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Abstract: The lattice integral transforms have been introduced to generalize lower and upper fuzzy
transforms for lattice-valued functions that are used to approximate original functions from below
and above. They are defined in complete analogy with classical integral transforms, particularly,
the product of a lattice-valued function and a fuzzy relation called the integral kernel is integrated
by a Sugeno-like fuzzy integral. In the article, we first investigate the conditions under which
lattice integral transforms preserve (reverse) constant functions, which appears to be a fundamental
presumption for a successful approximation of lattice-valued functions. Further, we show how the
lattice integral transforms can be applied in image processing, more specifically, in non-linear filtering,
compression/decompression, and opening/closing of images. We demonstrate that the filters based
on integral transforms generalize the popular median filter as well as minimum and maximum filters,
and also opening and closing defined using fuzzy morphological erosion and dilation. We illustrate
the proposed methods in various selected images.

Keywords: integral transform; lattice fuzzy transform; residuated lattice; integral kernel; Sugeno-like
fuzzy integral

MSC: 94A08; 03E72; 28B15

1. Introduction

In [1], integral transforms for lattice-valued functions (lattice integral transforms or
simply integral transforms) have been introduced to provide a theoretical framework for
transformations of functions whose functional values cannot, in principle, be handled by
standard arithmetic of real or complex numbers or application of standard arithmetic has
certain disadvantages. For example, non-additive noise in signal or image processing is
filtered out by methods that do not use the standard arithmetic, but order statistic functions,
such as median, are applied (see, e.g., [2]). Mathematical morphology on complete lattices
provides morphological operators whose mathematically coherent application to grayscale
images has already been justified (see, e.g., [3–5]). The scheme of lattice integral transforms
is designed quite analogously to classical integral transforms, such as Fourier, Laplace,
Hilbert, or wavelet transforms [6]. Namely, a new function g(y) is created by integrating the
product of a function f (x) and an integral kernel function K(x, y) with respect to suitable
limits. To develop the theory of lattice integral transforms in sufficient generality, the
complete residuated lattices were chosen as the basic algebraic structure for the function
values. Recall that particular examples of residuated lattices are the BL-algebra, MV-
algebra, or IMTL-algebra, which are very popular in fuzzy set theory, fuzzy logic, and their
applications.
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The original motivation for introducing lattice integral transforms arose from the
idea of generalizing fuzzy transforms of lattice-valued functions (lattice fuzzy transforms)
that Perfilieva proposed in [7] to approximate functions from below or above using the
appropriate composition of the direct upper (lower) fuzzy transform F↑(F↓) : F (X) →
F (Y) and the inverse upper (lower) fuzzy transform G↑(G↓) : F (Y)→ F (X), where F (X)
is the set of all lattice-valued functions on X and similarly for F (Y). The key parameter
of lattice fuzzy transforms F↑ and F↓ is the fuzzy partition of the domain X of functions
that are approximated, which is a family of fuzzy subsets of X whose cores are non-empty
sets and form a classical partition of X. Note that the core of a fuzzy set A on X is the
set of all elements of X for which the membership function of A gives 1. It should be
noted that the fuzzy transforms of the lattice G↑ and G↓ are also determined by a fuzzy
partition of Y, which is derived from the fuzzy partition of X. Hence, we find that there is
no difference in the definitions of F↑ and G↓ (F↓ and G↑) and it is unnecessary to distinguish
between the definitions of direct and inverse lattice fuzzy transforms. The approximation of
original lattice-valued functions is controlled by setting of fuzzy partitions of the domain X.
Note that fuzzy partitions of the domain Y do not form another approximation parameter,
because they are derived from fuzzy partitions of the domain X. On Figure 1 (the figure is
adopted from [8]), the lower and upper approximations of a discrete function are displayed
for a uniform fuzzy partition of the domain [0, 200] which is determined by moving a fuzzy
set along the x-axis with the size of its core equal to 15.

Figure 1. Lower (green) and upper (red) approximations of a discrete function obtained by the
composition of F↓ and G↓, and F↑ and G↑, respectively.

Further development of lattice fuzzy transforms, including details, can be found
in [9–14]. The relationship between fuzzy lattice transforms and fuzzy morphological
operators defined on complete lattices was demonstrated by Sussner in [15]. In partic-
ular, F↑ and G↓ (F↓ and G↑) have been shown to be equivalent to fuzzy morphological
dilation (erosion).

The proposed integral transforms for lattice-valued functions naturally extend the
lattice fuzzy transforms in two directions, namely, the fuzzy partition is replaced by a more
general concept of integral kernel, and the supremum and infimum used in the calculation
of fuzzy transforms are replaced by Sugeno-like fuzzy integrals. More specifically, two
types of lattice integral transforms from F (X) to F (Y) were introduced using the following
formula [1]:

F⊗(K,µ)( f )(y) =
∫

X
K(x, y)⊗ f (x) dµ and F→(K,µ)( f )(y) =

∫
X

K(x, y)→ f (x) dµ,

where K : X×Y → L is a fuzzy relation called the integral kernel and
∫

X is a multiplication-
based Sugeno-like fuzzy integral on a fuzzy measure space (X,A, µ). It was shown that
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F⊗
(K,µ) generalizes the upper lattice fuzzy transform F↑ and F→(K,µ) the lower lattice fuzzy

transform F↓. More specifically, we have the following:

F↑ = F⊗
(K,µ>) and F↓ = F→

(K,µ⊥)

where µ⊥ is the least fuzzy measure and µ> is the highest fuzzy measure on A which is
given on the powerset of X (see Example 5 on p. 8 for the definition of µ⊥ and µ>). The
same formula, but with residuum-based Sugeno-like fuzzy integrals, were used in the
definitions of other types of lattice integral transforms in [16]. Similarly to the lattice fuzzy
transforms, in the current paper [17], we show that different compositions of the integral
transforms

F⊗(K,µ) : F (X)→ F (Y) and F→(K−1,µ′) : F (Y)→ F (X),

where K−1 : Y × X → L is given by K−1(y, x) = K(x, y) and µ′ is an appropriate fuzzy
measure on a fuzzy measurable space (Y,G), approximate the original functions, and can
also remove the present random noise, in contrast to the fuzzy transform, as shown in
Figure 2. This valuable property motivated us to apply integral transformations in image
processing, specifically to image filtering and compression/decompression in the current
paper [8], where we outline the prerequisites to obtain successful results for these tasks and
illustrate them with the Lena image. Another application of the integral transformation
based on multiplication was proposed for multi-criteria decision-making in [18], where
the integral transform is used to evaluate goals according to respondents’ fulfillment and
significance of criteria, where the significance of criteria with respect to goals is expressed
by an integral kernel. Both applications show the natural directions of using lattice integral
transforms in practice, i.e., signal and image processing and multi-criteria decision-making,
but a deeper analysis of the performance and usefulness of integral transforms in these and
possibly other applications is still a subject of research.

(a) (b)

Figure 2. Comparison of noisy signal reconstructions based on lower and upper fuzzy transforms and
integral transforms with multiplication-based Sugeno-like fuzzy integral. (a) lattice fuzzy transforms;
and (b) lattice integral transforms.

This paper is a continuation of our research on signal reconstruction by lattice integral
transforms starting in [17] and, especially, the image processing application provided in [8].
More specifically, we extend the ideas and complete results presented in [8] (and also in [17])
to obtain a comprehensive background for image (and also signal) processing. Particularly,
we present two types of lattice integral transforms and prove their fundamental properties
that ensure a successful application to image processing. In the illustration, we focus on
three tasks in image processing, namely, non-linear filtering, compression/decompression,
and opening/closing of images. Among other things, we show that non-linear filters based
on lattice integral transforms can be seen as a generalization of the known median filter, as
well as minimum and maximum filters. Note that these filters are popular for the removal
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of salt-and-pepper noise, more specifically, the minimum (maximum) filter removes the salt
(pepper) noise because it has very high (low) values of intensities. The median filter removes
both types of noise. The minimum and maximum filters are also associated with the most
common morphological operations of erosion and dilation, because the minimum filter
erodes shapes on the image, whereas the maximum filter extends object boundaries [19].
The opening and closing filters are achieved by combining the morphological operations of
erosion and dilation, in our case, we will consider their definitions in fuzzy mathematical
morphology [15].

The structure of the paper is as follows. The next section presents basic concepts
that are used in the construction of lattice integral transforms. The third section intro-
duces two types of lattice integral transforms, which are defined using the multiplica-
tion and residuum-based fuzzy integrals. The fourth section is devoted to three tasks in
image processing, namely, non-linear noise filtering, compression/decompression and
opening/closing, which are designed in the framework of lattice integral transforms and
demonstrated on various images. The last section is a conclusion.

2. Preliminary

In this section, we present all concepts that are important to introduce lattice integral
transforms. Some of them are demonstrated by examples.

2.1. Algebra of Truth Values

In this paper, we assume that the algebra of truth values is a complete residuated lattice
on [0, 1], i.e., an algebra L = 〈[0, 1],∧,∨,⊗,→, 0, 1〉 with four binary operations and two
constants, such that 〈[0, 1],∧,∨〉 is a complete lattice, 〈[0, 1],⊗, 1〉 is a commutative monoid
(i.e., ⊗ is associative, commutative and the identity α⊗ 1 = α holds for any α ∈ [0, 1]) and
the adjointness property is satisfied, i.e.,

α ≤ β→ γ iff α⊗ β ≤ γ (1)

holds for each α, β, γ ∈ [0, 1], where≤ denotes the corresponding lattice ordering, i.e., α ≤ β
if α ∧ β = α for α, β ∈ [0, 1]. The operations ⊗ and→ are called the multiplication and
residuum, respectively. For more information about residuated lattices, we refer to [20,21].

Example 1. It is well-known that the algebra

LT = 〈[0, 1], min, max, T,→T , 0, 1〉,

where T is a left continuous t-norm (see, e.g., [22]) and α→T β =
∨{γ ∈ [0, 1] | T(α, γ) ≤ β},

defines the residuum, is a complete residuated lattice (for the proof, we refer to [20]).

The following example presents the Schweizer–Sklar class of t-norms that can be used
to introduce complete residuated lattices specified in the previous example and will be
used later in the illustration of lattice integral transforms in image processing.

Example 2. The Schweizer–Sklar class of t-norms is defined for any α, β ∈ [0, 1] and λ ∈
[−∞, ∞] as

TSS
λ (α, β) =



min(α, β), λ = −∞,
(αλ + βλ − 1)

1
λ , λ ∈ (−∞, 0),

α · β, λ = 0,
(max(0, (αλ + βλ − 1))

1
λ , λ ∈ (0, ∞),

α ·D β, λ = ∞,

(2)
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where

α ·D β =

{
0, α, β ∈ [0, 1),
min(α, β), 1 ∈ {α, β},

The t-norms TSS
−∞, TSS

0 , TSS
1 , and TF

∞ are called the minimum, product, Łukasiewicz, and Drastic
product t-norms, respectively. For λ ∈ [−∞, ∞), the t-norm TSS

λ is continuous. Note that the
drastic product t-norm is only right-continuous. According to Example 1, one can determine the
residua for the Schweizer–Sklar t-norms (except λ = ∞) as follows. Let α, β ∈ [0, 1]. For α ≤ β,
there is α→TSS

λ
β = 1, and for β < α, there is

α→TSS
λ

β =


β, λ = −∞,
β
α , λ = 0,
(1− αλ + βλ)

1
λ , λ ∈ (−∞, 0) ∪ (0, ∞),

(3)

where we use 1
0 = ∞, 1

∞ = 0, x + ∞ = ∞ + x = ∞ for any x ∈ (−∞, ∞), and ∞λ = ∞ for any

λ ∈ (0, ∞). Note that α→TSS
λ

β = min(1, (1− αλ + βλ)
1
λ ) for any λ ∈ (0, ∞).

A unary operation N : [0, 1]→ [0, 1] is called a negation on [0, 1] if N is a non-increasing
function, such that N(0) = 1 and N(1) = 0 (see, e.g., [23]). A canonical example of negation
is the negation based on residuum given as Nres(α) = α→ 0 for α ∈ [0, 1].

Example 3. For the Schweizer–Sklar class of t-norms with λ ∈ [−∞, ∞), the negation NSS
λ

determined by the residuum→TSS
λ

has the following form. For α = 0, there is NSS
λ (0) = 1, for

α 6= 0, there is

NSS
λ (α) =

{
0, λ ∈ [−∞, 0],
(1− αλ)

1
λ , λ ∈ (0, ∞),

(4)

Note that for λ ∈ (−∞, 0), according to (3), we have (1− αλ + 0λ)
1
λ = (1− ( 1

α )
−λ + ∞−λ)

1
λ =

∞
1
λ = 0−

1
λ = 0. Obviously, for λ ∈ (0, ∞), it is sufficient to consider only one formula to express

the negation, namely NSS
λ (α) = (1− αλ)

1
λ for α ∈ [0, 1]. The negation NSS

λ is continuous, and,
as a particular case, we obtain the negation NSS

1 in the Łukasiewicz algebra LTSS
1

, which is well

established in fuzzy logic [21,24]. Figure 3 shows four examples of negations of NSS
λ with positive

parameter λ.

Figure 3. The negations NSS
λ for λ = 0.4 (blue), λ = 1 (green), λ = 2 (yellow), and λ = 5 (orange)

from Example 3.
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2.2. Fuzzy Sets

Let L be a complete residuated lattice, and let X be a non-empty set. A function
A : X → [0, 1] is called a fuzzy subset in X. A fuzzy set A on X with A(x) ∈ {0, 1} for
all x ∈ X is called crisp. The symbol ∅ is used to denote the empty fuzzy set on X, i.e.,
∅(x) = 0 for any x ∈ X. The set of all crisp fuzzy subsets in X (i.e., the power set of
X) is denoted by P(X). A constant fuzzy set A on X (denoted as αX) satisfies A(x) = α
for any x ∈ X, where α ∈ [0, 1]. The sets Supp(A) = {x | x ∈ X and A(x) > 0} and
Core(A) = {x | x ∈ X and A(x) = 1} are called the support and the core of a fuzzy subset A
in X, respectively. A fuzzy subset A in X is called normal if Core(A) 6= ∅. The elementary
operations as the union, intersection, scalar multiplication for fuzzy subsets in X are defined
as follows:

(A ∪ B)(x) = A(x) ∨ B(x)

(A ∩ B)(x) = A(x) ∧ B(x)

(α⊗ A)(x) = α⊗ A(x)

for A, B ∈ F (X) and α ∈ [0, 1].
Let X, Y be non-empty sets. A fuzzy subset K in X×Y is called (binary) fuzzy relation.

We say that

(i) K is normal in the second component if for any y ∈ Y there is x ∈ X such that
K(x, y) = 1.

(ii) K is normal in the first component if for any x ∈ X there is y ∈ Y such that K(x, y) = 1.

The fuzzy subset K−1 in Y× X given by K−1(y, x) = K(x, y) is called the inverse to K. It is
easy to see that if K is normal in the second (first) component, then K−1 is normal in the
first (second) component.

2.3. Fuzzy Measure Spaces

In this part, we introduce a fuzzy measure on an algebra of sets. For details, we refer
to [25–27]. Note that fuzzy measures may also be introduced for fuzzy subsets, that is, on
algebra of fuzzy sets [28], but it is rather difficult to calculate fuzzy integrals that use such
type of fuzzy measures. Therefore, the practical use of integral transforms motivated us
to restrict ourselves to algebras of sets. We use X \ A to denote the complement of A in X,
where A is a subset (crisp fuzzy subset) of X.

Definition 1. Let X be a non-empty set. A subset A of P(X) is an algebra of sets on X pro-
vided that:

(i) X ∈ A;
(ii) If A ∈ A, then X \ A ∈ A;
(iii) If A, B ∈ A, then A ∪ B ∈ A.

A pair (X,A) is called a measurable space on X, provided that A is an algebra of sets on X.

It is easy to see that if A is an algebra of sets, then the intersection of finite number
of sets belongs to A. Let (X,A) be a measurable space, and A ∈ P(X). We say that A is
A-measurable if A ∈ A. Obviously, the sets {∅, X} and P(X) are algebras of sets on X.
If B ⊆ P(X), then the least algebra of sets containing B is denoted as alg(B). Note that
alg(B) can be constructed from the elements of B as the set consisting of all finite unions
applied on the set of all finite intersections over the elements of B and their complements.

Example 4. Let L be a residuated lattice, and L = {[0, α] | α ∈ [0, 1]}, where [0, 0] = {0} is a
hybrid interval. Obviously, L ⊂ P([0, 1]), and alg(L) is an algebra of sets on L, which differs
from P([0, 1]). Indeed, for example, there is [α, 1] 6∈ alg(L) for any α ∈ (0, 1].



Mathematics 2022, 10, 4077 7 of 30

The following two definitions introduce fuzzy and complementary fuzzy measures.
Note that complementary fuzzy measures and fuzzy integrals based on them were intro-
duced in [29] to define models of fuzzy quantifiers as “no”, “little”, “few”, etc.

Definition 2. A function µ : A → [0, 1] is called a fuzzy measure on a measurable space (X,A) if:

(i) µ(∅) = 0 and µ(X) = 1;
(ii) If A, B ∈ A such that A ⊆ B, then µ(A) ≤ µ(B).

A triplet (X,A, µ) is called a fuzzy measure space whenever (X,A) is a measurable space and µ is
a fuzzy measure on (X,A).

It should be noted that the term “fuzzy measure” was introduced by Sugeno in [25],
but in the literature equivalent names can be found for µ, such as a capacity or a non-
additive measure (see [27]). The following lemma shows how to determine a new fuzzy
measure from a given fuzzy measure using a suitable function.

Lemma 1. Let µ be a fuzzy measure on (X,A), and let ϕ : [0, 1] → [0, 1] be a monotonically
non-decreasing function with ϕ(0) = 0 and ϕ(1) = 1. Then the function µϕ : A → [0, 1] given
by µϕ(A) = ϕ(µ(A)) for any A ∈ A is a fuzzy measure on (X,A).

Proof. The properties of the fuzzy measure for the function µϕ immediately follow from
the monotonicity of ϕ and the conditions ϕ(0) = 0 and ϕ(1) = 1.

Definition 3. A function ν : A → [0, 1] is called a complementary fuzzy measure on a measurable
space (X,A) if:

(i) ν(∅) = 1 and ν(X) = 0;
(ii) If A, B ∈ A such that A ⊆ B, then ν(A) ≥ ν(B).

A triplet (X,A, ν) is called a complementary fuzzy measure space whenever (X,A) is a measurable
space and ν is a complementary fuzzy measure on (X,A).

The following lemma shows two ways in which a complementary fuzzy measure can
be introduced from a fuzzy measure.

Lemma 2. Let µ be a fuzzy measure on (X,A), and let N be a negation on [0, 1]. Then a function
ν : A → [0, 1] given by ν(A) = µc(A) = µ(X \ A) or ν(A) = µN(A) = N(µ(A)) for any
A ∈ A is a complementary fuzzy measure.

Proof. Obvious.

A dual lemma can be formulated for complementary fuzzy measures, from which the
fuzzy measures can be determined by negation or set complement. Using Lemmas 1 and 2,
one can introduce a broad class of fuzzy and complementary fuzzy measures. In addition
to the previous two types of fuzzy measures (i.e., µc and µN), we will use the so-called
conjugate fuzzy measure to a given fuzzy measure.

Definition 4. Let µ be a fuzzy measure on (X,A), and let N be a negation on [0, 1]. A function
µc

N : A → [0, 1] given by µc
N(A) = µN ◦ µc(A) = N(µ(X \ A)) for any A ∈ A is called a

N-conjugate fuzzy measure to µ.

Note that conjugate fuzzy measures were introduced in [30] to define a type of Sugeno
integral based on the residuum operation. In this case, the authors restricted themselves to
the negation NSS

1 in the Ł ukasiewicz algebra (see Example 3). Similarly, one can introduce
a N-conjugate complementary fuzzy measure. Since we deal with finite sets of pixels
in image processing, the following examples present fuzzy measures defined over finite
measurable spaces.
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Example 5. Let (X,A) be a finite measurable space, that is, X = {x1, . . . , xn}. The least and the
highest fuzzy measure on (X,A) is given by

µ⊥(A) =

{
0, A 6= X,
1, otherwise,

and µ>(A) =

{
0, A = ∅,
1, otherwise,

(5)

for any A ∈ A, respectively.

Example 6. A relative fuzzy measure µr on (X,A) is given as

µr(A) =
#A
#X

for all A ∈ A, where #A and #X denote the number of elements in A and X, respectively.

By Lemma 1, the relative fuzzy measure µr can be modified by a non-decreasing
function ϕ with ϕ(0) = 0 and ϕ(1) = 1 to obtain a fuzzy measure µr

ϕ. In the following
example, we introduce a class of functions ϕ that determines a class of fuzzy measures
from the relative fuzzy measure, which corrects the class of functions ϕ presented in [8].

Example 7. Let 0 ≤ ` ≤ u ≤ 1 and 0 < p be a natural number. Define ψ
p
`,u, ϕ

p
`,u : [0, 1]→ [0, 1]

as follows:

ψ
p
`,u(x) =


0, x = 0 or x < `,

ep(2 x−`
u−`−1)

ep(2 x−`
u−`−1)+1

, ` < x ≤ u,

1, x = 1 or u < x,

(6)

and

ϕ
p
l,u(x) =

{
ψ

p
l,u(x)(ep+1)−1

ep−1 , l < x ≤ u,
ψ

p
l,u(x), otherwise.

(7)

It could be simply verified that for ` < u, ϕ
p
`,u(x) modifies ψ

p
`,u(x) to obtain a continuous

function on [0, 1]. For ` = u, however, ϕ
p
`,u(x) achieves only two values 0 and 1 with the

jump at the point x = `. For example, if ` = u = 0, then ϕ
p
0,0(x) = ψ

p
0,0(0) = 0 and

ϕ
p
0,0(x) = ψ

p
0,0(x) = 1 for x > 0. Examples of the function ϕ

p
`,u for the parameters (`, u, p) ∈

{(0, 0, 1), (0.2, 0.4, 5), (0.4, 0.8, 3), (1, 1, 1)} are shown in Figure 4.

Figure 4. The functions ϕ1
0,0 (orange), ϕ5

0.2,0.4 (blue), ϕ3
0.4,0.8 (yellow), and ϕ1

1,1 (green) from Example 7
that are used to determine fuzzy measures.
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The function ϕ
p
`,u obviously satisfies the assumptions of Lemma 1, so it can be used to modify

any fuzzy measure. Hence, we can introduce a class of fuzzy measures on (X,A) derived from the
relative fuzzy measure µr introduced in Example 6 as follows:

Mr = {µr
ϕ

p
`,u
| `, u ∈ [0, 1], ` ≤ u, p ∈ N, p > 0}. (8)

It is easy to see that µ⊥ = µr
ϕ1

0,0
, µ> = µr

ϕ1
1,1

and µr = µr
ϕ1

0,1
.

Example 8. By ϕ
p
`,u from the previous example, we can introduce two additional functions through

which the complementary and conjugate fuzzy measures can be determined from the relative fuzzy
measure. Let N be a negation on [0, 1] and define ϕ

p,c
`,u, ϕ

p,N
`,u : [0, 1]→ [0, 1] as follows:

ϕ
p,c
`,u(x) = ϕ

p
`,u(1− x) and ϕ

p,N
`,u (x) = N(ϕ

p
`,u(x)), (9)

for any x ∈ [0, 1]. By Lemma 2, it is easy to check that µr
ϕ

p,c
`,u

and µr
ϕ

p,N
`,u

are complementary fuzzy

measures on (X,A). Define ϕ
p,c,N
`,u = ϕ

p,N
`,u ◦ ϕ

p,c
`,u, then µr

ϕ
p,c,N
`,u

is an N-conjugate fuzzy measure

to a fuzzy measure µr
ϕ

p
`,u

on (X,A). In Figure 5, we display the functions ϕ
p,c,N
`,u for the same

parameters as in Example 7 and N(α) = 1− α for α ∈ [0, 1] (i.e., the negation in the Łukasiewicz
algebra). One can see that the conjugate fuzzy measure to µ⊥ (µ>) is µ> (µ⊥); it is sufficient to
compare the green (orange) functions in Figures 4 and 5). Fuzzy measures µr

ϕ
p
0,1

are self-conjugate,

which immediately follows from ϕ
p
0,1 = ϕ

p,c,N
0,1 .

Figure 5. The functions ϕ1,c,N
0,0 (orange), ϕ5,c,N

0.2,0.4 (blue), ϕ3,c,N
0.4,0.8 (yellow), and ϕ1,c,N

1,1 (green) from
Example 7 that are used to determine conjugate fuzzy measures.

Remark 1. It is easy to see that all fuzzy measures (and similarly complementary and conjugate
fuzzy measures) in the above examples are cardinality invariant, that is, for any sets A and B such
that #A = #B, it holds that µ(A) = µ(B). Fuzzy measures invariant with respect to the cardinality
of the set are referred to as symmetric fuzzy measures.

2.4. Multiplication and Residuum-Based Sugeno-like Fuzzy Integrals

In what follows, the integrated functions are fuzzy sets on X and are denoted by f ,
g, etc. First, we recall the definition of the multiplication-based fuzzy integral introduced
in [28,30].
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Definition 5. Let (X,A, µ) be a fuzzy measure space, and let f : X → [0, 1]. The ⊗-fuzzy
integral of f on X is given by

∫ ⊗

f dµ =
∨

A∈A
µ(A)⊗

(∧
x∈A

f (x)

)
. (10)

Let (X,A, µ) be a fuzzy measure space. We say that a function f : X → L is measurable,
if {xi | f (xi) ≥ α} ∈ A for any α ∈ [0, 1]. For measurable functions, the ⊗-fuzzy integral
can be calculated as follows (see, Theorem 3.2 in [1]).

Theorem 1. Let (X,A, µ) be a fuzzy measure space, and let f : X → [0, 1] be a measurable
function. Then ∫ ⊗

f dµ =
∨

α∈[0,1]

(α⊗ µ({x ∈ X | f (x) ≥ α})). (11)

The following corollary provides a simple computational formula for the ⊗-fuzzy inte-
gral of measurable functions defined on a finite set X = {x1, . . . , xn}. Denote [n] = {1, . . . , n}.

Corollary 1. Let (X,A, µ) be a finite fuzzy measure space, that is, X = {x1, . . . , xn}, and let
f : X → [0, 1] be measurable. Then∫ ⊗

f dµ =
∨

i∈[n]
fσ(i) ⊗ µi, (12)

where σ is a permutation on [n] such that fσ(1) ≤ fσ(2) ≤ · · · ≤ fσ(n), where fσ(i) = f (xσ(i)) for
i ∈ [n] and µi = µ({xσ(i), . . . , xσ(n)}).

Proof. It immediately follows from Theorem 1, where we restrict the calculation from
α ∈ [0, 1] to α ∈ { fσ(1), . . . , fσ(n)}. Indeed, for α = 0 or fσ(n) < α ≤ 1, we trivially obtain
α⊗ µ({x ∈ X | f (x) ≥ α}) = 0. If fσ(i−1) < α ≤ fσ(i) for i ∈ [n] (we put fσ(0) = 0), then

α⊗ µ({x ∈ X | f (x) ≥ α}) = α⊗ µi ≤ fσ(i) ⊗ µi,

where we used the fact that the multiplication is non-decreasing in both variables. Hence,
we find that ∨

α∈[0,1]

(α⊗ µ({x ∈ X | f (x) ≥ α})) ≤
∨

i∈[n]
fσ(i) ⊗ µi.

Since the opposite inequality is trivially true, we obtain the desired equality.

Note that, if A = P(X), then any function f : X → [0, 1] is measurable, and thus
its ⊗-fuzzy integral can be calculated using formula (12). Calculation by Formula (12)
can even be simplified for symmetric fuzzy measures, because it is sufficient to define
µi = µ({xi, . . . , xn}) for any i ∈ [n].

Now, we introduce a modified version of the original definition of residuum-based
fuzzy integral presented in [29].

Definition 6. Let (X,A, ν) be a complementary fuzzy measure space, and let f : X → L. The
→-fuzzy integral of f on X is given by

∫ →

f dν =
∧

A∈A

(∧
x∈A

f (x)

)
→ ν(A). (13)
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Note that a residuum-based fuzzy integral was also proposed by Dubois, Prade,
and Rico in [30] under the name desintegral for reasoning with a decreasing evalua-
tion scale. A comparison of both fuzzy integrals can be found in [31]. Similarly to the
multiplication-based fuzzy integral, for measurable functions, we get a more pleasant
computational formula.

Theorem 2. Let (X,A, ν) be a complementary fuzzy measure space, and let f : X → [0, 1] be a
measurable function. Then∫ →

f dν =
∧

α∈[0,1]

(α→ ν({x ∈ X | f (x) ≥ α})). (14)

Proof. Denote Lα = {x ∈ [0, 1] | x ≥ α} for any α ∈ [0, 1]. It is easy to see that

f−1(La) = {x ∈ X | f (x) ∈ La} = {x ∈ X | f (x) ≥ α}.

Put

K =
∧

A∈A

((∧
x∈A

f (x)

)
→ ν(A)

)
L =

∧
α∈[0,1]

(
α→ ν

(
f−1(Lα)

))
.

First, we show that K ≥ L. Define λ f : A → [0, 1] by λ f (A) =
∧

x∈A f (x). Obviously,
we have A ⊆ f−1(Lλ f (A)), and thus ν( f−1(Lλ f (A))) ≤ ν(A) by (ii) of Definition 3. Since
λ f (A) ⊆ [0, 1], we get

K =
∧

A∈A
(λ f (A)→ ν(A)) ≥

∧
A∈A

(λ f (A)→ ν( f−1(Lλ f (A)))) ≥ L,

where we used the fact that the residuum is non-decreasing in its second variable.
Furthermore, we show that K ≤ L. Define $ f : [0, 1]→ A by $ f (α) = f−1(Lα). Since

f is measurable, the function $ f is well defined. Obviously, we have
∧

x∈$ f (α)
f (x) ≥ α for

any α ∈ [0, 1] and $ f ([0, 1]) ⊆ A. Hence, we obtain

K ≤
∧

α∈[0,1]

 ∧
x∈$ f (α)

f (x)

→ ν($ f (α))

 ≤ ∧
α∈[0,1]

(α→ ν( f−1(Lα)) = L,

where we used the fact that the residuum is non-increasing in its first variable. Hence, we
obtain K = L, and the proof is completed.

As a corollary, we get a simple computational formula for measurable functions
defined on finite set X = {x1, . . . , xn}.

Corollary 2. Let (X,A, ν) be a finite complementary fuzzy measure space, that is, X = {x1, . . . , xn},
and let f : X → [0, 1] be measurable. Then∫ →

f dν =
∧

i∈[n]
fσ(i) → νi, (15)

where σ is a permutation on [n] such that fσ(1) ≤ fσ(2) ≤ · · · ≤ fσ(n), where fσ(i) = f (xσ(i)) for
i ∈ [n], and νi = ν({xσ(i), . . . , xσ(n)}).



Mathematics 2022, 10, 4077 12 of 30

Proof. Analogously to the proof of Corollary 1, for α = 0 and fσ(n) < α ≤ 1, we find that
α → ν({x ∈ X | f (x) ≥ α}) = α → ν(∅) = α → 1 = 1. If fσ(i−1) < α ≤ fσ(i) for i ∈ [n]
(we put fσ(0) = 0), then

α→ ν({x ∈ X | f (x) ≥ α}) = α→ νi ≥ fσ(i) → νi,

where we used the fact that the residuum is non-increasing in its first variable. Hence,
we get ∧

α∈[0,1]

(α→ ν({x ∈ X | f (x) ≥ α})) ≥
∧

i∈[n]
fσ(i) → νi.

Since the opposite inequality is trivially true, we obtain the desired equality.

It should be noted that there is a relationship between both types of fuzzy integrals
under specific conditions on the residuated lattice (see [31]). For more information on both
types of fuzzy integrals, we refer to [1,16,28,29].

3. Lattice Integral Transforms

In this part, we introduce two types of integral transforms for lattice-valued functions
related to multiplication and residuum-based fuzzy integrals. As with the classical integral
transform, the key concept in our lattice integral transform theory is an integral kernel. The
following definition was provided in [17].

Definition 7. A fuzzy relation K : X×Y → L that is normal in the second argument is said to be
an integral kernel.

The next definition generalizes the upper and lower F-transforms and unifies the
definitions of lattice integral transforms mentioned in the Introduction (see [1]).

Definition 8. Let (X,A, µ) be a fuzzy measure space, let K : X×Y → [0, 1] be an integral kernel,
and let ? ∈ {⊗,→}. A function F?

(K,µ) : F (X)→ F (Y) defined by

F?
(K,µ)( f )(y) =

∫ ⊗

K(x, y) ? f (x) dµ (16)

is called a (K, µ, ?)-lattice integral transform.

The elementary properties of the integral transform for lattice-valued functions can be
presented in the following theorem.

Theorem 3. Let ? ∈ {⊗,→}, and put F? = F?
(K,µ). For any f , g ∈ F (X) and α ∈ [0, 1], we have

(i) F?( f ) ≤ F?(g) if f ≤ g;
(ii) F?( f ∩ g) ≤ F?( f ) ∧ F?(g);
(iii) F?( f ) ∨ F?(g) ≤ F?( f ∪ g);
(iv) α⊗ F?( f ) ≤ F?(α⊗ f );
(v) F?(α→ f ) ≤ α→ F?( f ).

Proof. See [1].

The next theorem introduced without proof in [17] (see also [8]) shows conditions
under which a constant function (fuzzy set) αX is transformed into a constant function αY,
that is, F?

(K,µ)(αX) = αY. For an integral kernel K on X×Y and y ∈ Y, we use Ky to denote
a fuzzy subset of X given by Ky(x) = K(x, y) for any x ∈ X. Recall that Core(Ky) 6= ∅
follows from the definition of the integral kernel.
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Theorem 4. Let (X,A, µ) be a fuzzy measure space, let K be an integral kernel, and let α ∈ [0, 1].

(i) If for any y ∈ Y there exists Ay ∈ A such that Ay ⊆ Core(Ky) and µ(Ay) = 1, then
F⊗
(K,µ)(αX) = αY.

(ii) If for any y ∈ Y and for any A ∈ A with A ⊆ X \Core(Ky) it holds that µ(A) ≤ α, then
F→(K,µ)(αX) = αY.

Proof. (i) Let α ∈ [0, 1] and y ∈ Y. By the assumption of (i), we assume that there is
Ay ⊆ Core(Ky) such that µ(Ay) = 1. Then

F⊗(K,µ)(αX)(y) =
∫ ⊗

K(x, y)⊗ αX(x) dµ

=
∨

A∈A
(µ(A)⊗

∧
x∈A

(K(x, y)⊗ αX(x))

=
∨

A∈A
(µ(A)⊗

∧
x∈A

(K(x, y)⊗ α)

≥ µ(Ay)⊗
∧

x∈Ay

(K(x, y)⊗ α) = 1⊗ α = α.

On the other hand, it is trivially true that µ(A)⊗ ∧x∈A(K(x, y)⊗ α) ≤ α for any A ∈ A.
Therefore, we find F⊗

(K,µ)(αX)(y) ≤ α, which proves the desired equality.
(ii) Let α ∈ [0, 1] and y ∈ Y. By the assumption of (ii), for any A ∈ A such

that A ⊆ X \Core(Ky), we have µ(A) ≤ α. Since Core(Ky) 6= ∅, we get X 6⊆ X \
Core(Ky). Then

F→(K,µ)(αX)(y) =
∫ ⊗

K(x, y)→ αX(x) dµ

=
∨

A∈A
A 6⊆X\Core(Ky)

(µ(A)⊗
∧

x∈A
(K(x, y)→ α))∨

∨
A∈A

A⊆X\Core(Ky)

(µ(A)⊗
∧

x∈A
(K(x, y)→ α))

≤
∨

A∈A
A 6⊆X\Core(Ky)

(α⊗ µ(A)) ∨
∨

A∈A
A⊆X\Core(Ky)

µ(A)

= α⊗
∨

A∈A
A 6⊆X\Core(Ky)

µ(A) = α⊗ µ(X) = α,

where we used the distributivity of ⊗ over
∨

, the equality∧
x∈A

(K(x, y)→ α)) = α

for any A 6⊆ X \ Core(Ky), which follows from K(x, y) = 1 for some x ∈ A, 1 → α = α,
and β→ α ≥ α for any β ∈ [0, 1], and the assumption stating that µ(A) ≤ α for any A ∈ A,
such that A ⊆ X \Core(Ky). On the contrary, we have

F→(K,µ)(αX)(y) ≥
∧

x∈X
K(x, y)→ αX(x) =

∧
x∈X

(K(x, y)→ α) = α,

where we used the same arguments as above, which proves the desired equality.

It is worth noting that the standard real-valued F-transforms as well as lower and
upper lattice-valued F-transforms preserve constant functions; therefore, it seems to be



Mathematics 2022, 10, 4077 14 of 30

reasonable to assume that integral kernels and fuzzy measures as the parameters of the
integral transforms satisfy the conditions under which the constant functions are preserved.

Example 9. Let (X,A) be a measurable space with X = {x1, . . . , xn} and A = P(X), and let
Mr be the class of fuzzy measures on (X,A) introduced in Example 7. Let K : X×Y → [0, 1] be
an integral kernel, where Y = {y1, . . . , ym} and put u = min{# Core(Kyj) | yj ∈ Y}/n. Then
the class

Mr
u = {µr

ϕ
p
`,u
| ` ∈ [0, 1], ` ≤ u, p ∈ N, p > 0} (17)

consists of all fuzzy measures, for which the (K, µ,⊗)-integral transform preserves constant func-
tions. Indeed, we trivially have Core(Kyj) ∈ A for any yj ∈ Y. By the definition of u, we find that
for any yj ∈ Y it holds

µr
ϕ

p
`,u
(Core(Kyj)) = ϕ

p
`,u(# Core(Kyj)/n) = 1

for any ` ≤ u and p > 0, since u ≤ # Core(Kyj)/n. Therefore, the assumption in (i) of Theorem 4
is satisfied, and thus the (K, µ,⊗)-integral transform preserves constant functions for any µ ∈ Mr

u.
In addition, the class

Mr,c,N
u = {µr

ϕ
p,c,N
`,u
| ` ∈ [0, 1], ` ≤ u, p ∈ N, p > 0} (18)

consists of all fuzzy measures (N-conjugate fuzzy measures to fuzzy measures from Mr
u), for

which the (K, µ,→)-integral transform preserves constant functions. Indeed, let us show that
an N-conjugate fuzzy measure to µ ∈ Mr

u satisfies the assumption in (ii) of Theorem 4. Let
µ = ϕ

p
`,u ◦ µr. Recall that µc

N(A) = N(µ(X \ A)) for any A ∈ A. Let yj ∈ Y, B ∈ A be
arbitrary, such that B ⊆ X \Core(Kyj), and put s = #B. Since # Core(Kyj)/n ≥ u, we find that
s = #B ≤ #(X \ Core(Kyj)) ≤ n− n · u; therefore, µr(X \ B) = #(X \ B)/n = (n− s)/n =

1− s/n ≥ 1− (1− u) = u. Since N is a non-increasing function and ϕ
p
l,u is a non-decreasing

function, we get

µc
N(B) = N(µ(X \ B)) = N(ϕ

p
l,u(µ

r(X \ B))) ≤ N(ϕ
p
l,u(u)) = N(1) = 0,

where ϕ
p
l,u(u) = 1 follows from the definition of ϕ

p
l,u. Hence, the assumption in (ii) of Theorem 4 is

satisfied, and thus the (K, µ,→)-integral transform preserves arbitrary constant functions for any
fuzzy measure fromMr,c,N

u .

The next definition introduces a “reverse” alternative to the lattice integral transform
introduced above, where the residuum-based fuzzy integral on a complementary fuzzy
measure space is considered instead of the multiplication one.

Definition 9. Let (X,A, ν) be a complementary fuzzy measure space, let K : X × Y → L be an
integral kernel, and let ? ∈ {⊗,→}. A function G?

(K,ν) : F (X)→ F (Y) defined by

G?
(K,ν)( f )(y) =

∫ →
K(x, y) ? f (x) dν (19)

is called a (K, ν, ?)-reverse lattice integral transform.

We use the term “reverse lattice integral transform” to simply distinguish between
both types of lattice integral transforms. The next theorem presents selected properties of
the reverse lattice integral transform.
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Theorem 5. Let ? ∈ {⊗,→}, and put G? = G?
(K,ν). For any f , g ∈ F (X) and α ∈ [0, 1],

we have

(i) G?( f ) ≥ G?(g) if f ≤ g;
(ii) G?( f ∩ g) ≥ G?( f ) ∨ G?(g);
(iii) G?( f ) ∧ G?(g) ≥ G?( f ∪ g);
(iv) G?(α⊗ f ) ≤ α→ G?( f );
(v) G?(α→ f ) ≥ α⊗ G?( f ).

Proof. See [16].

Similarly to Theorem 4, we are interested in sufficient conditions under which reverse
lattice integral transforms ensure the reversal of constant functions, i.e., G⊗

(K,ν)(αX) = ¬αY,
where ¬ is the standard negation defined by the residuum, i.e., ¬α = α→ 0.

Theorem 6. Let (X,A, ν) be a complementary fuzzy measure, let K be an integral kernel, and let
α ∈ [0, 1].

(i) If for any y ∈ Y there exists Ay ∈ A such that Ay ⊆ Core(Ky) and ν(Ay) = 0, then
G⊗
(K,ν)(αX) = ¬αY;

(ii) If for any y ∈ Y and for any A ∈ A with A ⊆ X \Core(Ky) it holds that ν(A) ≥ ¬α, then
G→
(K,ν)(αX) = ¬αY.

Proof. (i) Let y ∈ Y, and αX ∈ F (X). Assume that there is Ay ⊆ Core(Ky) such that
ν(Ay) = 0. Then

G⊗
(K,ν)(αX)(y) =

∫ →
K(x, y)⊗ αX(x) dν =

∧
A∈A

(∧
x∈A

(K(x, y)⊗ α)→ ν(A)

)
≤

∧
x∈Ay

(1⊗ α)→ 0 = α→ 0 = ¬α = ¬αY(y).

On the other hand, for any A ∈ A, we trivially have
∧

x∈A(K(x, y)⊗ α) → ν(A) ≥ α →
0 = ¬αY(y), where we used the monotonically non-increasing in the first argument and
the monotonically non-decreasing in the second argument of residuum. Hence, we find
G⊗
(K,ν)(αX)(y) ≥ ¬αY(y), which proves the desired equality.

(ii) Let y ∈ Y. Since Core(Ky) 6= ∅, so X 6⊆ X \Core(Ky). Then

G→
(K,ν)(αX)(y) =

∫ →
K(x, y)→ αX(x) dν =

∧
A∈A

A⊆X\Core(Ky)

(∧
x∈A

(K(x, y)→ α)→ ν(A)

)

∧
∧

A∈A
A 6⊆X\Core(Ky)

(∧
x∈A

(K(x, y)→ α)→ ν(A)

)
≥

∧
A∈A

A⊆X\Core(Ky)

(1→ ν(A))

∧
∧

A∈A
A 6⊆X\Core(Ky)

(α→ ν(A)) ≥ ¬α ∧ (α→ 0) = ¬α = ¬αY(y),

where we used that the residuum is monotonically non-increasing in the first component
and the monotonically non-decreasing in the second component, i.e., trivially K(x, y)→
α ≤ 1, therefore, (K(x, y) → α) → ν(A) ≥ 1→ ν(A) = ν(A) ≥ ¬α for A ⊆ X \Core(Ky)
by the assumption in (ii). On the contrary, we have:

G→
(K,ν)(αX)(y) ≤

∧
x∈X

(K(x, y)→ α)→ ν(X) = α→ 0 = ¬α = ¬αY(y),
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where we used the fact that K(x, y) → α ≥ α for any (x, y) ∈ X × Y and K(x, y) → α =
1→ α = α for any x ∈ Core(Ky), which proves the desired equality.

Example 10. From Lemma 2, we know that a complementary fuzzy measure can be introduced
from a given fuzzy measure using a negation N on [0, 1] as νN(A) = N(µ(A)) for any A ∈ A.
It is easy to observe that if K is an integral kernel and µ a fuzzy measure such that (i) (or (ii))
of Theorem 4 is satisfied, then νN is a complementary fuzzy measure that satisfies (i) (or (ii)) of
Theorem 6, where N = ¬ for case (ii). In fact, if µ(Ay) = 1 for some Ay ⊆ Core(Ky), then
νN(Ay) = N(µ(Ay)) = N(1) = 0. Similarly, if for any A ⊆ X \Core(Ky), we have µ(A) ≤ α,
then νN(A) = N(µ(A)) ≥ N(α) = ¬α. Obviously, if G→

(K,ν) has to reverse an arbitrary constant
function, that is, (ii) of Theorem 6 holds for any α ∈ [0, 1], which is equivalent to ν(A) = 1 holds
for any A ∈ A with A ⊆ X \Core(Ky), then we can consider an arbitrary negation N on [0, 1] to
get the desired reversal.

4. Application of Lattice Integral Transforms to Image Processing

In this part, we apply lattice integral transforms (LITs for short) to image processing,
namely, non-linear filtering, compression/decompression and closing/opening of images.
For the purpose of this paper, we restrict ourselves to grayscale images. We assume that
an image h of the size N ×M (the number of pixels in rows and columns) is a function
I : D → [0, 1], where D = {(i, j) | 1 ≤ i ≤ N, 1 ≤ j ≤ M} and the value I(i, j) expresses
the intensity of shades of gray from black to white for the pixel at the position (i, j) ∈ D.
For simplicity, we assume that the shade of gray can be determined for any number from
[0, 1]. Since an image is a two-dimensional function, we consider lattice integral transforms
from F (D1) to F (D2), where D1 is the domain of original (input) images and D2 is the
domain of output images (e.g., compressed images). In the following part, we first describe
in detail the way in which the lattice integral transforms are applied to the above tasks
and then demonstrate them in various images. For an introduction to methods used in
non-linear image processing, we refer to [32,33].

4.1. Method Description

Let N, M, $ be natural numbers such that $ divides N and M. Denote n = N/$ and
m = M/$. The number $ will be called the shift and $2 : 1 will express compression ratio.
Denote D = {(i, j) | 1 ≤ i ≤ N, 1 ≤ j ≤ M} and D$ = {(i, j) | 1 ≤ i ≤ n, 1 ≤ j ≤ m},
where D$ provides the domain for compressed images ($ > 1) or filtered images ($ = 1).

Let r, s be natural numbers such that $ ≤ r � N and $ ≤ s � M, and denote
[−r, r] = {−r, . . . , 0, . . . , r} and similarly for [−s, s]. Let W = {wi,j | i ∈ [−r, r], j ∈ [−s, s]}
be an (2r + 1)× (2s + 1) matrix of values from [0, 1], which will be referred to as window
of size R × S, where R = 2r + 1 and S = 2s + 1. A window W specifies the weights
assigned to pixels in the neighborhood of a corresponding pixel in the input image. In our
application, we assume that w00 = 1. Note that W can be viewed as a normal fuzzy relation
on [−r, r]× [−s, s].

To properly process the pixels at the edges of the images, we extend D to a broader
domain given as

Dr,s = {(i, j) | −r + 1 ≤ i ≤ N + r,−s + 1 ≤ j ≤ M + s},

and consider a function ̂ : F (D)→ F (Dr,s) that each image I ∈ F (D) extends to an image
Î ∈ F (Dr,s) such that Î(i, j) = I(i, j) for any (i, j) ∈ D. The extension of I for pixels from
Dr,s \ D can be adjusted in different ways according to the given task. For example, we can
consider the following extending functions:

(a) Î(i, j) = I(i, j), for (i, j) ∈ D, and Î(i, j) = 1, otherwise, which is used in dilation;
(b) Î(i, j) = I(i, j), for (i, j) ∈ D, and Î(i, j) = 0, otherwise, which is used in erosion;
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(c) Î(i, j) = I(i′, j′), where

i′ = 2 ·max(1, min(N, i))− i and j′ = 2 ·max(1, min(M, j))− j.

It is easy to see that i′ = i and j′ = j, whenever 1 ≤ i ≤ N and 1 ≤ j ≤ M, therefore, the
definition of extension in case (c) is correct. In case (c), the grayscale intensity in the new
pixels is mirrored over the edges.

4.1.1. Image Filtering

Filtering is a technique to adjust or enhance an image. For example, we can filter an
image to emphasize certain elements or remove other elements. Filtering is a neighborhood
operation in which the value of any given pixel in the output image is determined by ap-
plying some algorithm to the values of the pixels in the neighborhood of the corresponding
pixel in the input image. Our approach based on the lattice integral transforms provides
a class of non-linear filters which includes some of the known filters as median filter, or
minimum and maximum filter.

A lattice integral transform (LIT-)filter for the images in F (D) is defined as a lattice
integral transform F?

(KW ,µ) : F (Dr,s)→ F (D), where KW : Dr,s × D → [0, 1] is an integral
kernel determined by a widow W of size R× S given by

KW((i, j), (i′, j′)) =

{
W(i′ − i, j′ − j), |i′ − i| ≤ r and |j′ − j| ≤ s,
0, otherwise,

(20)

and µ is a fuzzy measure defined on (Dr,s,P(Dr,s)). Furthermore, we assume that KW and
µ are adjusted so that F?

(KW ,µ) preserves constant functions (see Theorem 4). By Example 9,

we can select µ ∈ Mr
u for ? = ⊗ and µ ∈ Mr,c,N

u for ? =→.
One can see that image filtering is provided by aggregation based on a Sugeno-like

integral applied to the values in specific neighborhoods that are adjusted by the weights
in the window W. More precisely, for any (i′, j′) ∈ D, there is determined the following
neighborhood in Dr,s:

N(i′, j′) = {(i′ + k, j′ + `) | −r ≤ k ≤ r, −s ≤ ` ≤ s}

collecting positions of pixels that are actually processed. The calculation of the output pixel
value at position (i′, j′) ∈ D is given (using Corollary 1)

F?
(KW ,µ)( Î)(i′, j′) =

∨
k∈[p]

(
Îσ(k) ? KW(σ(k), (i′, j′))

)
⊗ µk,

where p = #N(i′, j′), σ : [p]→ N(i′, j′) is a bijection, such that

Îσ(1) ? KW(σ(1), (i′, j′))) ≤ Îσ(2) ? KW(σ(2), (i′, j′))) ≤ · · · ≤ Îσ(n) ? KW(σ(n), (i′, j′)))

with Îσ(k) = Î(σ(k)) and µk = {σ(k), . . . , σ(n)}. Therefore, the image filtering calculation
procedure is very simple and fast.

By setting of the window (integral kernel), an operation ? ∈ {⊗,→}, and a fuzzy
measure µ on (Dr,s,P(Dr,s)), we can determine various types of non-linear filters. Assume
that the window W consists of the weights wi,j ∈ {0, 1} for any i ∈ [−r, r] and j ∈ [−s, s].
In Table 1, we show the operation ? and the fuzzy measure µ (see Example 7) specifying
the integral transform F?

(KW ,µ) that determine the classical non-linear filters.
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Table 1. Classical types of non-linear filters.

Filters Type of LIT (?)
Fuzzy Measures
(µ

p
`,u = µr

ϕ
p
`,u
)

Standard median ⊗ µ1
0.5,0.5

Minimum → µ1
1,1 = µ⊥

Maximum ⊗ µ1
0,0 = µ>

Note that, also, the weighted median could be introduced within the framework of
integral transform, but the definition is not straightforward, because the window used
for the weighted median contains natural numbers that determine the repetition of pixels
in the window from which the median is calculated (see, [2,32]). A solution of this task
is to extend the input image domain in a suitable way to respect the repetition of pixels
according to the weights in the window and define the weighted median as an integral
transform from the images over the extended domain to the original domain with the
integral kernel that connects the positions of the pixels according to the repetitions in the
window. Obviously, the specific choice of operation ? has no influence on the result, because
the weights are only 0 and 1, and ? for 0 and 1 always give the same results regardless of
the specific operation.

A reverse (negative) LIT-filter is defined similarly as a reverse lattice integral transform
G?
(KW ,ν) : F (Dr,s) → F (D), where KW is the same integral kernel as in the previous case,

and ν is a complementary fuzzy measure on (Dr,s,P(Dr,s)), such that constant functions
are reversed (see Theorem 6 and Example 10). In contrast to the LIT-filter, the reverse
LIT-filter provides a negative output image, see, e.g., Figure 6e on page 22. Again, the
calculation of the output pixel values is simple and fast and, with the help of Corollary 2, is
given by

G?
(KW ,ν)( Î)(i′, j′) =

∧
k∈[p]

(
Îσ(k) ? KW(σ(k), (i′, j′))

)
→ νk,

where p = #N(i′, j′), σ : [p]→ N(i′, j′) is a bijection such that

Îσ(1) ? KW(σ(1), (i′, j′))) ≤ Îσ(2) ? KW(σ(2), (i′, j′))) ≤ · · · ≤ Îσ(n) ? KW(σ(n), (i′, j′)))

with Îσ(k) = Î(σ(k)) and νk = {σ(k), . . . , σ(n)}.

4.1.2. Image Compression

Image compression is a technique to reduce the size of the image. Similarly to image
filtering, we introduce LIT-compression as a lattice integral transform F?

(KW ,µ) : F (Dr,s)→
F (D$), where $ > 1 is the shift, KW : Dr,s × D$ → [0, 1] is an integral kernel determined
by a widow W of size R× S given by

KW((i, j), (i′, j′)) =


W((i′ − 1)$− i, (j′ − 1)$− j), |(i′ − 1)$− i| ≤ r

and |(j′ − 1)$− j| ≤ s,
0, otherwise,

(21)

and µ is a fuzzy measure defined on (Dr,s,P(Dr,s)). Again, we assume that KW and µ
are adjusted in such a way that F?

(KW ,µ) preserves constant functions. The procedure of
calculation of image compression is performed in the same way as for image filtering, only
the neighborhood in Dr,s for (i′, j′) ∈ D$ is determined as

N$(i′, j′) = {((i′ − 1)$ + 1 + k, (j′ − 1)$ + 1 + `) | −r ≤ k ≤ r, −s ≤ ` ≤ s}.

Obviously, N = N$ for $ = 1.
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A reverse (negative) LIT-compression is defined analogously by a reverse lattice
integral transform G?

(KW ,ν) : F (Dr,s)→ F (D$), where KW is the same integral kernel as in
the previous case, and ν is a complementary fuzzy measure on (Dr,s,F (Dr,s)) such that
constant functions are reversed.

4.1.3. Image Decompression

Unlike image compression, image decompression is used to reconstruct the original
image from its compression. To introduce image decompression, in the first step, we
extend the domain D$ to the domain D$,u,v, where u denotes the integer part of r/$ and
similarly v denotes the integer part of s/$. To better understand our motivation for the
definition of extension, consider the situation $ = r = s, that is, u = 1 = v. For any
pixel position (i′, j′) ∈ D$ of output images, the neighborhood N$(i′, j′) of the pixel at
the position ((i′ − 1)$ + 1, (j′ − 1)$ + 1) in Dr,s, over which the calculation is provided,
contains positions ((i′ + a− 1)$ + 1, (j′ + b− 1)$ + 1) for −u ≤ a ≤ u and −v ≤ b ≤ v,
where (i′+ a, j′+ b) 6∈ D$ can occur in general. So, once we use the pixel values at positions
((i′ + a− 1)$ + 1, (j′ + b− 1)$ + 1) to calculate image compression, it seems reasonable
to use the pixel values at positions (i′ + a, j′ + b) to account for the reconstructions of
compressed images.

Assume that LIT-compression with the ratio $2 : 1 is performed by F?
(KW ,µ) for ? ∈

{⊗,→}, and denote ?̄ the adjoined operation to ?, e.g., if ? = ⊗, then ?̄ =→. The LIT-
decompression is introduced as a lattice integral transform F?̄

(K−1
W ,µ′)

: F (D$,u,v)→ F (D),

where K−1
W : D$,u,v × D → [0, 1] is the integral kernel determined by a widow W of size

R× S given by

K−1
W ((i′, j′), (i, j)) =


W((i′ − 1)$− i, (j′ − 1)$− j), |(i′ − 1)$− i| ≤ r

and |(j′ − 1)$− j| ≤ s,
0, otherwise,

(22)

µ′ is a fuzzy measure defined on (D$,u,v,P(D$,u,v)). Furthermore, we assume that K−1
W and

µ′ are adjusted so that F?̄
(K−1

W ,µ′)
preserves constant functions.

It is easy to see that the integral kernel K−1
W is the inverse to KW (for the definition of

the inverse fuzzy relation, see page 6) if we restrict ourselves to the original domains D
and D$, that is, K−1

W ((i′, j′), (i, j)) = KW((i, j), (i′, j′)) for any (i, j) ∈ D and (i′, j′) ∈ D$.
A reverse (negative) LIT-decompression is defined analogously by a reverse lattice

integral transform G?̄
(K−1

W ,ν′)
: F (D$,u,v) → F (D), where K−1

W is the same integral kernel

as in the previous case, and ν′ is a complementary fuzzy measure on (D$,u,v,F (D$,u,v)),
such that constant functions are reversed. It should be noted that the decompression
of the negative image, which is a result of the compression procedure, we again get a
positive image.

4.1.4. Opening and Closing

Opening and closing are two important morphological operators. They are both
derived from the fundamental operations of erosion and dilation, namely, the opening is
defined as an erosion followed by a dilation, and vice versa for closing. Opening is generally
used to restore the original image to the maximum possible extent. It eliminates the thin
protrusions of the obtained image and is also used to remove internal noise. Closing is
generally used to smooth the contour of the distorted image and fuse back the narrow
breaks and long, thin gulfs. It is also used to remove the small holes in the obtained image.

In our case, we consider the opening and closing defined by fuzzy morphological
erosion and dilation, which correspond to the direct lower and upper lattice fuzzy trans-
forms, respectively, as was shown in [15]. The fuzzy morphological erosion (dilation) is
defined in a way similar to the minimum (maximum) filter introduced in Table 1. More
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precisely, fuzzy morphological erosion is the (KW , µ⊥,→)-lattice integral transform from
F (Dr,s) to F (D), where µ⊥ denotes the least fuzzy measure on the powerset P(Dr,s) and
the window W consists of arbitrary weights from [0, 1], as described in Section 4.1. The
fuzzy morphological dilation is the (KW , µ>,⊗)-lattice integral transform from F (Dr,s) to
F (D), where µ> denotes the highest fuzzy measure on the powerset P(Dr,s) and again the
window W consists of arbitrary weights from [0, 1]. However, the lattice integral transforms
provide an opportunity to generalize the fuzzy morphological erosion (dilation), so that
instead of the least (highest) fuzzy measure, we can consider fuzzy measures that are close
(but not equal) to the least (highest) fuzzy measure. The combination of more general
fuzzy morphological operations introduces a generalization of opening and closing. More
precisely, a generalized opening (LIT-opening) operation is obtained as the composition
of the (KW , µ,→)-lattice integral transform (LIT-erosion) and (KW , µ′,⊗)-lattice integral
transform (LIT-dilation) that are set to preserve constant functions and µ is close to µ⊥ and
µ′ to µ>. The reverse composition of the previous lattice integral transforms leads to a
generalized closing (LIT-closing) operation. Other alternatives to opening and closing can
be obtained by applying reverse lattice integral transforms.

4.2. Illustration of Filtering, Compression/Decompression, and Opening/Closing

The aim of this part is to illustrate our method based on integral transforms for lattice-
valued functions. We do not have the ambition to present results that surpass current
approaches, but we want to show that lattice integral transforms provide a useful tool for
extending selected methods with a wide space for setting parameters that can be used to
solve various tasks in image processing. We believe that certain parameter settings could
provide interesting alternatives to popular techniques such as the median, minimum, or
maximum filter, opening and closing, and the (reverse) lattice integral transforms can be
used to introduce other useful types of filters and morphological operators. However, a
detailed analysis is beyond the scope of this article, and we leave it for future work.

For illustration, we assume complete residuated lattices determined by continuous
t-norms from the Schweizer–Sklar class of t-norms TSS

λ (see Example 2) and negations
N = NSS

λ determined by the residuum→TSS
λ

for λ > 0 (see Example 3). Note that NSS
λ are

involutive for λ > 0, that is, NSS
λ ◦ NSS

λ = id[0,1], where id[0,1] denotes the identity function
on [0, 1]. In addition, we consider a fuzzy measure µ = µ

p
`,u = µr ◦ ϕ

p
`,u for the (K, µ,⊗)-

lattice integral transform and an N-conjugate fuzzy measure µc
N = µ

p,c,N
`,u = µr ◦ ϕ

p,c,N
`,u

for the (K, µ,→)-lattice integral transform, which were introduced in Examples 6 and 7,
and a complementary fuzzy measure ν = N ◦ µ = µN for the reverse (K, ν,⊗)-lattice
fuzzy integral and a complementary N-conjugate fuzzy measure νc

N = N ◦ µc
N for the

reverse (K, ν,→)-lattice integral transform, which were discussed in Example 10. Since the
negation N is involutive in our case, we get νc

N = µc.
For image filtering and other tasks based on our method, we have prepared a program

in Mathematica v. 12 software, which is sufficient for our illustration, but insufficient for
real applications. In this direction, we plan to prepare the code in Python.

4.2.1. Image Filtering

For illustration, we consider the Cameraman image (256 × 256) with 30% and 40% of
salt-and-pepper noise, see Figures 6b and 7b, where we assume that the salt and pepper
noise is in the ratio 2:1 and 3:1, respectively. The reason for the non-uniform distribution of
salt and pepper noise is to show that (reverse) LIT-filters provide a more efficient way to
reduce noise due to greater parameter flexibility than the standard median filter and its
combination with minimum filter. Note that the median filter provided the best solution in
case of the uniform distribution of salt and pepper noise in our experiment. To compare
results of (reverse) LIT-filters with the median filter approach, we use the same window
of size 3 × 3 with all weights equal to 1. Further, we consider λ = 2, which specify the
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used t-norm, residuum, and negation. The fuzzy measure is the crucial parameter in our
experiment and its setting will be specified for each result of (reverse) LIT-filters.

Filtering results of 30% salt-and-pepper noise (2:1 ratio) for different filters are dis-
played in Figure 6. In our demonstration, we also consider the application of two filters in
succession to show the effect of the composition of LIT-filters determined by the multipli-
cation and residuum. In Figure 6c–e, one can see the results of the median filter and the
LIT-filter with the multiplication (M-LIT-filter) with the fuzzy measure µ = µ5

0.56,0.67, and
the reverse LIT-filter with the multiplication (M-reverse LIT-filter) with the complementary
fuzzy measure ν derived from µ. By adjusting the fuzzy measure µ, we can remove more
salt noise, see Figure 6d, compared to the median filter, see Figure 6c, with the presence
of a higher proportion of pepper noise. The negative image as the result of the M-reverse
LIT-filter seems unnecessary at first glance, especially if we want to work with it immedi-
ately without further processing. In Figure 6f–i, one can see the results of combinations
of two filters. Particularly, we use the double application of the median filter (D-Median
filter) and the application of the median filter and then the minimum filter (Min-Median
filter). Further, the composition of the LIT-filters with the multiplication and residuum
(MR-LIT-filter), where the R-LIT-filter with the N-conjugate fuzzy measure µc

N derived
from µ = µ1

0.5,0.5 (the same fuzzy measure as for the median filter, see Table 1) is applied
on the result of the M-LIT-filter displayed in Figure 6d. Finally, the composition of the
reverse LIT-filters with the multiplication and residuum (MR-reverse LIT-filter), where
the R-reverse LIT-filter with the N-conjugate complementary fuzzy measure νc

N derived
from µ = µ5

0.39,0.56 is applied on the result of the M-reverse LIT-filter displayed in Figure 6e.
Comparing the results visually, the MR-reverse LIT-filter in Figure 6i provides the best
filtering. This claim is also underlined by the highest PSNR among others in Table 2.

Filtering results of 40% salt-and-pepper noise (3:1 ratio) for different filters are dis-
played in Figure 7. We consider the same filters as in the previous case. The M-LIT filter has
the same fuzzy measure as above. For the MR-LIT-filter, we consider the conjugate fuzzy
measure µc

N derived from µ = µ0.23,0.5 in the setting of R-LIT-filter, which is applied on the
result of the M-LIT-filter in Figure 7d. The M-reverse LIT-filter and MR-reverse LIT-filter
have the same setting as in the previous case. Again, the MR-reverse LIT-filter provides the
best result both visually and supported by the highest PSNR (see Table 2).

To summarize the results, the filters based on (reverse) integral transforms seem to
be useful in filtering non-uniform salt-and-pepper noise from images. For the sake of
comparison, the only parameter here was the fuzzy measure whose setting improves the
results for the median filter. The further development of more sophisticated filters based
on (reverse) lattice integral transforms is the subject of future research.

Table 2. PSNR for different methods of filtering of salt-and-pepper noise.

Filters PSNR for 30% Noise (dB) PSNR for 40% Noise (dB)

Median filter 18.416 13.552
M-LIT filter 18.933 16.675

D-Median filter 20.614 15.714
Min-Med filter 16.496 17.192
MR-LIT-filter 21.372 18.939

MR-reverse LIT filter 21.373 19.789
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6. Filtering Cameraman image with 30% salt-and-pepper noise (2:1 ratio) using standard filters
and new filters based on (reverse) lattice integral transforms with the window 3 × 3. (a) Original
image; (b) 30% salt-pepper; (c) Median filter; (d) M-LIT-filter; (e) M-reverse LIT-filter; (f) D-Median
filter; (g) Min-Median filter; (h) MR-LIT-filter; and (i) MR-reverse LIT-filter.

4.2.2. Image Compression and Decompression

For illustration, we use the Lena image (256 × 256) and the compression ratio of 4:1,
that is, the shift is $ = 2. We consider the window of size 5 × 5 with the weights equal
to 1 around the center and other less than 1, more specifically, wij = 1 for i, j ∈ [−3, 3]
and wij < 1, otherwise. The respective integral kernel is denoted by K. Additionally, we
consider λ ∈ {0.5, 1, 2}, which specifies the operations used.

For LIT-compression, we consider the fuzzy measure µ = µ5
0.16,0.36, and the remaining

fuzzy measures are derived from µ as follows: µc
N is the conjugate fuzzy measure to µ,

ν = µN is the complementary fuzzy measure, and νc
N is the conjugate complementary

fuzzy measure to ν. The results of LIT-compression of the Lena image for different set-
tings are displayed in Figure 8 (the figure is partially adopted from [8]). In particular,
the multiplication-based (M-) LIT-compression and residuum-based (R) LIT-compression
are presented in Figure 8a,b. The negative output image for the multiplication-based
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(M-) reverse LIT-compression and the residuum-based (R-)reverse LIT-compression can be
seen in Figure 8c,d.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7. Filtering Cameraman image with 30% salt-and-pepper noise (2:1 ratio) using standard filters
and new filters based on (reverse) lattice integral transforms with the window 3 × 3. (a) Original
Image; (b) 30% salt-pepper; (c) Median filter; (d) M-LIT-filter; (e) M-reverse LIT-filter; (f) D-Median
filter; (g) Min-Median filter; (h) MR-LIT-filter; and (i) MR-reverse LIT-filter.

For LIT-decompression, we consider the highest fuzzy measure as µ′ on P(D$,u,v) and
the remaining fuzzy measures are again derived from µ′ as for µ, where we use ν′ = µ′N .
The reason for setting µ′ is the fact that the cores of the inverse integral kernel K−1 have
the form of singleton, two, and four element sets. Therefore, according to Theorem 4 and
the fact that we consider a symmetric fuzzy measure (see Remark 1), we must assign the
fuzzy measure µ′ equal to 1 to all singletons leading to the highest fuzzy measure. The
results of the decompression of the compressed Lena image in Figure 8 for different settings
are shown in Figure 9 (the figure is partially adopted from [8]). The (reverse) LIT-image
decompression always uses the adjoined operation to that which is applied in the LIT-
image compression; i.e., the R-(reverse) LIT-decompression is applied to the M-(reverse)
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LIT-compression, where the residuum (R) is an adjoined operation to the multiplication
(M), and vice versa.

In principle, lattice integral transforms lead to lossy (irreversible) compression, and
the question is whether the quality of reconstructed images can be improved by appropriate
parameter settings, which is the subject of our future research. To compare the quality of
Lena image decompression for the various types of LIT-decompression, we calculated the
PSNR for each reconstructed Lena image. The results are shown in Table 3, according to
which the best decompression is obtained by the R-LIT-decompression with λ = 0.5 (the
left image in Figure 9b).

Table 3. PSNR for various types of decompression of the 4:1 compressed Lena image by LIT-compression.

λ
Type of Decompression

R-LIT M-LIT R-Reverse LIT M-Reverse LIT

0.5 22.2247 21.6284 21.0906 19.8279
1 22.0335 21.4833 20.6404 20.7553
2 19.2163 18.0559 16.4282 18.986

4.2.3. Opening and Closing

For the last illustration in this paper, we use a 300 × 300 binary image with black balls
inside a white circle, which can be seen in Figure 10a. Similarly to compression, we consider
the window (structuring element) W of size 5 × 5 with the weights equal to 1 around the
center and other less than 1.

By setting the window W, the effect of the morphological operations can be seen on
white pixels. As we stated above, in our case, opening and closing operations are fuzzy
morphological operations that can be expressed in terms of lattice integral transforms as
compositions of fuzzy morphological erosion and dilation.

The results of fuzzy morphological erosion, dilation, opening, and closing for the
considered image with respect to the given window are shown in Figure 10b–e. For
example, we can see that the white space erodes in Figure 10b and is extended in Figure 10c.
For comparison, we consider the LIT-dilation defined as the (KW , µ,⊗)-lattice integral
transform with µ = µ0.12,0.24, which is close to the highest fuzzy measure µ>, and the
LIT-erosion as the (KW , µ′,→)-lattice integral transform with µ′ = µc, which is close to µ⊥.
Further, we use the t-norm TSS

λ and its residuum→TSS
λ

with λ = 1 in the definitions of
lattice integral transforms. The LIT-opening is defined as the composition of LIT-erosion
and LIT-dilation, and vice verse for the LIT-closing. The results of all modified fuzzy
morphological operations are displayed in Figure 10f–i. The effect of the newly defined
conjugate fuzzy measure µ′ in the LIT-erosion is obvious and consists in a smaller erosion
of white part in the image in contrast to the fuzzy erosion. The opposite effect can be
recognized for the LIT-dilation defined by the fuzzy measure µ. The LIT-opening provides
a better restoration of the original image than fuzzy opening, and the LIT-closing leaves
more of the black circle than the fuzzy closing. Interestingly, morphological operations
based on lattice integral transforms better preserves the shape of black balls in image.
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(a)

(b)

(c)

(d)

Figure 8. Compression of the Lena image in the 4:1 ratio using (reverse) LIT-compression with a
5 × 5 window for various operations determined by λ = 0.5 (left), λ = 1 (middle) and λ = 2 (right).
(a) M-LIT-compression; (b) R-LIT-compression; (c) M-reverse LIT-compression; and (d) R-reverse
LIT-compression.
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(a)

(b)

(c)

(d)

Figure 9. Cont.
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(e)

Figure 9. Decompression of 4:1 compressed Lena image using (reverse) LIT-image decompression
for various operations determined by λ = 0.5 (left), λ = 1 (middle), and λ = 2 (right). (a) Original
Lena image; (b) R-LIT-decompression of M-LIT-compressed Lena image; (c) M-LIT-decompression of
R-LIT-compressed Lena image; (d) R-reverse LIT-decompression of M-reverse LIT-compressed Lena
image; and (e) M-reverse LIT-decompression of R-reverse LIT-compressed Lena image.

(a)

(b) (c) (d) (e)

(f) (g) (h) (i)

Figure 10. Comparison of fuzzy and lattice integral transforms (LIT)-based morphological operations
of erosion, dilation, opening, and closing with the use of window of size 5 × 5. (a) 300 × 300 binary
image; (b) Fuzzy erosion; (c) Fuzzy dilation; (d) Fuzzy opening; (e) Fuzzy closing; (f) LIT-erosion;
(g) LIT-dilation; (h) LIT-opening; and (i) LIT-closing.

4.3. Remark on Method Complexity

The complexity of the method depends on the implemented algorithm. In case the
output pixel of the median filter is calculated by the brute-force method, i.e., first a list
of pixel values in the filter window (kernel) is built, then it is sorted and finally the
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median is determined as the middle value in the list, the complexity of the algorithm is
O(R2 log R) for a window of size R× R (see, e.g., [34,35]). When a constant number of
possible pixel values is considered, as in the case of 8-bit images, a bucket sort can be used
resulting in O(R2) complexity [34]. Fast algorithms for median filters use a histogram
instead of a sorting algorithm to calculate the median with O(1) complexity. The classical
algorithm proposed by Huang et al. in [36] and used in virtually all publicly available
implementations, provides O(R) complexity (see, also, [34]). An improvement of the
Huang’s algorithm was proposed in [34] which decreases the complexity of the median
filter to O(1). Nevertheless, as was noted in [35], a disadvantage of this method is a high
memory consumption and a complicated implementation in hardware. In [37], the authors
show that even for the weighted median filter the standard complexity O(R2) can be
reduced to O(R) with the help of a joint histogram. This is possible under the assumption
that the weights do not varies according to feature distance. It should be noted that all
approaches reducing the complexity of the (weighted) median filter to O(R) or even O(1)
use a trick that simplifies the histogram update, since this step is crucial to determine the
complexity of the algorithm.

To discuss the complexity of a non-linear filter based on lattice integral transforms, we
present the basic steps of the method in Algorithm 1, where the operation ? represents one
of the operations ⊗ and→.

Algorithm 1 Non -linear filter based on lattice integral transform

Input: Image I of size N ×M, window W = {wk,`} of size R× R with R = 2r + 1
Output: Image J of the same size as I

Initialize pixel neighborhood H = {Hk`}
for i = 1 to N do

for j = 1 to M do
for k = −r to r do

for ` = −r to r do
Calculate pixel neighborhood H = {Hk`} with Hk` = I(i + k, j + `) ? wk,`

end for
end for
J(i, j)← Integrate(H)

end for
end for

The algorithm shows that the list H representing the “weighted pixels” in the neigh-
borhood must be updated at each step, resulting in O(R2) complexity. To calculate the
Sugeno-like integral of the list H, we need three consecutive procedures (cf. Corollary 1):
sort the list H, multiply it by the list of measure values, and find the maximum, which
results in O(R2 log R) complexity, i.e., the complexity of sorting the list H, which is the
most complex procedure of all. If a constant number of possible pixel values is considered,
the complexity can be reduced to O(R2) by using the bucket sort. To summarize, the
complexity of the proposed filter is the same as the complexity of the weighted median
filter. Since the scheme of the compression/decompression algorithm is analogous to
Algorithm 1, only the image size J in the output is different, the same complexity also holds
for these tasks.

5. Conclusions

In this paper, we demonstrated an application of (reverse) integral transforms for
lattice-valued functions to image processing. We introduced two types of lattice integral
transforms and showed some of their properties, including the preservation (reversion) of
constant functions, which is an important property considered in image processing. Specif-
ically, we used lattice integral transforms for image filtering, compression/decompression,
and extension of fuzzy morphological opening and closing operations. The proposed meth-
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ods are illustrated on different images. The advantage of the application of lattice integral
transforms in image processing is a wide range of settings where the user can combine the
integral kernel (window), fuzzy measure, and the definitions of multiplication, residuum,
and negation operations. The provided demonstration cannot be taken as a comprehensive
presentation of image processing methods based on lattice integral transforms, but rather
as a new and perspective approach that could expand the class of similar methods as
non-linear filters or (fuzzy) morphological operations.

In future research, we plan to analyze in detail the relationship between the setting of
lattice integral transform parameters and the results for various tasks in image processing
and compare outputs also with other non-linear approaches on a large image datasets.
In addition, we also intend to apply the proposed approach to color images or videos as
follows. The movie is decoded into individual frame(s) and accessed separately. The color
image is then divided into color channels and independently processed one by one. The
standard RGB color model is suitable for noise filtering. For compression, it is preferable
to use the YUV color model, where U and V are compressed more strongly than the Y
component that contains information important to human perception. Finally, the proposed
method can be used as a pooling layer in deep neural networks. Here, pooling is a layer
without trainable parameters that reduces spatial dimension, and it is one of the basic layers
used in convolutional neural networks. Contrary to standard pooling operations of mean
or maximum, we access the spatial information in a more sophisticated way, from which a
neural network should benefit. The implementation and confirmation of this hypothesis is
our next challenge.
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1. Holčapek, M.; Bui, V. Integral transforms on spaces of complete residuated lattice valued functions. In Proceedings of the IEEE

World Congress on Computational Intelligence (WCCI), Glasgow, UK, 19–24 July 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–8.
2. Arce, G.R. Nonlinear Signal Processing: A Statistical Approach; John Wiley & Sons: Hoboken, NJ, USA, 2005.
3. Serra, J. Image Analysis and Mathematical Morphology, Vol. 2: Theoretical Advances; Academic Press: New York, NY, USA, 1988.
4. Ronse, C. Why mathematical morphology needs complete lattices. Signal Process. 1990, 21, 129–154. [CrossRef]
5. Heijmans, H. Morphological Image Operators; Academic Press: New York, NY, USA, 1994.
6. Keener, J. Principles of Applied Mathematics: Transformation and Approximation, 4th ed.; Westview Press: Cambridge, UK, 2000.
7. Perfilieva, I. Fuzzy transforms: Theory and applications. Fuzzy Sets Syst. 2006, 157, 993–1023. [CrossRef]
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