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Abstract: In this paper, a stochastic Hantavirus infection model is constructed. The existence,
uniqueness, and boundedness of the positive solution of the stochastic Hantavirus infection model
are derived. The conditions for the extinction of the Hantavirus infection from the stochastic system
are obtained. Furthermore, the criteria for the presence of a unique ergodic stationary distribution
for the Hantavirus infection model are established using a suitable Lyapunov function. Finally,
the importance of environmental noise in the Hantavirus infection model is illustrated using the
Milstein method.
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1. Introduction

Hantaviruses may be transmitted to humans through the saliva of rodents, such as
mice and rats, their urine or feces, or through contact and inhalation of air contaminated
with droplets of rodent saliva or dust contaminated with their dry droppings. This may
result in fatal diseases in humans, such as pulmonary infection syndrome and hemorrhagic
fever. Hantavirus pulmonary infection syndrome is rare, but fatal [1]. The Southwest USA
experienced a Hantavirus outbreak in 1993, which led to a high mortality rate. Mathemat-
ical modeling of the spread of the Hantavirus infection is one of the important tools for
understanding and interpreting different interactions between susceptible and infected
mice. A simple mathematical model was developed by Abramson [1] to simulate the
propagation of the virus, and it was shown to be capable of simulating some features of
infection. In real life, rodents and so-called ‘alien’ species share the resources available
in the environment. Therefore, rodents do not only share resources among themselves.
Biodiversity and the competition between “alien” species and rodents should be taken
into account. According to Peixoto [2] and Solomon [3], biodiversity plays an important
role in controlling the spread of Hantavirus. The rodents and nonhost species can exert
pressure on one another through the level of their respective interspecific competition.
In order to account for the biodiversity effect, Peixoto [2] extended the basic Abramson
model by including a nonhost alien species. Yusof et al. [4] extended the Peixoto model
to include the effects of harvesting. Some studies of the modeling of Hantavirus infection
include [5–17]. According to [18,19], the intrinsic growth rate, mortality rate, carrying
capacity, competition coefficients, and other system parameters would be impacted by
environmental changes. Following [20], one can estimate the birth and death rates by an
average value plus errors. In general, by the well-known central limit theorem, the error
term follows a normal distribution; thus, for a short correlation time, one can assume that
the birth and death rates are subjected to the Gaussian white noise. The stochastic effect,
which can be significant because the environmental conditions for its transmission are
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subject to ecological randomness, is not taken into account by the deterministic Peixoto
Hantavirus infection model. The primary purpose of this paper is to formulate a stochastic
dynamic model to predict Hantavirus infection and identify the key factors that signifi-
cantly affect the disease spread and control of Hantavirus infection. Hence, our goal in this
paper is to provide a comprehensive analysis of the stochastic Hantavirus infection model,
especially the existence and uniqueness of a positive global solution and the conditions for
the extinction of the Hantavirus infection. This approach has recently been used in many
papers for the analysis of stochastic predator–prey systems [21–25], stochastic epidemic
models [26–33], and stochastic analysis methods [34–36]. This paper is arranged as follows:
In Section 3, the existence and uniqueness of a positive global solution of the stochastic
Hantavirus infection model are investigated, and sufficient conditions for the extinction of
the infection from the stochastic system are obtained. In Section 4, some numerical simu-
lations are presented to verify the obtained theoretical results. Finally, Section 5 contains
the conclusion.

2. Hantavirus Model

In this section, we first present Abramson’s model that investigates the spread of Han-
tavirus infection. In this model, the total population of rodents is divided into susceptible
mice x1(t) and infected mice x2(t). The Abramson model’s equations are as follows [1]:

dx1

dt
= b(x1 + x2)− cx1 −

x1

k
(x1 + x2)− ax1x2,

dx2

dt
= ax1x2 −

x2

k
(x1 + x2)− cx2,

(1)

where b is the birth rate, c is the death rate, k is related to the carrying capacity of the
environment, and a is the constant infection rate. The Peixoto model of competition
Hantavirus dynamics including the nonhost alien species x3(t) takes the form [2]:

dx1

dt
= b(x1 + x2)− cx1 −

x1

k
(x1 + x2 + ρx3)− ax1x2,

dx2

dt
= ax1x2 −

x2

k
(x1 + x2 + ρx3)− cx2,

dx3

dt
= (β− γ)x3 −

x3

k
(x3 + δ(x1 + x2)),

(2)

where β and γ are the alien population’s birth and death rates, respectively. ρ is the inter-
specific competition strength exerted by the alien population onto the mouse population,
and δ is the interspecific competition strength exerted by the mouse population onto the
alien population. In the present paper, the Hantavirus infection model (2) will extend to
include the stochastic effects as follows:

dx1 =
[
b(x1 + x2)− cx1 −

x1

k
(x1 + x2 + ρx3)− ax1x2

]
dt + σ1x1 dB1,

dx2 =
[

ax1x2 −
x2

k
(x1 + x2 + ρx3)− cx2

]
dt + σ2x2 dB2,

dx3 =
[
(β− γ)x3 −

x3

k
(x3 + δ(x1 + x2))

]
dt + σ3x3 dB3,

(3)

where B = {B1, B2, B3, t ≥ 0} represents the three-dimensional standard Brownian motions.
The stochastic extension of the deterministic Abramson model (1) is recovered by setting
ρ = 0 and ignoring the third equation of system (3).

3. Dynamics of the Stochastic Model

Firstly, we shall demonstrate the existence and uniqueness of a positive global solution
of the Hantavirus infection model (3) in the following theorem.
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Theorem 1. There exists a unique solution of the Hantavirus infection model (3) for positive initial
values, and the positive global solution remains in R3

+ with probability one.

Proof. Assume (x1(t), x2(t), x3(t)) is the solution to the Hantavirus infection model (3) for
t ∈ [0, τe), where τe is the explosion time. Using the following variables

X1(t) = ln x1(t), X2(t) = ln x2(t), X3(t) = ln x3(t),

one obtains

d X1(t) =

[
b(1 +

eX2

eX1
)− c− 1

k

[
eX1 + eX2 + ρeX3

]
− aeX2 −

σ2
1

2

]
dt + σ1 dB1,

d X2(t) =

[
aeX1 − 1

k

[
eX1 + eX2 + ρeX3

]
− c−

σ2
2

2

]
dt + σ2 dB2,

d X3(t) =

[
(β− γ)− 1

k

[
eX3 + δ(eX1 + eX2

]
−

σ2
3

2

]
dt + σ3 dB3.

(4)

The transformed system (4) has a a unique local solution on [0, τe), as the coefficients
satisfy the local Lipschitz conditions. Next, we prove that τe = ∞ almost surely. Let s0 > 0
be sufficiently large for every coordinate in the interval [ 1

s0
, s0]. For each integer s > s0, we

can define

τs = inf
{

t ∈ [0, τe) : min{x1(t), x2(t), x3(t)} 6∈ (
1
s

, s) or max{x1(t), x2(t), x3(t)} 6∈ (
1
s

, s)
}

. (5)

Using the following positive definite C2 function V1(x1, x2, x3) as

V1(x1, x2, x3) = (x1 + 1− lnx1) + (x2 + 1− lnx2) + (x3 + 1− lnx3), (6)

one obtains

dV1 =

[
(x1 − 1)

(
b +

bx2

x1
− c− 1

k
[x1 + x2 + ρx3]− ax2

)
+ (x2 − 1)

(
ax1 −

1
k
[x1 + x2 + ρx3]− c

)
+(x3 − 1)

(
β− γ− 1

k
(x3 + δ(x1 + x2))

)
+

1
2

3

∑
i=1

σ2
i

]
dt + σ1(x1 − 1)dB1 + σ2(x2 − 1)dB2 + σ3(x3 − 1)dB3

≤
[
(b +

2 + δ

k
)x1 + (b + a +

2 + δ

k
)x2 + (β− γ +

2ρ + 1
k

)x3 + 2c +
1
2

3

∑
i=1

σ2
i

]
dt + σ1(x1 − 1)dB1

+σ2(x2 − 1)dB2 + σ3(x3 − 1)dB3.

Using the inequality A ≤ 2(A + 1− lnA), for any A > 0, one obtains

dV1 ≤
[

2(b +
2 + δ

k
)(x1 + 1− lnx1) + 2(b + a +

2 + δ

k
)(x2 + 1− lnx2) + 2(β− γ +

2ρ + 1
k

)(x3 + 1− lnx3)

+

(
2c +

1
2

3

∑
i=1

σ2
i

)]
dt + σ1(x1 − 1)dB1 + σ2(x2 − 1)dB2 + σ3(x3 − 1)dB3,

which means that

dV1 ≤ K(1 + V1)dt + σ1(x1 − 1)dB1 + σ2(x2 − 1)dB2 + σ3(x3 − 1)dB3, (7)

where

K = max

{
2(b +

2 + δ

k
), 2(b + a +

2 + δ

k
), 2(β− γ +

2ρ + 1
k

), 2c +
1
2

3

∑
i=1

σ2
i

}
. (8)
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Integrating form 0 to t1 ∧ τs and taking the expectation, one obtains

EV1(x1(t1 ∧ τs), x2(t1 ∧ τs), x3(t1 ∧ τs)) ≤ V1(x1(0), x2(0), x3(0)) + KT + K
∫ t1∧τs

0
EV1 dt.

Following [18,37], using Grownwall’s inequality, one obtains

EV1(x1(t1 ∧ τs), x2(t1 ∧ τs), x3(t1 ∧ τs)) ≤ [V1(x1(0), x2(0), x3(0)) + KT]eKT = K2.

The remaining part of the proof is similar to [37,38]; therefore, it can be omitted.

Theorem 1 shows that the stochastic Hantavirus infection model (3) has a positive
global solution remaining in R3

+ with probability one. Next, we establish the boundedness
property of the Hantavirus infection model (3).

Theorem 2. Let H(t) = x1(t) + x2(t) + x3(t); then, the following inequality holds:

lim
t→∞

sup E[H(t)] ≤
β2

1k
2β2

almost surely, where β1 = max{b, β}, and β2 = min{c, γ}.

Proof. According to the stochastic Hantavirus infection model, (3)

dH(t) ≤
[

b(x1 + x2)− c(x1 + x2)−
1
k
(x1 + x2)

2 − ρx3

k
(x1 + x2) + (β− γ)x3 −

x3

k
(x3 + δ(x1 + x2))

]
dt

+σ1x1 dB1 + σ2x2 dB2 + σ3x3 dB3

≤−1
k

[
(x1 + x2)

2 − bk(x1 + x2) +
b2k2

4

]
+

b2k
4
− 1

k

[
x2

3 − βkx3 +
β2k2

4

]
+

β2k
4
− c(x1 + x2)− γx3

+σ1x1 dB1 + σ2x2 dB2 + σ3x3 dB3

≤
β2

1k
2
− β2(x1 + x2 + x3) + σ1x1 dB1 + σ2x2 dB2 + σ3x3 dB3.

Consequently,

H(t) ≤ H(0) +
β2

1k
2

t− β2

∫ t

0
H(s)ds +

∫ t

0
[σ1x1dB1 + σ2x2dB2 + σ3x3dB3]ds.

Using the strong law of large numbers, one obtains

E[H(t)] ≤ H(0) +
β2

1k
2

t− β2

∫ t

0
E(H(s))ds.

Consequently,
dE[H(t)]

dt
+ β2E[H(t)] ≤

β2
1k
2

.

Thus, one obtains

lim
t→∞

sup E[H(t)] ≤
β2

1k
2β2

.

According to Theorem 2, the solution of the Hantavirus infection model (3) is uniformly
bounded in mean, and as a result, the deterministic Hantavirus infection model (2) is
uniformly bounded.



Mathematics 2022, 10, 3756 5 of 15

Theorem 3. If σ2
1 + 2b + 1 < 2c, σ2

2 + 1 < 2c, σ2
3 + 2β + 1 < 2γ, then the solutions of (3) are

stochastically ultimate bounded.

Proof. For (x1(t), x2(t), x3(t)) ∈ R3
+, we define the following function

V2(x(t), y(t), z(t)) = x(t)2 + y(t)2 + z(t)2. (9)

By the Itô formula, one has

dV2 = LV2dt + 2σ1x2
1dB1 + 2σ2x2

2dB2 + 2σ3x2
3dB3, (10)

where

LV2(x1, x2, x3) =2

[
bx2

1 + bx1x2 − cx2
1 −

x2
1

2
(x1 + x2 + ρx3)− ax2

1x2 + ax1x2
2 − cx2

2 −
x2

2
2
(x1 + x2 + ρx3)

]

+ 2x2
3

(
(β− γ)− 1

k
(x3 + δ(x1 + x2))

)
+ σ2

1 x2
1 + σ2

2 x2
2 + σ2

3 x2
3

≤(σ2
1 + 2b− 2c + 1)x2

1 +
(

σ2
2 − 2c + 1

)
x2

2 +
(

σ2
3 + 2(β− γ) + 1

)
x2

3 + 2ax1x2
2 − (x2

1 + x2
2 + x2

3).

Assume f1(x1, x2, x3) = (σ2
1 + 2b− 2c+ 1)x2

1 +
(
σ2

2 − 2c + 1
)
x2

2 +
(
σ2

3 + 2(β− γ) + 1
)

x2
3

+2ax1x2
2. According to Theorem 2, one can find that the function f1(x1, x2, x3) has an upper

bound. Let M = sup f1(x1, x2, x3) + 1. As a result,

dV2 = (M−V2)dt + 2σ1x2
1dB1 + 2σ2x2

2dB2 + 2σ3x2
3dB3. (11)

By the Itô formula, one obtains

d(etV2) ≤ etN1dt + et
[
2σ1x2

1dB1 + 2σ2x2
2dB2 + 2σ3x2

3dB3

]
.

Consequently,

etV2(x1(t), x2(t), x3(t)) ≤ V2(x1(0), x2(0), x3(0)) + Met −M;

hence,
lim
t→∞

sup E[|X(t)|2] ≤ M.

According to Chebyshev’s inequality, one obtains

P[|X(t)| ≥ η] ≤ E[|X(t)|2]
η2 ,

where η =
√

M√
ν

, ν > 0. Then,

lim
t→∞

sup P[|X(t)| ≥ η] ≤ M
η2 = ν.

This completes the proof.

Next, we establish the conditions for the extinction of the Hantavirus infection
model (3).

Theorem 4. For any positive initial conditions, if b < c and β <
σ2

3
2 + γ, then the populations of

the Hantavirus infection model (3) will be extinct with probability one.
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Proof. Using the Itô formula, one obtains

d(ln(x1 + x2)) =

[
b− (x1 + x2)

k
− ρx3

k
− c− 1

2(x1 + x2)2

(
σ2

1 x2
1 + σ2

2 x2
2

)]
dt

+
σ1x1

(x1 + x2)
dB1 +

σ2x2

(x1 + x2)
dB2

≤(b− c)dt +
σ1x1

(x1 + x2)
dB1 +

σ2x2

(x1 + x2)
dB2.

As a result,
ln[x1(t) + x2(t)] ≤ ln[x1(0) + x2(0)] + (b− c) t,

which implies that

lim
t→∞

sup
ln[x1(t) + x2(t)]

t
≤ b− c < 0 almostsurely.

Hence,
lim
t→∞

[x1(t) + x2(t)] = 0.

According to the third equation of the Hantavirus infection system (3), one obtains

d(lnx3(t)) =

[
(β− γ)− 1

k
(x3 + δ(x1 + x2))−

σ2
3

2

]
dt + σ3 dB3. (12)

Consequently,

lnx3(t) = lnx3(0)−
1
k

∫ t

0
[x3(s) + δ(x1(s) + x2(s))]ds + ((β− γ)−

σ2
3

2
) t + σ3 B3, (13)

and it follows that

lim
t→∞

sup
lnx3(t)

t
≤ (β− γ)−

σ2
3

2
< 0 almostsurely.

Thus, limt→∞ x3(t) = 0. As a result, if b < c, and β <
σ2

3
2 + γ, then the populations of

the Hantavirus infection model (3) will be extinct with probability one.

The asymptotic stability of the Hantavirus infection system (3) is established in the
following theorem.

Theorem 5. For any positive initial conditions, the trivial solution of the Hantavirus infection

model (3) is stochastically asymptotically stable in probability if σ2
1
2 + b < c, σ2

3
2 + β < γ, and

(
σ2

1
2 + b− c)( σ2

2
2 − c) > b2

4 .

Proof. The first step is to consider the following linearized Hantavirus infection model
about the origin

dx1 = [(b− c)x1 + bx2]dt + σ1x1 dB1,

dx2 = −cx2dt + σ2x2 dB2,

dx3 = (β− γ)x3dt + σ3x3 dB3.

(14)

Consider the following Lyapunov function

V3 =
1
2

[
x2

1(t) + x2
2(t) + x2

3(t)
]
. (15)



Mathematics 2022, 10, 3756 7 of 15

One can compute

LV3 =

[
σ2

1
2

+ b− c

]
x2

1 +

[
σ2

2
2
− c

]
x2

2 +

[
σ2

3
2

+ β− γ

]
x2

3 + bx1x2. (16)

One can rewrite LV3 to be LV3 = 1
2 XTQX, where X = (x1, x2, x3) and

Q =

 2( σ2
1
2 + b− c) b 0

b 2( σ2
2
2 − c) 0

0 0 2( σ2
3
2 + β− γ)

.

The matrix Q will be negative definite if σ2
1
2 + b < c, σ2

3
2 + β < γ, and (

σ2
1
2 + b− c)( σ2

2
2 −

c) > b2

4 . As indicated by [39], the linearized stochastic Hantavirus infection model (14)
is stochastically stable in the large if LV3 is a negative-definite function. According to
Arnold [40], the trivial solution of the nonlinear stochastic Hantavirus infection model (3)
is stochastically asymptotically stable if the linear stochastic Hantavirus model (14) is
stochastically asymptotically stable.

The equilibrium point E = (x0, 0, 0), where x0 = k(b− c) is the Hantavirus-free equilib-
rium of the deterministic Hantavirus infection model (2), but it may be not an equilibrium
of the stochastic Hantavirus infection model (3). Next, we investigate the asymptotic
property around E for the stochastic system.

Theorem 6. The stochastic Hantavirus infection model (3) has the following property

lim
t→∞

sup
1
t

E
∫ t

0

[
(x1(u)− x0)

2 + x2(u)2 + x3(u)2
]
du ≤

[
(b +

x0

k
) + (β− γ +

x0ρ

k
)
] β2

1k2

2β2
+

(
σ2

1
2
− (b− c)

)
x0k.

Proof. In order to prove Theorem 6, one can define the following function

V4(x1, x2, x3) =

(
x1 − x0 + ln(

x1

x0
)

)
+ x2 + x3. (17)

Applying the Itô formula leads to

dV4 =

[
(x1 − x0)

(
b +

x2

x1
− c− 1

k
(x1 + x2 + ρx3)− ax2

)
+

x0σ2
1

2
+
(
−cx2 −

x2

k
(x1 + x2 + ρx3) + ax1x2

)]
+
(
(β− γ)x3 −

x3

k
(x3 + δ(x1 + x2))

)
+ σ1(x1 − x0)dB1 + σ2x2dB2 + σ3x3 dB3

≤
[
−1
k
(x1 − x0)

2 − 1
k

x2
2 −

1
k

x2
3 + (b +

x0

k
)x2 + (β− γ +

x0q
k

)x3 +

(
x0σ2

1
2
− (b− c)x0

)]
dt + σ1(x1 − x0)dB1

+σ2x2dB2 + σ3x3dB3

≤
[
−1
k
(x1 − x0)

2 − 1
k

x2
2 −

1
k

x2
3 + (b +

x0

k
)x2 + (β− γ +

x0ρ

k
)x3 +

(
x0σ2

1
2
− (b− c)x0

)]
dt + σ1(x1 − x0)dB1

+σ2x2dB2 + σ3x3dB3.

Consequently,

0 ≤E[V4(x1(t), x2(t), x3(t))] ≤ E[V4(x1(0), x2(0), x3(0))]

+E
∫ t

0

[
−1

k
(x1(u)− x0)

2 − 1
k

x2(u)2 − 1
k

x3(u)2 + (b +
x0

k
)x2(u) + (β− γ +

x0ρ

k
)x3(s) +

(
x0σ2

1
2
− (b− c)x0

)]
du,
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using Theorem 2, one obtains

E
∫ t

0

[
1
k
(x1(u)− x0)

2 +
1
k

x2(u)2 +
1
k

x3(u)2
]

du ≤ E(V4(x1(0), x2(0), x3(0))) + (b +
x0

k
)

β2
1k

2β2
t

+(β− γ +
x0ρ

k
)

β2
1k

2β2
t +

(
x0σ2

1
2
− (b− c)x0

)
t.

Therefore,

lim
t→∞

sup
1
t

E
∫ t

0

[
(x1(u)− x0)

2 + x2(u)2 + x3(u)2
]
du ≤

[
(b +

x0

k
) + (β− γ +

x0ρ

k
)
] β2

1k2

2β2
+

(
σ2

1
2
− (b− c)

)
x0k.

From Theorem 6, one can see that the Hantavirus infection will tend to die out when
the intensity of the stochastic perturbations σ1 is small enough. In the following theorem, we
establish the criteria for the existence of an ergodic stationary distribution in the stochastic
Hantavirus infection model (3) using the method of Khasminskii [41]. According to [42,43],
one can investigate the stationary distribution for the Hantavirus infection model (3)
instead of asymptotically stable equilibria. Before giving the main theorem, we first state
the following Lemma

Lemma 1 ([41]). The Markov process X(t) has a unique ergodic stationary distribution π(.) if there
exists a bounded closed domain U1 ⊂ Rd with regular boundary Γ, having the following properties:

H1 : there is a positive number M0 such that ∑d
i,j=1 aij(x)ηiηj ≥ M0|η2|, x ∈ U1, η ∈ Rd,

H2 : there exists a nonnegative C2 function V such that LV is negative on Rd\U1.

Remark 1. The positive equilibrium point E = (x∗1 , x∗2 , x∗3) of the deterministic Peixoto system (2)
satisfies

(b− c) =
1
k
(x∗1 + x∗2 + ρx∗3) + ax∗2 − b

x∗2
x∗1

, c = ax∗2 −
1
k
(x∗1 + x∗2 + ρx∗3), (β− γ) =

1
k
(x∗3 + δ(x∗1 + x∗2)),

where

x∗1 =
b
a

, x∗2 =
ak(b− c)− b(1− ρδ)− akρ(β− γ)

a(1− ρδ)
, x∗3 =

k[(β− γ)− δ(b− c)]
1− ρδ

,

0 < ρ < 1, 0 < δ < 1, (β − γ) > δ(b − c) and β > γ, (β − γ) > δ(b − c), ak(b − c) >
b(1− ρδ) + akρ(β− γ).

Theorem 7. Assume (ak − 1)(1− ρ) > δ, ρ + δ + 2akρ < 1, b > c, β > γ, 0 < ρδ < 1,
(β− γ) > δ(b− c), ak(b− c) > b(1− ρδ) + akρ(β− γ), and

m < min
{
((ak− 1)(1− ρ)− δ)

k
(x∗1)

2,
(ak + akρ + 1)

k
(x∗2)

2,
(1− ρ− δ− 2akρ)

k
(x∗3)

2
}

,

where m = b( b2k
4c + x∗1)+

(ak−1)x∗1 σ2
1

2 +
(ak−1)x∗2 σ2

2
2 +

x∗3 σ2
3

2 ; then, the stochastic Hantavirus infection
model (3) has an ergodic stationary distribution for any given positive initial values.

Proof. In order to prove Theorem 7, one needs only to validate conditions H1 and H2 of
Lemma 1. The first step is to validate condition H1 of Lemma 1. Following [44], one can
define the following nonnegative C2 function

V5(x1, x2, x3) = α1

(
x1 − x∗1 − x∗1 ln

x1

x∗1

)
+ α2

(
x2 − x∗2 − x∗2 ln

x2

x∗2

)
+ α3

(
x3 − x∗3 − x∗3 ln

x3

x∗3

)
. (18)

Applying the Itô formula leads to
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LV5 = α1(x1 − x∗1)
(

b− c +
bx2

x1
− 1

k
(x1 + x2 + ρx3)− ax2

)
+ α2(x2 − x∗2)

(
ax1 −

1
k
(x1 + x2 + ρx3)− c

)
+ α3(x3 − x∗3)

(
β− γ− 1

k
(x3 + δ(x1 + x2))

)
+

α1x∗1σ2
1

2
+

α2x∗2σ2
2

2
+

α3x∗3σ2
3

2

≤− α1

k
(x1 − x∗1)

2 − α2

k
(x2 − x∗2)

2 − α3

k
(x3 − x∗3)

2 −
[

α1(
ak + 1

k
)− α2(

ak− 1
k

)

]
(x1 − x∗1)(x2 − x∗2)

−
(

α1ρ

k
+

α3δ

k

)
(x1 − x∗1)(x3 − x∗3)−

ρ

k
(α2 + α3)(x2 − x∗2)(x3 − x∗3) + α1b(x1 − x∗1)

(
x2

x1
− x∗2

x∗1

)
+

α1x∗1σ2
1

2
+

α2x∗2σ2
2

2
+

α3x∗3σ2
3

2
.

(19)

Taking α1 = ak− 1 , α2 = ak + 1, and α3 = 1, therefore,

LV5 ≤−
((ak− 1)(1− ρ)− δ)

k
(x1 − x∗1)

2 − (ak + akρ + 1)
k

(x2 − x∗2)
2 − (1− ρ− δ− 2akρ)

k
(x3 − x∗3)

2

+ b(
b2k
4c

+ x∗1) +
(ak− 1)x∗1σ2

1
2

+
(ak + 1)x∗2σ2

2
2

+
x∗3σ2

3
2

.
(20)

Following [18,44–46], when

m < min
{
((ak− 1)(1− ρ)− δ)

k
(x∗1)

2,
(ak + akρ + 1)

k
(x∗2)

2,
(1− ρ− δ− 2akρ)

k
(x∗3)

2
}

,

then the ellipsoid

− ((ak− 1)(1− ρ)− δ)

k
(x1 − x∗1)

2 − (ak + akρ + 1)
k

(x2 − x∗2)
2 − (1− ρ− δ− 2akρ)

k
(x3 − x∗3)

2 + m = 0,

lies entirely in R3
+. One can take U1 to be a neighborhood of the ellipsoid, which satisfies

Ū1 ⊆ R3
+; hence, LV5 < 0 for (x1, x2, x3) ∈ R3

+ \ Ū1. This implies that the first condition H1
of the method of Khasminskii [41] is satisfied. The second step is to validate condition H2
of Lemma 1. The diffusion matrix A1 of the stochastic Hantavirus infection model (3) is
as follows

A1 =

 σ2
1 x2

1 0 0
0 σ2

2 x2
2 0

0 0 σ2
3 x2

3

.

Following [37,46,47], we choose M0 = min
{

σ2
1 x2

1, σ2
2 x2

2, σ2
3 x2

3
}

; then, one can find a
positive number M0 such that

3

∑
i,j=1

aij(x1, x2, x3)ξiξ j = σ2
1 x2

1ξ2
1 + σ2

2 x2
2ξ2

2 + σ2
3 x2

3ξ2
3 ≥ M0|ξ2|,

for all ξ = (ξ1, ξ2, ξ3) ∈ R3 and (x1, x2, x3) ∈ U1. This implies condition H2 in Lemma 1 is
satisfied. As a result, the stochastic Hantavirus infection model (3) has an ergodic stationary
distribution for any given positive initial values.

Remark 2: If we assume y(t) = x1(t) + x2(t) and add the first and second equations
of system (3), one obtains

dy(t) =
[
(b− c)y− 1

k
y2 − ρ y x3

k

]
dt + σ1x1 dB1 + σ2x2 dB2

≤(b− c) y(1− y
k(b− c)

)dt + σ1x1 dB1 + σ2x2 dB2.
(21)
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According to Liu and Wang [48], if the intensities of the white noises are sufficiently

small and b− c > σ2
1
2 +

σ2
2
2 , then there is a stationary distribution to the following equation

for positive initial values

dy(t) = (b− c) y(1− y
k(b− c)

)dt + σ1 y dB1 + σ2 y dB2, (22)

and it has an ergodic property. From the third equation of the stochastic Hantavirus
infection system (3), one obtains

dx3(t) ≤ (β− γ)x3

(
1− x3

k(β− γ)

)
dt + σ3x3 dB3, (23)

According to [49,50], x3(t) neither reaches zero nor infinity in finite time, and provided

(β− γ) >
σ2

3
2 , the process has been shown to have a stationary distribution. Moreover, it

has been shown that

0 < lim
t→∞

inf x3(t) ≤ lim
t→∞

sup x3(t) < ∞ almostsurely.

4. Numerical Simulations

In order to demonstrate the above theoretical results for the stochastic Hantavirus
system, we use the following parameters [2,51]:

a = 0.1; b = 1; c = 0.6; β = 1; γ = 0.5; ρ = 0.2; δ = 0.1; k = 50.

To give some numerical finding to the stochastic Hantavirus system (3), we use the
Milstein method mentioned in [52,53]. The stochastic Hantavirus infection system (3)
reduces to the following discrete system

x1(j+1) = x1j + h
(

b(x1j + y1j)− cx1j −
x1j

k
(x1j + x2j + ρx3j)− ax1jx2j

)
+ σ1x1j

√
hε1j +

σ2
1

2
x1j

[
ε2

1j − 1
]

h

x2(j+1) = x2j + h
(

ax1jx2j −
x2j

k
(x1j + x2j + ρx3j)− cx2j

)
+ σ2x2j

√
hε2j +

σ2
2

2
x2j

[
ε2

2j − 1
]

h

x3(j+1) = x3j + h
(
(β− γ)x3j −

x3j

k
(

x3j + δ(x1j + x2j)
))

+ σ3x3j
√

hε3j +
σ2

3
2

x3j

[
ε2

3j − 1
]

h,

(24)

where εij, (i, j = 1, 2, 3) are independent random Gaussian variables N(0, 1), and h is
a positive time increment. In the stochastic Hantavirus infection model (3), if one gradually
increases the values of σi and keeps the remaining parameters unchanged, the fluctuations
become larger around the positive equilibrium point for the values of σi = 0.2, as shown in
Figure 1. The infected mice y(t) are represented by the black line when (σi = 0), as seen
in Figure 1. The conditions of Theorem 4 for the given parameters are verified, and the

populations will be extinct with probability one, if b < c and β <
σ3

3
2 + γ as indicated in

Figure 2, when b = 0.55 and β = 0.5. Moreover, the trivial solution of the Hantavirus
infection model (3) is stochastically asymptotically stable in probability if the conditions

of Theorem 5 are verified, i.e., σ2
1
2 + b < c, σ2

3
2 + β < γ, and (

σ2
1
2 + b− c)( σ2

2
2 − c) > b2

4 as
indicated in Figure 3. The stochastic form of the Abramson model (2) is recovered by
setting ρ = 0 and ignoring the third equation of system (3). Following [2,51], there is
a critical value kc for the carrying capacity k. The population of the infected y(t) will die
away when k < kc. The Hantavirus disease will spread and increase in rodents if k > kc.
Figure 4 represents the dynamical behavior of the Abramson model (2) and verifies the
statement of [1]. For k = 20, the free Hantavirus equilibrium point E = (8, 0, 0) is locally
asymptotically stable in the deterministic model. while the solutions of the stochastic
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Hantavirus infection model (3) oscillate around the equilibrium point, which coincides
with Theorem 6. The oscillation amplitude will be

lim
t→∞

sup
1
t

E
∫ t

0

[
(x1(u)− x0)

2 + x2(u)2 + x3(u)2
]
du ≤ 80 σ2

1 + 388 α2α2
1 + 96.

The histograms of the density function for the Hantavirus infection model (3) are
shown in Figure 5, and the system (3) has a unique stationary distribution and has an
ergodic property according to the conditions of Theorem 7.

Figure 1. The stochastic Hantavirus system (3) with respect to σi = 0 and σi = 0.2.

Figure 2. The extinct behavior of the solutions to the Hantavirus infection system (3).
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Figure 3. The stochastic trajectories for the trivial solutions of the stochastic Hantavirus infection
system (3).
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Figure 4. The stochastic behavior of the Abramson system for k = 20, 30, and σi = 0, 0.1.
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Figure 5. The density function of susceptible mice of the Hantavirus infection system (3).

5. Conclusions

This paper mainly analyzed a stochastic Hantavirus infection model. The existence
and boundedness of the positive solution of the stochastic Hantavirus infection model were
derived. The conditions for the extinction of the Hantavirus infection from the stochastic
system were obtained using stochastic analysis tools. Furthermore, the criteria for the
presence of a unique ergodic stationary distribution for the Hantavirus infection model
were established using a suitable Lyapunov function. The numerical Milstein method was
used to simulate the significance of environmental noise in the Hantavirus infection model.
When intensities of fluctuation σi = 0, one can obtain the results for the deterministic
model introduced by Peixoto [2]. One can note that the movement of rodents cannot be
neglected; consequently, it is interesting to investigate the spatial effects for the stochastic
Hantavirus infection model, which will be future work. Moreover, the authors wish to
consider the fractionalization of the stochastic Hantavirus infection model given that there
is much current research and example publications in this area, with regard to the SIR
model, for example [54]. In future work, the authors wish to conduct a detailed analysis of
the stochastic Hantavirus infection model using boundary methods as introduced in the
following papers [44,55–61].
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