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Abstract: Recently, there has been a tremendous increase in the use of fiber-reinforced composite
(FRCP) in the aviation and aerospace industries due to its superior properties of high strength, stiff-
ness, and low weight. The most important feature of implementing composite materials in aviation
is their behavior under dynamic loads and resistance to fatigue. To predict the life of composite
structures and optimize the inspection interval, it is essential to predict the damage behavior of
composites. In this study, a model of fatigue delamination damage of composite specimens was
first constructed using a finite element analysis (FEA)-based approach. The FEA modeling was
verified through comparison with experimental specimen data, and the verified FEA model was
applied to the composite material aircraft tail wing structure. In this case, a Monte Carlo simulation
(MCS) was performed by building a response surface model while considering the uncertainty of
the mechanical parameters. Through this process, the risk as a function of flight time could be
quantitatively evaluated, and the inspection interval was optimized by selecting the combination
with the lowest number of repeated inspections that met the permitted risk criteria.

Keywords: fiber-reinforced composites; finite element analysis; delamination; inspection interval;
aircraft tail wing structure

MSC: 65-04

1. Introduction

To ensure the safe and continuous operation of aircraft, maintenance is a key activity [1].
Efficient maintenance can save high maintenance costs and can increase the service life of
aircraft structures. Recently, the development of the structural health monitoring approach
(condition-based maintenance) has enabled maintenance engineers to more frequently
monitor the health condition of aircraft structures [2]. For this purpose, additional sensors
are embedded in structures to provide health information, thus making condition-based
maintenance more expensive than scheduled maintenance. Therefore, the practice of
scheduled maintenance remains more dominant than condition-based maintenance. The
main challenge in scheduled maintenance is the determination of efficient inspection
intervals to reduce maintenance costs and maintain high safety standards [3].

The proportion of FRCPs in aircraft structures is increasing every year as the technical
limitations of composite materials are gradually resolved [4]. FRCPs offer high stiffness,
high strength-to-weight ratio, and excellent fatigue performance, making them suitable for
the manufacturing of complex aircraft composite structures. Aircraft industries, such as
Boeing 787 and Airbus A380, are using composite materials for their primary structures,
such as the fuselage skin and wing spars [5]. Unlike metals, these composites suffer from
complex damage mechanisms because of their anisotropic properties. Among these, fatigue
delamination and debonding damage are the major causes of failure in composites [6–8].
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During aircraft flight, fatigue load continuously occurs, thus making the structures more
susceptible to fatigue delamination damage [9]. Therefore, for the accurate prediction of the
life span of composite structures, it is important to predict the fatigue delamination damage.

The commonly applied maintenance method in the aviation industry is the mainte-
nance steering group 3 (MSG-3) [10], which aids in determining the inspection interval
of aircraft structures. However, MSG-3 has the disadvantage of being heavily dependent
on engineering experience, while the functional/structural detail evaluation of various
new composite aircraft structures is limited. Therefore, the use of MSG-3 is inadequate for
direct application to composite structures. Furthermore, it is difficult to maintain structural
uniformity in composites because of the inaccuracies of the manufacturing process and
the random variation in properties in composites. Therefore it is challenging to predict
the failure of composite materials using the traditional deterministic approaches [11]. The
usage of deterministic approaches results in the underutilization of the composite material.
To utilize the material to its full capacity without compromising its structural safety, the
uncertainties in the composite material should be considered for its realistic design, which
is not possible in deterministic analysis. Probabilistic analysis offers a solution of incorpo-
rating the uncertainties in the design variables to compute the inherent risk in a structure
subjected to service loading conditions. Therefore probabilistic approaches [12–14] have
received considerable attention when it comes to addressing the uncertainty in design
and maintenance.

Recently, Dinis et al. [15] proposed a probabilistic-design-based approach for aircraft
maintenance and repair. The approach employed the usage of a Bayesian network to cope
with the uncertainty in both scheduled and unscheduled maintenance. A real dataset based
on 372 aircraft industrial maintenance projects was used. Similarly, Chen et al. developed
an approach for the optimization of inspection intervals for composite structures for dent
and delamination damage. The idea was to quantify the structural residual strength
and maintenance cost for the different inspection intervals. The proposed approach was
implemented on an aircraft wing. A historical dataset from the Chinese aircraft industry
was used to develop the proposed approach. A POD curve created using general visual
inspection (GVI) and detailed inspection (DET) data was selected as a method of damage
detection. The probability of detecting damage according to dent damage was calculated
using a Monte Carlo simulation. From these simulation results, a procedure for calculating
the optimal inspection cycle that considered the structural reliability and maintenance cost
was presented. However, the main limitation of this approach was that it was based on
the actual repair data after the damage was confirmed. The approach did not consider the
cause and progression of the delamination and dent damage.

Similarly, Dinggiang et al. [11] developed an optimized inspection interval approach
by considering dent and delamination damage. The study used the maintenance records
of 12 aircraft over 10 years of operation time. Impact damage was considered the main
cause of damage, and the average expected number of impacts per year was calculated
by comparing the maintenance history of such impact damage and the service life of the
aircraft. The failure probability of the structure was calculated by simulating the residual
strength and damage growth of the structure according to the impact damage that occurred
during the service life operation. This study also utilized the actual maintenance data.
The limitations of this approach were the limited damage data and that it was difficult to
obtain the damage maintenance data from the aircraft industry. Further, the obtained data
included the information after the damage occurred, and lacked information on the damage
progression and the accurate cause of the damage. To overcome the data availability
problem and the lack of progressive damage knowledge, an FEA-based approach can
be used. Gianella et al. [16] developed a probabilistic framework for fatigue reliability
assessment by considering multi-source uncertainties. The sensitivity of each input variable
was obtained, and the influence of the variable on the life prediction was derived. The above-
presented literature approaches are all based on real aircraft maintenance and damage data.
However, the main limitation of the approaches available in the literature is the availability
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of real aircraft maintenance data to develop structural health monitoring approaches for
the prediction of the fatigue life of the composite structures. The acquisition of the real
damage data requires the embedding of additional sensors on the skin of aircraft structures,
thus making the maintenance strategies more expensive. Therefore, to overcome the
unavailability of the real-life operating data problem, this study proposed a methodology
that uses the FEA-based model for the generation of fatigue damage growth curves and
further implements this approach for the risk assessment and optimization of the inspection
interval of the KT-100 aircraft tail wing structure. To the authors’ best knowledge, no such
study can be found in the literature that utilized a finite-element-analysis-based approach
for the inspection interval optimization of aircraft composite structures.

In this study, a novel FEA-based approach was proposed for the inspection interval
optimization of an aircraft composite tail wing structure. First, the FEA-based fatigue
delamination model was constructed for the composite specimen and was verified through
comparison with experimental data. The verified FEA model was extended to the composite
aircraft tail wing structure of a KT-100 aircraft (Korea Aerospace Industries, Ltd., KAI). In
this case, a Monte Carlo simulation was performed by building a response surface model
that considered the uncertainty of the mechanical parameters. Through this process, the
risk according to each flight time could be quantitatively evaluated, and the inspection
interval was optimized by selecting the combination with the lowest number of repeated
inspections within the conditions that met the permitted risk criteria.

2. Proposed Finite-Element-Analysis-Based Inspection Interval Optimization
Approach

Figure 1 shows the proposed FEA-based inspection interval optimization approach.
The developed methodology consisted of the following five phases:

Phase 1.The geometry, fatigue-loading spectrum data, and skin-debonding damage case
scenario of the KT-100 aircraft tail wing structure were obtained from KAI.

Phase 2. A fatigue delamination damage model was developed for a simple composite
specimen and extended to the full-scale aircraft tail wing geometry.

Phase 3.The uncertainty of mechanical parameters was included, and the design of experi-
ments was created based on Latin hypercube sampling (LHS) scenarios.

Phase 4.A Monte Carlo simulation was performed by building a response surface model.
Phase 5. Risk assessment and inspection interval optimization of the tail wing structure

were undertaken.

2.1. Development of the Finite Element Model

Modern aircraft structures, such as the wings and fuselage, utilize FRCPs. The com-
posite laminates are highly susceptible to delamination, which is considered one of the
major damage mechanisms in composites among all other types of damage. The delamina-
tion propagation can occur under the fatigue loading, thus causing stiffness and gradual
strength degradation and leading to catastrophic failure of composite structures. Therefore,
the characterization of the fatigue delamination resistance in composite materials is nec-
essary for their damage tolerance design and reliability assessment. In aircraft composite
structures, stringers are joined to the skin via adhesive bonding. During the flight, cyclic
fatigue causes separation between the skin and stringer, which may result in delamination
failure. Therefore, it is important to predict fatigue delamination initiation and propagation
so that these composite panels do not fail prematurely. To enhance the fatigue life and
reliability of composite structures, several researchers have investigated the delamination
growth in composites under fatigue loading. A variety of models are proposed in the litera-
ture for the prediction of fatigue delamination growth at the coupon level. However, the
prediction of fatigue delamination in complex geometries, such as aircraft wing structures,
is still an open issue. The most popular approach for the characterization of fatigue crack
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growth is Paris’ law [17–19]. Paris’ law relates the fatigue crack growth rate to the stress
intensity factor and energy release rate. Equation (1) shows the basic form of Paris’ law [20]:

dA/dN = C f (G)m (1)

where C and m represent the fitting parameters and f (G) is a function of the energy release
rate (G). In metals, the stress intensity factor variation (∆K) is usually adopted for fatigue
crack growth. On the other hand, in composite laminated structures, the energy release
rate (∆G) variation seems to provide a better description of experimental results, as shown
in Equation (2):

dA
dN

= C(∆G)m = C(Gmax − Gmin) (2)Mathematics 2022, 10, 3836 4 of 18 
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Figure 1. Schematic of the proposed FE-based inspection interval optimization approach.

The FE model implemented in this study and included in the FE code ABAQUS [21]
was built on Equation (2) to estimate the fatigue crack growth rate.

In a numerical model, delamination is usually modeled using a damage mechanics
or fracture mechanics approach in combination with Paris’ law. Different approaches are
found in the literature in the context of damage mechanics. Among these, the cohesive zone
modeling approach [22–24] received considerable attention for delamination modeling.
This approach provides good results in combination with Paris’ law for simple geometries
and test specimens. However, this approach is not suitable for complex geometries. On
the other hand, the virtual crack closure technique (VCCT) [9,25] derived from fracture
mechanics is found built into several commercial FE codes. This approach is suitable for
implementation in complex geometries and can simulate fatigue delamination growth in
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combination with Paris’ law. The fatigue crack growth in an ABAQUS simulation employs
VCCT criteria to compute the energy release rate. The crack propagation starts when the
criterion based on Equation (3) is satisfied:

f =
N

c1∆Gc2 ≥ Gmax > Gth (3)

where N is the current cycle number and c1 and c2 are fitting parameters that are experi-
mentally determined. Once the onset criterion is satisfied, the fatigue delamination growth
rate is governed by Paris’ law, which is shown in Equation (4):

dA
dN

= c3(∆G)c4 (4)

where c3 and c4 are fitting parameters.
The fatigue delamination finite element was first implemented for the double can-

tilever beam (DCB) composite specimen. The results of the numerical model were compared
with the benchmark experimental study [23,26]. The composite specimen had a length
of 254 mm and a width of 25 mm. The thickness of each arm was 3 mm. The initial
delamination was induced in the specimen with a length of 51 mm and was located in the
center of the plies, as shown in Figure 2. The specimen consisted of a T300/1076 carbon
fiber epoxy composite with 24 unidirectional plies.
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Figure 2. DCB specimen geometry with initial delamination.

The material properties used in the numerical model were taken from [26] and are
shown in Table 1.

Table 1. Material properties and fatigue parameters of T300/1076 graphite epoxy.

Parameters Notations Value

Elastic modulus in direction 1 E1 139,400 MPa

Elastic modulus in directions 2 and 3 E2 = E3 10,160 MPa

Shear modulus in directions 12 and 13 G12 = G13 4600 MPa

Shear modulus in direction 23 G23 3540 MPa

Poisson’s ratio in direction 12 and 13 ν12 0.3

Poisson’s ratio in direction 23 ν23 0.436

Fracture toughness in direction 1 GIC 0.17 kJ/m2

Fracture toughness in direction 2 GiiC 0.49 kJ/m2

Lower fatigue crack growth threshold r1 0.67

Upper fatigue crack growth threshold r2 0.067
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Continuum shell elements (SC8R) were used for the modeling of the DCB specimen.
A single element is used throughout the thickness of each arm. The refined mesh was
used in the damage propagation zone and the remaining region consisted of a coarse mesh.
First, the load–displacement curve was computed for quasi-static loading. The simulation
curve was computed and compared with the experimental benchmark case study result, as
shown in Figure 3. The numerical model showed a linear response and a good correlation
was found, both in terms of the initial stiffness and peak load between the numerical model
results and the experimental benchmark case study.
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Figure 3. Load vs. displacement curve of the DCB specimen [26].

For the fatigue crack propagation analysis, the triangular load cycle as applied in the
experimental benchmark case study [23,26] was applied as a fatigue loading cycle. As
expected, the delamination length increased rapidly at the start of the loading cycles. The
delamination stopped propagating at around 3.7 million cycles. The numerical results
computed in ABAQUS showed good agreement with the experimental benchmark results,
as shown in Figure 4.

Once the fatigue delamination crack propagation model was established, the model
was extended from the composite specimen to the KT-100 aircraft tail wing structure. The
tail wing is located behind the main lifting surface of the aircraft and provides stability and
control. The design of the KT-100 horizontal stabilizer consists of upper and lower skins.
The upper and lower skins of the sandwich structure act as a spur structure. The upper
and lower skins are bonded and tightened to make a box-shaped structure. Three ribs exist
inside the box structure. Skin debonding from the rib is the most critical damage that can
occur in an aircraft tail wing structure. Figure 5 shows skin-debonding damage. Therefore,
in this study, skin/rib-debonding damage was modeled using the fatigue progressive
damage model.

The geometry of the tail wing was provided by the Korean Airforce and imported from
the 3D model in ABAQUS. To simplify the model, bolts and rivets were not considered
in the geometry. Initial delamination of 32 mm was introduced between the middle rib
and upper skin, as shown in Figure 6a. To avoid the loss of computational power, shell
elements (S4R) were used to model the tail wing structure with 49,209 total elements. The
mesh was kept refined in the crack propagation region and coarse in the remaining regions,
as shown in Figure 6b.
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the model.

The loads and boundary conditions are used as in an actual flight scenario. One side
of the wing was kept fixed, and the shear forces were applied at the other end with the
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flight loading spectrum as a fatigue cycle provided by the Korean Airforce. Figure 7 shows
the flight operating loading spectrum with a normalized amplitude.
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The bond stat plot (crack propagation plot) output in ABAQUS represents the fatigue
crack propagation. The blue color represents the unbonded region, while the red color
represents the bonded region. Figure 8 represents the BDSTAT plot for the tail wing
structure. The BDSTAT plot was computed between the upper skin and the middle rib of
the composite structure.
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Different case simulations were carried out for the different values of the applied
loading scenarios by using the flight operating load spectrum. The simulation was run
for 8000 flight hours (FHs), and the crack propagation plots are analyzed. The first case
scenario represented the actual loading condition with the magnitude of shear forces. The
other three case scenarios were simulated to observe the fatigue crack propagation. Table 2
shows the case simulation scenarios.
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Table 2. Case simulation scenarios.

Case Simulation Applied Shear Force Magnitude Load Increase (%)

Case 1 1.849 KN -
Case 2 2.2 KN 18.9%
Case 3 2.6 KN 40.6%
Case 4 3.0 KN 62.2%
Case 5 3.7 KN 100%

The first case simulation consisted of the applied load of 1.849 KN (actual flight loading
scenario) for the applied operating load spectrum. The simulation was carried out for
8000 FHs, and it was observed that the crack did not propagate. As the case represents
a real loading scenario, it is customary that the crack propagation was slow, and it took
more than 8000 FHs to propagate the crack. As the applied load was increased, the crack
propagation region increased, as shown in Figure 9. Therefore, it was concluded that to
observe the crack propagation, the applied loading must be increased to more than the real
flight loading scenario.
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Figure 10a shows the fatigue cracks propagation plot measured as a function of the
number of cycles for case simulation 5. The cracks started to propagate around 153 flight
times, and increase rapidly until 1436 FHs. From the 14,336 cycles over 3692 FHs, the crack
propagation occurred linearly with a low crack propagation rate, while after 4692 cycles,
the crack propagation increased rapidly up to 4783 cycles until it reached the defined crack
threshold length of 10 mm. The graph trend of the current model results was compared
with the crack propagation curve in the literature [27] for a composite. It was found
that compared with the composite crack propagation trend in the literature, the current
numerical model showed a similar trend of crack propagation.
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2.2. Sensitivity Analysis and Design of Experiments (DOE)

FRCPs subjected to cyclic loading are most likely to fail with fatigue delamination crack
growth. Many factors can affect the fatigue delamination growth, such as the constituent
material parameters, geometry, and environmental conditions. However, the most common
practice is to check the effect of mechanical parameters on the fatigue delamination behavior
of composite laminates. For this purpose, sensitivity analysis [28] was undertaken to assess
the sensitivity of crack growth to uncertain mechanical parameters. Sensitivity analysis can
be used as a tool to understand how uncertain inputs can affect a model’s performance.
Sensitivity analysis is a systematic assessment method that is generally performed to assess
the impact of individual input uncertain parameters on the model output response. It
is an essential part of every risk assessment analysis that seeks to learn things such as
how the model outputs change with the change in inputs and how it affects the model
output decisions. The sensitivity analysis enhances the overall confidence in the risk
assessment. Further, it improves the prediction of the model by studying the model
response to the change in input variables and by analyzing the interaction between the
variables. The knowledge of these sensitive parameters can help to better comprehend
the fatigue delamination behavior and can pinpoint the direction of an optimal composite
design. In this study, the effect of varying the mechanical properties was studied to examine
the fatigue delamination behavior. Table 1 shows that a total of eight mechanical properties
and two fatigue parameters were considered to examine the effect of fatigue delamination
behavior. The parameters were varied by +2% of the mean value, and the model output
fatigue delamination growth was computed. It was observed that E1 and G23 showed the
most sensitive behavior compared with the other parameters. Figure 11 shows the relative
error plot.

After pinpointing the most sensitive mechanical inputs, the design of experiments
(DOE) was carried out by using Latin hypercube sampling (LHS) [29]. For the generation of
DOE scenarios, input factors should be defined. In the case of fatigue crack propagation in
the tail wing structure, two input factors (E1 and G23) were chosen. The error variation of
+2% was kept for random sampling for the generation of thirty DOE samples, as shown in
Table A1 of Appendix A. Figure 12 shows the fatigue crack propagation curves combined
into a single plot. It was observed that for a crack delamination length threshold of 10 mm,
the number of flight times range from approximately 2500 to 4600.
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3. Risk Assessment and Inspection Interval Optimization

This section provides the results of the risk assessment and optimization of inspection
interval for a composite aircraft tail wing structure. In the first stage of risk assessment, it is
highly desirable to develop an efficient response surface that requires fewer FE executions.
The composite crack propagation curve response surface was generated for both the
sensitive parameters for the damage range of 2 to 10 mm. Thirty samples generated from
the LHS were used for the generation of a total of nine response surfaces, as shown in
Figure 13a. The average value of the mean square error (R2) of the nine response surfaces
was 0.9987, with a minimum R2 value of 0.9962. It was confirmed that the response surface
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model satisfied the minimum standard value of R2 ≥ 0.990 set in this study. The present
study dealt with the reliability evaluation of the structure using an efficient adaptive
response-surface-based MCS technique. The analysis should consider all the uncertainties
required for accurate damage growth modeling and risk assessment. For this purpose,
damage growth simulation was performed using an MCS. The crack propagation curves
using response surface modeling were accurately simulated compared with FE simulations,
as represented in Figure 13b.
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After the development of the response surface, we estimated the single flight prob-
ability of failure (SFPOF) assuming the structure was non-repairable. For the FRCPs,
nondestructive inspection (NDI) was insufficient to detect the cracks that can propagate to
complete failure of the structure. Therefore, it is essential to minimize the risk by computing
the minimum inspection cycle. For this purpose, SFPOF was proposed in 1980 to assess the
risk of aircraft failure [30]. It provides the probability of failure during one flight. To evalu-
ate the risk, the criteria may vary depending on the operating environment conditions. The
US Department of Defense proposed that a structural risk assessment should be performed
on a component-by-component basis, and defined the limits on SFPOF of between 10−7

and 10−5 for each component. According to the suggested range, if SFPOF > 10−5, the
component is unacceptable for operation. For 10−5 > SFPOF > 10−7, the structure requires
repair and modification to ensure long-term operation. For SFPOF < 10−7, the structure is
safe for long-term operation. In this study, SFPOF defined the amount of damage reached
in the component with respect to the total number of simulations, as shown in Equation (5):

SFPOF = P(a ≥ acritical)=
Ncritical

Nsimulation
(5)

where Ncritical is the number of simulations exceeding the critical damage size and Nsimulation
is the total number of simulations.

In this study, SFPOF was computed at 3000 FHs. At 3000 FHs, the damage distribution
is calculated. The probability was computed for the scenario that the damage was greater
than the critical crack size, which was 8 mm. Using the above process, the SFPOF was
calculated for the total number of FH, as shown in Figure 14.
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Figure 14. Single flight probability of failure calculation at 3000 FHs.

For a critical component, such as an aircraft tail wing, the common practice is to
perform multiple inspections. The reason for repeated inspections is that the inspections
are never perfect. There is always the possibility of misclassification. Therefore, repeated
inspections are likely to reduce the inspection cost. For the determination of an optimal
inspection plan, an optimal number of repeated inspections is needed. The time between
repeated inspections can be computed using the following equation:

Trepeat =
Tdesign − Tinital

NInspection + 1
(6)

where Tinital is the initial inspection cycle, Tdesign is the operating life, and NInspection is the
number of repeated inspections. In this study, the service life of the tail wing structure
considered was 3000 FHs, with the first inspection cycle at 200 FHs. Figure 15 shows the
calculation of repeat inspection cycles with respect to the number of repeated inspections.
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The criteria for determining the optimal inspection cycle in this study was based on
the US Airforce standard of risk assessment matrix [31]. In the event of an accident, the
severity level is divided into four levels based on the type of result, component damage,
etc. The Risk Assessment Code, or Hazard Risk Index, is a risk level that is calculated by
combining the severity and probability of occurrence, as shown in Table 3. A high risk
constitutes the first−fifth level range. The serious risk of component failure falls in the
sixth–ninth level range, the medium risk falls in the 10th–17th level, whereas the low risk is
in the 18th−20th level range.

Table 3. US Airforce airworthiness risk assessment matrix [31].

USAF Airworthiness Risk Assessment Matrix Severity Category

Probability
Level

Probability per FH or
Sortie

Freq per 100 K FH or
100 K Sorties

Catastrophic
(1)

Critical
(2)

Marginal
(3)

Negligible
(4)

Frequent
(A) 10−3 ≤ Prob 100 ≤ Freq 1 3 7 13

Probable
(B) 10−4 ≤ Prob < 10−3 10 ≤ Freq < 100 2 5 9 16

Occasional
(C) 10−5 ≤ Prob < 10−4 1 ≤ Freq < 10 4 6 11 18

Remote
(D) 10−6 ≤ Prob < 10−5 0.1 ≤ Freq < 1 8 10 14 19

Improbable
(E) 0 < Prob < 10−6 0 ≤ Freq < 0.1 12 15 17 20

Eliminated
(F) Prob = 0 Freq = 0 Eliminated

The overall process implemented in this study for determining the optimal inspection
interval is divided into three steps, as shown in Figure 16:

Step #1. Determination of the severity category

In the event of an accident caused by a defined major failure mode, the severity level
was determined after predicting the consequences.

Step #2. Calculation of the probability of failure (probability level)

The probability of failure was calculated by computing the SFPOF for each flight time.

Step #3. Risk assessment code

Steps #1 and #2 were combined to calculate the risk. If the calculated risk was less than
the target level, step #2 was repeated after modifying the inspection cycle combination.

In the case example of an aircraft tail wing, the first step was computed by assuming
the severity level to be critical. In the second step, the assumed operating life was 3000
flight times. After setting it equal to a critical value, the SFPOF was calculated for each FH
until the end of the operating life, and the maximum SFPOF was set as the reference value.
The RAC from the maximum probability of failure and severity level was calculated. If the
target risk level was a medium risk: RAC 10−17, then the combination of the least number
of repeated inspections among the combinations of inspection cycles that satisfied RAC
10−17 is selected. In this example, the optimal inspection cycle was calculated when the
number of repeated inspections was six and fell within the medium risk level, as shown in
Figure 17.
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4. Conclusions

This study provided the risk assessment and optimization of the inspection interval of
a composite aircraft tail wing structure. Composite structures are more prone to fatigue
delamination damage and such damages can ultimately lead to the catastrophic failure of
the complete aircraft composite structures, such as aircraft tail wings. Therefore, different
aircraft maintenance strategies were proposed for the accurate prediction of the fatigue life
of composite structures. However, the main limitation of the approaches available in the
literature is the availability of real aircraft maintenance data to develop structural health
monitoring approaches for the prediction of the fatigue life of the composite structures.
The acquisition of the real damage data requires the embedding of additional sensors on
the skin of aircraft structures, thus making the maintenance strategies more expensive.
Therefore, to overcome the unavailability of real-life operating data, the study proposed the
methodology of using the FEA-based model for the generation of fatigue damage growth
curves and further implemented this approach for the risk assessment and optimization of
the inspection interval of the KT-100 aircraft tail wing structure. The overall methodology
of the proposed study and the concluding remarks are summarized as follows:

• The FEA model based on VCCT and Paris’ law was implemented and compared with
a real experimental curve. The fatigue damage model was extended to a full aircraft
tail wing geometry and the fatigue delamination growth curve was computed.

• A sensitivity analysis was undertaken to check the effect of mechanical parameters on
the fatigue delamination growth curve; E1 and G23 were found to be the most sensitive
parameters. The Latin hypercube sampling technique was used for the DOE data
generation scenarios, where 30 scenarios were generated. Based on LHS, an efficient
response surface was generated. A damage growth simulation was performed using
an MCS.

• In the end, a probabilistic risk analysis method was proposed based on the risk matrix
of the US military specification, and the risk was analyzed based on the severity and
frequency of structural failure. In future research, based on the process of determining
the optimal inspection cycle, we will consider both the risk and the cost associated
with the inspection.
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Appendix A

Table A1. Latin hypercube sampling scenarios with E1 and G23 as input factors.

Scenario Number (#) E1 (MPa) G23 (MPa) Scenario # E1 (MPa) G23 (MPa)

1 139.7615909 3.438312739 16 138.6539501 3.506192126

2 141.3938702 3.56605425 17 138.7957379 3.587573885

3 138.0581118 3.678908272 18 139.5075777 3.609318242

4 139.1752097 3.532368614 19 137.7304732 3.486625586

5 138.4700897 3.575752631 20 139.9177379 3.581053108
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Table A1. Cont.

Scenario Number (#) E1 (MPa) G23 (MPa) Scenario # E1 (MPa) G23 (MPa)

6 135.5688385 3.501017317 21 137.4000267 3.51591805

7 140.1825004 3.523911518 22 138.4367088 3.542198006

8 139.3109788 3.600841752 23 139.6792856 3.406417978

9 137.4727095 3.482559356 24 138.2926045 3.385928254

10 138.9296798 3.628621725 25 137.8217986 3.558572124

11 138.1894966 3.551958713 26 139.2390456 3.520360535

12 140.9149363 3.445628384 27 137.1665889 3.57807592

13 136.9461698 3.465241411 28 138.2448875 3.616984057

14 140.4141209 3.550065463 29 139.615228 3.423103266

15 140.7574458 3.638565444 30 141.2357918 3.711960967
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