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Abstract: In the entropic lattice Boltzmann approach, the stability properties are governed by the
parameter α, which in turn affects the viscosity of a flow. The variation of this parameter allows one
to guarantee the fulfillment of the discrete H-theorem for all spatial nodes. In the ideal case, the
alteration of α from its normal value in the conventional lattice Boltzmann method (α = 2) should be
as small as possible. In the present work, the problem of the evaluation of α securing the H-theorem
and having an average value close to α = 2 is addressed. The main idea is to approximate the H-
function by a quadratic function on the parameter α around α = 2. The entropy balance requirement
leads to a closed form expression for α depending on the values of the H-function and its derivatives.
To validate the proposed method, several benchmark problems are considered: the Sod shock tube,
the propagation of shear, acoustic waves, and doubly shear layer. It is demonstrated that the obtained
formula for α yields solutions that show very small excessive dissipation. The simulation results are
also compared with the essentially entropic and Zhao–Yong lattice Boltzmann approaches.

Keywords: lattice Boltzmann; entropy; Padé approximations
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1. Introduction

The lattice Boltzmann (LB) method has established itself as an alternative approach to
the Navier–Stokes equations for the modeling of fluid motion. Due to its simplicity and high
potential for parallel computing, the LB approach can be efficiently implemented in numerical
solvers aimed at addressing academic and application-oriented problems [1–4]. Except for
hydrodynamic problems, the LB approach has found applications in the modeling of
porous media [5,6], microflows [7], multiphase, and other complex flows [8–11].

The standard realization of LB models is based on local collision and linear advection
to adjacent lattice nodes in the direction of the corresponding discrete velocities. Such an
approach is rather appealing due to its simplicity but is prone to instabilities when Mach
(Ma) and Reynolds (Re) numbers are increased. Hence, additional stabilization techniques
are usually adopted. These can be divided into several classes.

The instabilities usually manifest in oscillations, unphysical (negative) values of the
hydrodynamic variables (density), and eventually in the breakdown of the solutions. It is
possible to enhance the dissipative properties (and therefore stabilize the computations)
of LB models by tuning the bulk viscosity [12]. This idea is generalized in the multiple-
relaxation-time (MRT) LB method [13–15]. The drawback of this method is that acoustic
waves show over-dissipative behavior due to the increased bulk viscosity. To maintain
correct dissipation rates of acoustic waves, one can adopt selective viscosity filtering [16],
which suppresses only high wave-number instabilities. In this approach, viscosity becomes
dependent on the values of the wave-number. A simpler way of stabilizing the simulations
is enforcement of the positivity of the solutions by adapting the relaxation time in the
LB models [17]. This stabilization technique is rather straightforward but is less accurate
than more sophisticated methods, such as the entropic LB (ELB) method [18]. In the ELB
method, the stabilization is achieved by tuning the relaxation rates in order to satisfy the
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H-theorem. The ELB approach requires two components [19,20]: the equilibrium state,
which minimizes the H-function (entropy taken with minus sign), and the adjustable (in a
special way) relaxation rate (the parameter α), which is evaluated from the significantly
nonlinear entropy balance equation. Note that the standard equilibrium in the form of the
polynomial function on the flow velocity is not suitable, since for this case the H-theorem
is not valid [21,22]. The problem of construction of the entropic equilibrium states is
non-trivial [23–26]. The solution α to the entropy balance equation can be obtained by
applying the Newton–Raphson method, the bisection methods [27–29], or a combination
of the Newton–Raphson method and analytical estimates [30]. In the essentially entropic
approach, the solution to the entropy balance equation, which is reformulated as an
inequality, has been obtained in an exact form by exploiting Padé approximations for
the logarithms entering the entropy function [31]. This method yields solutions for α
that have little deviation from its normal value (α = 2). The entropic approach of Zhao
and Yong relies on geometric considerations [32] (secant algorithm) and gives concise
closed-form expressions for α. The comparison of several entropic methods has been
performed recently [33]. Another class of entropic methods is based on the entropic
limiters. In this approach, the non-equilibrium part of the distribution function is multiplied
by a coefficient that depends on local non-equilibrium entropy [34–36]. This type of
limiter has been successfully used for the modeling of supersonic flows with the LB
method [37,38]. The entropic method can be extended for multiple relaxation time LB
models. This approach uses decomposition of the distribution function into equilibrium,
non-equilibrium hydrodynamic, and non-equilibrium non-hydrodynamic components.
Non-equilibrium parts of the distribution function have different relaxation rates [39–42].
In order to satisfy the H-theorem, only the relaxation times for high-order moments are
varied; hence, the viscosity remains unchanged.

In the regularized LB approach, the distribution function is projected onto some finite
basis during each time step. The removal of the moments that cannot be described by the
model leads to noticeable improvements in stability [43–45]. Furthermore, the concept
of recursive regularization has been introduced, including thermal flows [46–52]. In the
recursively regularized LB models, several non-equilibrium high-order moments are kept.
Their values can be computed analytically as a special combination of low-order moments.
In addition, variants of the regularized LB models in the relative reference frame have been
proposed [53–55]. Note that the entropic LB and regularization methods share common
features: regularized LB models maximize quadratic entropy [56]. In practice, however,
the regularized LB models are usually more stable than un-regularized. Linear stability
analysis shows that the regularization significantly changes the dissipation and dispersion
properties of LB models [57–60]. Even more so, the regularized LB models can be unstable
under some specific conditions for which un-regularized models are stable.

Another stabilization approach is focused on modification of the advection step. Em-
ployment of the standard streaming step means that the Courant number is equal to unity,
and this can cause instabilities. Then, in order to reduce the Courant number, one can
apply a generalized streaming step, for which the values of the distribution function in addi-
tional nodes are needed [61–65]. Numerical experiments indicate that the maximal stable
Reynolds number for this method depends exponentially on the reduction of the Courant
number. On the other hand, this method is more complicated than the standard one—for
instance, the formulation of the boundary conditions requires additional efforts [66–68]

The aim of the present paper is to develop a variant of the entropic LB method in
which the averaged deviations of the parameter α from its normal value, which equals 2,
are minimized. This in turn means that the variations of the viscosity are also small and the
dissipation properties of the modeled system are not distorted.

This paper is organized as follows. In Section 2, the main features of the entropic LB
approach are considered. The formulation of the variational problem leading to the en-
tropic equilibrium compatible with the hydrodynamic equations is performed by applying
geometrical treatments; in addition, some pitfalls of the entropic method are discussed. In
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Section 3, the derivation of a novel formula for α is presented. Since the entropy balance
equation is a nonlinear transcendental equation, one cannot find an exact analytical solution
α, but it is possible to obtain an approximate solution. This is performed in several steps.
First, one finds an interval that contains the solution α; the lower (dissipative) bound and
the upper bound of this interval are evaluated by applying Padé approximations for the
logarithms. Then, the quadratic approximation of the H-function for α in the interval
between the lower and upper bounds is constructed, and the entropy balance equation
reduces to a quadratic algebraic equation for the variable α, which is solved analytically. In
Section 4, the results of the numerical simulations are addressed: the shock tube problem,
the propagation of shear and acoustic waves, and the doubly shear layer problem are
solved by employing the essentially entropic, Zhao–Yong, and present method. In Section 5,
the major results of the paper are outlined.

2. Entropic Lattice Boltzmann Method

In the present paragraph, the main ideas of the entropic lattice Boltzmann (ELB)
approach are briefly recalled. The LB equation reads as follows [20]:

fi(t + ∆t, x + ci∆t) = fi(t, x) + αβ( f eq
i − fi)(t, x), (1)

where fi are the distribution functions corresponding to the particle velocities ci, i = 1 . . . N,
f eq
i are the local equilibrium distribution functions (their exact form is discussed below),

t, x are time and spatial coordinates, and ∆t is the time step. The variable 0 < β < 1 is
computed as

β =
1
2

∆t
(τ + 1

2 ∆t)
,

where τ is the relaxation time. In the standard LB method, the variable α = 2 (α is also
called the path length), τ is evaluated as ν = c2

s τ, cs is sound speed, and ν is viscosity. In
the ELB method, the variable α is not constant and may change from node to node, and
ν = (2/α)c2

s τ, while α is the solution of the following equation:

H[ f + α( f eq − f )] ≤ H[ f ], (2)

where H[ f ] is a smooth convex function, f = { fi, i = 1 . . . N}, and f eq = { f eq
i , i = 1 . . . N}.

The form of the condition (2) is motivated by the following inequality:

H[ f (t + ∆t, x + ci∆t)] = H[ f + αβ( f eq − f )]

= H[(1− β) f + β( f + α( f eq − f ))] ≤ (1− β)H[ f ] + βH[ f + α( f eq − f )]

≤ (1− β)H[ f ] + βH[ f ] = H[ f ],

where the convexity property for the function H was used, and the condition (2) was
applied. Hence, the condition (2) guarantees the fulfillment of the H-theorem, and the
entropy is increased by the collisions (the H-function is decreasing). Note that the explicit
form of the function H[ f ] is not needed in the derivation of the H-theorem. The usual form
of the H-function in the LB theory is Boltzmann-like, that is,

H[ f ] = ∑
i

fi log
(

fi
wi

)
,

where wi > 0 are the lattice weights (discrete analogs of the absolute Maxwell distribution).
One should emphasize that the ELB approach is based on two components: the

equilibrium f eq
i (entropic equilibrium), which is a minimum of the H function, and a

parameter α, which is tuned in order to guarantee a discrete H-theorem. The presence of
both components is crucial. The entropic equilibrium is a non-polynomial function of the
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flow velocity. For the one-dimensional three-velocity model (D1Q3), the following entropic
equilibrium can be used [69]:

f±1 =
1
3

ρ

(
±uc∓ c2

s
2c2

s
+

√
1 +

u2

c2
s

)
, (3)

f0 =
2
3

ρ

(
2−

√
1 +

u2

c2
s

)
, (4)

where f±1, f0 correspond to the particles with the velocities ±c, 0; ρ, u are the density and
the flow velocity; and cs = c/

√
3 = 1/

√
3, since in the present study c = 1. The extension

of the equilibrium (3)–(4) for the two-dimensional nine-velocity model (D2Q9) is based on
the product of two equilibrium functions for the D1Q3 model.

The variation of the path length variable α controls the dissipation properties of the
flow via increase or decrease of the viscosity. Equation (2) can have solutions α < 2; this
means that the stabilization is needed and the viscosity of the flow is increased. In the case
α > 2, the viscosity is decreased. In the perfect case, the alteration of α from 2 should be as
small as possible since this guarantees that the distortion of the viscosity of the modeled
flow is minimal.

Following the previous studies, it would be convenient to introduce a scalar product
as follows:

(a, b) =
N

∑
i

aibi,

where a, b are two vectors with the components ai, bi, i = 1 . . . N. Then, the macroscopic
variables—density ρ, momentum ρu—can be computed as

( f , 1) = ρ, ( f , cγ) = ρuγ,

where γ denotes the spatial coordinates x, y, z.
Note that in terms of the introduced scalar products, the H-function can rewritten as

follows:
H[ f ] = ( f , log( f /w)).

where w = {wi, i = 1 . . . N}.
The formulation of the problem for finding f eq

i has some subtleties. It would be
instructive to consider this problem in detail. For athermal flows, the hydrodynamic fields
ρ and u are conserved during the collisions, but the energy ρc2

s + ρu2 = ∑i fic2
i is not a

collision invariant. Then, D + 1 quantities remain unchanged due to collisions, where
D is the number of spatial dimensions. For a given ρ and u, the discrete distribution
functions fi, i = 1 . . . N define a manifold denoted by S in RN , an the dimension of S
equals N − (D + 1). The entropic local equilibrium state f eq

i is then a point in S for which a
minimum of H[ f ] is attained. One has the following:{

f eq : min fi ,i=1...N H[ f ]
G1( f ) = G2( f ) = . . . = GD+1( f ) = 0

(5)

where Gj = 0, j = 1 . . . D + 1 denote the constraints ∑i fi − ρ = 0, ∑i fici,γ − ρuγ = 0.
It is important to mention that it is not correct to replace f by f eq in the constraints in
Equation (5).

The geometrical interpretation of the problem is presented in Figure 1. Consider a
point f in S, and let f (ε) be a curve in S parameterized by ε ≥ 0 such that f (0) = f . By
applying the Taylor expansion one obtains the following:

f (ε) = f + εδ f + o(ε),
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where δ f is a vector in the tangent space defined as Tf (S) to the manifold S at the point f .
Now, assume that f is a minimum of H[ f ]; then,

dH[ f (ε)]
dε

|ε=0 = 0,

On the other hand,

dH[ f (ε)]
dε

|ε=0 =
dH[ f + εδ f + o(ε)]

dε
|ε=0 = (∇H[ f ], δ f ),

where ∇H[ f ] = dH[ f ]/d f . Finally, one gets

(∇H[ f ], δ f ) = 0,

Hence, ∇H[ f ] belongs to an orthogonal complement to the tangent space Tf (S),
which is defined as Tf (S)⊥, and obviously Tf (S) ⊕ Tf (S)⊥ = RN . Remember that the
manifold S is specified by the conditions Gj = 0, j = 1 . . . N; then, ∇Gj are normal vectors
to S, and they can be considered as a basis in Tf (S)⊥. Therefore,

∇H[ f ] =
D+1

∑
j=1

λj∇Gj, (6)

where λj are expansion coefficients, which can be recognized as Lagrange multipliers.

S : G[ f ] = 0

H[ f ] = const

δ f ∈ Tf (S)

∇H = λ∇G ∈ Tf (S)⊥

Figure 1. Contour lines of the function H[ f ], the constraints surface S : G[ f ] = 0, the elements of the
tangent spaces Tf (S), and the complement to the tangent space Tf (S)⊥ are presented.

Equation (6) is solved jointly with the constraints Gj = 0. Not all equilibrium states
are allowed from the physical point of view. Obviously, the considered model should lead
to correct hydrodynamics. In order to recover Navier–Stokes equations (at least with O(u3)
error), it is sufficient to include the following additional condition [70]:

∑
i

f eq
i ci,γci,κ = ρuγuκ + ρc2

s δγκ . (7)

It is worth emphasizing that one cannot replace f eq by f in Equation (7), since the con-
dition (7) holds only for the equilibrium part of the distribution function. The equilibrium
distribution function, which also respects the condition (7), is termed perfect.

The form of the solution for the problem (5), (7) depends on the particular choice
of H[ f ]. As has been mentioned before, the Boltzmann H[ f ] is the most popular vari-
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ant. However, one may consider a simpler variant—quadratic entropy, which takes the
following form:

H[ f ] = ∑
i

f 2
i

wi
,

This function plays a role in the regularization of LB models, namely, regularized LB
models minimize the quadratic H-function [56]. It is tempting to apply quadratic entropy
in the ELB approach. Firstly, consider the Equation (2) in the form of equality. The solution
is as follows [69]:

α = −
2 ∑i

( f eq
i − fi) fi

wi

∑i
( f eq

i − fi)2

wi

,

Hence, one has a closed-form expression for α that exactly solves the entropy balance
equation. Next, one needs to find the equilibrium states from the problem (5). From (5) and
(6), one gets the following:

f eq
i = ρwi

(
1 +

ciu
c2

s

)
,

The obtained equilibrium depends linearly on the flow velocity u; hence, it cannot be
perfect. In addition, as was mentioned in the previous studies [69], this equilibrium admits
negative values, and this can lead to negative density. As a final remark, it can be argued
that some caution is necessary in the selection of the H-function and the local equilibrium
in the ELB method. In the present study, the equilibrium (3)–(4) is used, which is entropic
(minimizes Boltzmann H-function) and perfect.

3. Low-Dissipative ELB Method

For the Boltzmann entropy, the Equation (2)

H[ f + α( f eq − f )] ≤ H[ f ]

is rewritten as [31,71]

( f , (1 + αx) log(1 + αx)) ≤ α( f , x log(1 + x)), (8)

where the variable x measures the departure from the local equilibrium

x =
f eq − f

f

and has the components xi = ( f eq
i − fi)/ fi. It would be convenient to introduce the

following scalar products:

(a, b)+ = ∑
i:xi≥0

aibi, (a, b)− = ∑
i:xi<0

aibi,

where a, b are two vectors with the components ai, bi, i = 1 . . . N. The general idea for
solving Equation (2) or (8) is as follows. At the first step, the bounds for the minimal
values of α denoted as α (α ≤ 2) are evaluated from (8). At the second step, the upper
bounds for α denoted as α (α ≥ 2) are computed. Next, the function H[ f + α( f eq − f )]
is approximated by a quadratic function of the variable α− 2 in the interval [α, 2], and a
similar approximation is performed in the interval [2, α]. Finally, the estimates for α ∈ [α, α]
(termed low-dissipative) are evaluated by solving a quadratic equation. The geometric
interpretation of the proposed method is presented in Figure 2.
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H
H(α)

α
α = 2 αα

H(0) = H[ f ]

H(2)

H[α,2](α)

H[2,α](α)

α = 1

Figure 2. The geometric interpretation of the present method; H(α) ≡ H[ f + α( f eq − f )] and
H[α,2](α), H[2,α](α) are quadratic approximations of H(α) in the intervals [α, 2] and [2, α].

3.1. Bounds for the Logarithm

To obtain the values of α, α, one needs to find lower and upper bounds of the logarithm.
The most natural way of doing this is to apply the Padé approximations, which are based
on rational functions. Such an approach has been used in the essentially entropic LB
method [31,71]. Following Topsøe [72], one has a chain of inequalities for z > 0 as follows:

φ1(z) ≤ φ2(z) ≤ . . . ≤ log(1 + z) ≤ . . . ≤ ψ2(z) ≤ ψ1(z), (9)

where the first lower approximants φn(z) in (9) are given by

φ1(z) =
2z

2 + z
, φ2(z) =

3z(2 + z)
6 + 6z + z2 ,

and the first upper approximants ψn(z) are

ψ1(z) =
z(2 + z)
2(1 + z)

, ψ2(z) =
z(6 + z)

2(3 + 2z)
.

In order to derive the bounds for z ∈ (−1, 0], the duality between functions in the
intervals z ∈ (−1, 0] and z ∈ [0, ∞) is introduced. For the function g(z), the dual function
g∗(z) is defined by the rule

g∗(z) = −g
(
− z

1 + z

)
,

It is obvious that z→ − z
1+z maps [0, ∞) onto (−1, 0]. Note that the dual function for

log(1 + z) is log(1 + z) (i.e., this function is self-dual). Therefore, the following inequalities
are obtained for −1 < z ≤ 0 by applying the duality properties to (9)

ψ∗1 (z) ≤ ψ∗2 (z) ≤ . . . ≤ log(1 + z) ≤ . . . ≤ φ∗2 (z) ≤ φ∗1 (z). (10)

In addition, the following inequality is valid for any z > −1:

φ0(z) ≤ log(1 + z) ≤ ψ0(z), (11)

where
φ0(z) =

z
1 + z

, ψ0(z) = z.
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In the present study, it would be convenient to apply the following upper bound for
z ∈ (−1, 0] instead of log(1 + z) ≤ φ∗n(z):

log(1 + z) ≤
M

∑
l=1

(−1)(l+1) zl

l
. (12)

3.2. Evaluation of α

The value of α is obtained as a particular solution of (8). For the present method, it
serves as a lower bound. Note that α can be used as a stabilizer for LB models, but in
practice, it leads to dissipative behavior.

Consider the Equation (8). Since α is not inside the logarithmic function in the right
hand side of (8), approximation of only the left-hand side is needed. Assume that one finds
a function A(α) such that

( f , (1 + αx) log(1 + αx)) ≤ A(α) ≤ α( f , x log(1 + x))

for α ≥ 1; then, the fulfillment of A(α) ≤ α( f , x log(1 + x)) means that the inequality (8) is
satisfied.

One has

( f , (1 + αx) log(1 + αx)) = ( f , (1 + αx) log(1 + αx))+ + ( f , (1 + αx) log(1 + αx))−,

where the first term in this sum is approximated with use of the inequality from (9).

( f , (1 + αx) log(1 + αx))+ ≤ ( f , (1 + αx)ψ1(αx))+ = ( f ,
1
2

αx(2 + αx))+, (13)

For the second term, the inequality (12) for M = 3 is applied.

( f , (1 + αx) log(1 + αx))− ≤ ( f , (1 + αx)(αx− 1
2
(αx)2 +

1
3
(αx)3))−, (14)

Hence, A(α) is a sum of (13) and (14). Using ( f , x) = 0, the inequality A(α) ≤
α( f , x log(1 + x)) is rewritten as

α

2
( f , x2)− α2

6
( f , x3)− +

α3

3
( f , x4)− ≤ ( f , x log(1 + x)). (15)

Now, one can prove the following:

Lemma 1. If α satisfies (15), then α ≤ 2.

Proof. Note that from (11), it follows that ( f , x log(1 + x)) ≤ ( f , x2). In addition, since
α ≥ 1, 1

2 ( f , x2)− α
6 ( f , x3)− + α2

3 ( f , x4)− ≥ 1
2 ( f , x2)− 1

6 ( f , x3)− + 1
3 ( f , x4)− ≥ 0. One has

α ≤ ( f , x log(1 + x))
1
2 ( f , x2)− α

6 ( f , x3)− + α2

3 ( f , x4)−
≤ ( f , x2)

1
2 ( f , x2)− 1

6 ( f , x3)− + 1
3 ( f , x4)−

≤ 2.

Applying Lemma 1, one has for the left-hand side of (15)

α

2
( f , x2)− α2

6
( f , x3)− +

α3

3
( f , x4)− ≤ α

(
1
2
( f , x2)− 1

3
( f , x3)− +

4
3
( f , x4)−

)
Finally, redefining the function A(α) as α

(
1
2 ( f , x2)− 1

3 ( f , x3)− + 4
3 ( f , x4)−

)
, one

finds the value of α as
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α =
( f , x log(1 + x))(

1
2 ( f , x2)− 1

3 ( f , x3)− + 4
3 ( f , x4)−

) . (16)

As a remark, one can notice that it is possible to take M > 3 in the inequality (12)
applied in (14), but the numerical simulations show that the difference will be relatively
small in comparison to Equation (16).

3.3. Evaluation of α

From the condition fi + α( f eq
i − fi) ≥ 0, i = 1 . . . N, one obtains the upper bound

α∗ [28] for the variable α as follows:

α ≤ α∗ = min
i: fi− f eq

i >0

fi

fi − f eq
i

, (17)

In the present paragraph, an additional upper bound defined as α is evaluated. Assume
that one finds a function B(α) such that

B(α) ≤ ( f , (1 + αx) log(1 + αx)) ≤ α( f , x log(1 + x))

for all α ≥ 1. Then, the solution to the equation B(α) = α( f , x log(1 + x)) defines the upper
bound. One has

( f , (1 + αx) log(1 + αx)) ≥ ( f , (1 + αx)φ0(αx))+

+( f , (1 + αx)ψ∗1 (αx))− =
α2

2
( f , x2)− ≡ B(α),

Note that ψ∗1 = ψ1 has been used. Then,

α =
2( f , x log(1 + x))

( f , x2)−
≥ 2. (18)

3.4. Explicit Formula for α

In this paragraph, the quadratic on α functions, which serve as an upper bound for
H(α) in the interval [α, α], where H(α) = H[ f + α( f eq − f )], are constructed (Figure 2).

First, assume that the flow is far from equilibrium and α∗, defined by Equation (17), is
smaller than 2. In this case, as a solution of (8), the value α = min(α, α∗), where α, defined
by (16), is taken. In practice, this is a very rare event.

Consider the case α∗ > 2 and H[ f ] = H(0) ≤ H(2), then the solution α of Equation (8)
belongs to the interval [α, 2]. Consider the Taylor expansion of the function H(α) at α = 2
with the residual in the form of Lagrange, as follows:

H(α) = H(2) + Hα(2)(α− 2) +
1
2!

Hαα(θ)(α− 2)2,

where α ∈ [α, 2]. Then, θ is in the interval [α, 2]. Note that

Hα(α) = ( f , x log(1 + αx))− ( f , x log(1 + x)),

Hαα(α) =

(
f ,

x2

1 + αx

)
,

Let us construct the function H[α,2](α) ≥ H(α), α ∈ [α, 2] as

H[α,2](α) = H(2) + Hα(2)(α− 2) +
1
2!

H[α,2](α− 2)2, (19)



Mathematics 2022, 10, 3928 10 of 22

where
Hαα(θ) ≤ max

α∈[α,2]
Hαα(θ)

≤
(

f ,
x2

1 + αx

)
+
+

(
f ,

x2

1 + 2x

)
−
≡ H[α,2]. (20)

Next, consider the case α∗ > 2 and H[ f ] = H(0) ≥ H(2); then, α ∈ [2, min(α, α∗)]. If
α∗ ≤ α, then α = 2 is adopted as a solution of Equation (8). If α∗ > α, then, similarly to the
previous case, the function H[2,α](α) ≥ H(α), α ∈ [2, α] is introduced, as follows:

H[2,α](α) = H(2) + Hα(2)(α− 2) +
1
2!

H[2,α](α− 2)2, (21)

where
Hαα(θ) ≤ max

α∈[2,α]
Hαα(θ)

≤
(

f ,
x2

1 + 2x

)
+
+

(
f ,

x2

1 + αx

)
−
≡ H[2,α]. (22)

Finally, α is computed as a solution of the quadratic equation H[α,2](α) = H[ f ] or
H[2,α](α) = H[ f ].

For clarity, the obtained results based on Equations (19)–(22) are compiled in the form
of a proposition.

Proposition 1. The inequality (8), that is,

H[ f + α( f eq − f )] ≤ H[ f ]

has the following solution.
1. If α∗ defined by (17) is smaller than 2, then α = min(α, α∗), where α is given by (16).
2. H[ f ] = H(0) ≤ H(2). If α∗ > 2 , then

α = 2 +
1

H[α,2]
{−Hα(2) +

√
D},

where
D = Hα(2)2 − 2H[α,2](H(2)− H(0)),

moreover, if D < 0, then α = α.
3. H[ f ] = H(0) > H(2). If α ≥ α∗ > 2, where α is given by (18), then α = 2. In the case

α∗ > α ≥ 2 one has

α = 2 +
1

H[2,α]
{−Hα(2) +

√
D},

where
D = Hα(2)2 − 2H[2,α](H(2)− H(0))

and H[α,2], H[2,α] are defined by (20) and (22). In addition,

Hα(2) = ( f , x log(1 + 2x))− ( f , x log(1 + x)),

Hαα(2) =
(

f ,
x2

1 + 2x

)
.

4. Numerical Experiments

In the present paragraph, the numerical solutions of several test problems are consid-
ered: the Sod shock tube, the propagation of shear waves and acoustic waves for different
angles between a flow direction vector and a perturbation wave-vector, and the double
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shear layer. The results are obtained with use of the following entropic LB methods: es-
sentially entropic (EELB) of the first order (used only for Sod shock tube) and the third
order [31], the method of Zhao and Yong (ZY) [32], the lower bound α evaluated from (16)
(used only for the Sod shock tube), and the method described in Proposition 1, defined
hereafter as the low-dissipative (LD). During the simulations, the following variables are
recorded: the mean, minimal value of α measured over the modeled spatial domain at
some moment of time t

〈α〉 = 1
n ∑

x
α(x), αmin = min

x
α(x), (23)

and L1, L2 deviations of α from 2 in the form

D1(α) =
1
n ∑

x
|α(x)− 2|, (24)

D2(α) =

√
1
n ∑

x
(α(x)− 2)2, (25)

where x denotes spatial nodes, n is the number of the spatial nodes, and, for all modeled
problems, ∆t = 1 is used. For convenience, the list of main notations is also given in
Appendix A, Table A1.

4.1. Shock Tube

The first test problem is the athermal one-dimensional Sod shock tube. The initial
condition is a step density profile: ρ = 1.5, x ≤ H/2, ρ = 0.5, x > H/2 (i.e., the initial
density ratio is 3:1), and H is the length of the domain. For this problem, a grid consisting
of 500 spatial nodes is used, and the viscosity is ν = 10−5. Since the problem is one-
dimensional, the D1Q3 LB model is applied. The equilibrium is taken in the form (3)–(4).

The simulation results for the different entropic LB methods are presented in Figure 3
at the time step t = 250. As expected, the density profiles show oscillations [73], and the
amplitudes of the oscillations are larger for the less dissipative methods. The first-order
EELB method leads to the smallest average values of α (and potentially to the largest
dissipation), followed by the method based on α from (16), and the method of Zhao and
Yong. LD and the third-order EELB are the least dissipative. Moreover, the LD method has
the closest to 2 average value of α, that is, it produces the smallest amount of additional
dissipation compared to the other methods, but has the largest variations of D1, D2, since
relatively large values of α > 2 are observed (Table 1). Remember that the condition
α > 2 means that the viscosity is decreased. Note that the dispersive oscillations, which
are typical for the ELB method, can be removed by applying LB models with additional
artificial viscosity and dispersion terms [74]. In addition, it would be interesting to compare
the accuracy of the LB schemes with Navier–Stokes numerical solvers without artificial
viscosity [75].

Note that the methods in which α cannot exceed 2 tend to have smaller values of D1, D2.
Then, in order to test the models under the same conditions, the following experiment
has been performed: for the third-order EELB and the present LD method, the variable α
has been bounded by 2 in the simulations. In this case, these models show significantly
smaller values of D1, D2 variances (Table 1). The methods based on α from (16) and the
first-order EELB give the least accurate solutions to the entropy balance equations and
serve as predictors for the LD and third-order EELB methods. In subsequent problems,
only the latter approaches are addressed.
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Figure 3. Sod shock tube. The density profiles (left) and α (right) are presented. From upper to
lower slides: (a) α defined by (16); (b) LD method (Proposition 1); (c) first-order EELB method;
(d) third-order EELB method; (e) Zhao–Yong method; dashed (red) line is the analytical solution.
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Table 1. Sod shock tube. The parameters αmin, 〈α〉, D1, D2 defined by (23)–(25) are presented; α

denotes the method based on Equation (16); LD is the low-dissipative entropic method described in
the Proposition 1; EELB 1 is the first-order EELB method; EELB 3 is the third-order EELB method; ZY
is the method of Zhao and Yong; LD, max(α) = 2 EELB 3, max(α) are the low-dissipative entropic
and the third-order EELB methods for which α is bounded by 2.

Method αmin 〈α〉 D1 D2

α 1.70 1.9956 0.0044 0.020
LD 1.87 1.9997 0.0143 0.029

EELB 1 1.68 1.9916 0.008 0.031
EELB 3 1.81 1.9979 0.008 0.018

ZY 1.77 1.9953 0.005 0.018

LD, max(α) = 2 1.88 1.9962 0.0038 0.0131
EELB 3, max(α) = 2 1.81 1.9963 0.0037 0.0147

4.2. Shear Waves

The simulation of shear waves serves as an excellent test for the assessment of the
dissipative properties of the LB models and validation of the linear stability analysis
predictions [58]. For this problem, a periodic two-dimensional spatial domain is considered,
the initial conditions for the hydrodynamic fields are as follows:

ρ|t=0 = 1, (26)

ux|t=0 = cs Ma− cs Maε sin(ϕ(k)) cos(kxx + kyy), (27)

uy|t=0 = εcs Ma cos(ϕ(k)) cos(kxx + kyy), (28)

where ε = 10−4, Ma = 0.2, 0.4 is the flow Mach number, ν = 10−5, k = (kx, ky) is the
perturbation wave-number, and ϕ(k) = arctan(ky/kx). In addition, the following variable
is introduced: u0,y = εcs Ma cos(ϕ(k)). It would be convenient to introduce the time
variable in the form Fo = k2νt (the Fourier number).

The first considered case for the problem (26)–(28) is as follows: ϕ = 0 and ky = 0, ux
is constant, and uy depends only on x. The size of the spatial domain is 32× 2 for this case.
In addition, kx = 2π/8, this means that the perturbation wavelength equals 8 spacings
between lattice nodes. The Navier–Stokes equations have the following solution for the
velocity uy:

uy = u0,y exp(−νk2
xt).

The simulation results are shown in Figure 4 for Ma = 0.2 and Ma = 0.4 (left slides).
The second case is kx = 2π/16, ky = 2π/12. The simulation spatial domain contains

48× 36 nodes. Interestingly, this problem is unstable for the third-order recursively reg-
ularized LB model [58]. In the present study, all the entropic models are stable but have
different dissipation properties. The results are depicted in Figure 4 (right slides).

The ratios νe/ν (termed effective viscosity, where νe is the viscosity measured during
the numerical simulations, and ν is the theoretical viscosity) are shown in Table 2 for both
considered cases. Clearly, from the results in Figure 4 and Table 2 one can see that the
present LD method has the smallest dissipation among all considered entropic approaches
and gives the values of νe/ν closest to the ones for the conventional D2Q9 model (α = 2). It
is important to mention that for the D2Q9 model, the viscosity decreases if the flow velocity
is increased [76]. Such a behavior is stipulated by the cubic defects ( ∇ · (ρuuu)), which
enter the Navier–Stokes equations derived from low-order LB models like D2Q9 [70,76,77].
This effect is seen in Tables 2 and 3. The magnitude of the effective viscosity tends to be
smaller than unity for the D2Q9, α = 2 model.
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Figure 4. Shear waves, upper slides: Ma = 0.2, lower slides: Ma = 0.4; left slides: kx = 2π/8, ky = 0;
and the right slides: kx = 2π/16, ky = 2π/12. LD is the low-dissipative entropic method described
in Proposition 1; EELB 3 is the third-order EELB method; ZY is the method of Zhao and Yong. The
Navier–Stokes solutions are denoted as: (−).

Table 2. Shear waves, the ratios νe/ν (νe is the viscosity measured during the numerical simulations, ν

is the theoretical viscosity) are presented. α = 2 is the standard LB method; LD is the low-dissipative
entropic method described in Proposition 1; EELB 3 is the third-order EELB method; ZY is the method
of Zhao and Yong.

Ma = 0.2 Ma = 0.4

Model k =
( 2π

8 , 0
)

k =
( 2π

16 , 2π
12
)

k =
( 2π

8 , 0
)

k =
( 2π

16 , 2π
12
)

α = 2 1.05 0.98 1.03 0.91
LD 1.05 0.98 1.04 0.92

EELB3 1.05 0.98 1.16 1.05
ZY 1.43 1.39 3.03 2.61

Table 3. Acoustic waves, the ratios νe/ν (νe is the viscosity measured during the numerical simu-
lations, ν is the theoretical viscosity) are presented. α = 2 is the standard LB method; LD is the
low-dissipative entropic method described in Proposition 1; EELB 3 is the third-order EELB method;
ZY is the method of Zhao and Yong.

Ma = 0.2 Ma = 0.4

Model k =
( 2π

8 , 0
)

k =
( 2π

16 , 2π
12
)

k =
( 2π

8 , 0
)

k =
( 2π

16 , 2π
12
)

α = 2 0.98 1.05 0.86 1.03
LD 0.98 1.05 0.87 1.03

EELB3 0.98 1.05 1.01 1.12
ZY 1.41 1.69 4.19 2.53
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4.3. Acoustic Waves

This problem involves the variations of density. The initial conditions are given by the
following expressions [58]:

ρ|t=0 = 1 + δρ0 = 1 + ε cos(kxx + kyy), (29)

ux|t=0 = cs Ma + csδρ0 cos(ϕ(k)), (30)

uy|t=0 = csδρ0 sin(ϕ(k)), (31)

In the simulations, the following values of the parameters are adopted: ε = 10−4,
Ma = 0.2, 0.4, ν = 10−5, ϕ(k) = arctan(ky/kx).

Similarly to the previous case, the problem (29)–(31) is solved for two combinations of
kx, ky. The spatial domain is considered as periodic, and the size of the domain is taken
as 48× 36. Initially, the case ϕ = 0 and kx = 2π/8, ky = 0 is considered. The results
are plotted in Figure 5 (left slides). Next, the results of the simulations for the inclined
acoustic waves kx = 2π/16, ky = 2π/12 are presented in Figure 5 (right slides). Again, the
application of the LD method only slightly varies the dissipation properties compared to
the standard LB model results (Table 3).

Figure 5. Acoustic waves, upper slides: Ma = 0.2, lower slides: Ma = 0.4; left slides:
kx = 2π/8, ky = 0 and the right slides: kx = 2π/16, ky = 2π/12. LD is the low-dissipative en-
tropic method described in Proposition 1; EELB 3 is the third-order EELB method; ZY is the method
of Zhao and Yong. The Navier–Stokes solutions are denoted as: (−).

In conclusion, one can notice that the considered entropic methods are significantly
better suited for the modeling of shear and acoustic waves than the regularized LB mod-
els [58,60] due to the relatively small deviations of the measured efficient viscosities from the
theoretical values.
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4.4. Double Shear Layer

In this problem, a flow in a doubly periodic two-dimensional square domain of a size
L× L is considered. The initial conditions for the flow velocities are defined as follows:

ux(x, y)|t=0 = U0 tanh(k(y/L− 0.25)), y < L/2, (32)

ux(x, y)|t=0 = U0 tanh(k(0.75− y/L)), y ≥ L/2, (33)

uy(x, y)|t=0 = U0δ sin(2π(x/L + 0.25)), (34)

where the parameters k, δ are as follows:

k = 80, δ = 0.05

The initial density equals 1, and the Reynolds number is Re = U0L/ν, where ν is the
viscosity.

Note that the form of the initial distribution function noticeably affects the dissipation
properties of the flow, so in order to avoid initial spurious oscillations, the distribution
function at t = 0 is initialized in the regularized form f (eq) + f (1), where the elements of
the stress tensor entering the non-equilibrium component of the distribution function f (1)

are computed by applying finite-difference approximations [41] of ∇u .
The numerical simulations of the problem (32)–(34) are performed for Re = 3× 104 and

U0 = 0.04. This means that the Mach number equals Ma = U0/cs =
√

3× 0.04 ≈ 0.0693. It
is convenient to introduce the characteristic time variable (convection time) as tc = L/U0.
The flow is assumed to be stable if the solutions remain finite in the time interval t ∈ [0, 2tc].

The sensitivity of the entropic methods to the grid resolution can be tested for the
present problem. For coarse meshes 64× 64 and 128× 128, the third-order EELB, Zhao-
Yong, and LD methods show qualitatively correct results but produce spurious vortices.
These vortices may lead to blow-up instabilities, but in the present case, the solutions
are finite because the fulfillment of the entropy balance equation suppresses unstable
oscillations. Note that the standard D2Q9 model (α = 2) is unstable for grid resolutions
of 64× 64 and 128× 128. For grid resolutions larger than 128× 128, spurious vortices
are not observed, and all approaches produce accurate vortical profiles. In the case of
the spatial resolution 256× 256, the normalized vorticity profiles are presented for the all
considered methods at t = tc in Figure 6. One can observe that all approaches give very
similar results. Next, the time histories of the variables of 〈α〉 − 2 and D1 are presented in
Figure 7. Clearly, the LD method gives the smallest average values of |α− 2| among the
all considered methods. In addition, the LD method shows smaller D1 variances than the
third-order EELB method.

Finally, the evolution of the following variables is considered: the averaged on the
spatial variables kinetic energy 〈u2〉 = 〈u2

x + u2
y〉 normalized on U2

0 and the averaged
on the spatial variables squared vorticity 〈ω2〉 (enstrophy) normalized on (U0/L)2. As a
benchmark, the simulation results based on the standard D2Q9 LB model for a grid with
the resolution 1024× 1024 are taken (these simulations are stable). From Figure 8, one can
observe that all entropic methods show similar results: they are close to the benchmark
solution but more dissipative to some extent than the benchmark solution, which uses
well-resolved grid. In addition, the LD method is slightly less dissipative than the other
entropic treatments.
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Figure 6. Double shear layer. The grid resolution is 256× 256, Ma = 0.0693, Re = 3× 104. The
normalized vorticity plots are presented at the moment of time t = tc; LD is the low-dissipative
entropic method described in Proposition 1; EELB 3 is the third-order EELB method; ZY is the method
of Zhao and Yong.
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Figure 7. Double shear layer. The grid resolution is 256× 256, Ma = 0.0693, Re = 3× 104. The
time histories of the variables 〈α〉 − 2 and D1 are presented; the low-dissipative entropic method is
denoted by a red line (−); the third-order EELB method is denoted by a black line (−); the method
of Zhao and Yong is denoted by a blue line (−).
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Figure 8. Double shear layer, Ma = 0.0693, Re = 3× 104. The kinetic energy (upper plot) and
squared vorticity (lower plot) are presented. The benchmark solution is denoted as (−); the low-
dissipative entropic method is denoted as (−); the third-order EELB method is denoted as (−−);
the method of Zhao and Yong is denoted as (− · −). For all entropic models, the grid resolution is
256× 256.

4.5. Performance

The performance of the considered entropic stabilization approaches is affected by
the implementation details and the modeled problems. For instance, the method of Zhao
and Yong is applied only for the nodes in which the H-theorem is violated. Therefore,
this method can be faster than the others if the proportion of the spatial nodes prone to
instabilities is small. On the other hand, the Zhao and Yong and the present low-dissipative
methods exploit the values of the H-function, which require the computation of logarithms;
the latter is relatively slow operation. On average, the LB D2Q9 model stabilized by the
considered entropic techniques is approximately two to three times slower than the LB
D2Q9 model without additional stabilization. For example, for the shear waves, the Zhao
and Yong method is 2.2 times slower than the conventional D2Q9 model followed by the
low-disspative and essentially entropic methods, which are 2.38, 2.77 times slower than the
conventional D2Q9 model. For acoustic waves, the methods of Zhao-Yong, low-dissipative,
and essentially entropic are 1.81, 2.0, and 2.38 times slower than the conventional D2Q9
model. Note that, in the present study, the simulations are performed with use of self-
standing C++ code (and the figures are generated with use of MATLAB). In order to increase
the speed of code execution, the dynamic arrays, such as vector class from the standard
C++ library, are avoided in the parts of the code related to the entropic stabilizers.

5. Conclusions

In the present study, a novel approach for finding the solutions to the entropy balance
Equation (2) is proposed: by employing the bounds for the logarithms, the H-function is
approximated by quadratic function on the variable α around α = 2; then, the solution for
α is obtained analytically from the quadratic algebraic equation. The proposed stabilization
technique (termed as low-dissipative) is very “mild” (i.e., the departure of α from its
normal value 2 is small). Therefore, the injection of the additional dissipation in the
modeled systems is very moderate.

In order to validate the developed method, the following test problems have been
considered: the shock tube problem, the propagation of shear waves, acoustic waves, and
doubly shear layer problem. In addition, for comparison purposes, these problems have
been also solved employing the approaches in which α is given in the form of a closed
analytical expression: the essentially entropic LB method [31] and the method of Zhao
and Yong [32]. For all problems, the presented method gives the solutions for α that are
closest to its normal value 2. For the Sod shock tube problem, one can notice that all
entropic methods lead to dispersive oscillations near shock. This behavior is typical for
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these models [73]. The entropic methods for which alpha is close to 2 (such as essentially
entropic and the present approach) show larger oscillations than more dissipative methods.
In addition, it has been shown that, compared to the regularized LB models, the present
entropic method is able to reproduce correct attenuation rates for shear and acoustic waves
for relatively coarse grids (8–16 nodes per wavelength).
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Abbreviations
The following abbreviations are used in this manuscript:

ELB Entropic lattice Boltzmann
EELB Essentially entropic lattice Boltzmann
LB Lattice Boltzmann
LD Low dissipative
ZY Zhao Yong

Appendix A

For the sake of clarity, a table containing the main used notations and their correspond-
ing explanations is presented.

Table A1. List of main notations.

Notation Formula Explanation

α
( f ,x log(1+x))

( 1
2 ( f ,x2)− 1

3 ( f ,x3)−+ 4
3 ( f ,x4)−)

lower bound for α

α
2( f ,x log(1+x))

( f ,x2)−
upper bound for α

α∗ mini: fi− f eq
i >0

fi
fi− f eq

i
upper bound for α

〈α〉 1
n ∑x α(x) average value of α over spatial domain

αmin minx α(x) minimal value of α in spatial domain
D1(α)

1
n ∑x |α(x)− 2| L1 deviations of α from 2 in the spatial domain

D2(α)
√

1
n ∑x(α(x)− 2)2 L2 deviations of α from 2 in the spatial domain

References
1. Qian, Y.H.; d’Humières, D.; Lallemand, P. Lattice BGK Models for Navier Stokes Equation. Europhys. Lett. 1992, 17, 479–484.

[CrossRef]
2. Guo, Z.; Shu, C. Lattice Boltzmann Method and Its Applications in Engineering; World Scientific Publishing Company: Singapore, 2013.
3. Krüger, T.; Kusumaatmaja, H.; Kuzmin, A.; Shardt, O.; Silva, G.; Viggen, E. The Lattice Boltzmann Method. Principles and Practice;

Springer: Berlin/Heidelberg, Germany, 2017.
4. Succi, S. The Lattice Boltzmann Equation: For Complex States of Flowing Matter; Oxford University Press: Oxford, UK, 2018.
5. Jourabian, M.; Darzi, A.A.R.; Toghraie, D.; ali Akbari, O. Melting process in porous media around two hot cylinders: Numerical

study using the lattice Boltzmann method. Phys. A Stat. Mech. Its Appl. 2018, 509, 316. [CrossRef]
6. Zhu, L.; Zhang, H.; Xiao, L.; Bazylak, A.; Gao, X.; Sui, P.C. Pore-scale modeling of gas diffusion layers: Effects of compression on

transport properties. J. Power Sources 2021, 496, 229822. [CrossRef]
7. Suga, K. Lattice Boltzmann methods for complex micro-flows: Applicability and limitations for practical applications. Fluid Dyn.

Res. 2013, 45, 034501. [CrossRef]
8. Mazloomi, A.; Chikatamarla, S.S.; Karlin, I. Entropic Lattice Boltzmann Method for Multiphase Flows. Phys. Rev. Lett. 2015,

114, 174502. [CrossRef]
9. Nemati, M.; Shateri Najaf Abady, A.R.; Toghraie, D.; Karimipour, A. Numerical investigation of the pseudopotential lattice

Boltzmann modeling of liquid-vapor for multi-phase flows. Phys. A Stat. Mech. Its Appl. 2018, 489, 65. [CrossRef]

http://doi.org/10.1209/0295-5075/17/6/001
http://dx.doi.org/10.1016/j.physa.2018.06.011
http://dx.doi.org/10.1016/j.jpowsour.2021.229822
http://dx.doi.org/10.1088/0169-5983/45/3/034501
http://dx.doi.org/10.1103/PhysRevLett.114.174502
http://dx.doi.org/10.1016/j.physa.2017.07.013


Mathematics 2022, 10, 3928 20 of 22

10. Toghaniyan, A.; Zarringhalam, M.; Akbari, O.A.; Sheikh Shabani, G.A.; Toghraie, D. Application of lattice Boltzmann method and
spinodal decomposition phenomenon for simulating two-phase thermal flows. Phys. A Stat. Mech. Its Appl. 2018, 509, 673–689.
[CrossRef]

11. Ahmadi Balootaki, A.; Karimipour, A.; Toghraie, D. Nano scale lattice Boltzmann method to simulate the mixed convection
heat transfer of air in a lid-driven cavity with an endothermic obstacle inside. Phys. A Stat. Mech. Its Appl. 2018, 508, 681–701.
[CrossRef]

12. Dellar, P. Bulk and shear viscosities in lattice Boltzmann equations. Phys. Rev. E 2001, 64, 031203. [CrossRef]
13. Lallemand, P.; Luo, L.S. Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and

stability. Phys. Rev. E 2000, 61, 6546. [CrossRef]
14. d’Humières, D.; Ginzburg, I.; Krafczyk, M.; Lallemand, P.; Luo, L.S. Multiple–relaxation–time lattice Boltzmann models in three

dimensions. Phil. Trans. R. Soc. Lond. 2002, 360, 437. [CrossRef]
15. Lallemand, P.; Luo, L.S. Theory of the lattice Boltzmann method: Acoustic and thermal properties in two and three dimensions.

Phys. Rev. E 2003, 68, 036706. [CrossRef]
16. Ricot, D.; Marié, S.; Sagaut, P.; Bailly, C. Lattice Boltzmann method with selective viscosity filter. J. Comp. Phys. 2009, 228, 4478.

[CrossRef]
17. Li, Y.; Shock, R.; Zhang, R.; Chen, H. Numerical study of flow past an impulsively started cylinder by the lattice-Boltzmann

method. J. Fluid Mech. 2004, 519, 273–300. [CrossRef]
18. Tosi, F.; Ubertini, S.; Succi, S.; Chen, H.; Karlin, I. Numerical stability of Entropic versus positivity-enforcing Lattice Boltzmann

schemes. Math. Comput. Simul. 2006, 72, 227–231. [CrossRef]
19. Karlin, I.; Succi, S.; Chikatamarla, S. Comment on “Numerics of the lattice Boltzmann method: Effects of collision models on the

lattice Boltzmann simulations”. Phys. Rev. E 2011, 84, 068701. [CrossRef]
20. Karlin, I.; Bösch, F.; Chikatamarla, S.; Succi, S. Entropy-Assisted Computing of Low-Dissipative Systems. Entropy 2015, 17, 8099.

[CrossRef]
21. Yong, W.A.; Luo, L.S. Nonexistence of H theorems for the athermal lattice Boltzmann models with polynomial equilibria. Phys.

Rev. E 2003, 67, 051105. [CrossRef]
22. Yong, W.A.; Luo, L.S. Nonexistence of H Theorem for some Lattice Boltzmann models. J. Stat. Phys. 2005, 121, 91. [CrossRef]
23. Karlin, I.; Succi, S. Equilibria for discrete kinetic equations. Phys. Rev. E 1998, 58, R4053. [CrossRef]
24. Karlin, I.; Gorban, A.; Succi, S.; Boffi, V. Maximum Entropy Principle for Lattice Kinetic Equations. Phys. Rev. Lett. 1998, 81, 6–9.

[CrossRef]
25. Karlin, I.; Ferrante, A.; Öttinger, H. Perfect entropy functions of the Lattice Boltzmann method. Europhys. Lett. 1999, 47, 182–188.

[CrossRef]
26. Ansumali, S.; Karlin, I.; Öttinger, H. Minimal entropic kinetic models for hydrodynamics. Europhys. Lett. 2003, 63, 798–804.

[CrossRef]
27. Ansumali, S.; Karlin, I. Stabilization of the lattice Boltzmann method by the H theorem: A numerical test. Phys. Rev E 2000,

62, 7999. [CrossRef] [PubMed]
28. Ansumali, S.; Karlin, I. Entropy Function Approach to the Lattice Boltzmann Method. J. Stat. Phys. 2002, 107, 291. [CrossRef]
29. Tosi, F.; Ubertini, S.; Succi, S.; Karlin, I. Optimization Strategies for the Entropic Lattice Boltzmann Method. J. Sci. Comput. 2007,

30, 369–387. [CrossRef]
30. Chikatamarla, S.; Ansumali, S.; Karlin, I. Entropic Lattice Boltzmann Models for Hydrodynamics in Three Dimensions. Phys. Rev.

Lett. 2006, 97, 010201. [CrossRef]
31. Atif, M.; Kolluru, P.; Thantanapally, C.; Ansumali, S. Essentially Entropic Lattice Boltzmann Model. Phys. Rev. Lett. 2017,

119, 240602. [CrossRef]
32. Zhao, W.; Yong, W.A. Relaxation-rate formula for the entropic lattice Boltzmann method. Chin. Phys. B 2019, 28, 114701.

[CrossRef]
33. Jonnalagadda, A.; Sharma, A.; Agrawal, A. Single Relaxation Time Entropic Lattice Boltzmann Methods: A Developer’s

Perspective for Stable and Accurate Simulations. Comput. Fluids 2021, 2015, 104792. [CrossRef]
34. Brownlee, R.; Gorban, A.; Levesley, J. Stabilization of the lattice Boltzmann method using the Ehrenfests’ coarse-graining idea.

Phys. Rev. E 2006, 74, 037703. [CrossRef]
35. Brownlee, R.; Gorban, A.; Levesley, J. Nonequilibrium entropy limiters in lattice Boltzmann methods. Phys. A Stat. Mech. Its Appl.

2007, 387, 385–406. [CrossRef]
36. Gorban, A.; Packwood, D. Enhancement of the stability of lattice Boltzmann methods by dissipation control. Phys. A Stat. Mech.

Its Appl. 2014, 414, 285. [CrossRef]
37. Latt, J.; Coreixas, C.; Beny, J.; Parmigiani, A. Efficient supersonic flow simulations using lattice Boltzmann methods based on

numerical equilibria. Phil. Trans. R. Soc. 2020, 378, 20190559. [CrossRef]
38. Coreixas, C.; Latt, J. Compressible lattice Boltzmann methods with adaptive velocity stencils: An interpolation-free formulation.

Phys. Fluids 2020, 32, 116102. [CrossRef]
39. Karlin, I.; Bösch, F.; Chikatamarla, S. Gibbs’ principle for the lattice-kinetic theory of fluid dynamics. Phys. Rev. E 2014,

90, 031302(R). [CrossRef]

http://dx.doi.org/10.1016/j.physa.2018.06.030
http://dx.doi.org/10.1016/j.physa.2018.05.141
http://dx.doi.org/10.1103/PhysRevE.64.031203
http://dx.doi.org/10.1103/PhysRevE.61.6546
http://dx.doi.org/10.1098/rsta.2001.0955
http://dx.doi.org/10.1103/PhysRevE.68.036706
http://dx.doi.org/10.1016/j.jcp.2009.03.030
http://dx.doi.org/10.1017/S0022112004001272
http://dx.doi.org/10.1016/j.matcom.2006.05.007
http://dx.doi.org/10.1103/PhysRevE.84.068701
http://dx.doi.org/10.3390/e17127867
http://dx.doi.org/10.1103/PhysRevE.67.051105
http://dx.doi.org/10.1007/s10955-005-5958-9
http://dx.doi.org/10.1103/PhysRevE.58.R4053
http://dx.doi.org/10.1103/PhysRevLett.81.6
http://dx.doi.org/10.1209/epl/i1999-00370-1
http://dx.doi.org/10.1209/epl/i2003-00496-6
http://dx.doi.org/10.1103/PhysRevE.62.7999
http://www.ncbi.nlm.nih.gov/pubmed/11138084
http://dx.doi.org/10.1023/A:1014575024265
http://dx.doi.org/10.1007/s10915-006-9097-5
http://dx.doi.org/10.1103/PhysRevLett.97.010201
http://dx.doi.org/10.1103/PhysRevLett.119.240602
http://dx.doi.org/10.1088/1674-1056/ab48f0
http://dx.doi.org/10.1016/j.compfluid.2020.104792
http://dx.doi.org/10.1103/PhysRevE.74.037703
http://dx.doi.org/10.1016/j.physa.2007.09.031
http://dx.doi.org/10.1016/j.physa.2014.07.052
http://dx.doi.org/10.1098/rsta.2019.0559
http://dx.doi.org/10.1063/5.0027986
http://dx.doi.org/10.1103/PhysRevE.90.031302


Mathematics 2022, 10, 3928 21 of 22

40. Bösch, F.; Chikatamarla, S.; Karlin, I. Entropic Multi-Relaxation Models for Simulation of Fluid Turbulence. ESAIM Proc. Surv.
2015, 52, 1. [CrossRef]

41. Mattila, K.; Hegele, L., Jr.; Philippi, P. Investigation of an entropic stabilizer for the lattice-Boltzmann method. Phys. Rev. E 2015,
91, 063010. [CrossRef]

42. Wang, L. Enhanced multi-relaxation-time lattice Boltzmann model by entropic stabilizers. Phys. Rev. E 2020, 102, 023307.
[CrossRef]

43. Latt, J.; Chopard, B. Lattice Boltzmann method with regularized pre-collision functions. Math. Comput. Simul. 2006, 72, 165.
[CrossRef]

44. Chen, H.; Zhang, R.; Staroselsky, I.; Jhon, M. Recovery of full rotational invariance in lattice Boltzmann formulations for high
Knudsen number flows. Phys. A Stat. Mech. Appl. 2006, 362, 125–131. [CrossRef]

45. Latt, J. Hydrodynamic Limit of Lattice Boltzmann Equations. Ph.D. Thesis, University of Geneva, Geneva, Switzerland, 2007.
46. Malaspinas, O. Increasing stability and accuracy of the lattice Boltzmann scheme: Recursivity and regularization. arXiv 2015,

arXiv:1505.06900.
47. Brogi, F.; Malaspinas, O.; Chopard, B.; Bonadonna, C. Hermite regularization of the lattice Boltzmann method for open source

computational aeroacoustics. J. Acoust. Soc. Amer. 2017, 142, 2332. [CrossRef] [PubMed]
48. Coreixas, C.; Wissocq, G.; Puigt, G.; Boussuge, J.F.; Sagaut, P. Recursive regularization step for high-order lattice Boltzmann

methods. Phys. Rev. E 2017, 96, 033306. [CrossRef] [PubMed]
49. Mattila, K.; Philippi, P.; Hegele, L., Jr. High-order regularization in lattice-Boltzmann equations. Phys. Fluids 2017, 29, 046103.

[CrossRef]
50. Coreixas, C. High-Order Extension of the Recursive Regularized Lattice Boltzmann Method. Ph.D. Thesis, Institut National

Polytechnique de Toulouse, Toulouse, France, 2018.
51. Coreixas, C.; Chopard, B.; Latt, J. Comprehensive comparison of collision models in the lattice Boltzmann framework: Theoretical

investigations. Phys. Rev. E 2019, 100, 033305. [CrossRef]
52. Feng, Y.; Boivin, P.; Jacob, J.; Sagaut, P. Hybrid recursive regularized thermal lattice Boltzmann model for high subsonic

compressible flows. J. Comput. Phys. 2019, 394, 82–99. [CrossRef]
53. Chen, H.; Zhang, R.; Gopalakrishnan, P. Filtered lattice Boltzmann collision formulation enforcing isotropy and Galilean

invariance. Phys. Scr. 2020, 95, 034003. [CrossRef]
54. Jonnalagadda, A.; Sharma, A.; Agrawal, A. Onsager-regularized lattice Boltzmann method: A nonequilibrium thermodynamics-

based regularized lattice Boltzmann method. Phys. Rev. E 2021, 104, 015313. [CrossRef]
55. Jonnalagadda, A.; Sharma, A.; Agrawal, A. Revisiting the Lattice Boltzmann Method Through a Nonequilibrium Thermodynamics

Perspective. J. Heat Transfer. 2021, 143, 052102. [CrossRef]
56. Krämer, A.; Wilde, D.; Küllmer, K.; Reith, D.; Foysi, H. Pseudoentropic derivation of the regularized lattice Boltzmann method.

Phys. Rev. E 2019, 100, 023302. [CrossRef]
57. Coreixas, C.; Wissocq, G.; Chopard, B.; Latt, J. Impact of collision models on the physical properties and the stability of lattice

Boltzmann methods. Phil. Trans. R. Soc. A 2020, 378, 20190397. [CrossRef]
58. Wissocq, G.; Coreixas, C.; Boussuge, J.F. Linear stability and isotropy properties of athermal regularized lattice Boltzmann

methods. Phys. Rev. E 2020, 102, 053305. [CrossRef]
59. Wissocq, G.; Sagaut, P. Hydrodynamic limits and numerical errors of isothermal lattice Boltzmann schemes. J. Comput. Phys.

2022, 450, 110858. [CrossRef]
60. Ilyin, O. Discrete-velocity Boltzmann model: Regularization and linear stability. Phys. Rev. E 2022, 105, 045312. [CrossRef]
61. Qian, Y.H. Fractional Propagation and the Elimination of Staggered Invariants in Lattice-BGK Models. Intern. J. Mod. Phys. C

1997, 8, 753–761. [CrossRef]
62. Guo, Z.; Zheng, C.; Zhao, T.S. A Lattice BGK Scheme with General Propagation. J. Sci. Comput. 2001, 16, 569–585. [CrossRef]
63. Zhang, R.; Chen, H.; Qian, Y.H.; Chen, S. Effective volumetric lattice Boltzmann scheme. Phys. Rev. E 2001, 63, 056705. [CrossRef]
64. Fan, H.; Zhang, R.; Chen, H. Extended volumetric scheme for lattice Boltzmann models. Phys. Rev. E 2006, 73, 066708. [CrossRef]
65. Guo, X.; Shi, B.; Chai, Z. General propagation lattice Boltzmann model for nonlinear advection-diffusion equations. Phys. Rev. E

2018, 97, 043310. [CrossRef]
66. Zhao, W.; Yong, W.A. Boundary Scheme for a Discrete Kinetic Approximation of the Navier–Stokes Equations. J. Sci. Comput.

2020, 82, 71. [CrossRef]
67. Zhao, J.; Zhao, W.; Zhang, Z. Second-order boundary schemes for the lattice Boltzmann method with general propagation. J.

Comput. Phys. 2020, 419, 109669. [CrossRef]
68. Ilyin, O. Second order accurate boundary conditions for the general propagation lattice Boltzmann method. Phys. Fluids 2021,

33, 033110. [CrossRef]
69. Karlin, I.; Ansumali, S.; Frouzakis, C.; Chikatamarla, S. Elements of the lattice Boltzmann method I: Linear advection equation.

Commun. Comput. Phys. 2006, 1, 1–45.
70. Shan, X.; Yuan, X.F.; Chen, H. Kinetic theory representation of hydrodynamics: A way beyond the Navier–Stokes equation. J.

Fluid Mech. 2006, 550, 413–441. [CrossRef]
71. Atif, M.; Kolluru, P.; Ansumali, S. Essentially entropic lattice Boltzmann model: Theory and simulations. arXiv 2022,

arXiv:2203.12946v1.

http://dx.doi.org/10.1051/proc/201552001
http://dx.doi.org/10.1103/PhysRevE.91.063010
http://dx.doi.org/10.1103/PhysRevE.102.023307
http://dx.doi.org/10.1016/j.matcom.2006.05.017
http://dx.doi.org/10.1016/j.physa.2005.09.008
http://dx.doi.org/10.1121/1.5006900
http://www.ncbi.nlm.nih.gov/pubmed/29092578
http://dx.doi.org/10.1103/PhysRevE.96.033306
http://www.ncbi.nlm.nih.gov/pubmed/29346972
http://dx.doi.org/10.1063/1.4981227
http://dx.doi.org/10.1103/PhysRevE.100.033305
http://dx.doi.org/10.1016/j.jcp.2019.05.031
http://dx.doi.org/10.1088/1402-4896/ab4b4d
http://dx.doi.org/10.1103/PhysRevE.104.015313
http://dx.doi.org/10.1115/1.4050311
http://dx.doi.org/10.1103/PhysRevE.100.023302
http://dx.doi.org/10.1098/rsta.2019.0397
http://dx.doi.org/10.1103/PhysRevE.102.053305
http://dx.doi.org/10.1016/j.jcp.2021.110858
http://dx.doi.org/10.1103/PhysRevE.105.045312
http://dx.doi.org/10.1142/S0129183197000643
http://dx.doi.org/10.1023/A:1013280900427
http://dx.doi.org/10.1103/PhysRevE.63.056705
http://dx.doi.org/10.1103/PhysRevE.73.066708
http://dx.doi.org/10.1103/PhysRevE.97.043310
http://dx.doi.org/10.1007/s10915-020-01180-6
http://dx.doi.org/10.1016/j.jcp.2020.109669
http://dx.doi.org/10.1063/5.0041178
http://dx.doi.org/10.1017/S0022112005008153


Mathematics 2022, 10, 3928 22 of 22

72. Topsøe, F. Some Bounds for the Logarithmic Function; University of Copenhagen: Copenhagen, Denmark, 2007. Available online:
https://rgmia.org/papers/v7n2/pade.pdf (accessed on 5 September 2022).

73. Packwood, D. Entropy balance and dispersive oscillations in lattice Boltzmann models. Phys. Rev. E 2009, 80, 067701. [CrossRef]
74. Gan, Y.B.; Xu, A.G.; Zhang, G.C.; Zhang, P.; Li, Y.J. Finite-Difference Lattice Boltzmann Scheme for High-Speed Compressible

Flow: Two Dimensional Case. Commun. Theor. Phys. 2008, 50, 201.
75. Rostamzadeh, A.; Razavi, S.E.; Mirsajedi, S.M. Towards Multidimensional Artificially Characteristic-Based Scheme for Incom-

pressible Thermo-Fluid Problems. Mechanika 2017, 23, 826–834. [CrossRef]
76. Dellar, P. Lattice Boltzmann algorithms without cubic defects in Galilean invariance on standard lattices. J. Comput. Phys. 2014,

259, 270–283. [CrossRef]
77. Ilyin, O. Discrete Velocity Boltzmann Model for Quasi-Incompressible Hydrodynamics. Mathematics 2021, 9, 993. [CrossRef]

https://rgmia.org/papers/v7n2/pade.pdf
http://dx.doi.org/10.1103/PhysRevE.80.067701
http://dx.doi.org/10.5755/j01.mech.23.6.15804
http://dx.doi.org/10.1016/j.jcp.2013.11.021
http://dx.doi.org/10.3390/math9090993

	Introduction
	Entropic Lattice Boltzmann Method
	Low-Dissipative ELB Method
	Bounds for the Logarithm
	Evaluation of 
	Evaluation of  
	Explicit Formula for 

	Numerical Experiments
	Shock Tube
	Shear Waves
	Acoustic Waves
	Double Shear Layer
	Performance

	Conclusions
	Appendix A
	References

