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Abstract: Link prediction is a key problem in the field of undirected graph, and it can be used in a
variety of contexts, including information retrieval and market analysis. By “undirected graphs”,
we mean undirected complex networks in this study. The ability to predict new links in complex
networks has a significant impact on society. Many complex systems can be modelled using networks.
For example, links represent relationships (such as friendships, etc.) in social networks, whereas
nodes represent users. Embedding methods, which produce the feature vector of each node in a
graph and identify unknown links, are one of the newest approaches to link prediction. The Deep
Walk algorithm is a common graph embedding approach that uses pure random walking to capture
network structure. In this paper, we propose an efficient model for link prediction based on a hill
climbing algorithm. It is used as a cost function. The lower the cost is, the higher the accuracy for link
prediction between the source and destination node will be. Unlike other algorithms that predict links
based on a single feature, it takes advantage of multiple features. The proposed method has been
tested over nine publicly available datasets, and its performance has been evaluated by comparing it
to other frequently used indexes. Our model outperforms all of these measures, as indicated by its
higher prediction accuracy.

Keywords: complex network analysis; local link prediction methods; link prediction; complex
networks; hill climbing

MSC: 05C82

1. Introduction

The development of network information technology has led to the emergence of
many complex systems. As a result, it is essential to identify and characterise these complex
systems from both a theoretical and practical aspect [1,2]. Complex network theory is now
a useful tool for studying a variety of complex systems [3–6], including social networks,
protein–protein interaction networks, and so on. A social network is made up of a group of
social actors and their interactions. It can be seen as a graph, with nodes representing the
actors and edges representing the connections between them. Relationships are generally
formed between people based on their shared interests. Behaviour is created when new
nodes and relationships are added to a social network. It is important to predict the
likelihood of a relationship forming between pairs of nodes in the context of social network
research and mining. The “link prediction problem” is a well-known example of this. If a
social network has an immediate image at time t, link prediction aims to estimate the edges
that are likely to form in the time between t and t + 1 [7]. The suggestion of friends, movie
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and music recommendations based on users’ backgrounds are examples of link prediction
applications in online social networks.

There are several uses for the problem of link prediction. For example, link prediction
can be used to differentiate research areas in scientific publications [8] and in spam mail
detection [9], recommendation systems [10], social network privacy control [11], disease pre-
diction [12], network reconstruction [13,14], expert detection [15], partially labelled network
classification [16], network evolving mechanisms evaluation [14] and protein–protein inter-
action prediction [17]. The challenges associated with business-to-business associations [18]
can also be resolved using LP.

For the solution of link prediction, various approaches have been presented. Some of
these methods work on structural similarities between nodes. Measures based on local and
quasi-local similarity have recently gained a lot of interest as a way to solve this problem.
This is due to their simplicity while still being useful and relatively high prediction accuracy.
The majority are determined by node degree and common neighbors [19]. Furthermore,
traditional local measures such as common neighbors, Adamic Adar and resource allocation
ignore the neighborhood’s directions. Such metrics do not differentiate between directed
and undirected graphs.

Aghabozorgi and Khayyambashi [20] proposed a local measure of similarity between
pairs nodes that includes not only the number of common neighbors but also other struc-
tural information. This metric only considers triadic blocks and neglects larger ones. Addi-
tionally, this approach depends on network motifs, which are computationally expensive
and inappropriate for large graphs. Pecli et al. published on a supervised technique [21].
They demonstrated how their feature selection methodology increases classifier perfor-
mance. A similarity metric based on future common neighbors that categorizes neighbors
into three groups was proposed by S. Li et al. [22]. Haji et al. [23] introduced a novel
technique based on a double degree equation with a network feature for similarity calcula-
tion. Gao et al. [24] introduced a similarity method based on linear dynamical response.
Clauset et al. [25] designed a hierarchical structure-based technique that employs the net-
work hierarchy to calculate the likelihood of a link. Zhu et al. [26] have produced an
information-theoretic model making use of complex network topology to estimate links.
Pech et al. [27] planned a robust principal component analysis-based (robust PCA) method
to identify the missing link in a complex network.

There are many link prediction techniques based on global, semi-local or local network
properties. However, they usually show inconsistent performance over large networks.
Additionally, the dataset imbalance caused by a small number of known links and a
large number of unknown links affects machine learning classifier-based link prediction
algorithms. Neural network-based approaches also need strong resources and a lot of
time to execute [28]. In order to determine the similarity between pairs of nodes, x and y,
and improve the accuracy, we designed a novel approach for link prediction in a complex
network. Assume that x and y are two nodes in a complex network that is undirected and
unweighted and that G = (x, y). The likelihood of two nodes x and y connecting in the
future is defined by their similarity rate at time t based on previous information about
the nodes. The proposed method makes use of the hill climbing approach as well as the
complex network’s quasi and local properties. The goal is to improve the accuracy by
including local topological features. The hill climbing approach computes the cost function
of each topological feature. Prediction accuracy increases with decreasing cost function.
The proposed method’s results have been compared to those of baseline algorithms.

Our primary contributions include the following.

• We introduce a different approach to link prediction based on hill climbing criteria
with quasi and local complex network features.The proposed method computes the
cost function value, and the lower cost function provides a higher accuracy result.

• We conduct studies on many complex networks of various sizes and structures, as-
sessing the different link prediction approaches.
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Motivation

The following aspects inspired the research:
One of the most popular study topics in the area of complex network analysis is link

prediction. Several useful applications could arise could arise from this issue, including rec-
ommender systems [29,30], estimated high influence users in a collaboration network [31]
and disease prediction [12]. Better decision models with higher performance values and
fewer market risks can be constructed based on the observed patterns of structural business
changes.

It has been recognized that numerous authors have used similarity indexes to predict
future linkages [32–37]. In their algorithms, they put out one of the topological-based
similarity indices. Many similarity metrics have been put out based on various features of
the network’s topological information. As a result, an algorithm may perform better in one
similarity index while not performing significantly well in other similarity measures for the
same network. As a result, algorithm performance differs from network to network. This
encourages us to overcome the link prediction problem by employing a number several
similarity indexes.

Advantages:

• The proposed work simultaneously makes use of many topological properties.
• In order to overcome the shortcomings of other algorithms, the revised hill climbing

base solution is offered. In each state, it selects the lowest-cost topological feature for
link prediction.

• Compared to other prediction indexes, it improved link prediction accuracy.

Disadvantages:

• The proposed approach has only been evaluated on undirected networks, ignoring
directed and weighted networks

• The proposed work also requires longer execution times for large networks, similar to
other algorithms.

The rest of the article is structured as follows: Section 2 presents details about the
related work of link prediction; Section 3 outlines experimental setup, proposed methodol-
ogy details and comparative analysis. Section 4 presents results and discussions. While the
final section, includes a conclusion and references.

2. Preliminary

A brief overview of previous link prediction research is provided. Many survey papers
for link prediction have previously been published [38,38–40]. In this paper, these ap-
proaches are mainly divided into three categories: similarity, embedding and probabilistic-
based link prediction.

2.1. Similarity-Based Methods

The similarity is often expressed using the terminology “proximpair”. For each pair of
nodes x and y, a score sxy is considered in these algorithms. Each prospective link is given
a score, and the greater the score, the more probable the link will be stable between both
the nodes. Similarity measures are more applicable in realistic scenarios for large-scale
networks due to their high computational load. A broad framework for the link prediction
problem was proposed by Wang et al. [40]. This framework encompasses two sorts of
methodologies: unsupervised and supervised machine learning similarity methods. Many
existing approaches rely on some form of node-to-node similarity estimate. The next
sections consist of many link prediction discussions with formulations that have been
proposed in the literature.

Common Neighbor (CN) [7]: Given in Equation (1) is a local similarity-based method.
For the measurement of similarities, this metric employs the intersection of the common



Mathematics 2022, 10, 4265 4 of 15

neighbors of the pairs of nodes. The sxy similarity between two nodes x and y is calculated
as follows:

CN(x, y) = |Γ(x) ∩ Γ(y)| (1)

where Γ(x) is the set of node x’s neighbors. Despite its simplicity, this measure has a high
degree of accuracy on most real-world complex networks [19].

Jaccard’s Coefficient (JC) [41]: It is the normalized form of a common neighbor, which
computes similarity based on a common neighbor with a set of neighbors from x source to
y destination node as given in Equation (20).

JC(x, y) =
|Γ(x) ∩ Γ(y)|
|Γ(x) ∪ Γ(y)| (2)

Adamic Adar (AA) [42]: Initially, it was introduced for calculating the similarity
between two web pages. The mathematical form is expressed in Equation (21). In this
similarity measure, the higher score is assigned to the pairs of nodes having the least
number of common neighbors.

AA(x, y) = ∑
z∈Γ(x)∩Γ(y)

1
log |Γ(z)| (3)

Resource allocation (RA) [43]: This metric was derived from the physical resource
allocation method. It has a strong similarity to AA. Both of these methods penalize common
neighbors to a large extent, but RA is more precise than AA in this regard. The following
formula given in Equation (22) is used to determine the metric:

RA(x, y) = ∑
z∈Γ(x)∩Γ(y)

1
Γ(z)

(4)

AA and RA frequently have similar prediction accuracy for networks with lower average
degrees, but RA is more efficient for networks with large average degrees [44].

Preferential Attachment (PA) [45]: In many real-world networks, node degree distri-
bution follows a power-law pattern. The existence of scale-free networks is owing to this
property. In Equation (23), following is the definition of the metric:

PA(x, y) = |Γ(x) · Γ(y)| (5)

Salton Index: This is referred to as the cosine measure and is related to the Jaccard
coefficient. It is defined as follows, Equation (6):

SI(x, y) =
|Γ(x) ∩ Γ(y)|√
|Γx| ∗ |Γy|

(6)

Hub Promoted Index (HPI) [46]: Ravasz proposed this measure in 2002 to investigate
the metabolic network’s modular structure. This type of network has a hierarchical structure
with small internal modules that are all independent of one another. The metric is described
as follows given in Equation (7). Its major goal is to prevent linkages from being established
primarily between hubs and to promote the construction of links between nodes with low
degrees and hubs.

HPI(x, y) =
|Γ(x) ∩ Γ(y)|

min(|Γ(x)|, |Γ(y)|) (7)

Leicht Holme Nerman: The LHN index assigns a high degree of similarity between
node pairs that share common neighbors [47]. This approach was put forth to evaluate
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the similarity between nodes in a real-world complex network. The index is represented
mathematically in Equation (8).

LHN(x, y) =
|Γ(x) ∩ Γ(y)|
|Γ(x).Γ(y)| ‘ (8)

Parameter Dependent: It was created by Zhu et al. [48] and accurately calculates the
similarity. It degenerates to CN, LHN and SI index if the free parameter is equal to (λ = 0,
λ = 1 and λ = 0.5). If the free parameter is zero (=0), it degenerates to CN. The mathematical
formula can be expressed as follows:

PD(x, y) =
|Γ(x) ∩ Γ(y)|
(|Γ(x).Γ(y)|)λ

(9)

2.2. Embedding-Based Methods

Node embedding is also used to calculate the similarity between pairs of nodes [49].
As a result, to address link prediction, some popular embedding methods are matrix
factorization [50], stochastic block [51] and so on. Recent improvements such as deep-
walk [52], LINE [53] and node2vec [54] have been proposed to train node embedding via the
skip-gram method, inspired by word embedding methods in natural language processing
applications. Deep-walk generates random walks of a given length for each vertex and
selects the next visited node from the current node’s neighbors. The skip-gram approach
is used to discover node embedding from the resulting node sequence. To reconstruct
the complex network structure, a graph auto-encoder (GAE) [55] is proposed to train
the nodes embedding using graph convolution neural networks. The node embedding
methods can extract useful information from the graph and so perform well in the link
prediction challenge. However, if the graph gets exceedingly sparse, the efficiency of link
node embedding approaches can suffer.

2.3. Probabilistic-Based Method

The probability of link establishment is calculated after a series of rules are extracted
using maximum likelihood estimation methods. Probabilistic approaches produce an
abstract model of the network through which link predictions can be made. Maximum
likelihood estimations and probabilistic models generally outperform similarity-based
techniques in terms of accuracy, although they increase the time complexity [14].

A survey on social networks was undertaken by P. Kalpana et al. [28]. They claim
that compared to previous methodologies, the deep convolution neural network produces
better results. Such a thing is implemented based on the knowledge obtained from the
information obtained from the many social networks. Deep-learning-based algorithms are
employed to make better predictions about the future. Predicting future links and node
similarity in large-scale networks still presents significant difficulties. In general, neural
network-based link prediction techniques produce accurate results but require a lot of
resources and take longer executing time.

Due to a lack of labels for training, the supervised method’s prediction accuracy can
sometimes suffer [56]. Unsupervised link predictors, however, continue to be inflexible and
domain specific. The majority of topological algorithms predict association on the basis of
node information and qualities. The accuracy of the predictions can be impacted by the
fact that not all of the nodes’ information is widely accessible to the public.

According to Victor M et al. [19], link prediction continues to be an open research
challenge, given its significance in various applications. In most networks, it has been
found that new links can be predicted more accurately using solely local or quasi-local
information. Additionally, only a few strategies can adapt to the network’s global structure,
and none can adapt to its local structure. The size of complex networks poses the biggest
challenge in practise because it affects the kind of approaches that may be used.
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Therefore, a solution based on local and quasi-local network information needs to be
developed in this context for link prediction. Here, it is best to use a hill climbing strategy to
take advantage of various local and quasi topological characteristics. The method proposed
in this paper is an updated hill climbing approach. The novelty of this work is that it
compares the cost functions result of different topological features on the current state.
However, the original hill climbing algorithm compares the current state result with the
previous state. The details are given in the methodology section.

3. Materials and Methods

The following is a description of a frequent evaluation metric that is used to compare
the proposed technique to other LP approaches.

3.1. Evaluation Metric

Link prediction technology can be evaluated using a variety of techniques. In this
work, AUC [14,57] is used to assess link prediction techniques that take results from various
angles view. The best and most used metric for assessing link prediction techniques is
AUC. The AUC value is: If n is the total number of executions, n′ is the number of times a
missing link has a better result than a non-observed link, and n′′ is the number of times
where a missing link has a similar result to a non-observed link. Then the AUC is defined
as given in Equation (10).

AUC =
n′ + 0.5n′′

n
(10)

Consider the undirected and unweighted network G = (V, E). The identified links are
referred to as the set E. In the complex network, let E′ deal with the non-existent links. If U
refers to all possible |V|(|V|−1)

2 links that make up a network G, then E′ = U \ E. The ob-
served links, E, are randomly isolated into two independent sets, specifically, a test set EP

and a training set ET , to analyse the performance of link prediction algorithms. The data in
ET is used to predict missing links, whereas the data in EP is used to evaluate how well the
prediction performed. The metric AUC is defined in this article as the probability that a
randomly chosen edge in EP would capture a higher score than a randomly chosen edge
in E′.

3.2. Datasets

To test the performance of proposed and alternative methods, we employed nine
publicly available benchmark datasets from various fields. Table 1 emphasises the statistics
of the dataset used in this study, where N denotes the total number of nodes, E total number
of links, MaxD maximum degree, Avg G average degree and Delta density. This page’s
footnote has a download link: https://networkrepository.com/, accessed on 28 June 2022,
https://snap.stanford.edu/data/, accessed on 28 June 2022, http://konect.cc/networks/,
accessed on 28 June 2022. These are all unweighted and undirected datasets. The following
are brief descriptions of the datasets that were used.

Elegans (neuron) [58]: There are 279 neurons and 2990 links in this dataset, with 1584
unidirectional and 1406 bidirectional links. The direction was ignored in our studies,
resulting in a total of 2287 linkages.

US Air [59]: A network of 500 airports in the United States with direct flights.
The nodes represent airports, and two nodes are connected if the associated airports
have a direct flight.

Router [60,61]: A router network is a complex network that lacks weight and direction.
It is essentially an Internet network in which the routers are represented by nodes and the
connections between them by links.

US Power Grid [60]: This network contains data about the western United States of
America’s power grid. A generator, transformer or substation is used to represent each
node, meanwhile a power line is used to represent each edge.

https://networkrepository.com/
https://snap.stanford.edu/data/
http://konect.cc/networks/
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Yeast [62]: This is a commercial leaving agents network made up of nodes (yeast cells)
and links (interactions).

Karate [63]: It is a unidirectional and unweighted human karate club complex net-
work dataset in which nodes/vertices represent individuals and edges/links represent
interactions between individuals or karate club members.

Dolphin [60]: Dolphins express dolphin network nodes/vertices, and links/edges
indicate the relationships between two dolphins in an undirected animal complex network.
Weight and self-loops are not taken into account.

Hamster Full [64]: It is a social complex network that is both unweighted and undi-
rected. Users of the website hamsterster.com are linked through friendships and family ties
in this network.

Route Views [64,65]: It is the Internet’s undirected, interconnected network of au-
tonomous systems. Edges represent communication, while nodes represent autonomous
systems (AS).

Table 1. Datasts Statistics.

Datasets N E MaxD Avg D ∆
Elegans [58] 279 2287 268 16.394 0.059
US Air [59] 500 2980 139 11.92 0.024
Routers [61] 3722 6258 103 2.493 0.00091

US Power Grid [60] 4939 6594 19 2.67 0.00054
Yeast [62] 1458 1948 56 2.7 0.0.0018

Karate [63] 33 78 17 4.5882 0.1477
Dolphin [60] 62 159 12 5.1290 0.0841
Hamsters [64] 2426 16631 273 13.710 0.0057

RouteViews [65] 6474 13,895 1459 4.293 0.00067

3.3. Methodology

Quasi and local properties such as local random walk, local path, similar neighbors,
adamic adar, resource allocation, jaccard, preferential and hub promoted among others,
are included in a complex network. They are all based on quasi and local topological
features and work as quasi or local similarity criteria. For each pair of nodes x and y,
the performance of each global, quasi and local feature similarity technique varies. This is
due to the structure of complex networks’ lack of method-required features. If the number
of common neighbors between node x and the targeted node y is greater, the CN method
assigns a higher score. Similarly, in adamic adar and resource allocation, higher accuracy
is assigned if common neighbors are fewer in number between x and y. How can the
similarity based on a neighbor be calculated if there is not one? Now here is the need for a
model to be created to overcome this failure and improve the result.

In this paper, we introduce a method based on an extended form of the hill climbing
algorithm. Hill climbing is a mathematical optimization method that is part of the local
search category. It is an iterative method that starts with a random solution to a problem
and then tries to improve it by making small changes to the result. If the change results in
a better solution, another progressive adjustment is made to the new solution, and so on
until no more enhancements are possible. This is the actual working procedure of the hill
climbing algorithm.Hill climbing (HC) and random walking (RW) are processes that are
somehow comparable. When it comes to selecting the next node, there is a slight difference
between HC and RW. RW chooses a node randomly, whereas HC computes the resultant
value using the cost function given in Equation (11).

HC CostFunction = (1 + e(−∆E))−1 (11)

∵ (−∆E) = x− y or n− c

(x = c = current, y = n = next)
(12)
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∴ HC CostFunction = (1 + e−(x−y))−1 (13)

The amount of change between the current and next node is denoted by ∆E in
Equation (11). It can be written as x− y (current and next node), and based on it Equation (13)
has been updated. The numerical constant e has the value 2.7182.

The proposed method work as follows: first, it selects the node (selection of source
node x), and then it computes the cost of each method using a hill climbing cost function.
The greater the similarity between the source and targeted nodes (y), the lower the cost
values (calculated with a cost function) will be. The feature with the highest similarity and
lower cost value has been considered and other features omitted only for the current node.
In the second pass to predict links in other pairs of nodes, it now chooses the next node and
the best quasi-local and local similarity feature technique for the next prediction. Similarity:
this approach was performed for the entire network. The following steps comprise the
proposed method:

• Selection of Source Node: The source node x has been selected following the dataset
sequence.

• Backtrack-less: At this stage, various quasi and local feature algorithms are applied
to identify the targeted node y for source node x. Usually, each algorithm works based
on one or two complex network features. These features or techniques are used to find
similarity, and then the cost function is used to compute the cost value for each feature.
All the cost function results are then embedded in a vector and compared with each
other. Finally, identified the lowest cost and highest similarity feature. As a result of a
higher similarity (between pairs of nodes x and y) and a low-cost feature/technique,
the targeted node has been identified (link predicted). This phenomenon is called
“backtrack-less walk”. Because it does not move toward the last node to compare it
to the present node, which is the pure workflow of hill climbing, this is the major
difference between hill climbing and our proposed work, presented in this paper for
link prediction.

• Incremental: Once the targeted node y has been discovered using the lowest cost
feature(s) algorithm, we move to the next node. Each node is expressed with a
numerical value in the datasets, such as 1, 2, 3, ..., n. The next node is thus chosen
randomly. This approach has been followed to predict links across the whole network.

To begin, we compute the similarity of local and quasi-local techniques between the
source x and the target node y. Then we evaluate each method using AUC and find the
final value of each method. Next, we used a hill climbing cost function to compute the cost
values of each method’s final result. For example, if there are n number of mutual nodes,
which is a single feature similarity estimation method, we need to compute this for the link
prediction problem. The mathematical formula can be written as given in Equation (14):

HC CostFunction = (1 + e(|Γ(x)∩Γ(y)|))−1 (14)

More simply, the given Equation (14) can be re-written as Equation (16):

∵ δ1(x, y) = |Γ(x) ∩ Γ(y)| (15)

∴ HC CostFunction1 = (1 + e(δ1))−1 (16)

For more than one feature technique that works on mutual nodes, such as salton, the source
and destination nodes agree under the square root, given in Equations (17) and (19).
The cost function formula can be written as:

HC CostFunction = (1 + e
(
|Γ(x)∩Γ(y)|√
|Γx |∗|Γy |

)
)−1 (17)

∵ δ2(x, y) =
|Γ(x) ∩ Γ(y)|√
|Γx| ∗ |Γy|

(18)
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∴ HC CostFunction2 = (1 + e(δ2))−1 (19)

We have included six structured-based techniques in our work. Similarly, the cost functions
for this jaccard, Adamic-adar, resource allocation, preferential attachment, LHN and PD
can be computed using Equations (20)–(23).

HC CostFunction3 = (1 + e(
|Γ(x)∩Γ(y)|
|Γ(x)∪Γ(y)| ))−1 (20)

HC CostFunction4 = (1 + e
( ∑

z∈Γ(x)∩Γ(y)

1
log |Γ(z)| )

)−1 (21)

HC CostFunction5 = (1 + e
( ∑

z∈Γ(x)∩Γ(y)

1
Γ(z) )

)−1 (22)

HC CostFunction6 = (1 + e(|Γ(x)·Γ(y)|))−1 (23)

HC CostFunction7 = (1 + e(
|Γ(x)∩Γ(y)|
|Γ(x).Γ(y)| ))−1 (24)

HC CostFunction8 = (1 + e
(
|Γ(x)∩Γ(y)|

(|Γ(x).Γ(y)|)λ
)
)−1 (25)

The generic formula of the HC cost function can be expressed as follows:

HC CostFunctiongen =
n

∑
1
(1 + eevaluated−result)−1 (26)

Figure 1 depicts the proposed framework in graphic form, while the pseudo-code
is given in Algorithm 1. The dataset was first imported, and an adjacency matrix, which
is a representation of a complex network graph, was produced. As we already know,
a graph can be represented through an adjacency matrix or an adjacency list. The adjacency
matrix is then separated into two categories: training ET and testing EP. The percentage of
K-folding is 10%. All algorithms have been tested on EP after they have been trained on ET

and moved to the trained module. We then compute the cost value after analyzing all of
them after evaluating the predicted matrix received for each approach. For comparisons,
all cost function results are saved in a vector. Finally, the best lower-cost technique with
the highest accuracy in the link prediction problem has been discovered. Based on the
specified criteria, the next node has been discovered. The code is available through the link
https://github.com/hajigul/Efficient-LP-Method-Code, accessed on 28 June 2022.

Algorithm 1 Hill-Climbing-Based Link Prediction

Require: Modi f ied Set EU − E = EProbSet

Ensure: Lowest Cost Value
1: for k = 1...n do
2: Compute Topological Features Result
3: for s = 1...m do
4: Compute Cost Value o f the Feature
5: Generate a List o f Cost Functions
6: s_v = min(min(List o f Cost Functions))
7: Reported the Lowest One
8: end for
9: k = k + 1

10: end for

https://github.com/hajigul/Efficient-LP-Method-Code
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Figure 1. Methodology.

3.4. Comparative Analysis

Table 2 compares the proposed technique’s performance to that of other well-known
approaches for link prediction problems. Over the different complex network datasets listed
in Table 2, the proposed technique enhanced accuracy by 2.45%, 4.08%, 0.75%, 2.9%, 1.1%
and 1.2%. The way that various algorithms operate and produce distinct AUC values due
to the irregular structure and properties of complex networks global topological methods
only function on global features, whereas local topological methods only function on local
features. Strong local or global features are present in some complex networks, and these
features have an obvious impact on the AUC result. In general, the complex network
structure is directly correlated with the AUC findings.
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The letter “X” appears in various columns in Table 2. It indicates that this dataset was
not used in the experiments in the publication. Assume that “X” is present in the second
column against double-degree paper, node2vec, line, sdne, care, celp and calp. The elegans
dataset was not used by the authors of these studies. For the same reason, “X” is provided
in additional columns.

Table 2. Comparative analysis of proposed technique with other well-known approaches.

Previous Work Elegans Routers US Power Yeast Karate Dolphin
Double-Degree [52] X 65.07% 85.97% 83.99% X X

Node2Vec [66] X 58.98% 85.98% 78.95% X X
LINE [53] X 67.03% 82.09% 85.97% X X
SDNE [67] X 65.52% 84.03% 84.05% X X
CARE [66] X 65.28% 89.65% 88.59% X X
CELP [66] X 68.88% 91.08% 90.68% X X
CALP [66] X 70.99% 92.27% 91.77% X X

LO [68] 67.51% X X 80.16% 63.82% 73.04%
CND [69] 85.79% X X 80.16% 63.82% 73.04%
Proposed 88.24% 82.03% 93.02% 94.97% 78.01% 82.65%

4. Results and Discussions

We randomly separated the set of observed links in the network, E, into two sets,
a training set ET and a probe set EP in order to analyze the accuracy of the link prediction
methods and compare it to the performance of the proposed technique. In the first attempt,
the training set had 90% of the observed linkages, while the probe set contained 10%.
The accuracy of all the methods was tested using the identical training and probe sets ratio.
The experiment process was repeated 100 times, with a random sampling of the observed
connections conducted in each run. Table 3 summarises the average prediction accuracy of
all 100 runs. The results are represented graphically in Figure 2.

Table 3. Common neighbor (CN), Jaccard coefficient (JC), Adamic-adar (AA), resource allocation
(RA), preferential attachment (PA), and (SI) stand for Sorensen index.

Datasets CN JC AA RA PA SI HPI LHN PD Proposed
Elegans 0.8312 0.8007 0.8671 0.8701 0.7512 0.8093 0.8389 0.7101 0.6883 0.8824
US Air 0.9423 0.9202 0.9631 0.9572 0.7682 0.9201 0.8998 0.8002 0.7624 0.9581
Routers 0.5708 0.6169 0.7161 0.7795 0.7204 0.6859 0.7154 0.5832 0.6656 0.8203

US Power Grid 0.5927 0.6354 0.9083 0.8913 0.7108 0.6308 0.6885 0.7491 0.6955 0.9302
Yeast 0.9086 0.7105 0.9206 0.9108 0.7035 0.9076 0.9207 0.7864 0.6553 0.9497

Karate 0.7167 0.6253 0.7502 0.7691 0.7233 0.6624 0.7005 0.5965 0.6237 0.7801
Dolphin 0.8103 0.7587 0.8021 0.0.8145 0.7355 0.6878 0.6991 0.7658 0.5896 0.8265
Hamsters 0.7502 0.7658 0.7789 0.7854 0.6254 0.6999 0.7125 0.5471 0.6785 0.8001

Route Views 0.8088 0.7165 0.7953 0.0.6987 0.6214 0.5844 0.6963 0.5896 0.6987 0.8399

Figure 2. Accuracy over different datasets.
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We used a total of nine datasets in the experiments, each with a different size and
structure. Over these 9 datasets, 10 link prediction algorithms, including the proposed
one, were assessed. Compared to existing techniques, the proposed approach provides
a greater accuracy over six. While compared to all other approaches, Adamic-adar has a
greater accuracy over one dataset (US air). Over various datasets, each method performs
differently. It is due to the structure and characteristics of complex networks.

We test the prediction performance with different partitioning sizes of training and
probe sets to further study the performance of the proposed technique and compare
it to state-of-the-art methods. We picked different sizes of probe sets for this purpose:
20%, 30%, 40% and 50%, correspondingly. For this experiment, we used nine complex
network datasets. In Figure 3, we show the average accuracies of 100 separate runs of each
experiment (with a random samples division of E into EP and ET) to visualize and measure
the findings. There in the plot of Figure 3, we have also included the findings from the
previous experiment in which we used a probe set size of 10% for comparative purposes. It
is worth noting that the time it takes to compute AUC for big networks rises exponentially
as probe size grows. As a result, we did not include the hamster and route views datasets
in this experiment.

Figure 3. 10%, 20%, 30%, 40% and 50% ration results of each dataset.
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5. Conclusions

In the field of complex network analysis, link prediction is a developing research
area. It could be used to study and analyze the development of social groupings within a
network. Such analysis can help us find hidden groups or the relationships that are missing
in the groupings in the appropriate use models. Forming a recommendation system is
one of the common applications of link prediction, which is clearly useful in modelling
a successful business plan. This is commonly used in various real-world applications,
specifically in e-commerce. Data analysis for security and crime prevention investigations
could be another use for link prediction. With the help of these link prediction models,
the possible threat within the terrorist network can also be recognized. We propose a
method in this paper that is based on a hill climbing approach and complex networks
of quasi-local and local properties. Other local or quasi-methods to predict links based
on a single feature may not be able to predict links if the feature is unavailable, e.g., no
common neighbor or appropriate node degree. In contrast, hill climbing computes the cost
function result of each topological feature. Prediction accuracy increases with decreasing
cost function results. The lower the cost value is, the higher the prediction result will be.
Compared to other state-of-the-art procedures, the accuracy has greatly improved with
the proposed method. In this paper, only undirected and unweighted networks have been
used. However, the proposed similarity indices can easily be extended to more complicated
cases, such as directed or weighted networks. It would also be great from a theoretical
viewpoint to combine more local and path-based indices that can be used to predict links
more accurately.
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