[28], who coined the name “weighted bootstrap”. For example, Bayesian bootstrap when
the weighted vector

(ξn1, . . . , ξnn) = (Mn1, . . . , Mnn),

is equal to the vector of n spacings of n− 1 ordered uniform (0, 1) random variables in distri-
butions, that is, (Mn1, . . . , Mnn) follows a Dirichlet distribution of parameters (n; 1, . . . , 1).
For more details, see [36]. This diversity of resampling approaches necessitates the use of
a uniform approach, commonly known as general weighted resampling, which was first
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described by [37] and has since been developed by [38,39]. In [40], the authors investigated
the almost-sure rate of convergence of strong approximation for the weighted bootstrap
process by a sequence of Brownian bridge processes; refer to [41] for the multivariate setting
and [42] for recent references. The concept of the generalized bootstrap, introduced by [37],
was extended to the class of nondegenerate U-statistics of degree two and the correspond-
ing Studentized U-statistics by [43]; refer to [44,45]. In [46], the author generalized this
theory for a higher order. In his work, he developed a multiplier inequality of a U-process
for i.i.d. random variables. We mention that the multiplier processes’ theory is directly and
strongly related to the symmetrization inequalities investigated by [6,7].

This paper aims to investigate the exchangeable bootstrap for U-processes in the
same way that [46] did but without the restriction of the independence setting. The
previous reference focused on U-processes in an independent framework, whereas this
paper considers U-processes in the dependent setting of Markov chains. We believe we
are the first to present a successful consideration in this general context. We combine the
techniques of the renewal bootstrap with the randomly weighted bootstrap in a nontrivial
way. We mention a connection between moving-blocks bootstrap and its modification,
matched-block bootstrap, at this point. Instead of artificially splitting a sample into fixed-
size blocks and then resampling them, the latter seeks to match the blocks to create a
smoother transition; for more information, see [47]. The main difficulties in proving
Theorem 3 are due to the random size of the resampled blocks. This randomness generates
a problem with the random stopping times, which cannot be removed by replacing a
random stopping time with its expectation. In the present setting, the bootstrap random
variables are generated by resampling from a random number of blocks. One can think
that using the conditioning arguments can overcome the problem, but the answer is
negative. Our proof uses some arguments from [46,47] by verifying bootstrap stochastic
equicontinuity by comparing it to the original process in a similar way as in [48]. However,
as we shall see later, integrating concepts from these papers is not enough to solve the
problem. To deal with U-processes in the Markov framework, sophisticated mathematical
derivations are necessary. We present the first complete theoretical justification of the
bootstrap consistency. This justification requires the efficient use of large sample theoretical
approaches established for U-empirical processes.

The rest of this paper is organized as follows. Section 2 is devoted to the introduction
of the Markov framework, the U-process, the bootstrap weights and the definitions needed
in our work. In Section 3, we recall the necessary ingredient for U-statistics and U-processes
in the Markov setting. Furthermore, we provide some asymptotic results including the
weak convergence of U-processes in Theorem 1. In Section 4, we derive the main results
concerning the bootstrap of the U-processes. In Section 5, we collect some examples of
weighted U-statistics. Some concluding remarks and possible future developments are
relegated to Section 6. To prevent the interruption of the flow of the presentation, all
proofs are gathered in Section 7. Appendix A contains a few pertinent technical findings
and proofs.

2. Notation and Definitions

In what follows, we aim to properly define our settings. For this reason, we have
collected the definitions and notation needed.

2.1. Markov Chain

Let X = (Xn)n∈N be an homogeneous ψ-irreducible Markov chain, that means that
the chain has stationary transition probabilities, defined on a measurable space (E, E ),
where E is a separable σ-algebra. Let π(x, dy) be the transition probability and ν = ν(i)i>0
the initial probability. Therefore, we denote by Pν or just P the probability measure for
P = (π, ν). Likewise, Eν denotes the integration with respect to Pν. In our framework, let
Px be a probability measure such that X0 = x, X0 ∈ E and Ex(·) is the Px-expectation. We
further assume that the Markov chain is Harris positive recurrent with an atom A.
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Definition 1 (Harris recurrent). A Markov chain X = (Xn)n∈N is said to be Harris recurrent
if there exists a σ-finite measure such that, for ψ a positive measure on a countable generated
measurable space (E, E ), ψ(E) > 0 and if for all B ∈ E with ψ(B) > 0

Px(∪∞
i=1(Xi ∈ B)) = 1 f or any x ∈ E.

Recall that a chain is positive Harris recurrent and aperiodic if and only if it is er-
godic ([49] Proposition 6.3), i.e., there exists a probability measure π, called the stationary
distribution, such that, in total variation distance,

lim
n→+∞

‖Pn(x, ·)−π‖tv = 0.

Definition 2 (Small sets). A set S ∈ E is said to be Ψ-small if there exists δ > 0, a positive
probability measure Ψ supported by S and an integer m ∈ N∗, such that

∀x ∈ S, B ∈ E , Pm(x, B) ≥ δ Ψ(B). (1)

Definition 3. Let (Xn)n≥1 be a Markov chain taking value in (E, E ). We say that (Xn)n≥1 is
positive recurrent if

1. (Xn)n≥1 is (A, p, ν, m) recurrent (or Harris recurrent if E is countably generated), where
A ∈ E is a set, 0 < p < 1, m is an integer and ν is a probability measure.

2. sup
x∈A

Ex(T0) < ∞, where T0 is the hitting time of A by the m-step chain, roughly speaking,

T0 = min{i ≥ 1 : Xi,m ∈ A}.

Definition 4. A ψ-irreducible aperiodic chain X is called regenerative or atomic if there exists a
measurable set A called an atom, in such a way that ψ(A) > 0 and for all(x, y) ∈ A2 we have
P(x, ·) = P(y, ·). Roughly speaking, an atom is a set on which the transition probabilities are the
same. If a finite number of states or subsets are visited from the chain, then any state or any subset
of the states is actually an atom.

Definition 5 (Aperiodicity). Assuming ψ-irreducibility, there exists d′ ∈ N∗ and disjoints sets
D1, . . . , Dd′ (set Dd′+1 = D1) positively weighted by ψ such that

ψ(E\ ∪16i6d′ Di) = 0

and
∀x ∈ Di,P(x, Di+1) = 1.

The period of the chain is the greatest common divisor d of such integers, it is said to be aperiodic if
d = 1.

Definition 6 (Irreducibility). The chain is ψ-irreducible if there exists a σ-finite measure ψ such
that, for all set B ∈ E , when ψ(B) > 0, for any x ∈ E, there exists n > 0 such that Pn(x, B) > 0.

One of the most important properties of Harris recurrent Markov chains is the existence
of an invariant distribution which we is called µ (a limiting probability distribution, also
called occupation measure). Furthermore, Harris recurrent Markov chains can always be
embedded in a certain Markov chain on an extended sample space with a recurrent atom.
The existence of a recurrent atom A gives an immediate consequence for the construction of
a regenerative extension of this chain. The time that the chain hits a given atom (recurrent
state) is seen as the regenerative time. In [50,51], the authors give the construction of such
a regenerative extension. The development of a regenerative extension makes the use
of regenerative techniques possible in order to study this type of Markov chain. As we
mentioned above, we assume in this work that the Harris recurrent chain is atomic, i.e.,
the set which is infinitely almost sure is well-defined and accessible, this set A is called
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an atom. By definition, an atom A is a set in E , where µ(A) > 0, and for all x, y ∈ A,
π(x, ·) = π(y, ·). Let PA (respectively, EA) be the probability measure on the underlying
space such that x ∈ A (respectively, the PA-expectation).

The conditions imposed on the Markov chain ensure that the defined atom A (or the
constructed one in the case of a nonatomic chain) is one recurrent class, and let us define
the following terms.

2.1.1. Hitting Times

Define Tj : E→ N∪ {∞} by

T0 := inf{n ≥ 0 : Xn ∈ A},
Tj := inf{n ≥ Tj−1 : Xn ∈ A}. (2)

A well-known property of the hitting time is that for all j ∈ N, Tj < ∞, Pν − a.s ([52],
chap. I14).

2.1.2. Renewal Times

Using the hitting times, we can define the renewal times as

τ0 := T0 + 1,

τ(j) := Tj −Tj−1. (3)

Similar to the regenerative process, the sequence of renewal times {τ(j)}∞
j=1 is i.i.d. and it

is independent of the choice of the initial probability. All over this work, we set τ = τ(1)
and α = EA(τ).

Definition 7 (Strong Markov property). Let (Xn)n≥0 be a Markov chain, with T the stopping
time of (Xn)n≥0. Then, conditionally on T < ∞ and XT = i, (XT+n)n≥0 is a sequence of a Markov
chain and is independent of X0, . . . , XT .

2.1.3. Regenerative Blocks

Let ln := max{j : ∑
j
i=0 τ(j) ≤ n} be the number of visits to the atom A. Using the

strong property of a Markov chain, it is possible to divide the given sample (X1, . . . , Xn)

into a sequence of blocks {Bj}ln
j=0 such that:

B0 =
{

X1, · · · , XT0

}
,

Bj =
{

XT j−1+1, . . . , XT j

}
in T =

∞⋃
n=1

En, for all j = 1, · · · , ln,

B(n)
ln

=
{

XT ln−1+1, . . . , Xn

}
, (4)

where ln is the total number of blocks. The length of each block is denoted by

l(Bj) := T j −T j−1.

2.2. Exchangeable Weights

In what follows, ξ represents a real-valued random variable, ξi are independent from
(Xi). For 1 ≤ p < ∞, we denote the p-norm by

‖ξ‖p = (E(|ξ|p))1/p.
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Definition 8 (Exchangeability). Let ξn1, . . . , ξnn be a sequence of random variables with joint
distribution Pξ and let Σ(n) be the group of all permutations acting on {1, . . . , n}. We say that
ξn1, . . . , ξnn is exchangeable if, for all σ(i) ∈ Σ(n),

Pξ(ξn1, . . . , ξnn) = Pξ(ξnσ(1), . . . , ξnσ(n)).

Assuming the following:

(A1) (ξ1, . . . , ξn) are exchangeable non-negative, symmetric and for all n

n

∑
i=1

ξi = n.

(A2) 1
n max

1≤i≤n
(ξi − 1)2 → 0 in Pξ-probability which is satisfied by the assumption of the

moment
sup

n
‖ξ1‖2m,1 < ∞.

(A3) There exists c > 0 such that, in Pξ-probability,

1
n

n

∑
i=1

(ξi − 1)2 → c2 > 0.

(A4) Assume
lim

λ→∞
lim
t≥λ

t2Pξ(ξ1 ≥ t) = 0.

2.3. The U-Process Framework

Let (Xn)n∈N be a sequence of random variables with values in a measurable space
(E, E ). Let h : Em → R be a measurable function symmetric in its arguments. The U-statistic
of order (or degree) m and kernel h(·) is defined as:

Un(h) =
(

n
m

)−1

∑
(i1,...,im)∈Im

n

h(Xi1 , . . . , Xim), for n ≥ m. (5)

Accordingly, a U-process is the collection {Un(h) : h ∈ F}, where F is the class of kernels
h(·) of m variables. The decoupling inequality of U-statistics and U-processes plays a
central role in the latest developments in the asymptotic theory. As a result, the decoupling
inequality can give a relation between the quantities

EΦ

(∣∣∣∣∣∑Im
n

h
(
Xi1 , . . . , Xim

)∣∣∣∣∣
)

and EΦ

(∣∣∣∣∣∑Im
n

h
(

X1
i1 , . . . , Xm

im

)∣∣∣∣∣
)

,

where Φ(·) is a non-negative function and {Xk
i }, k = 1, . . . , m are independent copies of

the original sequence {Xi}. One of the useful reasons for decoupling is randomization,
which is frequently used in the study of the asymptotic theory of U-statistics, and was
studied by [6,7]. The main idea of randomization is to compare the tail probabilities or
moments of the original U-statistic or process, ∑Im

n
h(Xi1 , . . . , Xim), with the tail probabilities

or moments of the statistic
∑
Im
n

εi1 . . . εir h(Xi1 , . . . , Xim),

where εi are independent Rademacher variables, independent from Xi, 1 ≤ r ≤ m and the
variables depend on the degree of degeneracy (centering) of the kernel h(·).
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Definition 9 ([6]). A symmetric Pm-integrable kernel h : Em → R is P-degenerate of order r− 1
if and only if ∫

h(x1, . . . , xm)dPm−r+1(xr, . . . , xm) =
∫

hdPm

holds for any x1, . . . , xr−1 ∈ E, whereas∫
h(x1, . . . , xm)dPm−r(xr+1, . . . , xm),

is not a constant function. If h is furthermore Pm-centered, that is, Pm f = 0, we write h ∈ Lc,r
2 (Pm).

For notational simplicity, we usually write Lc,m
2 (Pm) = Lc,m

2 (P).

Moreover, h(·) is said to be canonical or completely degenerated if the integral with
respect to one variable is equal to zero, i.e.,∫

h(x1, . . . , xm)dP(x1) = 0 for all x2, . . . , xm ∈ E.

The fact that the kernel is completely degenerate with the condition Pm h2 < ∞ is used
for the orthogonality of the different elements of the Hoeffding decomposition of the
U-statistics.

Definition 10 (Covering number). The covering number Np(ε, Q, F ) is defined as the minimal
number of balls with radius ε that are needed to cover a class of functions F in the norm Lp(Q),
where Q is the measure on E with finite support.

We can associate some distances en,p to the covering numbers, where

en,p = (Un(| f − g|p))1/p.

In this work, we use the two distances defined afterward

en,2( f , g) =

(
(n−m)!

n! ∑
0≤i1<...<im≤n

( f − g)(Xi1 , . . . , Xim)
2

)1/2

.

For decoupled statistics, we also associate covering numbers, well-known as Ñ(ε, F , ẽn,p)
and a distance, which can be defined for p = 2 as follows:

ẽn,2( f , g) = n1/2 (n−m)!
n!

Eε

(
∑

0≤i1<...<im≤n
εi1( f − g)(Xi1 , . . . , Xim)

)2
1/2

.

Definition 11. A class F of measurable functions E → R is said to be of VC type (or Vapnik–
Chervonenkis type) for an envelope F and admissible characteristic (C, v) (positive constants) such
that C ≥ (3

√
e)v and v ≥ 1, if for all probability measure Q on (E, E ) with 0 < ‖F‖L2(Q) < ∞

and every 0 < ε < 1,
N
(

ε‖F‖L2(Q), F , ‖ · ‖L2(Q)

)
≤ Cε−v.

We assume that the class is countable to avoid measurability issues (the noncountable case may be
handled similarly by using an outer probability and additional measurability assumptions, see [53]).

Definition 12 (Stochastic equicontinuity, ([54])). Let {Zn} be a sequence of stochastic processes.
Call {Zn} stochastically equicontinuous at t0 if for each δ > 0, there exists a neighborhood D of t0
such that

lim sup
n

P
{

sup
D
|Zn(t)− Zn(t0)|

}
< ε. (6)
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In the context of the U-process {Un}, the stochastic equicontinuity at a function g ∈ F
implies generally that |Un(h)−Un(g)| should be uniformly small for all h(·) close enough
to g(·), with high probability and for all n large enough.

2.4. Gaussian Chaos Process

Definition 13. Let H denote a real separable Hilbert space with scalar product 〈·, ·〉H . We say that
a stochastic process G = {GP(h), h ∈ H} defined in a complete probability space (E, E ,P) is an
isonormal Gaussian process (or a Gaussian process on H) if GP is a centered Gaussian family of
random variables such that E(GP(h)GP(g)) = 〈h, g〉H for all h, g ∈ H.

Define the mapping h→ GP(h). Under the assumption mentioned above, this map
is linear and it provides a linear isometry of H onto a closed subspace L2(E, E ,P) which
contains a zero mean Gaussian random variables as its elements. Let KP be the isonormal
Gaussian chaos process associated with GP determined by:

KP

(
hψ

m

)
= (m!)

1
2 Rm

(
GP(ψ),Eψ2, 0, . . . , 0

)
,

where hψ
m(x1, . . . , xm) = ψ(x1) · · ·ψ(xm), ψ ∈ L2(P) and Rm is a polynomial defined as a

sum of monomials of degree m; ref. [6] give us a simple expression of this polynomial,
extracted from Newton’s identity given by

∑
1≤i1<·<im≤n

ti1 · · · tim = Rm

(
n

∑
i=1

ti,
n

∑
i=1

t2
i , . . . ,

n

∑
i=1

tm
i

)
.

Therefore,

∑
1≤i1<·<im≤n

ψ
(
xi1
)
· · ·ψ(xim) = Rm

(
n

∑
i=1

ψ(xi),
n

∑
i=1

ψ(xi)
2, . . . ,

n

∑
i=1

ψ(xi)
m

)
.

Hence, by the continuous mapping theorem, we can see that CLT and LLN give:

((
n

m1

) 1
2
Un

(
hψ1

m1

)
, . . . ,

(
n

mr

) 1
2
Un

(
hψr

mr

))
→
(
(m1!)

1
2 Rk1

(
GP(ψ1),Eψ2

1, 0, . . . , 0
)

. . . , (mr!)
1
2 Rkr

(
GP(ψr),Eψ2

r , 0, . . . , 0
))

.

Under the linearity of the kernel, we only need to show that:{(
n
m

) 1
2
Un( f ) : f ∈ F

}
→
d

{
KP( fk) = m!Rm

(
GP(ψ),Eψ2, 0, . . . , 0

)
: fk ∈ F

}
in `∞(F ),

to hold the weak convergence. The limit KP is useful in the case of degenerate U-statistics
and it provides a convergence of all moments, which in turn plays a crucial role because it
is due to the hypercontractivity, which makes the uniform integrability better. For a good
explanation of KP, readers are invited to see ([6] Chapter 4, Section 4.2).

2.5. Technical Assumptions

For our results, we need the following assumptions.

(C.1) (Block-length assumption) For all q ≥ 1 and l ≥ 1,

Eν

[
τl] < ∞, EA

[
τq] < ∞;
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(C.2) (Nonregenerative blocks) For l ≥ 1, we have

Eν


 T 0

∑
i1=1

T 1

∑
i2=T 0+1

T 2

∑
i3=T 1+1

. . .
T m

∑
im=T m−1+1

|h(Xi1 , . . . , Xim)|

l
 < ∞

and

Eν


 T 1

∑
i1=T 0+1

T 2

∑
i2=T 1+1

. . .
T m

∑
im−1=T m−1+1

n

∑
im=T (ln)+1

|h(Xi1 , . . . , Xim−1 , Xim)|

l
 < ∞

(C.3) (Block-sum: moment assumptions) For l ≥ 1, we have

Eν


 T 1

∑
i1=T 0+1

T 2

∑
i2=T 1+1

. . .
T m

∑
im=T m−1+1

|h(Xi1 , . . . , Xim)|

l
 < ∞,

and

EA

( ∑
T 0+1≤i1≤...≤im≤T 1

h(Xi1 , . . . , Xim)

)l
 < ∞;

(C.4) For l ≥ 1, we have

Eν


( T 1

∑
i1=T 0+1

T 2

∑
i2=T 1+1

T k+1

∑
ik=T k+1

. . .
T k+1

∑
ik=T k+1︸ ︷︷ ︸

u times

T k+u+1

∑
ik+u=T k+u+1

. . .
T m

∑
im=T m−1+1

|h(Xi1 , Xik , . . . , Xik ,︸ ︷︷ ︸
u times

Xik+u , . . . , Xim)|
)l
 < ∞;

(C.5) (Nondegeneracy.) We suppose also that

EA

( T 1

∑
i=T 0+1

h1(Xi)

)2
 > 0.

Remark 1 (Moment assumptions). In practice, we recall that block-moment assumptions for the
split Markov chain can be generally checked by establishing drift conditions of Lyapunov’s type for
the original chain; see Chapter 11 in [55,56], as well as All these moment conditions are discussed
in detail in ([57], Chapters 11 and 17). There is a key condition in the proof of ergodic theorems in
the Markovian context, which is the fact that EA(τ0) < ∞, for any A that is a set in E , such that
ψ(A) > 0. In fact, when there is a finite invariant measure and an atom A, then this condition is
readily found. We also refer to [58] for an explicit check of such conditions on several important
examples and to §4.1.2 of [59] for sufficient conditions expressed in terms of a uniform return rate to
small sets. Finally, as discussed in Chapter 8 of [60], similar conditions can be expressed in potential
kernels. Observe that, in the positive recurrent case, the assumptions of (C.1) are not independent
when ν = µ: from the basic renewal theory, one has Pµ(τ = k) = (EA[τ])

−1PA(τ ≥ k) for all
k ≥ 1. Hence, conditions Eµ

[
τl] < ∞ and EA

[
τl+1] < ∞ are equivalent.
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3. Preliminary Results

A significant issue was detected in recovering the estimation of our parameter of
interest using the U-process. The given shape of this parameter is as follows:

µ(h) =
∫

x1∈E
. . .
∫

xk∈E
h(x1, . . . , xk)µ(dx1) . . . µ(dxk),

where h : Em → R is a kernel function. The estimation of this parameter should be possible
using the U-statistics of the form:

Un(h) =
(

n
m

)−1

∑
(i1,...,im)∈Im

n

h(Xi1 , . . . , Xim), for n ≥ m, (7)

As the parameter of interest is defined and based on Kac’s theorem for the occupation
measure, µ(h) in the regeneration setup can be written as follows:

µ(h) =
1

(EA(τ))m EA

 T1

∑
i1=T0+1

T2

∑
i2=T1+1

. . .
T m

∑
im=T(m−1)+1

h(Xi1 , . . . , Xim)

. (8)

In the Markovian context and since the variables are not independent, the approximation
related to the i.i.d. blocks and the regenerative case is introduced below:

Definition 14 (Regenerative kernel). Let h : Em → R a kernel. We define the regenerative
kernel ωh : Tm → R as follows:

ωh((x11, . . . , x1n1), . . . , (xk1, . . . , xknk
)) =

n1

∑
i1=1

. . .
nk

∑
ik=1

h(x1i1 , . . . , xkik ). (9)

It is not necessary that the kernel ωh(·) be symmetric, as soon as h(·). In fact, we can
use the symmetrization of Smωh in the following way

(Sm ωh) = (m!)−1 ∑
n1

∑
σ(1)=1

. . .
nk

∑
σ(m)=1

h
(

xσ(1), . . . , xσ(m)

)
, (10)

where the first sum is over all permutations σ = {i1, . . . , im} of {1, . . . , m}. Next, we
consider the U-statistic formed by the regenerative data.

Definition 15 (Regenerative U-statistic). Let h : Em → R a kernel such that µ(|h|) < ∞ and
set h̃(·) = h(·)− µ(h). The regenerative U-statistic associated with the sequence of regenerative
blocks {Bj}L

j=1, generated by the Markov chain is given by

Rln(h) =
(

ln − 1
m

)−1

∑
(i1,...,im)∈Im

ln−1

ωh̃(Bi1 , . . . , Bim). (11)

Hence, Rln(h) is a standard U-statistic with mean zero.

Proposition 1. Let us define

Wn(h) = Un(h)− µ(h)−
(

ln − 1
m

)(
n
m

)−1
Rln(h). (12)

Then, under conditions (C.1), (C.2), (C.3) and (C.4), we have the following stochastic convergences:

Wn(h) → 0, Pν − a.s.
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Before stating the weak convergence in the next theorem, we define the corresponding
U-processes related to the U-statistic Un and the regenerative U-statistic RL, respectively:

Zn :=
(

n
m

)1/2

[Un − µ(h)], (13)

Tln :=
(

ln
m

)1/2

[Rln −E(Rln)]. (14)

Theorem 1. Let (Xn)n be a positive recurrent Harris Markov chain, with an accessible atom A,
Xn satisfies the conditions (C.1) and (C.2) (moments assumptions), (C.3), (C.4), (C.5) and, for a
fixed γ > 0, E(τ)2+γ < ∞. Let F be a uniform bounded class of functions with an envelope H
square-integrable such that: ∫ ∞

0
(log N(ε, F , en,2))

m/2dε < ∞.

Then, the process Zn converges weakly in probability under Pν to a Gaussian process GP indexed by
F whose sample paths are bounded and uniformly continuous with respect to the metric L2(µ).

The Bootstrapped U-Processes

Trying to facilitate the bootstrap technique, we write the detailed steps of the regener-
ative block construction and the weighted bootstrap method in Algorithm 1:

Algorithm 1 Regenerative block and weighted bootstrap construction.

1. Identify the number of visits ln = ∑n
i=0 1Xi∈A to the atom A.

2. Divide the sample X(n) = (X1, . . . , X(n)
n ) into (ln + 1) regenerative blocks

B0, . . . , Bln−1, B(n)
ln
∈ T, each block Bi with a length l(Bi) ≡ τi.

3. Drop the first and the last blocks if τln < n to avoid bias.
4. Let ξ = (ξi,ln , i = 1, . . . , n) be a triangular array of random variables. Define the

weighted bootstrap empirical measure from the data:

P∗n =
1
ln

n

∑
i=1

ξi,ln δBi .

In what follows, we denote by P∗ and E∗, respectively, the conditional probability and
the conditional expectation given the sample {X1, . . . , Xn}. The same notation is used for
the sample {B1, . . . , BLn}. Define the bootstrapped U-statistic as

U∗n(h) =
(

n
m

)−1

∑
(i1,...,im)∈Im

n

ξi1,n . . . ξim ,nh(Xi1 , . . . , Xim) (15)

and the regenerative bootstrapping

R∗ln(h) =
(

ln
m

)−1

∑
(i1,...,im)∈Im

ln

ξi1,ln . . . ξim ,ln ωh(Bi1 , . . . , Bim). (16)

and the U-processes are:

Z∗n :=
(

n
m

)1/2

[U∗n(h)−Un(h)]h∈F
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=

(
n
m

)−1/2

∑
(i1,...,im)∈Im

n

(ξi1,ln − 1) . . . (ξim ,ln − 1)h(Xi1 , . . . , Xim). (17)

and

T∗ln :=
(

ln
m

)1/2[
R∗ln(h)−E(R∗ln(h))

]
h∈F

=

(
ln
m

)−1/2

∑
(i1,...,im)∈Im

ln

(ξi1,ln − 1) . . . (ξim ,ln − 1)ωh(Bi1 , . . . , Bim). (18)

Given ∆n, a real-valued function, defined on the product probability space, we say that ∆n
is of an order oo

Pξ
(1) in Po

ν-probability if for any ε, δ > 0

Po
ν

{
Po

ξ|X(|∆n| > ε) > δ
}
−→ 0 as n→ ∞

and that ∆n is of an order Oo
Pξ
(1) in Po

ν-probability if for any δ > 0, there exists a 0 < M < ∞
such that

Po
ν

{
Po

ξ|X(|∆n| ≥ M) > δ
}
−→ 0 as n→ ∞

We must comment here that the bootstrap works in probability if

dBL(T∗ln , Tln)→ 0 in probability,

where
dBL(T∗ln , Tln) = sup

g∈BL(l∞(F ))

∣∣∣Eg
(

T∗ln
)◦
−Eg(Tln)

∣∣∣,
and

BL(l∞(F )) := {g : l∞(F )→ R, |g(x)− g(y)| ≤ ‖x− y‖F , ‖g‖∞ ≤ 1},

and g
(

T∗ln

)◦
is the measurable envelope of g

(
T∗ln

)
. In addition, for any measurable random

elements, Yn and Y, the convergence in law of Yn to Y is in the sense of Hoffman–Jorgensen,
which is defined as

Eg(Yn)
◦ → Eg(Y),

for g bounded and continuous. This weak convergence is metrizable by Theorem A1 in
Appendix A.

Proposition 2. Suppose that the bootstrap weights (ξ1, . . . , ξn) satisfy Assumptions (A1)–(A4).
Let

W∗n (h) := U∗n(h)−
(

ln − 1
m

)(
n
m

)−1
R∗ln(h). (19)

Then, we have

W∗n (h) → 0, Pν × Pξ − a.s.

The proof of Proposition 2 is postponed until Section 7.
Now, in the following lemma, there are some instrumental results needed later.

Lemma 1. Let (Xn)n be a Markov chain defined in Section 2.1. Define p := P(X0 ∈ A) = α−1.
Then, for any initial probability ν, we have:
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(i) For some η > 0 and C > 0:∣∣∣∣Eν(ln)
np

− 1
∣∣∣∣ ≤ C

n
and
√

n
(

ln
np
− 1
)
→ N(0, η2). (20)

(ii) n∗
n → 1 in Pν × Pξ-probability .

(iii) Let Xi be a sequence of random variables. If

Tn =
1
n

n

∑
i=1

Xi → C a.s.,

then for any integer tn valued sequence of random variables,

1
tn

tn

∑
i=1

Xi → C in Pν-probability.

The proof of Lemma 1 is postponed until Section 7.

4. Weighted Bootstrap Weak Convergence

In this section, we extend some existing results concerning the multiplier U-process
to prove the bootstrap uniform weak convergence. Most of these results can be found
in [46], generalizing the empirical process work of [38] in the i.i.d. setting. The weak
convergence is proved for degenerate U-processes, as we mentioned before, and under the
weighted regenerative bootstrap schemes described in Algorithm 1. Before stating the weak
convergence theorem, we recall the following important results. The next theorem, proved
in [46], is a sharp multiplier inequality, which is essential in the study of the multiplier
U-process. These results are based on the decoupling symmetrized U-process, a basic
framework of U-statistics. In [47], the author solved these problems for the empirical
process settings in the Markov setting (multinomial bootstrap), which we generalize to the
U-process by considering more general weights, i.e., the exchangeable weighted bootstrap.

Theorem 2 ([46]). Let (ξ1, . . . , ξn) be a random vector independent of (Y1, . . . , Yn). Then, there
exists some measurable function ψn : Rm

≥0 → R≥0 such that the expected supremum of the

decoupled (Here “decoupled” refers to the fact that {Y(k)
i }, k ∈ N are independent copies of {Yi},

and {ε(k)i }, k ∈ N are independent copies of the Rademacher sequence {εi}.) U-processes

E

∥∥∥∥∥ ∑
1≤ik≤`k ,1≤k≤m

ε
(1)
i1
· · · ε(m)

im f
(

Y(1)
i1

, . . . , Y(m)
im

)∥∥∥∥∥
F

≤ ψn(`1, . . . , `m),

for all 1 ≤ `1, . . . , `m ≤ n, consequently,

E

∥∥∥∥∥ ∑
1≤i1,...,im≤ln−1

ξi1 · · · ξim f
(

Y(1)
i1

, . . . , Y(m)
im

)∥∥∥∥∥
F

≤ K
∫
Rm
≥0

Eψn

(
ln−1

∑
i=1

1|ξi |>t1
, . . . ,

ln−1

∑
i=1

1|ξi |>tm

)
dt1 · · · dtm.

Furthermore, if there exists a concave and nondecreasing function ψ̄n : R → R such that
ψn(`1, . . . , `m) = ψ̄n

(
∏m

k=1 `k
)
, then

E

∥∥∥∥∥ ∑
1≤i1,...,im≤n

ξi1 · · · ξim f
(

Y(1)
i1

, . . . , Y(m)
im

)∥∥∥∥∥
F
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≤ K
∫
Rm
≥0

ψ̄n

(
∑

1≤i1,...,im≤n

m

∏
k=1

P
(
|ξik | > tk

)1/m
)

dt1 · · · dtm.

Here, K > 0 is a constant depending on m only and can be taken as K = 22m ∏m
k=2(k

k − 1) for
m ≥ 2.

Lemma 2 ([46]). Let {F(`1,...,`m),n : 1 ≤ `1, . . . , `m ≤ n, n ∈ N} be function classes such that
F(`1,...,`m),n ⊃ F(n,...,n),n for all 1 ≤ `1, . . . , `m ≤ n. Suppose that the ξi’s have the same marginal
distributions with ‖ξ1‖2m,1 < ∞. Suppose that there exists some bounded measurable function
a : Rm(n)

≥0 → R≥0 with a(`1, . . . , `m)→ 0 as `1 ∧ . . .∧ `m → ∞, such that the expected supremum
of the decoupled U-processes satisfies

E
∥∥∥∥ ∑

1≤ik≤`k ,1≤k≤m
ε
(1)
i1
· · · ε(m)

im f
(

Y(1)
i1

, . . . , Ym
im

)∥∥∥∥
F(`1,...,`m),n

≤ a(`1, . . . , `m)

( m

∏
k=1

`k

)1/2

,

for all 1 ≤ `1, . . . , `m ≤ n. Then,

n−m/2E
∥∥∥∥ ∑

1≤i1,...,im≤n
ξi1 · · · ξim(n)

f
(

Y(1)
i1

, . . . , Y(m)
im

)∥∥∥∥
F(n,...,n),n

→ 0, n→ ∞.

The main result of this paper is represented in the following theorem. It is worth
noting here that it is not easy to prove the stochastic equicontinuity in the present setting
as explained in the introduction.

Definition 16 (Permissible classes of function). Let (E, E ,P) be a measurable space (E a Borel
σ-field on E). Let F be a class of functions indexed by a parameter x that belongs to a set E. F is
called permissible if it can be indexed by a E such that:

• There exists a function g(x, f ) = f (x) defined from S ×F to R in such a way that this
function is L ⊗B(F ) measurable function, where B(F ) is the Borel σ-algebra generated
by the metric on F .

• E is a Suslin measurable space whose mean E is an analytic subset of a compact metric space E
from which it inherits its metric and Borel σ-field.

Theorem 3. Suppose Assumptions (A1) to (A4), and Conditions (C.1)–(C.5) hold. Let F ⊂
Lc,m

2 (P) be permissible and admit a Pm-square integrable envelope F such that

∫ 1

0

(
sup

Q
log N

(
ε‖F‖L2(Q), F , L2(Q)

))m/2 dε < ∞,

where the supremum is taken over all discrete probability measures. Then,

sup
ψ∈BL

∣∣∣∣Eξ ψ

(
Z∗n(h)

)
−Eψ(c ·KP)

∣∣∣∣→Pν
0,

where c is the constant in (A3), and the convergence in probability→Pν
is with respect to the outer

probability of P∞ defined on (E∞, E ∞).

The proof of Theorem 3 is postponed until Section 7.
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4.1. Bootstrap Weights Examples

Let (ξ1, · · · , ξn) be a class of real random variables satisfying Assumptions (A1)–
(A4). We give some examples of bootstrap weights; for instance, refer to [38,61] for more
explanations.

4.1.1. Bayesian Resampling Scheme

In this case, (ξ1, . . . , ξn) are positive i.i.d. random variables with mean µ and finite
variance σ2. The weights satisfy ‖ξ1‖2,1 < ∞, and we define

ξn =
n

∑
i=1

ξi.

The Bayesian bootstrapped weight can be defined as:

ξni = ξi/ξn,

satisfying

‖ξn1‖2,1 =
∫ ∞

0

√
Pξ(ξn1 ≥ u)du.

For ξni ∼ Exponential(1) or ξni ∼ Gamma(4, 1), the Bayesian weights are distributionally
equivalent with Dirichlet weights. For the value of c2, we have:

1
n

n

∑
i=1

(ξni − 1)2 → σ2

µ2 := c2, n→ ∞.

4.1.2. Efron’s Resampling Scheme

For Efron’s bootstrap, we have

(ξ1, . . . , ξn) ∼ Multinomial(n; n−1, . . . , n−1).

Condition (A1) follows directly. Condition (A3) follows from ([37] Lemma 4.1), and Condi-
tion (A2) is detailed in [43].

4.1.3. The Delete h-Jackknife

In [62], the authors permute deterministic weights wn, where

wn =

{
n

n− h
, . . . ,

n
n− h

, 0, . . . , 0
}

with
n

∑
i=1

wni = n

in order to build new bootstrap weights, and they defined the new weights ξnj := wnRn(j)
where Rn(·) is a random permutation uniformly distributed over {1, . . . , n}. These weights
are called the delete h-Jackknife. In order to achieve Assumption (A3), we must assume
that h/n→ α ∈ (0, 1), as c2 = h/(n− h) and c > 0.

4.1.4. The Multivariate Hypergeometric Resampling Scheme

As its name indicates, the bootstrap weights of this scheme follow the multivariate
hypergeometric distribution with density:

P(ξn1 = ε1, . . . , ξnn = εn) =
(K

ε1
) · · · (K

εn
)

(nK
n )

,

where K is a positive integer. Assumption (A3) is satisfied with c2 = (K− 1)/K.

Remark 2. As was pointed out in [38], the preceding mentioned bootstraps are “smoother” in
some way than the multinomial bootstrap because they place some (random) weight on all elements
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in the sample, whereas the multinomial bootstrap applies the positive weight at a proportion of
about 1− (1− n−1)n → 1− e−1 = 0.6322 of each element of the sample, on average. Notice
that when ωi ∼ Gamma(4, 1), the ξni/n are equivalent to four spacings from a sample of 4n− 1
Uniform (0, 1) random variables. In [63,64], it was noticed that in addition to being four times
more expensive to implement, the choice of four spacings depends on the functional of interest and is
not universal.

Remark 3. It is noteworthy that choosing the bootstrap weights ξni properly implies a smaller limit
variance, that is, c2 is smaller than 1. A typical example is the multivariate hypergeometric bootstrap
([38] Example 3.4) and the subsample bootstrap, ([65] Remark 2.2-(3)). A thorough treatment of
the weight selection is undoubtedly outside the scope of the current work; for review, we refer the
readers to [66].

Remark 4. In the present paper, we considered a renewal type of bootstrap for atomic Markov
chains under minimal moment conditions on renewal times. The atomic Markov chains assumption
can be dropped by mimicking the ideas of [50,51] by introducing an artificial atom and deriving the
bootstrap procedure that applies to nonatomic Markov chains. Precisely, in the case of a general
irreducible chain X with a transition kernel Π(x, dy) satisfying a minorization condition:

∀x ∈ S, Π(x, dy) > δψ(dy),

for an accessible measurable set S, a probability measure ψ and δ ∈]0, 1[ (note that such a mi-
norization condition always holds for Π or an iterate when the chain is irreducible), an atomic
extension (X, Y) of the chain may be explicitly constructed by the Nummelin splitting technique
(see [49]) from the parameters (S, δ, ψ) and the transition probability Π, see for instance [47,67].
From a practical viewpoint, the size of the first block may be large compared to the size n of the
whole trajectory, for instance, in the case where the expected return time to the (pseudo-)atom when
starting with the initial probability distribution is large. The effective sample size for constructing
the data blocks and the corresponding statistic is then dramatically reduced. However, in [68], some
simulations were given together with examples including content-dependent storage systems and
general AR models supporting the method discussed in this work.

5. Applications

Example 1 (Symmetry test). This example gives an application for the bootstrap U-statistics,
inspired by the goodness-of-fit tests in [69], where they considered the symmetry test for the
distribution of Xt. Let (Xt)t∈N be a stationary mixing process with fX(·) the Lebesgue density. We
test the hypothesis:

H0 : fX(u) = fX(−u), almost every were,

H1 : fX(u) 6= fX(−u) on a set of positive measure.
(21)

The estimator of fX(u) is:

f̂X(u) =
1

nhn

n

∑
i=1

K
(

u− Xi
hn

)
,

where K(·) is a kernel function and hn > 0 is a smoothing parameter or the bandwidth. An
appropriate estimator of the integrated squared difference represent the symmetry test:

I =
∫
R
( fX(u)− fX(−u))2du.

According to [69], I can be estimated by

În :=
4

n2hn
∑

1≤i<j≤n
Φn
(
Xi, Xj

)
,
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where Φn
(
Xi, Xj

)
= KXi ,Xj − KXi ,−Xj with KXi ,Yj = K

(Xi−Yj
hn

)
, for Yj ∈

{
Xj,−Xj

}
. Clearly, În

is a degenerate U-statistic with kernel varying with the sample size n. Thus, the stationary bootstrap
test,

Î∗n :=
4

n2hn
∑

1≤i<j≤n
Φn

(
X∗i , X∗j

)
,

can be shown to have the same limit as În.

Example 2 (Kendall’s tau). The covariance matrix quantifies the linear dependency in a ran-
dom vector. The rank correlation is another measure of the nonlinear dependency in a random
vector. Two generic vectors y = (y1, y2) and z = (z1, z2) in R2 are said to be concordant if
(y1 − z1)(y2 − z2) > 0. For m, k = 1, . . . , p, define

τmk =
1

n(n− 1) ∑
1≤i 6=j≤n

1
{(

Xim − Xjm
)(

Xik − Xjk

)
> 0

}
.

Then, Kendall’s tau rank correlation coefficient matrix T = {τmk}
p
m,k=1 is a matrix-valued U-

statistic with a bounded kernel. It is clear that τmk quantifies the monotonic dependency between
(X1m, X1k) and (X2m, X2k) and it is an unbiased estimator of

P((X1m − X2m)(X1k − X2k) > 0),

that is, the probability that (X1m, X1k) and (X2m, X2k) are concordant.

Example 3 (Test of independence). In [2] the author introduced the parameter

4 =
∫ ∞

−∞

∫ ∞

−∞
D2(y1, y2)dF(y1, y2),

where D(y1, y2) = F(y1, y2)− F(y1, ∞)F(∞, y2) and F(·, ·) is the distribution function of Y1
and Y2. The parameter 4 has the property that 4 = 0 if and only if Y1 and Y2 are independent.
From [8], an alternative expression for4 can be developed by introducing the functions

ψ(y1, y2, y3) =


1 if y2 ≤ y1 < y3
0 if y1 < y2, y3 or y1 ≥ y2, y3
−1 if y3 ≤ y1 < y2

and
ϕ(y1,1, y1,2, . . . , y5,1, y5,2) =

1
4

ψ(y1,1, y1,2, y1,3)ψ(y1,1, y1,4, y1,5)ψ(y1,2, y2,2, y3,2)ψ(y1,2, y4,2, y5,2).

We have

4 =
∫

. . .
∫

ϕ(y1,1, y1,2, . . . , y5,1, y5,2)dF(y1,1, y1,2) . . . dF(y1,5, y2,5).

The corresponding U-statistics may be used to test the independence.

6. Conclusions

The present paper was concerned with the randomly weighted bootstrap of the U-
process in a Markov framework. A large number of bootstrap resampling schemes emerged
as special cases of our setting, in particular, the multinomial bootstrap, which is the best-
known bootstrap scheme introduced by [26]. One of the main tools was the approximation
of the Markov U-process by the corresponding regenerative one. We looked to mimic this
result in Proposition 2, in order to approximate the weighted-bootstrap U-process U∗n to
the regenerative weighted-bootstrap U-process R∗ln . Other technical arguments were given
in Lemma 1 extended from the work of [47]. These intricate tools were used to reach the
full independence of regenerative block variables by proving that a deterministic one could
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substitute the random size of blocks, which was the main problem for the extension of the
bootstrap results to the Markov framework. After a lengthy proof to arrive at independence,
we used the results of [46]. All the above steps led us to prove the weak convergence of the
regenerative-block weighted-bootstrap U-process, which implied the weak convergence
of the weighted-bootstrap U-process. It will be of interest to consider the extension of the
paper to the semi-Markov setting. A more delicate problem is to consider the setting of
incomplete data such as censored cases or missing data. To the best of our knowledge, this
problem has not been considered, even for the original sample (without bootstrap) in the
Markov framework. It would be interesting to extend our work to the case of the local
stationary process, which requires nontrivial mathematics; this would go well beyond the
scope of the present paper.

7. Mathematical Development

This section is devoted to the proof of our results. The previously defined notations
continue to be used in what follows.

Proof of Proposition 2. We have

U∗n(h)−
(

ln − 1
m

)(
n
m

)−1
R∗ln(h)

=

(
n
m

)−1

∑
(i1,...,im)∈Im

n

ξi1,n∗ . . . ξim ,n∗h(Xi1 , . . . , Xim)

−
(

n
m

)−1

∑
(i1,...,im)∈Im

ln

ξi1,ln . . . ξim ,ln ωh̃(Bi1 , . . . , Bim)

=

(
n
m

)−1

∑
(i1,...,im)∈Im

n

ξi1,n∗ . . . ξim ,n∗h(Xi1 , . . . , Xim)

−
(

n
m

)−1

∑
(i1,...,im)∈Im

ln

ξi1,ln . . . ξim ,ln ωh̃(Bi1 , . . . , Bim)

+

(
n
m

)−1

∑
(i1,...,im)∈Im

n

h(Xi1 , . . . , Xim)−
(

n
m

)−1

∑
(i1,...,im)∈Im

n

h(Xi1 , . . . , Xim)

+

(
n
m

)−1

∑
(i1,...,im)∈Im

ln

{
ξi1,ln . . . ξim ,ln − 1

}
ωh̃(Bi1 , . . . , Bim)

−
(

n
m

)−1

∑
(i1,...,im)∈Im

ln

{
ξi1,ln . . . ξim ,ln − 1

}
ωh̃(Bi1 , . . . , Bim)

=

(
n
m

)−1

∑
(i1,...,im)∈Im

n

{
ξi1,n∗ . . . ξim ,n∗ − 1

}
h(Xi1 , . . . , Xim)

−
(

n
m

)−1

∑
(i1,...,im)∈Im

ln

{
ξi1,ln . . . ξim ,ln − 1

}
ωh̃(Bi1 , . . . , Bim)

+

(
n
m

)−1

∑
(i1,...,im)∈Im

ln

ωh̃(Bi1 , . . . , Bim)

−
(

n
m

)−1

∑
(i1,...,im)∈Im

n

h(Xi1 , . . . , Xim).

Given J ⊆ {1, . . . , m}(J = ∅ is not excluded), and i = (i1, . . . , im) ∈ {1, . . . , n}m, we set iJ

to be the point of {1, . . . , n}|J| obtained from i by deleting the coordinates in the places not
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in J (e.g., if i = (3, 4, 2, 1), then i{1,3} = (3, 2)
)

. Furthermore, ∑iJ
indicates the sum over

1 ≤ ij ≤ n, j ∈ J; for instance, if m = 4 and J = {1, 3}, then

∑
iJ

hi = ∑
i{1,3}

hi1,i2,i3,i4 = ∑
1≤i1,i3≤n

hi1,i2,i3,i4

(
X(1)

i1
, . . . , X(4)

i4

)
.

By convention, ∑i a = a. Notice that

E
(

n
m

)−1

∑
(i1,...,im)∈Im

n

{
ξi1,n . . . ξim ,n − 1

}
h(Xi1 , . . . , Xim)

=

(
n
m

)−1

∑
(i1,...,im)∈Im

n

E
{

ξi1,n . . . ξim ,n − 1
}
Eh(Xi1 , . . . , Xim)

=

(
n
m

)−1

∑
i{1,...,m−1}

m

∑
j=1

E

 m

∏
k=1,k 6=j

ξik ,nE

 n

∑
ij=1

(ξij ,n − 1) |
m

∏
k=1,k 6=j

ξik ,n




×Eh(Xi1 , . . . , Xim)

= 0.

In a similar way, we have

E
(

n
m

)−1

∑
(i1,...,im)∈Im

ln

{
ξi1,ln . . . ξim ,ln − 1

}
ωh̃(Bi1 , . . . , Bim) = 0.

Making use of Proposition 1 and the law of large numbers, we infer that

U∗n(h)−
(

ln − 1
m

)(
n
m

)−1
R∗ln(h) = 0, a.s.

Hence, the proof is completed.

Proof of Lemma 1. The proof of part i) and part iii) follows from ([47] Lemma 3.1 and
Lemma 3.2). In order to prove ii), we need to show that, for every ε > 0,

Pν × Pξ|X

(∣∣∣n∗
n
− 1
∣∣∣ > ε

)
→ 0, (22)

which follows if, conditioned on the sample,

Pξ|X

(∣∣∣n∗
n
− 1
∣∣∣ > ε

)
→ 0. (23)

We have:

n∗
n
− 1 =

∑ln
i=1 ξiτi

n
− 1 =

ln
n

[
∑ln

i=1(ξiτi + ξiE∗(τ)− ξiE∗(τ))− n
ln

]

=
ln
n

[
∑ln

i=1 ξi(τi −E∗(τ))
ln

]
+

ln
n

[
∑ln

i=1 ξiE∗(τ)
ln

− n
ln

]
= I + I I. (24)
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We denote by E∗ the expectation conditionally on X1, . . . , Xn. By the fact that τi are i.i.d.
and using Chebyshev’s inequality, we have:

Pξ|X(|I| > ε) ≤ ε−2
(

ln
n

)2 1
ln
Eξ|X(ξ1,ln(τ1 −E∗(τ)))2

≤ 2ε−2
(

ln
n

)
1
n
E(ξ2

1,ln)
1
ln

ln

∑
i=1

τ2
i → 0 in probability.

The last inequality follows using i), which implies that ln
n → p and iii) where

1
ln

ln

∑
i=1

τ2
i → E(τ2),

for E(ξ2
1,ln) < ∞. For I I we have:

I I =
ln
n

[
∑ln

i=1 ξiE∗(τ)
ln

− n
ln

]
=

ln
n

[
E∗(τ)− n

ln

]
by (A1)

=
ln
n

[
1
ln

ln

∑
i=1

(τi −E(τ) +E(τ))− n
ln

]

=
ln
n

[
1
ln

ln

∑
i=1

(τi −E(τ))
]
+

ln
n

[
E(τ)− n

ln

]
.

The last equality converges to zero by the fact that n/ln → α = E(τ) and by iii)

1
ln

ln

∑
i=1

(τi −E(τ))→ 0.

This proves Lemma 1.

Proof of Theorem 3. For the weak convergence, we need to show the finite-dimensional
convergence and the asymptotic equicontinuity. According to Proposition 2 and [6], the
finite-dimensional convergence is considered if, for every fixed finite collection of functions
{ f1, . . . , fk} ⊂ F ,((

n
m1

)−1/2
R∗ln( f1), . . .

(
n

mk

)−1/2
R∗ln ,( fk)

)
→
(
KP( f1), . . . ,KP( fk)

)
,

where KP is the Gaussian chaos process. According to Cramér–Wold and the countability
of F , we only need to show that for any f ∈ Lc,m

2 (P),

sup
ψ∈BL

∣∣∣∣E[ψ

((
n
m

)−1/2
R∗ln( f )

)∣∣∣∣{Bi}
]
−Eψ(c ·KP( f ))

∣∣∣∣→ 0 a.s. (25)

By ([6] Section 4.2) and ([29] Section 2A), any f ∈ Lc,m
2 (P) can be expanded in L2(Pm) by

f = ∑∞
q=1 cqh

ψq
m , where {cq} is a sequence of real numbers and

h
ψq
m (x1, . . . , xm) ≡ ψq(x1) · · ·ψq(xm)

for some bounded ψq ∈ Lc,1
2 (P). Fix ε > 0. Then, there exists Qε ∈ N such that with

f ε
n ≡ ∑Qε

q=1 cqh
ψq
m ,

‖ f − fε‖L2(Pm) ≤ ε.
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The left-hand side of (25) can be further bounded by

sup
ψ∈BL

∣∣∣∣E[ψ

((
n
m

)−1/2
R∗ln( f )

)∣∣∣∣{Bi}
]
−Eψ(c ·KP( f ))

∣∣∣∣
≤ sup

ψ∈BL

∣∣∣∣E[ψ

((
n
m

)−1/2
R∗ln( f )

)∣∣∣∣{Bi}
]
−E

[
ψ

((
n
m

)−1/2
R∗ln( f ε)

)∣∣∣∣{Bi}
]∣∣∣∣

+ sup
ψ∈BL

∣∣∣∣E[ψ

((
n
m

)−1/2
R∗ln( f ε)

)∣∣∣∣{Bi}
]
−Eψ(c ·KP( f ε))

∣∣∣∣
+ sup

ψ∈BL

∣∣Eψ(c ·KP( f ε))−Eψ(c ·KP( f ))
∣∣

≡ (I) + (I I) + (I I I). (26)

Let f̄ ε ≡ f − f ε; noting that ψ is bounded by one and using Lemma 1, we can replace ln
by ϕ(n) =

⌊
n

EA(τ)

⌋
which is deterministic. In the following, we denote by π a random

permutation uniformly distributed over Σ(n), the set of all permutations over 1, . . . , n. We
have

(I)2 ≤ E∗
∣∣∣∣2∧(n

m

)1/2
R∗ln( f̄ ε)

∣∣∣∣2

. Eξ|XER

1∧ n−m/2 ∑
1≤i1 6=... 6=im≤ϕ(n)

(
ξπi1
− 1
)
· · ·
(
ξπim
− 1
)

f̄ε

(
Bi1 , . . . , Bim

)2

. ∑
αi∈{1,2}:∑l

i=1 αi=2m,α1≥...≥αl ,1≤l≤m

E∗ξ
[

1∧ n−m/2ER

[ l

∏
i=1

(
ξπi − 1

)αi

]

× ∑
i1 6=... 6=im ,
i′1 6=... 6=i′m ,

ij=i′j ,1≤j≤max{j:αj=2}

f̄ ε
(
Bi1 , . . . , Bim(n)

)
f̄ ε
n
(
Bi′1

, . . . , Bi′m(n)
)]

. ∑
αi∈{1,2}:∑l

i=1 αi=2m,
α1≥...≥αl ,1≤`≤m

E
[

1∧ 1
n

n

∑
i=1

(
ξi − 1

)2
]m

× n−` ∑
i1 6=... 6=im ,
i′1 6=... 6=i′m ,

ij=i′j ,1≤j≤max{j:αj=2}

f̄ ε
(
Bi1 , . . . , Bim

)
f̄ ε
(
Bi′1

, . . . , Bi′m

)
.

We have, according to [43], for (ξ1, . . . , ξn) a non-negative sequence of variables such that
∑n

i=1 ξi = n and for π = (π1, . . . , πn) a random permutation of {1, . . . , n}, for any ` ∈ N
and α = (α1, . . . , α`) ∈ N`,∣∣∣∣Eπ

[ `

∏
i=1

(
ξπi − 1

)αi

]∣∣∣∣ ≤ Cl,αn−`
[ ln

∑
i=1

(
ξi − 1

)2
]∑i αi/2

.

Furthermore, according to [70,71], we have:

n−` ∑
i1 6=... 6=im ,
i′1 6=... 6=i′m ,

ij=i′j ,1≤j≤max{j:αj=2}

f̄ ε(Bi1 , . . . , Bim) f̄ ε(Bi′1
, . . . , Bi′m)

→a.s. EA(τ)
−`E f̄ ε(B1, . . . , Bm) f̄ ε(B′1, . . . , B′m)
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(where Bj = B′j for 1 ≤ j ≤ max{j : αj = 2} and for ln/n→ EA(τ)
−1)

≤ EA(τ)
−`Pm f̄ ε2 ≤ ε2. (Under Conditions (C.1) and (C.3).)

Hence we have

lim sup
n→∞

(I) .m,ξ ε, a.s. (27)

Now for the second term, we have:(
n
m

)−1/2
R∗ln( f ε)

=
1

(n
m)

1/2

Qε

∑
q=1

cq ∑
1≤i1<...<im≤ϕ(n)

(ξπi1
− 1) · · · (ξπim

− 1)ψq(Bi1) · · ·ψq(Bim)

=
ϕ(n)m/2

(n
m)

1/2

Qε

∑
q=1

cqRm

(
1

ϕ(n)1/2

ϕ(n)

∑
i=1

(ξπi − 1)ψq(Bi), . . . ,
1

ϕ(n)m/2

ϕ(n)

∑
i=1

(ξπi − 1)mψm
q (Bi)

)

≡ (1 + o(1))(m!)1/2EA(τ)
−m/2

Qε

∑
q=1

cqRm(A(1)
ϕ(n),q, . . . , A(m)

ϕ(n),q),

where Rm is the polynomial of degree m (see [6], p. 175):

∑
1≤i1<...<im≤ϕ(n)

ti1 · · · tim = Rm

( ϕ(n)

∑
i=1

ti,
ϕ(n)

∑
i=1

t2
i , . . . ,

ϕ(n)

∑
i=1

tm
i

)
. (28)

As we mentioned before, this polynomial follows from Newton’s inequality and allows us
to show a polynomial function as a sum of monomials. All we need now is to check each
argument of this polynomial function.

For ` = 1: We first recall the following lemma from [53].

Lemma 3 ([53]). Let (a1, . . . , an) be a vector and (ξ1, . . . , ξn) be a vector of exchangeable random
variables. Suppose that

ān =
1
n

n

∑
i=1

ai = 0,
1
n

n

∑
i=1

a2
i → σ2, lim

M→∞
lim sup

n→∞

1
n

n

∑
i=1

a2
i 1{|ai |>M} = 0,

and

ξ̄n =
1
n

n

∑
i=1

ξi = 0,
1
n

n

∑
i=1

ξ2
i →Pξ

α2,
1
n

max
1≤i≤n

ξ2
i →Pξ

0.

Then,
1√
n

n

∑
i=1

aiξi → N
(
0, σ2α2).

Applying Lemma 3 with ai ≡ ψq(Bi)− Pnψq and ξi replaced by ξRi − 1, we can see
that

A(1)
ϕ(n),q → c ·GP(ψq), a.s.,

where GP is a Gaussian process defined on Lc,1
2 (P) with covariance

EGP( f )GP(g) = P( f g), for f , g ∈ Lc,1
2 (P).
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For ` = 2: Note that

E∗,ξπ (A(2)
ϕ(n),q) =

1
ϕ(n)

ϕ(n)

∑
i=1

(ξi − 1)2 · 1
ϕ(n)

ϕ(n)

∑
i=1

ψ2
q(Bi)

→Pν,ξ c2Eψ2
q(B1) = c2EA

( T 1

∑
i=T 0+1

h1(Xi)

)2
, a.s.

Furthermore,

Var∗,ξ(A(2)
ϕ(n),q)

= E∗,ξ
(

A(2)
ϕ(n),q

)2 −
(
E∗,ξπ

(
A(2)

ϕ(n),q

))2

= E∗,ξπ

[
1

ϕ(n)

ϕ(n)

∑
i=1

(
ξi − 1

)2
ψ2

q(Bπi )

]2

−
[

1
ϕ(n)

ϕ(n)

∑
i=1

(
ξi − 1

)2Pnψ2
q

]2

=
1

ϕ(n)2 ∑
i,j

(
ξi − 1

)2(
ξ j − 1

)2
[
E∗πψ2

q(Bπi )ψ
2
q(Bπj)− (Pnψ2

q)
2
]

=
1

ϕ(n)2 ∑
i

(
ξi − 1

)4
[
E∗πψ4

q(Bπi )− (Pnψ2
q)

2
]

+
1

ϕ(n)2 ∑
i 6=j

(
ξi − 1

)2(
ξ j − 1

)2
[
E∗πψ2

q(Bπi )ψ
2
q(Bπj)− (Pnψ2

q)
2
]

≤ 1

ϕ(n)2 ∑
i

(
ξi − 1

)4 · Pnψ4
q +

1

ϕ(n)2

(
∑

i
(ξi − 1)2

)2

· 1
ϕ(n)− 1

Pn ψ4
q

≤ C
1

ϕ(n)2

n

∑
i=1

(
ξi − 1

)4 · Pnψ4
q

≤ C‖ψq‖4
∞

maxi(ξi − 1)2

ϕ(n)
· 1

ϕ(n)

ϕ(n)

∑
i=1

(
ξi − 1)2 →Pξ

0, a.s.

The first inequality in the above display follows, since

E∗πψ2
q(Bπi Bπi )ψ

2
q(Bπj)− (Pnψ2

q)
2

=
1

ϕ(n)(ϕ(n)− 1)

[
∑
i 6=j

ψ2
q(Bπi )ψ

2
q(Bπj)

]
− (Pnψ2

q)
2

≤ 1
ϕ(n)− 1

(Pnψ2
q)

2 ≤ 1
ϕ(n)− 1

Pnψ4
q .

This shows that
A(2)

ϕ(n),q →Pξ
c2Eψ2

q a.s.

For ` ≥ 3:

E∗,ξπ |A
(`)
ϕ(n),q| ≤

1

ϕ(n)`/2

ϕ(n)

∑
i=1
|ξi − 1|` · 1

ϕ(n)

ϕ(n)

∑
i=1
|ψq(Bi)|`

≤
(

maxi|ξi − 1|2
ϕ(n)

) `−2
2

· 1
ϕ(n)

ϕ(n)

∑
i=1
|ξi − 1|2 · ‖ψq‖∞

→Pξ
0, a.s.

This shows that
A(`)

ϕ(n),q →Pξ
0, a.s.
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Then, we have

Rm(A(1)
ϕ(n),q, . . . , A(m)

ϕ(n),q)→ Rm(GP(cψq),E(cψq)
2, 0, . . . , 0) = c(m!)−1/2 ·KP(ψq) a.s.,

where KP is the Gaussian chaos process defined on (⊕ is the orthogonal sum in
L2(E∞, E ∞, P∞))

R⊕ Lc,N
2 (P) ≡ R⊕

(
⊕∞

m=1 Lc,m
2 (P)

)
.

Hence, it follows that, by linearity of KP,(
n
m

)−1/2
R∗ln( f̄ ε)→ c ·KP( f ε), a.s.

The last term in (26) follows from the definition of KP

(I I I) ≤ c
√
EK2

P( f̄ ε)→ 0 (ε→ 0). (29)

All these final results give the finite-dimensional convergence.

Now, we take a step-by-step approach to establish stochastic equicontinuity. We
assume that the class of functions must be bounded, so we suppose that h ≤ H, for H an
envelope. Throughout the following, we denote by

Fδ := { f , g ∈ F : d( f , g) ≤ δ}.

Step 1

Let

Z∗n :=
(

n∗

m

)1/2

[U∗n(h)−E∗(U∗n(h))], (30)

and

T̆∗ln :=
(

n
m

)−1/2(ln
m

)[
R∗ln −E∗(R∗ln)

]
. (31)

In this step, we must prove that the stochastic equicontinuity of the U-process implies that
of the regenerative U-process. This is a consequence of 1, and for the weighted bootstrap
Proposition 2 and part ii) of Lemma 1.

Step 2

Define

T̆∗ln :=
(

n
m

)−1/2

∑
(i1,...,im)∈Im

ln

(ξi1,ln − 1) . . . (ξim ,ln − 1)ωh(Bi1 , . . . , Bim)

and

T̃∗ln =

(
n
m

)−1/2

∑
(i1,...,im)∈Im

E(ln)

(ξi1,ln − 1) . . . (ξim ,ln − 1)ωh̃(Bi1 , . . . , Bim).

Hypothesis: The stochastic equicontinuity of T̆∗ln implies the stochastic equicontinuity of T̃∗ln .

Proof. In order to prove the previous implication, we only need to show that:

P∗
(∥∥∥T̃∗ln − T̆∗ln

∥∥∥
Fδ

> ε

)
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≤ P∗


∥∥∥∥∥∥
(

n
m

)−1/2

∑
(i1,...,im)∈Im

E(ln)

(ξi1,ln − 1) . . . (ξim ,ln − 1)ωh(Bi1 , . . . , Bim)

∥∥∥∥∥∥
Fδ

> ε

.

Suppose that ln ≤ E(ln), the opposite case can be treated in a similar way. We have

P∗
(∥∥∥T̃∗ln − T̆∗ln

∥∥∥
Fδ

> ε

)

= P∗
∥∥∥∥∥∥
(

n
m

)−1/2

∑
(i1,...,im)∈Im

E(ln)

(ξi1,ln − 1) . . . (ξim ,ln − 1)ωh(Bi1 , . . . , Bim)

−
(

n
m

)−1/2

∑
(i1,...,im)∈Im

ln

(ξi1,ln − 1) . . . (ξim ,ln − 1)ωh(Bi1 , . . . , Bim)

∥∥∥∥∥∥
Fδ

> ε


Define I :=

{
(i1, . . . , im) : 1 ≤ i1 < . . . < im ≤ E(ln) : ij 6= ik for j 6= k,

such that ∃ ` ∈ {1, . . . , m} : ln ≤ i` ≤ E(ln)}

≤ P∗


∥∥∥∥∥∥
(

n
m

)−1/2

∑
(i1,...,im)∈I

(ξi1,ln − 1) . . . (ξim ,ln − 1)ωh(Bi1 , . . . , Bim)

∥∥∥∥∥∥
Fδ

> ε


= P∗

∥∥∥∥∥
(

n
m

)−1/2

∑
(i1,...,im)∈I

(ξi1,ln − 1) . . . (ξim ,ln − 1)ωh(Bi1 , . . . , Bim) > ε

∩(|E(ln)− ln| ≤ n/4)

∥∥∥∥∥
Fδ

+ P∗(|E(ln)− ln| > n/4).

However, |E(ln)− ln| = OP(
√

n) by Lemma 1, part i). Then, the exists a constant K > 0,
such that for every ε > 0,

P∗(|E(ln)− ln| > n/4) < ε,

and the first expression in the previous expression is bounded by:

P∗

 max
M≤n/2+E(ln)

∥∥∥∥∥∥
(

n
m

)−1/2

∑
(i1,...,im)∈I′

(ξi1,ln − 1) . . . (ξim ,ln − 1)ωh̃(Bi1 , . . . , Bim)

∥∥∥∥∥∥
Fδ

> ε


where I

′
:= {(i1, . . . , im) : 1 ≤ i1 < . . . < im ≤ E(ln), ∃` = 1, . . . , m,E(ln) < i` ≤ M,

ij 6= ik for j 6= k
}

≤ C1P∗


∥∥∥∥∥∥
(

n
m

)−1/2

∑
(i1,...,im)∈I′′

(ξi1,ln − 1) . . . (ξim ,ln − 1)ωh̃(Bi1 , . . . , Bim)

∥∥∥∥∥∥
Fδ

> C2ε


where I

′′
m := {(i1, . . . , im) : 1 ≤ i1 < . . . < im ≤ E(ln), ∃` = 1, . . . , m,

E(ln) < i` ≤ E(ln) + n/2, ij 6= ik for j 6= k
}

.

The last expression follows from the Montgomery–Smith inequality. Since

E(ln)/n→ α−1,

the last expression matches the stochastic equicontinuity condition for T̃∗ln . This proves this
step.
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Before passing to the next step, we introduce a new bootstrap sample. Define
B̂i :=

{
XT i−1+1, . . . , XT i

}
for i = 1, . . . ,E(ln). Now, apply the weighted bootstrap proce-

dure on the sample {B̂i}
E(ln)
i=1 . This new procedure is the same as the old one for Bi, but we

aim here to replace the random quantity ln with a deterministic one, which is E(ln).
Step 3

Define:

T̂∗ln =

(
n
m

)−1/2

∑
(i1,...,im)∈Im

E(ln)

(ξi1,ln − 1) . . . (ξim ,ln − 1)ωh̃(B̂i1 , . . . , B̂im)

Hypothesis: The stochastic equicontinuity of T̃∗ln implies the stochastic equicontinuity of T̂∗ln .

Proof. First case: ln ≤ E(ln):

In this case, all of the terms in the following computation should be multiplied with
1(ln≤E(ln)). We leave it out to keep the already complex notation simple. Define

An := {B1, . . . , Bln}
−→
T ∗ln := T̂∗ln1(B̂i1

,...,B̂im )∈An
+ T∗ln1(B̂i1

,...,B̂im )∈A c
n

.

−→
T ∗ln is well defined, i.i.d., and has the same distribution as T∗ln and (i1, . . . , im) ∈ Im

E(ln).
Hence, if we show that:

lim
δ→0

lim sup
n→∞

P∗
(∥∥∥−→T ∗ln∥∥∥Fδ

> ε

)
= 0 in probability,

then the stochastic equicontinuity of T̃∗ln is established. However, we aim to approximate
the one of T̂∗ln . In order to achieve our goal, it is sufficient to estimate:

∥∥∥−→T ∗ln − T̂∗ln

∥∥∥
Fδ

=
∥∥∥T̂∗ln1(B̂i1

,...,B̂im )∈An
+ T∗ln1(B̂i1

,...,B̂im )∈A c
n
−
[

T̂∗ln1(B̂i1
,...,B̂im )∈An

+ T̂∗ln1(B̂i1
,...,B̂im )∈A c

n

]∥∥∥
Fδ

≤
∥∥∥T∗ln1(B̂i1

,...,B̂im )∈A c
n

∥∥∥
Fδ

+
∥∥∥T̂∗ln1(B̂i1

,...,B̂im )∈A c
n

∥∥∥
Fδ

:= In + I In. (32)

For In: Let
S∗n := ∑

(i1,...,im)∈Im
E(ln)

1(B̂i1
,...,B̂im )∈A c

n
,

conditioned on the sample, we have:

L

 ∑
(i1,...,im)∈Im

E(ln)

(ξi1,ln − 1) . . . (ξim ,ln − 1)ωh̃(Bi1 , . . . , Bim)1(B̂i1
,...,B̂im )∈A c

n



= L

 ∑
(i1,...,im)∈Im

S∗n

(ξi1,ln − 1) . . . (ξim ,ln − 1)ωh̃(Bi1 , . . . , Bim)

.

Hence,
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P∗(In > ε)

= P∗

(n
m

)−1/2

∥∥∥∥∥∥∥ ∑
(i1,...,im)∈Im

S∗n

(ξi1,ln − 1) . . . (ξim ,ln − 1)ωh̃(Bi1 , . . . , Bim)

∥∥∥∥∥∥∥
Fδ

> ε



= P∗

∥∥∥∥∥
(

n
m

)−1/2

∑
(i1,...,im)∈Im

S∗n

(ξi1,ln − 1) . . . (ξim ,ln − 1)ωh̃(Bi1 , . . . , Bim) > ε

∩
(
S∗n ≤ K

√
n
)∥∥∥∥∥

Fδ

+ P∗
(
S∗n > K

√
n
)

≤ P∗
 max

M≤K
√

n

∥∥∥∥∥
(

n
m

)−1/2

∑
(i1,...,im)∈I′

(ξi1,ln − 1) . . . (ξim ,ln − 1)ωh̃(Bi1 , . . . , Bim)

∥∥∥∥∥
Fδ

> ε


+P∗

(
S∗n > K

√
n
)
, for any K > 0,

where I
′

:= {(i1, . . . , im) : 1 ≤ i1 < . . . < im ≤ S∗n, ∃` = 1, . . . , m, S∗n < i` ≤ M,

ij 6= ik for j 6= k
}

.

≤ C1P∗
∥∥∥∥∥
(

n
m

)−1/2

∑
(i1,...,im)∈I′′m

(ξi1,ln − 1) . . . (ξim ,ln − 1)ωh̃(Bi1 , . . . , Bim)

∥∥∥∥∥
Fδ

> C2ε


+P∗

(
S∗n > K

√
n
)
, for any K > 0, (33)

where

I
′′
m := {(i1, . . . , im) : 1 ≤ i1 < . . . < im ≤ S∗n, ∃` = 1, . . . , m,

S∗n < i` ≤ K
√

n, ij 6= ik for j 6= k
}

.

For n large enough, we need to show that there exists K > 0 such that

P∗
(
S∗n > K

√
n
)
→ 0.

As 1B̂i∈A c
n

are i.i.d and bounded,

S∗n −E(S∗n)√
E(ln)

→ N(0, η2) in probability.

therefore, we can find M > 0 such that

P∗
(
S∗n > E(S∗n) +M

√
n
)
< ε.

However,
E(S∗n) = E(ln)P∗(B̂∗i ∈ A c

n ) = E(ln)− ln = OP(
√

n),

by Lemma 1 i), then
P∗
(
S∗n > K

√
n
)
→ 0.

Then, we only need to estimate the first part in (33). Define the following bootstrap
procedure: let

−→
B i :=

{
XT i−1+1, . . . , XT i

, 0, 0, . . .
}

and let
−→
F be a class of function, related

to the class of functions F , such that, for every −→ω h ∈
−→
F :
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
−→ω h(
−→
B 1,
−→
B 2, · · · ,

−→
B k) =

∞

∑
i1=1

. . .
∞

∑
ik=1

h(xi1 , . . . , xik )1xk 6=0 if defined,

∞ otherwise.
(34)

It is classical that {−→B i} are i.i.d., applying the same bootstrap method of Algorithm 1. This
new sample allows us to enlarge and bound (33) by

P∗
 sup
−→
h ∈
−→
H

∣∣∣∣∣
(

n
m

)−1/2

∑
(i1,...,im)∈I′′m

(ξi1,ln − 1) . . . (ξim ,ln − 1)−→ω−→
h
(
−→
B i1 , . . . ,

−→
B im)

∣∣∣∣∣ > ε

, (35)

where
−→
h ∈ −→H = {−→ω−→

f
−−→ω−→g ,

−→
f ,−→g ∈ −→F } and the corresponding class H = {ω f −

ωg, f , g ∈ F}, with envelope F̃ and F, respectively. To estimate the last expression, we use
bracketing. Define the bracket [ f `, f u] by:

[ f `, f u] := { f ∈ F : f ` 6 f 6 f u},

and the bracketing entropy number by N1(γ, F ,P), which denotes the minimal number N ≥ 1
for which there exist functions f `1 , · · · , f `N and f u

1 , · · · , f u
N such that:

F ⊂
N⋃

k=1

[
f `k , f u

k

]
,

∫
S

(
f u
k − f `k

)
P ≤ γ.

(36)

For the class of functions H , consider the bracket [h`, hu], such that E∗(h`, hu) 6 γ, where
γ > 0 and it is determined later. In this framework, the bracketing entropy number is
N∗(γ) := N1(γ, H ,D∗), for

D∗ =
(

ln
m

)−1

∑
(i1,...,im)∈Im

ln

ξi1,ln . . . ξim ,ln δ
(
−→
B i1

,...,
−→
B im )

.

Hence, we have the following inequalities

sup
−→
h ∈
−→
H

∣∣∣∣∣
(

n
m

)−1/2

∑
(i1,...,im)∈I′′m

(ξi1,ln − 1) . . . (ξim ,ln − 1)−→ω−→
h
(
−→
B i1 , . . . ,

−→
B im)

∣∣∣∣∣
≤ max

k≤N∗(γ)

∣∣∣∣∣
(

n
m

)−1/2

∑
(i1,...,im)∈I′′m

(ξi1,ln − 1) . . . (ξim ,ln − 1)
(

hu
k − h`k

)
(
−→
B i1 , . . . ,

−→
B im)

∣∣∣∣∣
≤ max

k≤N∗(γ)

∣∣∣∣∣
(

n
m

)−1/2

∑
(i1,...,im)∈I′′m

(ξi1,ln − 1) . . . (ξim ,ln − 1)

[
hu

k (
−→
B i1 , . . . ,

−→
B im)−E∗

(
hu

k (
−→
B i1 , . . . ,

−→
B im)

)]∣∣∣∣∣
+ max

k≤N∗(γ)

∣∣∣∣∣
(

n
m

)−1/2

∑
(i1,...,im)∈I′′m

(ξi1,ln − 1) . . . (ξim ,ln − 1)

[
h`k(
−→
B i1 , . . . ,

−→
B im)−E∗

(
h`k(
−→
B i1 , . . . ,

−→
B im)

)]∣∣∣∣∣
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+ max
k≤N∗(γ)

∣∣∣∣∣
(

n
m

)−1/2

∑
(i1,...,im)∈I′′m

(ξi1,ln − 1) . . . (ξim ,ln − 1)

[
E∗
(

hu
k (
−→
B i1 , . . . ,

−→
B im)

)
−E∗

(
h`k(
−→
B i1 , . . . ,

−→
B im)

)]∣∣∣∣∣
:= IA + IB + IC. (37)

Treating each term, keeping in mind Condition (A.1), i.e., ∑n
i=1 ξi = n, we have

IC := max
1≤k≤N∗(γ)

∣∣∣∣∣
(

n
m

)−1/2

∑
(i1,...,im)∈I′′m

(ξi1,ln − 1) . . . (ξim ,ln − 1)

[
E∗
(

hu
k (
−→
B i1 , . . . ,

−→
B im)

)
−E∗

(
h`k(
−→
B i1 , . . . ,

−→
B im)

)]∣∣∣∣∣
≤ γ

∣∣∣∣∣
(

n
m

)−1/2

∑
(i1,...,im)∈I′′m

(ξi1,ln − 1) . . . (ξim ,ln − 1)

∣∣∣∣∣
= γ

∣∣∣∣∣∣
(

n
m

)−1

∑
i{1,...,m−1}

m

∑
j=1

m

∏
k=1,k 6=j

ξik ,n

 n

∑
ij=1

(ξij ,n − 1)


∣∣∣∣∣∣ = 0,

and

P(IB > ε) := P
(

max
k≤N∗(γ)

∣∣∣∣∣
(

n
m

)−1/2

∑
(i1,...,im)∈I′′m

(ξi1,ln − 1) . . . (ξim ,ln − 1)

[
h`k(
−→
B i1 , . . . ,

−→
B im)−E∗

(
h`k(
−→
B i1 , . . . ,

−→
B im)

)]∣∣∣∣∣ > ε

)

≤ N∗(γ) max
k≤N∗(γ)

P
(∣∣∣∣∣
(

n
m

)−1/2

∑
(i1,...,im)∈I′′m

(ξi1,ln − 1) . . . (ξim ,ln − 1)

[
h`k(
−→
B i1 , . . . ,

−→
B im)−E∗

(
h`k(
−→
B i1 , . . . ,

−→
B im)

)]∣∣∣∣∣ > ε

)
(For h`k = h`k1h`k≤Mn

+ h`k1h`k>Mn
)

≤ N∗(γ) max
k≤N∗(γ)

P
(∣∣∣∣∣
(

n
m

)−1/2

∑
(i1,...,im)∈I′′m

(ξi1,ln − 1) . . . (ξim ,ln − 1)

[
h`k1h`k≤Mn

(
−→
B i1 , . . . ,

−→
B im)−E∗

(
h`k1h`k≤Mn

(
−→
B i1 , . . . ,

−→
B im)

)]∣∣∣∣∣ > ε

)

+N∗(γ) max
k≤N∗(γ)

P
(∣∣∣∣∣
(

n
m

)−1/2

∑
(i1,...,im)∈I′′m

(ξi1,ln − 1) . . . (ξim ,ln − 1)

[
h`k1h`k>Mn

(
−→
B i1 , . . . ,

−→
B im)−E∗

(
h`k1h`k>Mn

(
−→
B i1 , . . . ,

−→
B im)

)]∣∣∣∣∣ > ε

)

≤ N∗(γ)

ε2(n
m)

1/2E
∗
(
(ξ1,ln − 1) . . . (ξm,ln − 1)

[
h`k1h`k≤Mn

−E∗
(

h`k1h`k≤Mn

)])2

+
N∗(γ)

ε
E∗
∣∣∣(ξ1,ln − 1) . . . (ξm,ln − 1)

[
h`k1h`k>Mn

−E∗
(

h`k1h`k>Mn

)]∣∣∣
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≤ N∗(γ)

ε2(n
m)

1/2Eξ

(
m

∏
i=1

(ξi,ln − 1)2

)
E∗
([

h`k1h`k≤Mn
−E∗

(
h`k1h`k≤Mn

)])2

+
N∗(γ)

ε
E∗
∣∣∣(ξ1,ln − 1) . . . (ξm,ln − 1)

[
h`k1h`k>Mn

−E∗
(

h`k1h`k>Mn

)]∣∣∣
≤ N∗(γ)

ε2(n
m)

1/2 c2 × 4M2
n +

N∗(γ)
ε

E∗
∣∣∣(ξ1,ln − 1) . . . (ξm,ln − 1)h`k1h`k>Mn

∣∣∣
≤ N∗(γ)

ε2(n
m)

1/2 c2 × 4M2
n +

2N∗(γ)
ε

E∗
∣∣∣(ξ1,ln − 1) . . . (ξm,ln − 1)F̃1F̃>Mn

∣∣∣
≤ N∗(γ)

ε2(n
m)

1/2 c2 × 4M2
n

+
4N∗(γ)

ε

(
ln
m

)−1

∑
(i1,...,im)∈Im

ln

(ξi1,ln − 1) . . . (ξim ,ln − 1)
∣∣∣F̃1F̃>Mn

(
−→
B i1 , . . . ,

−→
B im)

∣∣∣,
(38)

yet,
−→
B i are i.i.d. and and E

(
F̃
)
= E(τ)mEF < ∞, so for any Mn ↗ ∞, we have

(
E(ln)

m

)−1

∑
(i1,...,im)∈Im

E(ln)

(ξi1,ln − 1) . . . (ξim ,ln − 1)F̃1F̃>Mn
(
−→
B i1 , . . . ,

−→
B im)→ 0 a.s.

Using the same argument as in part iii) of Lemma 1, we can prove that(
ln
m

)−1

∑
(i1,...,im)∈Im

ln

(ξi1,ln − 1) . . . (ξim ,ln − 1)
∣∣∣−→F 1−→F >Mn

(
−→
B i1 , . . . ,

−→
B im)

∣∣∣→ 0 in probability.

Then, it remains to find that, for every fixed γ > 0, N∗(γ) is bounded in probability, as the
last expression in (38) does not depend on k. It is interesting to note that N1(γ,

−→
H ,P) is

finite, due to the boundness of
−→
H by 2F with E−→F (

−→
B ) < ∞ and the fact that

−→
B i are i.i.d.

and discrete random variables. Under the norm L1(P), define γ/2 brackets h`1, · · · h`N(γ/2)
and hu

1 , · · · , hu
N(γ/2). Observe that

max
j≤N(γ/2)

∣∣∣∣∣
(

ln
m

)−1/2

∑
(i1,...,im)∈Im

ln

(ξi1,ln − 1) . . . (ξim ,ln − 1)
(

hu
j − h`j

)
(
−→
B i1 , . . . ,

−→
B im)

∣∣∣∣∣, (39)

converges to zero in probability, and N(γ/2) does not depend on n. That implies that
N∗(γ) ≤ N(γ/2) < ∞ in probability. Replacing h` by hu, IA is identical to IB, i.e., IA also
converges to zero in probability. This proves the convergence of In to zero in probability.

For I In: In the same manner, let

S∗n := ∑
(i1,...,im)∈Im

E(ln)

1(B̂i1
,...,B̂im )∈A c

n
.

Define a new bootstrap sample {B∗∗i } in i = ln + 1, . . . ,E(ln). Clearly, the new sample
is well-defined since we assumed at the beginning that ln ≤ E(ln), and it is defined
independently from B∗i and B̂∗i . In this case:

L

 ∑
(i1,...,im)∈Im

E(ln)

(ξi1,ln − 1) . . . (ξim ,ln − 1)ωh̃(B̂i1 , . . . , B̂im)1(B̂i1
,...,B̂im )∈A c

n


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= L

 ∑
(i1,...,im)∈Im

S∗n

(ξi1,ln − 1) . . . (ξim ,ln − 1)ωh̃(B
∗∗
i1 , . . . , B∗∗im )

.

Hence, as in (33), we have:

P∗(I In > ε)

= P∗∗

(n
m

)−1/2

∥∥∥∥∥∥∥ ∑
(i1,...,im)∈Im

S∗n

(ξi1,ln − 1) . . . (ξim ,ln − 1)ωh̃(Bi1 , . . . , Bim)

∥∥∥∥∥∥∥
Fδ

> ε


≤ C1P∗∗

∥∥∥∥∥
(

n
m

)−1/2

∑
(i1,...,im)∈I′′m

(ξi1,ln − 1) . . . (ξim ,ln − 1)ωh̃(Bi1 , . . . , Bim)

∥∥∥∥∥
Fδ

> C2ε


+P∗

(
S∗n > K

√
n
)
, for any K > 0, (40)

where

I
′′
m := {(i1, . . . , im) : 1 ≤ i1 < . . . < im ≤ S∗n, ∃` = 1, . . . , m,

S∗n < i` ≤ K
√

n, ij 6= ik for j 6= k
}

.

Using the same bootstrap procedure defined previously for In, let

−→
B i :=

{
XT i−1+1, . . . , XT i

, 0, 0, . . .
}

,

for i = ln + 1, . . . ,E(ln), and let
−→
F be a class of function such that, for every −→ω h ∈

−→
F :


−→ω h(
−→
B 1,
−→
B 2, · · · ,

−→
B k) =

∞

∑
i1=1

. . .
∞

∑
ik=1

h(xi1 , . . . , xik )1xk 6=0 if defined

∞ otherwise.
(41)

It is classical that {−→B i} are i.i.d., applying the same bootstrap method of Algorithm 1. This
new sample allows us to enlarge and bound (33) by

P∗∗
 sup
−→
h ∈
−→
H

∣∣∣∣∣
(

n
m

)−1/2

∑
(i1,...,im)∈I′′m

(ξi1,ln − 1) . . . (ξim ,ln − 1)−→ω−→
h
(
−→
B i1 , . . . ,

−→
B im)

∣∣∣∣∣ > ε

, (42)

where −→
h ∈ −→H = {−→ω−→

f
−−→ω−→g ,

−→
f ,−→g ∈ −→F }

corresponding to the class
H = {ω f −ωg, f , g ∈ F},

with envelope
−→
F and F, respectively. As before, for the class of functions H , consider the

bracket [h`, hu], such that
E∗∗(h`, hu) 6 γ,

where γ > 0 and it is determined later. In this framework, the bracketing entropy number
is N∗∗(γ) := N1(γ, H ,D∗∗), for

D∗∗ =
(
E(ln)− ln

m

)−1

∑
(i1,...,im)∈Im

E(ln)−ln

ξi1,ln . . . ξim ,ln δ
(
−→
B i1

,...,
−→
B im )

.

Following the same arguments from Equations (37) through (38), we can find that (42) is
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≤ N∗∗(γ) max
k≤N∗∗(γ)

P
(∣∣∣∣∣
(

n
m

)−1/2

∑
(i1,...,im)∈I′′m

(ξi1,ln − 1) . . . (ξim ,ln − 1)

[
h`k(
−→
B i1 , . . . ,

−→
B im)−E∗∗

(
h`k(
−→
B i1 , . . . ,

−→
B im)

)]∣∣∣∣∣ > ε

)

≤ N∗∗(γ)

ε2(n
m)

1/2 c2 × 4M2
n +

2N∗∗(γ)
ε

E∗∗
∣∣∣(ξ1,ln − 1) . . . (ξm,ln − 1)F̃1F̃>Mn

∣∣∣
≤ N∗∗(γ)

ε2(n
m)

1/2 c2 × 4M2
n +

4N∗∗(γ)
ε(

E(ln)− ln
m

)−1

∑
(i1,...,im)∈Im

E(ln)−ln

(ξi1,ln − 1) . . . (ξim ,ln − 1)
∣∣∣F̃1F̃>Mn

(
−→
B i1 , . . . ,

−→
B im)

∣∣∣.
(43)

Here, we must pay attention to the randomness of N∗∗ which depends on n. According
to Lemma 1 i), we can see that |E(ln) − ln| → ∞ in probability, under the assumption
that ln < E(ln). Now, using the same treatment of In, and for Mn := n1/3 ( to provide
the convergence of Mn to ∞), as in [47], this allows the convergence of (43) to zero in
probability. Estimating now N∗∗ by considering the same γ/2 brackets h`1, · · · h`N(γ/2) and
hu

1 , · · · , hu
N(γ/2), we have N∗∗(γ) < N(γ/2), which does not depend on n. Then, I In is

proved. Following the same footsteps, we can prove the case where ln > E(ln). This proves
Step 3.

The end of the previous step yields that we only need to show the stochastic equiconti-
nuity of T̂∗ln , where the number of blocks is replaced by the deterministic quantity E(ln). In
order to achieve the equicontinuity of this statistic, Lemma 2 shows that it is sufficient to
prove that:

E
∥∥∥∥ ∑

1≤ik≤`k ,1≤k≤m(n)
ε
(1)
i1
· · · ε(m)

im ω−→
h

(
B̂(1)

i1
, . . . , B̂(m)

im

)∥∥∥∥−→
H

≤ a(`1, . . . , `m)

( m

∏
k=1

`k

)1/2

for all 1 ≤ `1, . . . , `m ≤ n. We begin to define the distance:

e2
`( f , g) ≡ 1

∏m
k=1 `k

∑
1≤ik≤`k ,1≤k≤m

ω2−→
h

(
B̂(1)

i1
, . . . , B̂(m)

im

)
,

defined in L2, associated with the Rademacher process{
1

(∏m
k=1 `k)

1/2 ∑
1≤ik≤`k ,1≤k≤m

ε
(1)
i1
· · · ε(m)

im ω−→
h

(
B̂(1)

i1
, . . . , B̂(m)

im

)
:
−→
h ∈ −→H | B̂1, . . . , B̂m

}
.

Take ‖ f ‖2
` ≡ e2

`( f , 0) and
r`(δ) ≡ sup

f∈
−→
F δ

‖ f ‖2
` .

Using Corollary A1, we have
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E

∥∥∥∥∥ 1

(∏m
k=1 `k)

1/2 ∑
1≤ik≤`k ,1≤k≤m

ε
(1)
i1
· · · ε(m)

im ω−→
h

(
B̂(1)

i1
, . . . , B̂(m)

im

)∥∥∥∥∥−→
H

≤ C
∫ r`(δ)

0
(log N (ε, F , e`))

m/2 dε

= C‖F‖` ·
∫ r`(δ)/‖F‖`

0
(log N (ε‖F‖`, F , e`))

m/2 dε

≤ C‖F‖` ·
∫ r`(δ)/‖F‖`

0

(
sup

Q
log N

(
ε‖F‖L2(Q), F , L2(Q)

))m/2

dε. (44)

Assuming that F ≥ 1, the upper bound in the integral can be replaced by r`(δ). The
following proposition is necessary for the following.

Proposition 3 ([46]). Let {Xi} be i.i.d. random variables with law P. Let H be a class of
measurable real-valued functions defined on (X m, A m) with an Pm-integrable envelope such that
the following holds: for any fixed δ > 0, M > 0, 1 ≤ k ≤ m,

max
1≤j′≤k

E

 log N
(

δ, (πkH )M, e`,j′
)

`j′

1/2

→ 0 (45)

holds for any `1 ∧ · · · ∧ `k → ∞. Here for ` = (`1, . . . , `k) and {Xi}∞
i=1,

e`,j′( f , g) ≡ 1
`j′

`j′

∑
ij′=1

∣∣∣∣∣∣ 1
∏j 6=j′ `j

∑
1≤ij≤`j :j 6=j′

( f − g)
(
Xi1 , . . . , Xik

)∣∣∣∣∣∣
and

(πkH )M ≡
{

h1Hk≤M : h ∈ πkH
}

,

where Hk is an envelope for πkH . Then,

sup
h∈H

∣∣∣∣∣ 1
∏m

k=1 `k
∑

1≤ik≤`k ,1≤k≤m

(
h
(
Xi1 , . . . , Xim

)
− Pmh

)∣∣∣∣∣→ 0

in L1 as `1 ∧ . . . ∧ `m → ∞. The above equation can be replaced by the decoupled version.

By this proposition, ‖F‖` →P ‖F‖L2(P) as `1 ∧ . . . ∧ `m → ∞, therefore, it suffices to
get r`(δ)→p 0 as `1 ∧ . . . ∧ `m → ∞ and δ→ 0. It is obvious that all that is left to do now
is to demonstrate that

sup
f∈F̃δ

∣∣∣∣∣ 1
∏m

k=1 `k
∑

1≤ik≤`k ,1≤k≤m

(
ω2

h̃

(
B̂(1)

i1
, . . . , B̂(m)

im

)
− Pmω2

h̃

)∣∣∣∣∣→p 0. (46)

Verifying condition (45)

max
1≤j′≤k

E

 log N
(

δ, F 2
M, e`,j′

)
`j′

1/2

≤ (`1 ∧ · · · ∧ `k)
−1/2E

[∫ δ

0

(
log N

(
ε, F 2

M, e`,j′
))m/2

dε

]
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≤
(

δ√
2M

)−1

(`1 ∧ · · · ∧ `k)
−1/2E

[∫ δ/
√

2M

0

(
log N

(
ε, F 2

M, e`,j′
))m/2

dε

]

≤ (δ/2M)−1(`1 ∧ · · · ∧ `k)
−1/2

∫ 1

0

(
sup

Q
log N

(
ε‖F‖L2(Q), F , L2(Q)

))m/2

dε

× ‖F‖L2(Pm) → 0. (47)

The shift from the second to the third line is true because

N
(

δ, F 2
M, L2(Q)

)
≤ N

(
δ/
√

2M, FM, L2(Q)
)

.

As the condition is verified, as well as `1 ∧ · · · ∧ `m → ∞, (46) follows directly using the
previous proposition. Hence, there exists some sequence {a`}, in a way that a` → 0 for any
sequence {δ`} with δ` → 0 both under `1 ∧ · · · ∧ `m → ∞, such that:

E

∥∥∥∥∥ ∑
1≤ik≤`k ,1≤k≤m

ε
(1)
i1
· · · ε(m)

im ωh̃

(
B̂(1)

i1
, . . . , B̂(m)

im

)∥∥∥∥∥
H̃

≤ a`

(
m

∏
k=1

`k

)1/2

.

(48)

An application of Lemma 2 proves that

n−m/2E
∥∥∥∥ ∑

1≤i1,...,im≤n
(ξi1 − 1) · · · (ξim − 1)ωh̃(B̂i1 , . . . , B̂im)

∥∥∥∥
Fδn

→ 0, n→ ∞.

This completes the proof for the asymptotic equicontinuity.
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Appendix A

This appendix contains supplementary information that is an essential part of pro-
viding a more comprehensive understanding of the paper. We also refer to [46] for more
details.

Proof of Proposition 1. Let B0 =
{

X1, · · · , XT0

}
and B(n)

ln
=
{

XT ln−1+1, . . . , Xn

}
the pos-

sibly empty non-regenerative blocks of observations. Note that, for ln ≤ 2, the demonstra-
tion can be viewed directly in [59], under the assumptions (C1), ( C2) and (C3), we can see
that

Pν(ln ≤ 2) = O(n−2).

Otherwise, for ln > 2, we can write Wn(h) as follows:

Wn(h) = (I) + (I I),
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where

(I) =
1
(n

m)

[
∑

1≤i1<...<im−1≤ln−1
ωh̃(B0, Bi1 , . . . , Bim−1)

+ ∑
1≤i1<...im−1≤ln−1

ωh̃(Bi1 , . . . , Bim−1 , Bln)

]
,

(I I) =
1
(n

m)

 m

∑
j=2

∑
0≤k<i1<...im−1−j≤ln

ωh̃(Bk, . . . , Bk, Bi1 , . . . , Bim−1−j)

−
m

∑
j=2

∑
1≤k<i1<...<im−1−j≤n

h̃(Xk, . . . , Xk, Xi1 , . . . , Xim)


=

1
(n

m)

 ∑(
Iln−1
m

)c
ωh̃(Bi1 , . . . , Bim)− ∑

(In
m)c

h̃(Xi1 , . . . , Xim)

,

where

(Is
m)

c = {(i1, . . . , im) : ij ∈ N, 1 ≤ ij ≤ n; at least there are j and k such that ij = ik},

the complement of index set, with cardinal equal to (s+m−1
m )− ( s

m):= ( s
m). To prove the conver-

gence of Wn(h) to zero in probability, we must fulfill the convergence of (I) and (II) to zero
in probability.

A =

(
n
m

)−1

∑(
Iln−1
m

)c
ωh̃(Bi1 , . . . , Bim)

→
n→∞

α−m[E(ωh(B1, Bk, . . . , Bk,︸ ︷︷ ︸
u times

Bk+u, . . . , Bm))−EA((τ)
u)(EA(τ))

m−uµ(h)],

where 1 ≤ k ≤ m and 1 ≤ u ≤ k. We apply the SLLN for Harris Markov chains to find the
convergence of

B =

(
n
m

)−1

∑
(In

m)c
h̃(Xi1 , . . . , Xim),

to

∫
. . .
∫

h(x1, xk, . . . , xk,︸ ︷︷ ︸
u times

xk+u, . . . , xm)dµ(x1)dµu(x1)dµ(xk+u) . . . dµ(xm)− µ(h).

Using the conditions, all terms in A and B are finite and we can prove the convergence of
(I I) to zero. Now, for (I), applying the SLLN and by Lemma 3.2 in [47] part i), we can see
that

Pν

(
lim

n→+∞

ln
n
→ α−1 = (EA(τ))

−1
)
= 1. (A1)

We have

n−2m Eν

[(
∑

1≤i1<...<im−1≤ln−1
ωh̃(B0, Bi1 , . . . , Bim−1)

)2]
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≤ 2α−2m
{
Eν

[(
ω|h|(B0, B1, . . . , Bm−1)

2
]
+Eν(τ0)(EA(τ)

m−1µ(h)2
}

< ∞.

We obtain, in turn, that

n−2mEν

[(
∑

1≤i1<...im−1≤ln

ωh̃(Bi1 , . . . , Bim−1 , Bln)

)2]

≤ 2α−2m
{
Eν

[(
ω|h|(B1, . . . , Bm−1, Bln)

2
]
+ (EA(τ))

mµ(|h|)2
}

< ∞.

Hence, (I) also converges to zero a.s under Pν as n→ ∞.

Proof of Theorem 1. In what follows, let L = ln − 1 denote the number of blocks observed.
We find that

RL(h) = SL(h) + DL(h),

where

SL(h) =
m
L

L

∑
i=1

h̃(1)(Bi),

DL(h) =
m

∑
j=2

(
m
j

)(
L
j

)−1

∑
1≤i1<···<ij≤L

h̃(j)
(

Bi1 , . . . , Bij

)
,

where h̃(c)(·) represents the conditional expectation of ωh̃(·) given the c of the coordi-
nates, for all Bc ∈ T. The U-statistics DL(h) is obtained by truncating the Hoeffding
decomposition after the first term SL(h). Then, we just need to show that:

1.
L1/2SL(h) converges weakly to a Gaussian process GP on l∞(F ),

2.
‖L−m+1/2DL(h)‖F → 0.

For PL(h1) := 1
L ∑L

i=1 h̃1(Bi), introduce

ZL(h) =
√

L(PL(h1)− P(h1)) =
1√
L

L

∑
i=1

(PL

(
Pm−1(h))− Pm(h)

)
.

Using (A1), we can replace the random variable L = ln − 1 with the deterministic quantity
L̆ and we write

ZL̆(h) =
1√
L̆

L̆

∑
i=1

(PL̆

(
Pm−1(h))− Pm(h)

)
+ oP,

where L̆ = 1+
⌊

n
EA(τ)

⌋
. In order to establish the weak convergence for the empirical process

ZL̆(h), it is sufficient and necessary to prove the finite dimensional convergence and the
stochastic equicontinuity. For the finite multidimensional convergence, we have to prove
that

(
ZL̆(hi1), . . . , ZL̆(hik )

)
converges weakly to

(
G(hi1), . . . , G(hik )

)
, for every fixed finite

collection of functions {
hi1 , . . . , hik

}
⊂ F .

In order to fix this, it is enough to show that for every fixed a1, . . . , ak ∈ R,

k

∑
j=1

ajZL̆(hij)→ N(0, σ2), in distribution,
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where

σ2 =
k

∑
j=1

a2
j Var(ZL̆(hij)) + ∑

s 6=r
ajaiCov(ZL̆(his), ZL̆(hir )).

By linearity, and in the same footsteps of the arguments of ([57], Chapter 17), we can prove
that

1√
n

L̆

∑
j=1

h̃1(Bj)→ N
(

0, γ2
h1

)
,

where, under Condition (C5),
γ2

h1
= αEA

(
h̃2

1(B1)
)

.

We readily infer that we have

√
LSL(h)→ N

(
0, m2EA

(
h̃2

1(B1)
))

.

Now, to verify the equicontinuity, we need to check that for every ε > 0,

lim
δ→0

lim
n→∞

P
(

sup
d( f ,g)≤δ

|ZL( f )− ZL(g)| > ε

)
= 0,

where d(·, ·) is a pseudo distance for which the class F is totally bounded, and f , g belong
to F . According to [72], we have

|ZL( f − g)| =

∣∣∣∣∣ 1√
L

[
L

∑
k=1

( f − g)(Bk)− Pm( f − g)

]∣∣∣∣∣
≤

∣∣∣∣∣ 1√
L

∑
a≤k≤b

(( f − g)(Bk)− Pm( f − g))

∣∣∣∣∣
+

∣∣∣∣∣∣ 1√
L

∑
1≤k≤bn/E(τ)c

(( f − g)(Bk)− Pm( f − g))

∣∣∣∣∣∣,
where a = min(L, bn/E(τ)c) and b = max(L, bn/E(τ)c). For the left-hand part in the last
inequality, we have ∣∣∣∣∣ ∑

a≤k≤b
(( f − g)(Bk)− Pm( f − g))

∣∣∣∣∣
≤ 2sup

f∈F
max

1≤s≤n

{
2

∣∣∣∣∣ ∑
1≤k≤s

(
f (Bk)− Pm( f )

)∣∣∣∣∣
}

.

Dividing the last inequality by L1/2 and using the convergence result in ([72] Lemma 2.11)
with Condition (C1), we obtain the desired result. The right-hand part in the inequality is
treated using ([72] Lemma 4.2) providing that EA(τ)

2+α < ∞, for α > 0 and the hypothesis
of a finite uniform entropy integral. To complete the weak convergence of the regenerative
U-statistic, we must treat the remaining terms of its Hoeffding decomposition. For ζ ∈ F ,
let us introduce

ζ := ωh̃(B1, . . . , Bm)− Pm(h)−
m

∑
i=1

h̃(1)(Bi), Bi ∈ T. (A2)

Once can see that ζ is centered, that is∫
ζ(B1, . . . , Bm)dP(B1) . . . dP(Bi) . . . dP(Bm) = 0. (A3)
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By the randomization theorem, according to [7] (for r = 2):

E

∥∥∥∥∥∥ ∑
1≤i1<···<im≤L̆

ζ(Bi1 , . . . , Bim)

∥∥∥∥∥∥ = E

∥∥∥∥∥∥ ∑
1≤i1<···<im≤L̆

ε
(1)
i1

ε
(2)
i2

ζ(B(1)
i1

, . . . , B(1)
im )

∥∥∥∥∥∥.

Hence, for C a constant:

E

∥∥∥∥∥∥L̆−1/2 ∑
1≤i1<···<im≤L̆

ζ(Bi1 , . . . , Bim)

∥∥∥∥∥∥
F

≤ CE
∫ ∞

0
L̆−1/2 log Nn,2(ε, F )dε.

It is sufficient now to use the theorem hypothesis of a uniform entropy integral to complete
the proof of the theorem.

Proof of Theorem 2. We have

E

∥∥∥∥∥ ∑
1≤i1<...<im≤n

ξi1 . . . ξim f
(

Y(1)
i1

, . . . , Y(m)
im

)∥∥∥∥∥
F

.

By decoupling of the U-process, due to [6],

≤ Cm E
∥∥∥∥ ∑

1≤i1<...<im≤n
ξi1 . . . ξim f

(
Y(1)

i1
, . . . , Y(m)

im

)∥∥∥∥
F

.

By symmetrization, due to [6], we have

≤ 2mCm E
∥∥∥∥ ∑

1≤i1<...<im≤n
ξi1 . . . ξim ε

(1)
i1

. . . ε
(m(n))
im f

(
Y(1)

i1
, . . . , Y(m)

im

)∥∥∥∥
F

for (sgn(ξ1)ε
∗
1, . . . , sgn(ξn)ε∗n) a sequence independent and with the same distribution as

(ξ1, . . . , ξn). By the invariance of (Pε ⊗ P)mn and the fact that ξ is independent of X·, ε·, we
have that

= 2mCm Ex,ε

∥∥∥∥ ∑
1≤i1<...<im≤n

|ξi1 | . . . |ξim |sgn(ξi1)ε
(1)
i1

. . . sgn(ξim)ε
(m(n))
im f

(
Y(1)

i1
, . . . , Y(m)

im

)∥∥∥∥
F

= 2mCm Ex,ε

∥∥∥∥ ∑
1≤i1<...<im≤ln−1

|ξi1 | . . . |ξim |ε
(1)
i1

. . . ε
(m(n))
im f

(
Y(1)

i1
, . . . , Y(m)

im

)∥∥∥∥
F

,

using the reversed order statistics of {|ξi|}n
i=1, |ξ(1)| ≥ · · · ≥ |ξ(n)|, and the permutations

between the different sequences of random variables, and in the same footsteps as [46],

= 2mCm E
∥∥∥∥ ∑

1≤i1<...<im≤n
|ξ(i1)| . . . |ξ(im)|ε

(1)
i1

. . . ε
(m(n))
im f

(
Y(1)

i1
, . . . , Y(m)

im

)∥∥∥∥
F

substituting ξ(i) by ∑n
k=i ξ(k) − ξ(k+1), with |ξ(n+1)| = 0, we have

≤ 2mCm E
∥∥∥∥ ∑

1≤i1<...<im≤n
∑

kj≥ij ,1≤j≤r
(|ξ(l1)| − |ξ(l1+1)|) . . . (|ξ(lm)| − |ξ(lm+1)|)

× ε
(1)
i1

. . . ε
(m(n))
im f

(
Y(1)

i1
, . . . , Y(m)

im

)∥∥∥∥
F

≤ 2mCm E
∥∥∥∥ ∑

1≤i1,...,im≤n
∑

`k≥ik ,1≤k≤m
(|ξ(`1)

| − |ξ(`1+1)|) · · · (|ξ(`m)| − |ξ(`m+1)|)
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× ε
(1)
i1
· · · ε(m(n))

im f
(

Y(1)
i1

, . . . , Y(m)
im

)∥∥∥∥
F

≤ 2mCm E
[

∑
1≤`1,...,`m≤n

(|ξ(`1)
| − |ξ(`1+1)|) · · · (|ξ(`m)| − |ξ(`m+1)|)

×E
∥∥∥∥ ∑

1≤ik≤`k ,1≤k≤m
ε
(1)
i1
· · · ε(m(n))

im f
(

Y(1)
i1

, . . . , Y(m)
im

)∥∥∥∥
F

]

≤ 2mCm E
[

∑
1≤`1,...,`m≤n

∫ |ξ(`1)
|

|ξ(`1+1) |
· · ·

∫ |ξ(`m) |

|ξ(`m+1) |)
ψn(`1, . . . , `m)dtm · · · dt1

]

≤ 2mCm E
[

∑
1≤`1,...,`m≤n

∫ |ξ(`1)
|

|ξ(`1+1) |
· · ·

∫ |ξ(`m) |

|ξ(`m+1) |)

ψn(|{i : |ξi| > t1}|, . . . , |{i : |ξi| > tm}|)dtm · · · dt1

]
≤ 2mCm E

[ ∫
Rm
≥0

ψn(|{i : |ξi| > t1}|, . . . , |{i : |ξi| > tm}|)dt1 · · · dtm

]
≤ 2mCm

∫
Rm
≥0

Eψn

( n

∑
i=1

1|ξi |>t1
, . . . ,

n

∑
i=1

1|ξi |>tm

)
dt1 · · · dtm. (By Fubini’s theorem.)

Now, suppose that ψn(`1, . . . , `m) = ψ̄n(∏m
k=1 `k). Then, we may further bound the above

equation by

∫
Rm
≥0

Eψ̄n

( m

∏
k=1

n

∑
i=1

1|ξi |>tk

)
dt1 . . . dtm

=
∫
Rm
≥0

Eψ̄n

(
∑

1≤i1,...,im≤n

m

∏
k=1

1|ξik
|>tk

)
dt1 . . . dtm

≤
∫
Rm
≥0

ψ̄n

(
∑

1≤i1,...,im≤n
E

m

∏
k=1

1|ξik
|>tk

)
dt1 . . . dtm (by Jensen’s inequality)

≤
∫
Rm
≥0

ψ̄n

(
∑

1≤i1,...,im≤n

m

∏
k=1

P
(
|ξik | > tk

)1/m
)

dt1 . . . dtm,

where the last inequality follows from the generalized Hölder inequality and the assump-
tion that ψ̄n is nondecreasing.

Proof of Lemma 2. For

ψn(`1, . . . , `m) ≡ a(`1, . . . , `m)

(
m

∏
k=1

`k

)1/2

,

Theorem 2 implies that:

E

∥∥∥∥∥ ∑
1≤i1,...,im≤n

ξi1 · · · ξim f
(
Yi1 , . . . , Yim

)∥∥∥∥∥
F(n,...,n),n

≤ Km

∫
Rm
≥0

E

a

(
n

∑
i=1

1|ξi |>t1
, . . . ,

n

∑
i=1

1|ξi |>tm

)
m

∏
k=1

(
n

∑
i=1

1|ξi |>tk

)1/2
dt1 · · ·dtm

≤ Km

∫
Rm
≥0

A2,n(t1, . . . , tm)

{
E

m

∏
k=1

n

∑
i=1

1|ξi |>tk

}1/2

dt1 · · ·dtm
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≤ Km

∫
Rm
≥0

A2,n(t1, . . . , tm)

(
∑

1≤i1,...,im≤n

m

∏
k=1

P
(∣∣ξik

∣∣ > tk
)1/m

)1/2

dt1 · · ·dtm

= nm/2Km

∫
Rm
≥0

A2,n(t1, . . . , tm)
m

∏
k=1

P(|ξ1| > tk)
1/2m dt1 · · ·dtm.

Here

A2,n(t1, . . . , tm) ≡
{
E
[

a2

(
n

∑
i=1

1|ξi |>t1
, . . . ,

n

∑
i=1

1|ξi |>tm

)]}1/2

→ 0

as long as none of {P(|ξ1| > tk) : 1 ≤ k ≤ m} vanishes. The claim now follows from the
dominated convergence theorem.

Corollary A1 ([6]). Let X(t), t ∈ T, be a (weak) Gaussian or Rademacher chaos process of degree
m and let

dX(s, t) :=
[
E(X(t)− X(s))2

]1/2
, s, t ∈ T.

If ∫ D

0
(log N(T, dX , ε))m/2dε < ∞,

then there is a version of X, which we keep denoting X, with almost all of its sample paths in
Cu(T, dX) and such that∥∥∥∥∥sup

t∈T
|X(t)|

∥∥∥∥∥
ψ2/m

≤ ‖X(t0)‖ψ2
+ K

∫ D

0
(log(N(T, dX , ε)))m/2dε,

and ∥∥∥∥∥∥∥ sup
dX(s,t)≤δ

s.t∈T

|X(t)− X(s)|

∥∥∥∥∥∥∥
ψ2/m

≤ K
∫ δ

0
(log(N(T, dX , ε)))m/2dε,

for all 0 < δ ≤ D, where K is a universal constant and D is the diameter of T for the pseudodistance
dX . In fact, every separable version of X satisfies these properties.

Theorem A1 ([73]). For any random elements Yn with values in a metric space (S, d), where Y is
measurable and has a separable range, the following are equivalent:

1. Yn converge in law to Y;
2. dBL(Yn, Y)→ 0 as n→ ∞;
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