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Abstract: In order to solve the problem that the F1‑measure value and the AUROC value of some
classical open‑set classifier methods do not exceed 40% in high‑openness scenarios, this paper pro‑
poses an algorithm combining negative‑class feature enhancement learning and a Weibull distribu‑
tion based on an extreme value theory representation method, which can effectively reduce the risk
of open space in open‑set scenarios. Firstly, the solution uses the negative‑class sample feature en‑
hancement learning algorithm to generate the negative sample point set of similar features and then
compute the corresponding negative‑class sample feature segmentation hypersphere. Secondly, the
paired Weibull distributions from positive and negative samples are established based on the corre‑
sponding negative‑class sample feature segmentation hypersphere of each class. Finally, solutions
for non‑linearmulti‑class classifications are constructed by using theWeibull and reverseWeibull dis‑
tributions. Experiments on classic open datasets such as the open dataset of letter recognition, the
Caltech256 open dataset, and the CIFAR100 open dataset show that when the openness is greater
than 60%, the performance of the proposed method is significantly higher than other open‑set sup‑
port vector classifier algorithms, and the average is more than 7% higher.

Keywords: open‑set recognition; enhancement learning; feature enhancement; extreme value distri‑
bution theory; Weibull distribution

MSC: 68U10; 68T10

1. Introduction
There are many classical closed‑set classifier algorithms in machine learning, includ‑

ing the k‑nearest neighbor algorithm, random forest algorithm, support vector machine,
and deep neural network. These classifiers are designed to work in closed‑set scenarios;
in essence, that is, all test sample categories must be subsets of the categories used in train‑
ing. However, when the class of a test sample does not belong to any class in the training
set, the closed‑set classifier often mistakenly classifies the sample into a similar class in
the training set rather than directly rejecting it. In the open‑set scenario, the recognition
problem should consider four basic categories of classes as follows [1]:
1. Known known classes (KKCs): the classes with distinctly labeled positive training

samples.
2. Known unknown classes (KUCs): labeled negative samples, but do not belong to any

class.
3. Unknown known classes (UKCs): classes with no available samples in training, but

available side information such as semantic/attribute information.

Mathematics 2022, 10, 4725. https://doi.org/10.3390/math10244725 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10244725
https://doi.org/10.3390/math10244725
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math10244725
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10244725?type=check_update&version=1


Mathematics 2022, 10, 4725 2 of 16

4. Unknownunknown classes (UUCs): classeswithout any information regarding them
during training.
Therefore, classifiers in open‑set scenarios must have such an ability: in the open‑set

scenario, new classes (UUC) that cannot be seen during training appear in the test, and the
classifier is required to not only accurately classify KKCs but also effectively handle UUCs.
Therefore, the classifier needs to have corresponding reject UUCs.

One way to solve the problem of open‑set recognition is to use a closed‑set classifier
and input the test samples into the classifier to obtain a similarity score or, alternately,
calculate the distance between the test samples and the most likely category in the feature
space and apply a threshold to classify the similarity score or distance. The purpose of
applying the threshold is to classify any test samples whose similarity score or distance is
lower than the specified threshold as an unknown category [2–4]. Mendes Júnior et al. [4]
showed that when the threshold is applied to the ratio of distance rather than the distance
itself, better performance will be generated in open‑set scenarios. However, at present, the
selection of a threshold usually only depends on the knowledge of KKCs and simply uses a
threshold to distinguish KKCs fromUUCs, because existing models cannot directly model
UUCs, which inevitably incurs risks due to lacking available information from UUCs.

Another method is to use kernel‑based algorithms, rather than similarity‑based algo‑
rithms, to project sample features into a unified feature space to build a decision hyper‑
plane. For example, using the support vector data description (SVDD) [5] and one‑class
SVM [6] to calculate the corresponding decision function for each category and apply it
to the entire training set as a rejection function [7,8]. This method is called a classification
algorithm with the ability to reject.

The process is to establish an initial rejection stage to predict whether the input be‑
longs to a certain training category (known or unknown). The classification stage is to
use a multi‑class binary classifier to classify test samples when the test samples belong
to a known category. The kernel‑based algorithms rely on a specific classification hyper‑
plane for each known class so that when each function’s decision chooses to reject the
test sample, the test sample will be classified as an unknown class. These algorithms aim
to minimize the positive‑class open space of each binary classifier [9,10]. In binary clas‑
sification, positive‑class open space refers to the feature space of positive‑class samples.
In multi‑category scenarios, a similar concept also applies: known category open space
(KLOS) [11,12], that is, a set of feature spaces of all known categories. However, in reality,
with high openness, the algorithm based on the kernel operator still only relies on the fea‑
tures contained in KKCs to calculate the decision hyperplane. Although it can distinguish
the known and unknown categories that are far away from each other, for the known and
unknown categories that are close to each other, the decision plane will often incorrectly
identify the unknown category as a known category or wrongly reject the known category
as an unknown category.

The key to kernel‑based models is to learn the invariant features of homologous
classes [13,14] and exclude outlier samples. If the features of KKCs are augmented based
on its invariant features, and the augmented features are taken as known unknown cate‑
gory samples, i.e., KUCs, then the KKCs and KUCs obtained through feature augmenta‑
tion are taken as a training set, and the sample features are projected into a unified feature
space using a kernel‑based algorithm to build the decision hyperplane. This method can
effectively improve the defect that traditional classifiers only rely on the features of KKCs
for training. In the open‑set scenario, this method analyzes the distribution of all category
characteristics: when the category of the test set sample is unpredictable, that is, the test
set may contain one or more unknown categories, and its actual distribution will even‑
tually be approximate to the extreme value distribution [15]. For this reason, this paper
proposes a classifier design scheme combining negative‑class sample feature adversarial
learning and an extreme Weibull distribution representation method. By constructing a
segmentation hyperplane based on adversarial negative‑class samples and positive‑class
samples, this method rejects the unknown‑class samples that are far away from the known
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class. Considering that the data distribution of the test set will approach the extreme value
distribution in the open‑set scenario, the pairedWeibull distribution is used to prevent the
model from incorrectly identifying unknown‑class samples or known‑class samples that
are close to known classes, to improve the F1‑measure value and the AUROC value of the
classifier. In this paper, experiments on classic open‑set datasets such as the letter recogni‑
tion open dataset, the Caltech256 open dataset, and the CIFAR100 open dataset show that
the F1‑measure value and the AUROC value of the algorithm proposed in this paper are
significantly higher than those of other classic open‑set classifiers when the openness is
greater than 60%.

In summary, the contributions of this article are:
(1)Wepropose a novel open‑set recognition algorithm called theWeibull tightlywrap‑

ping description (WTWD), which can perform negative‑class sample feature adversarial
learning and open‑set recognition based on a pairedWeibull distribution in a unified strat‑
egy.

(2) An experimental evaluation of WTWD in detection and multi‑class open‑set sce‑
narios.

The rest of this paper is organized as follows: Section 2mainly presents the algorithms
that are related to this paper, including SVDTWDD and meta recognition. The objective
function and optimization algorithm ofWTWD are given in detail in Section 3. The experi‑
mental results on the letter recognition open dataset, the Caltech256 open dataset, and the
CIFAR100 open dataset show the performance of WTWD in Section 4. Finally, Section 5
summarizes the full text.

2. Related work
2.1. Meta Recognition and Extreme Value Theory

Thepost‑cognitive scoring analysis is an emerging cognitive systempredictionparadigm,
a form of meta‑recognition [16,17]. Score analysis after the classification system gener‑
ates a series of decision or similarity scores for the input sample instances. These scores
are used as fitting predictors, which will determine whether the classification of the post‑
identification classifier is successful or not and output the probability of the class the sam‑
ple instance belongs to. Thus, the prediction result will be based on the decision of the
post‑recognition classifier, not the original classification result.

Many classifiers replace the probability in the above definition with a more general
“score”, for which the final maximum likelihood classifier produces the same classification
resultwhen the posterior probability function ismonotonicwith the score function. For the
classifier, the threshold t0 on the similarity probability or score swill be set as the boundary
between positive‑ and negative‑class samples. However, the choice of t0 is usually done
empirically. When t0 falls on each tail of each population distribution, a false rejection
(type II error: there is a test‑sample class in the training set, but the test sample is falsely
rejected as an unknown class) or false identification (type I error: where there are no test‑
sample classes in the training set, but the classifiermisclassifies the test samples into known
classes) would occur. Walter J et al. [16,17] proved that at the tail of each distribution,
that is, at the boundary of the sample distribution, when there are enough samples and
categories, sampling the first n scoreswill make the final result approach the extreme value
distribution, or the Weibull distribution when the data is bounded. At this time, using the
Weibull distribution as the posterior classification method can reduce the probability of
false rejection and false identification, as shown in Figure 1. However, this method only
considers the impact of the decision score at the boundary of the known category sample
on the discriminator in the open‑set scenario and does not improve the segmentation plane
that divides the known category from the unknown category.
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Figure 1. Sample score distribution generated by multi‑class binary classifier.

2.2. Support Vector Domain Tightly Wrapping Description Design (SVDTWDD)
The classifier algorithm has made many excellent achievements in the past decade.

Classifiers based on traditional machine learning methods and deep neural network meth‑
ods have made great progress. However, in some special situations, due to the conflict
between the sample distribution and decision surface, error recognition and error rejec‑
tion will occur. To solve this problem, we need to design a classifier to make the feature
area Cω of samples of the same class ω determined by the classifier almost contain the
actual feature area formed by all the sample points of class ω and not infringe on the fea‑
ture area of other known classes or the feature space of unknown classes. Yang et al. [13]
proposed using the nearest‑neighbor points of each sample to calculate the compactness
parameter, ε, to ensure that the negative sample point set, which is derived from the pos‑
itive sample feature area, only covers the original positive sample feature area. The new
sample space is called the tightly wrapped point set, Ik(C). We compute the negative‑class
sample feature segmentation hypersphere based on the tightly wrapped point set, Ik(C),
as shown in Figure 2.
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It can be proved that the number of points of Ik(C) shall not be less than the number of
boundary points of the training set, C, andwhen ε is very small, the difference between the

volume of C and the volume of Ik(C) is less than 2N
(

2η + 2ε/
√

rN
)N−1(

ε/
√

rN
)
and the

resulting Ik(C) can completely cover the training samples and reduce the space occupied
by negative samples.

3. Proposed Method
TheWeibull classifier uses extreme value theory to estimate the boundary probability.

The open‑set recognition problem itself conforms to the hypothesis of statistical extreme
value theory (EVT) [15,18,19], which provides a quantitative probability method for the
open‑set recognition problem. The distribution of the decision score extreme values gen‑
erated by any classification algorithm can be modeled using the extreme value theory. If
the decision score has an upper bound, the distribution conforms to the reverse Weibull
distribution, and its CDF is

Pψ(y|F(x)) = e
−(

−F(x)−vψ
λψ

)
kψ

(1)

If there is a lower bound, it conforms to Weibull distribution, and its CDF is

Pη(y|F(x)) = 1 − e
−(

F(x)−vη
λη

)
kη

(2)

where F(x) represents the sample score calculated from the decision curved surface, and
vψ, kψ, λψ represent the location parameter, shape parameter, and scale parameter of the
reverse Weibull distribution, respectively. Additionally, vη , kη , λη represent the location
parameter, shape parameter, and scale parameter of the Weibull distribution, respectively.

3.1. Construction Stage of Negative‑Class Sample Feature Set
3.1.1. Optimization Algorithm for Compactness Parameter ε of Negative‑Class
Sample Features

There is a set of similar feature points collected from the similar feature space T ⊂ RN

as C, which is a compact bounded convex set. There are M points in C, X1, X2, . . . , XM;
therefore, the compactness parameter ε optimization algorithm is as follows:

Step 1: calculate sample point Xj nearest‑neighbor N + 1 points

j1 = argmin
i ̸=j

∥ Xj − Xi ∥

j2 = arg min
i ̸=j,j1

∥ Xj − Xi ∥

. . . . . .
jN+1 = arg min

i ̸=j,j1,··· ,jN
∥ Xj − Xi ∥

(3)

Step 2: calculate the maximum distance between sample point Xj and the nearest neighbor

g
(
Xj

)
= max

i=j1,··· ,jN+1
Xj − Xi (4)

Step 3: calculate the suboptimal estimate of the compactness parameter ε

ε ≥
√

5.9N max
1≤j≤M

g
(
Xj

)
=

√
5.9N max

1≤j≤M
max

i=j1,...,jN+1
∥ Xj − Xi ∥ (5)
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3.1.2. Constructing Negative‑Class Sample Feature Set
Using Equation (6) to construct ε/

√
5.9N − ε negative sample feature set

I(C) =
(

Cε − C ε√
5.9N

)
∩
{(

Xj1 ± ε, . . . , Xji ± ε, XjN ± ε
)∣∣(Xj1, Xj2, . . . , XjN

)
ϵC

}
(6)

Step 1: construct the hypersphere neighborhood discriminated functions of M points by
Equation (7)

f j(X) = ε/
√

5.9N− ∥ X − Xj ∥, 1 ≤ j ≤ M (7)

When f j(X) ≥ 0, X lies in the hyperspherical neighborhood ∏
(
Xj

)
, the center of the

hypersphere is Xj, and the radius is ε/
√

5.9N.

Step 2: for each point X =
(
Xj1, Xj2, . . . , XjN

)
, 1 ≤ j ≤ M, can derive 2N points (Xj1 ±

ε, . . . , Xji ± ε, XjN ± ε).

Step 3: check if each constructed point is in ∏
(
Xj

)
, 1 ≤ j ≤ M. Then the set of all points,

which are not in any ∏
(
Xj

)
, is the ε/

√
5.9N − ε negative sample feature set.

3.1.3. Algorithm of Negative‑Class Sample Segmentation Hypersphere
Negative‑class sample points constructed by the negative‑class sample feature set con‑

struction algorithm, Ik(C), can be used as a training set to compute the negative‑class sam‑
ple segmentation hypersphere based on the kernel operator [20].

The point inside the small hypersphere is the corresponding point of the transforma‑
tion from the midpoint of C to the high‑dimensional space, and the point outside the large
hypersphere is the point in Ik(C) that is transformed to the corresponding point in the
high‑dimensional space. Our goal is to find a suitable transformation so that the mini hy‑
persphere contains almost all the points and r is minimized, that is, ρ2 is maximized. Thus,
the original space surface corresponding to the small hypersphere in high‑dimensional
space is the negative‑class sample feature segmentation surface of C.

C is the center of a high‑dimensional space. We establish the following optimization
model and construct the negative‑class sample feature segmentation hypersphere by solv‑
ing the optimization solution [21].

min
r,c,ρ,ε

r2 − vρ2 + 1
v1m1

m1
∑

i=1
εi +

1
v2m2

n
∑

j=m1+1
ε j

s.t.||ϕ(Xi)− c||2 ≤ r2 + εi , 1 ≤ i ≤ m1 ,
||ϕ(Xi)− c||2 ≥ r2 + ρ2 − ε j , m1 ≤ j ≤ n ,

0 ≤ εk, 1 ≤ k ≤ n

(8)

where εi, ε j are slacking variables, and 1
v1m1

, 1
v2m2

are punishment terms. To solve this
optimization problem, we utilize the Lagrange function as:

L(r, c, ξ, α, β) = r2 − ρ2 + 1
υ1m1

m1
∑

i=1
ξi +

1
υ2m2

n
∑

j=1
ξ j

+
m1
∑

i=1
αi

(
∥ ϕ(Xi)− c ∥2 − r2 − ξi

)
−∑n

j=m1+1 αj

(
∥ ϕ(Xi)− c ∥2 − r2 − ρ2 + ξ j

)
− ∑n

k=1 βkξk

(9)

The optima should satisfy the following conditions:

∂L
∂r

= 2r
(

1 − ∑n
i=1 αiyi

)
= 0 (10)
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∂L
∂ρ

= 2ρ
(
−υ + ∑n

j=m1+1 αiyi

)
= 0 (11)

∂L
∂ξi

=
1

υ1m1
− αi − βi = 0, 1 ≤ i ≤ m1 (12)

∂L
∂ξ j

=
1

υ2m2
− αj − β j = 0, m1 + 1 ≤ j ≤ n (13)

∂L
∂c

= 2c ∑n
i=1 αiyi − 2 ∑n

i=1 αiyiϕ(Xi) = 0 (14)

As a result, we can obtain:

c = ∑n
i=1 αiyiϕ(Xi)

∑n
i=1 αiyi

= ∑n
i=1 αiyiϕ(Xi) (15)

The dual problem is as follows:

max
α

n
∑

i=1
αiyiϕ(Xi) · ϕ(Xi)−

n
∑

i=1

n
∑

j=1
αiαjyiyjϕ(Xi) · ϕ

(
Xj

)
s.t.0 ≤ αi ≤ 1

υ1m1
, 1 ≤ i ≤ m1

0 ≤ αj ≤ 1
υ2m2

, m1 + 1 ≤ j ≤ n
n
∑

i=1
αiyi = 1

∑n
i=1 αi = 3v + 1

(16)

Using K
(
Xi, Xj

)
to replace ϕ(Xi) · ϕ

(
Xj

)
, we have Equation (17) based on the kernel

function
max

α

n
∑

i=1
αiyik(Xi, Xi)−

n
∑

i=1

n
∑

j=1
αiαjyiyjk(Xi, Xj)

s.t.0 ≤ αi ≤ 1
υ1m1

, 1 ≤ i ≤ m1

0 ≤ αj ≤ 1
υ2m2

, m1 + 1 ≤ j ≤ n
n
∑

i=1
αiyi = 1

∑n
i=1 αi = 2υ + 1

(17)

The dual problem is a quadratic programming problem, which can be solved by vari‑
ous algorithms aimed at solving quadratic programming problems, such as the sequential
minimum optimization (SMO) algorithm.

After solving the above problems, in order to find r, ρ2, and r2 + ρ2, consider two sets

S1 = {xi|0 < αi <
1

υ1m1
, 1 ≤ i ≤ m1} (18)

S2 = {xj|0 < αj <
1

υ2m2
, m1 + 1 ≤ j ≤ n} (19)

Let n1 = |S1|, n2 = |S2|, by KKT conditions, we have

r2 =
1
n1

P1, ρ2 =
1
n2

P2 −
1
n1

P1 (20)

where
P1 = ∑

xi∈S1

∥ ϕ(Xi)− c ∥2

= ∑xi∈S1
(k(Xi, Xi)− 2 ∑n

k=1 αkykk(Xi, Xk) + ⟨c, c⟩)
(21)
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P2 = ∑
xj∈S2

∥ ϕ(Xi)− c ∥2

= ∑xj∈S2
(k
(
Xj, Xj

)
−2 ∑n

k=1 αkykk
(
Xj, Xk

)
+ ⟨c, c⟩)

(22)

⟨c, c⟩ = ⟨
n

∑
i=1

αiyiϕ(Xi),
n

∑
j=1

αjyjϕ
(
Xj

)
⟩ =

n

∑
i=1

n

∑
j=1

αiαjyiyjk
(
Xi, Xj

)
(23)

The decision function is

f (x) = sgn(r2 − ∥ ϕ(Xi)− c ∥2) = sgn(r2 + 2
n

∑
k=1

αkykk(X, Xk)− k(X, X)− ⟨c, c⟩) (24)

The classification decision hypersphere is W:

r2 − ∥ ϕ(Xi)− c ∥2 = r2 + 2
n

∑
k=1

αkykk(X, Xk)− k(X, X)− ⟨c, c⟩ = 0 (25)

3.2. Probability Calibration
Discriminative trained classifiers trained by the above algorithm can have very good

closed‑set performance. However, a good discriminative classifier in open‑set scenarios
should have no basis for prediction when the test sample is UUCs; thus, to improve the
accuracy, we seek to combine the probabilities computed by both discriminative hyper‑
planes. Recent work has shown that the open‑set recognition problem itself is consistent
with the assumptions of statistical extreme value theory (EVT); therefore, we apply the
EVT concept separately to the positive and negative scores from the negative‑class sample
hypersphere segmentation algorithm, and a reverseWeibull distribution is justified for the
largest scores from the negative examples because they are bounded from above. Weibull
is the expected distribution for the smallest scores from the positive examples because they
are bounded from below.

The Weibull CDF derived from the match data is Equation (26):

Pη(y|Wi(x)) = 1 − e
−(

Wi(x)−vηi
ληi

)
kηi

(26)

and the reverse Weibull CDF derived from the non‑match data, which is equivalent to
rejecting the Weibull fitting on the non‑match data, is Equation (27)

Pψ(y|Wi(x)) = e
−(

−Wi(x)−vψi
λψi

)
kψi

(27)

The product of Pη and Pψ represents the probability that the input comes from a pos‑
itive class and not from any of the known negative class. In a closed‑set scenario, using
only Pη indicates that the probability of positive samples is obviously better, because Pη

only uses positive data; however, because there are UUCs in the open‑set scenario, and
we cannot accurately model the unknown categories, Pψ should generally rely on other
characteristics of non‑negative samples for adjustment. At the same time, we note that the
estimators are not completely conditional independent because they share the basic SVM
discrimination structure, which is valid onlywhen the input comes from a known category.
Based on this deficiency, we use the negative sample feature enhancement learning algo‑
rithm of the same kind of feature set to assist in constructing the negative sample feature
segmentation hypersphere. For a given class, Xi, the derived negative sample point set
with the tight‑wrapping property can fit a more accurate Weibull probability distribution
function and reverse Weibull probability distribution function.

Algorithm 1 gives the concrete steps of WTWD:
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Algorithm 1: WTWD

Input: training databases Xi =
{

xij

}n

j=1
and label information Yi, i = 1, . . . M, test sample

xt. Open‑set threshold δR.
1. Optimization of compactness parameter ε by Equation (5).
2. Construct negative‑class sample feature set by Equation (6).
3. Solve the negative‑class sample segmentation hypersphere W(Xi), and compute decision
scores Sxij of xij by Equations (24) and (25).
4. Compute the paired Weibull distribution corresponding to each category，get location
parameter, shape parameter, and scale parameter of Weibull distribution and reverse Weibull
distribution respectively, P =

[
vηi, kηi, ληi, vψi, kψi, λψi

]
, i = 1, . . . M.

5. Input test sample, xt, use Wi(xt), i = 1, . . . M to calculate decision scores Sxt for each category.
Calculate probability of Weibull distribution Pη and probability of reverse Weibull distribution
Pψ for each category.
For i = 1 : M

i f Sxt > vηi,

Pηi = 1 − e
−(

Sxt −vηi
ληi

)
kηi

,

else Pηi = 0.

i f−Sxt > vψi,

Pψi = e
−(

−Sxt −vψ
λψ

)
kψ

,

elsePψi = 0

end

i∗ = argmax
i

(
Pηi × Pψi

)
i f
(

Pηi∗ × Pψi∗
)
< δR

i∗ = 0 i.e., xt belongs to UUCs.
6. Output: classification result i∗ of test sample xt

4. Experiment and Discussion
In order to verify the effectiveness of the WTWD algorithm, we first introduce three

experimental databases, including the letter recognition open dataset [22], the Caltech256
open dataset [23], and the CIFAR100 open dataset [24]. Then, we provide evaluation
indexes to evaluate the effects of different algorithms. We select several classical open‑
set recognition algorithms for performance comparison, including SVDD [5], TNN [8],
WSVM [18], EVM [19], OSSVM [25], OnevsSet SVM [26], and Resnet [27]. Finally, for each
database, we give the experimental results and corresponding analysis.

4.1. Databases and Setting
As shown in Figure 3, the letter recognition open dataset database involves 26 differ‑

ent classes, including all letter classes, all of which have 16 numerical attributes. These
attributes represent primitive statistical features of the pixel distribution.
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Figure 3. Examples of letter recognition open dataset.

In order to further test the performance of the algorithm in the actual scenarios, we
chose the Caltech256 open dataset to verify the effectiveness of the WTWD algorithm and
compared it with other classic open‑set recognition algorithms. As shown in Figure 4, the
Caltech256 open database includes 256 different classes, with each category containing
over 80 pictures. We chose 20 images, 40 images, 60 images, and 80 images, respectively,
as the training set and 20 images as the test set for each category, with 60 categories, 50 cat‑
egories, and 40 categories selected as training sets, so the corresponding openness equals
0.3837, 0.42, and 0.48, respectively. The test set includes all categories of the Caltech 256
open dataset.
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Figure 4. Examples of Caltech256 open dataset.

When the openness is extremely high and the resolution is lower, the performance of
the algorithmwill be greatly affected, so we chose the CIFAR100 open dataset to verify the
effectiveness of the WTWD algorithm in extremely high‑openness scenarios. As shown in
Figure 5, the CIFAR100 open dataset includes 100 different classes, each class has 600 pic‑
tures, and the size of each picture is 32 × 32 RGB. We chose 200 images, 400 images, and
600 images, respectively, as the training set and 100 images as the test set for each category,
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with 10 categories selected as training sets, so the corresponding openness is about 0.6. The
test set includes all categories of the CIFAR100 open dataset.

Mathematics 2022, 10, x FOR PEER REVIEW 11 of 16 
 

 

each category, with 10 categories selected as training sets, so the corresponding openness 

is about 0.6. The test set includes all categories of the CIFAR100 open dataset. 

 

 

Figure 5. Examples of CIFAR100 open dataset. 

4.2. Experiments and Results 

4.2.1. Experiments on the Letter Recognition Open Dataset 

In this section, we test the proposed algorithm on the letter recognition open dataset; 

the data distribution of the letter recognition open dataset is shown in Figure 6a. 

 

 

(a) (b) 

Figure 6. (a) Letter recognition open dataset data distribution. (b) Hypersphere constructed by 

SVDD. 

As shown in Figure 6a, the black point set represents the sample point set of UUCs, 

while the colored point set represents the sample point set of KKCs. It can be seen that in 

the open-set scenario, the sample point set of unknown categories and the sample point 

set of known categories are mixed together. Figure 6b shows the decision hypersphere 

constructed by the support vector domain description method (SVDD) in the open-set 

scenario. Since the traditional classifier only trains the decision surface based on the sam-

ple point set of known categories, the decision surface will incorrectly identify the sample 

point set of unknown categories as the sample point set of a known category or wrongly 

reject the sample point set of a known category. 

The area under the receiver operating characteristic curve (AUROC) and F1-measure 

were used for performance evaluation. AUROC is a measure of classifier performance. It 

reflects the performance of the classifier by the area between the receiver operating char-

acteristic curve and the coordinate axis. AUROC is a value between 0 and 1. When the 

AUROC value is close to 1, it means that the classifier can better classify positive and 

negative samples. The F1-measure combines the precision, R, and recall, P. Both of them 

are widely used to test the performance of open-set recognition models. The F1-measure 

is defined as follows 

Figure 5. Examples of CIFAR100 open dataset.

4.2. Experiments and Results
4.2.1. Experiments on the Letter Recognition Open Dataset

In this section, we test the proposed algorithm on the letter recognition open dataset;
the data distribution of the letter recognition open dataset is shown in Figure 6a.
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SVDD.

As shown in Figure 6a, the black point set represents the sample point set of UUCs,
while the colored point set represents the sample point set of KKCs. It can be seen that in
the open‑set scenario, the sample point set of unknown categories and the sample point set
of known categories are mixed together. Figure 6b shows the decision hypersphere con‑
structed by the support vector domain descriptionmethod (SVDD) in the open‑set scenario.
Since the traditional classifier only trains the decision surface based on the sample point
set of known categories, the decision surface will incorrectly identify the sample point set
of unknown categories as the sample point set of a known category or wrongly reject the
sample point set of a known category.

The area under the receiver operating characteristic curve (AUROC) and F1‑measure
were used for performance evaluation. AUROC is a measure of classifier performance. It
reflects the performance of the classifier by the area between the receiver operating char‑
acteristic curve and the coordinate axis. AUROC is a value between 0 and 1. When the
AUROC value is close to 1, it means that the classifier can better classify positive and neg‑
ative samples. The F1‑measure combines the precision, R, and recall, P. Both of them are
widely used to test the performance of open‑set recognition models. The F1‑measure is
defined as follows
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F − measure =
2 × P × R

P + R
(28)

P =
TP

TP + FP
, R =

TP
TP + FN

(29)

In open‑set identification, openness is usually used to quantify open space risks [20],
and openness is defined as:

openness = 1 −

√
2 × CT

CT + CE
(30)

CT represents the number of categories of training set, and CE represents the number
of categories in the test set; whenCT = CE, open‑set recognitionwill be converted to closed‑
set recognition. The algorithm rejection threshold used in this paper is δR = 0.5× openness.

It can be seen from Figure 7a that compared with the other classifiers, the AUROC
value of our proposed method under the closed‑set condition is higher than the other clas‑
sifiers but lower than SVDD. With a rapid increase in openness, the AUROC values of
the following classifiers decrease rapidly: SVDD algorithm, TNN algorithm, and Onevs‑
Set SVM. Additionally, the open‑set classifiers, WSVM and OSSVM, have a certain degree
of decline, but the AUROC of our proposed method is still relatively stable, indicating
that this algorithm is less affected by open space risks. When the openness equals 0.6, the
AUROC value of our proposed method still exceeds 90%, and the AUROC value of our
proposed method is 14.7912% higher than SVDD and 8.9439% higher than WSVM.
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Figure 7. AUROC and F1‑measure with increasing openness: (a) AUROC and (b) F1‑measure.

Figure 7b shows the ability of our proposed method to correctly classify known cate‑
gory samples when it correctly rejects unknown category samples. When openness equals
0, the F1‑measure reflects the ability of algorithms to classify correctly in the closed‑set
scenario. The best performance is from SVDD, which uses a segmentation hypersphere to
classify. We believe it is rational to integrate the idea of a hypersphere to classify UUCs
and KKCs, and the experimental results support this point of view. When the openness
is 0.6, the F1‑measure value of our proposed method equals 86.9563%, which is 14.3343%
higher than SVDD and 8.1211% higher than WSVM. The results show that our proposed
method has better classification performance in open‑set scenarios; therefore, it is neces‑
sary to consider using a negative‑class sample during training and a Weibull distribution
to prevent the model from wrongly rejecting KKCs as UUCs or wrongly classifying UUCs
as KKCs in open‑set scenarios.
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4.2.2. Experiments on Caltech256 Open Dataset
Different from the letter recognition open dataset, the Caltech256 open dataset con‑

sists of multi‑class RGB images, and each image has meaningless background noise; there‑
fore, we use ResNet18 to extract efficient features to verify the classification performance
of our proposed method in the real scenario. We use a 48‑dimension tensor to replace the
original RGB image [28,29].

As shown in Figure 8, in the real scenario with an openness equal to 0.38, the F1‑
measure value and the AUROC value of the proposed algorithm are 3.1112% and 6.14%
higher than those of WSVM and OSSVM, respectively. In the real scenario with an open‑
ness equal to 0.48, the F1‑measure value and the AUROC value of the proposed algorithm
are 7.3177% and 8.5182% higher than those of WSVM and OSSVM, respectively.
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According to Algorithm 1, when sample X belongs to a known category, Xi, the deci‑
sion score calculated by the corresponding decision hypersphere, Wi(X), is positive, while
the other decision hypersphere, Wj(X), j = 1 . . . M, j ̸= i, calculates a negative decision
score. Thus, its corresponding Weibull distribution and reverse Weibull distribution are
also unique. When sample X is in the decision hypersphere of multiple known categories
at the same time, since the probability of sample X belonging to the known category Xi
is positively correlated to the decision score, sample X is classified as the category with
the largest product of the paired Weibull distribution, corresponding to Wi(X). When the
sample does not belong to any of the known categories, the model cannot find a matching
pair of Weibull distributions; that is, the probability of all Weibull distributions equals 0 or
does not exceed the threshold, so it is judged as an unknown category. Therefore, multiple
paired Weibull distributions enable the model to further judge the samples which are in
the decision hypersphere of multiple known categories at the same time.

As shown in Figure 9, we set different numbers of images as the training set to verify
the robustness of the algorithm, and for an openness equal to 0.48, our proposed algorithm
has a higher F1‑measure and AUROC value under different numbers of training samples.
Due to the use of negative samples to calculate the decision surface during the training
phase, the F1‑measure of our proposed method is still around 50%, whereas the other al‑
gorithms are more susceptible to the number of training samples.
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In real scenarios, both high openness and insufficient training samples can be prob‑
lems during model application. Segmentation of hyperspheres constructed by negative
sample features and establishment of the corresponding pairedWeibull distribution can ef‑
fectively increase the anti‑interference ability of the model to negative samples. Therefore,
in the real scenario with higher openness, the recognition performance of the proposed
algorithm declines slowly and tends to be stable.

4.2.3. Experiments on CIFAR100 Open Dataset
In the real scenario with high openness, we select the CIFAR100 open dataset. Af‑

ter feature extraction, the CIFAR100 open dataset dimension is 48 × 60, 000. We chose
10 classes as the training set, each class has 600 images, and the test set includes all cate‑
gories of the CIFAR100 open dataset, so the openness of the CIFAR100 open data is about
0.6.

As shown in Table 1, it can be seen that the neural network cannot effectively distin‑
guish the samples of known categories from the samples of unknown categories in the real
scenario with high openness, and the correct rate of the open‑set classifierWSVMbased on
the extreme value distribution theory is 2.67% higher than the neural network algorithm.
The accuracy of our proposed algorithm is 4.144% higher than that of other open‑set classi‑
fiers and 8.11% higher than that of the neural network in the scenario with high openness.
Therefore, this algorithm has a better performance in real scenarios with high openness.

Table 1. Comparison of F1‑measure values of some categories in CIFAR100 open dataset.

Algorithm
Category Airplane Horse Bird Cat Deer Ship Frog

SVDD 31.46% 31.23% 30.55% 30.79% 33.43% 32.46% 31.94%
WSVM 37.95% 37.48% 39.46% 37.42% 37.53% 37.12% 37.49%
EVM 28.87% 26.74% 28.19% 27.31% 29.47% 27.53% 25.79%

ResNet18 34.93% 35.42% 35.38% 35.16% 35.79% 37.34% 34.82%
OSSVM 39.40% 38.18% 38.54% 40.72% 37.43% 41.85% 40.51%

Our approach 44.13% 43.49% 43.66% 43.50% 43.56% 43.58% 43.73%

As shown in Figure 10, when the number of training samples equals 600, the F1‑
measure of our approach equals 43.4971%, and with a decreasing number of training sam‑
ples, the F1‑measure of our proposed method is still higher than other algorithms, which
proves that our approach has higher robustness than other algorithms in the high‑openness
scenarios.



Mathematics 2022, 10, 4725 15 of 16

Mathematics 2022, 10, x FOR PEER REVIEW 15 of 16 
 

 

which proves that our approach has higher robustness than other algorithms in the high-

openness scenarios. 

 

(a) (b) 

Figure 10. AUROC and F1-measure, when openness is about 0.6, for open-set multi-class recogni-

tion using different numbers of training samples on CIFAR100 open dataset: (a) F1-measure and (b) 

AUROC. 

5. Conclusions 

This paper analyzes and summarizes the reasons why the existing closed-set classi-

fiers cannot adapt to the open-set scenario. We proposed the negative-class sample feature 

enhancement learning algorithm, optimized the negative-class sample feature segmenta-

tion surface based on the negative-class sample point set, and finally obtained an open-

set classifier with good classification performance by establishing the paired Weibull dis-

tribution and reverse Weibull distribution of the scores from positive- and negative-class 

samples to the segmentation surface. In the high-openness scenario, this algorithm can 

effectively distinguish the known category samples from the unknown category samples 

and correctly classify the known category samples. Compared with other open-set classi-

fiers, the proposed algorithm performs better in high-openness scenarios. 

Author Contributions: Conceptualization, S.Z. and G.Y.; methodology, S.Z., G.Y., and M.W.; soft-

ware, S.Z.; validation, S.Z. and G.Y.; formal analysis, S.Z. and G.Y.; investigation, S.Z.; resources, 

S.Z.; data curation, S.Z.; writing—original draft preparation, S.Z. and G.Y.; writing—review and 

editing, M.W. and G.Y.; visualization, S.Z.; supervision, M.W. and G.Y.; project administration, S.Z. 

and G.Y.; funding acquisition, S.Z., G.Y., and M.W. All authors have read and agreed to the pub-

lished version of the manuscript. 

Funding: Postgraduate Research & Practice Innovation Program of Jiangsu Province Nos. 

KYCX21_1942; the National Natural Science Foundation of China under Grant 62172229, 61876213, 

the Natural Science Foundation of Jiangsu Province under Grants BK20211295, BK20201397, the 

Jiangsu Key Laboratory of Image and Video Understanding for Social Safety of Nanjing University 

of Science and Technology under Grants J2021-4, funded by the Qing Lan Project of Jiangsu Univer-

sity and the Future Network Scientific Research Fund Project SRFP-2021-YB-25. 

Data Availability Statement: Publicly available datasets were analyzed in this study. These datasets 

can be found here: Letter recognition open dataset: http://archive.ics.uci.edu/ml/machine-learning-

databases/letter-recognition/ (accessed on 01 November 2022); Caltech256 open dataset: 

http://www.vision.caltech.edu/Image_Datasets/Caltech256/ (accessed on 02 November 2022); 

CIFAR100 open dataset: http://www.cs.toronto.edu/~kriz/cifar.html (accessed on 02 November 

2022). 

Conflicts of Interest: The authors declare no conflicts of interest. 
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(b) AUROC.

5. Conclusions
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and correctly classify the known category samples. Compared with other open‑set classi‑
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