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Abstract: In addition to monitoring the Poisson mean rate with step shifts, increasing attention has
been given to monitoring Poisson processes subject to linear trends. The exponentially weighted
moving average (EWMA) control chart has been widely implemented to monitor normal processes,
but it lacks investigation for detecting the Poisson mean change under a linear trend. In this paper, we
analyze the performance of the EWMA chart by extending the Markov chain model from monitoring
Poisson processes under a step shift to a Poisson process with linear drift. The results demonstrate
that the proposed method is able to provide accurate average run length approximation, compared
with the Monte Carlo simulation. Optimal design tables and sensitivity analysis are presented to
facilitate the use of the EWMA chart in practice.
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1. Introduction

Recently, considerable attention has been paid to monitoring a sequence of count
data, due to its wide applications in quality control in manufacturing processes, health
surveillance in healthcare management and other applications [1–6]. In practice, the count
data in a specific region or within a specific time period is often assumed to follow the
Poisson distribution. For example, the number of nonconformities in a product, the patient
arrivals in one day, and the number of disease cases reported in one year.

To detect the change in the Poisson distribution, many methods have been proposed.
A simple charting method is the Shewhart control chart, which makes use of the current
observation. To incorporate the effect of past observations, the cumulative sum (CUSUM)
and exponentially weighted moving average (EWMA) charts have been developed. Both
charts have been widely used and discussed in the literature due to their promising
detection ability. Some pioneer studies for monitoring the Poisson mean using the CUSUM
and EWMA chart include [7–10]. Furthermore, some recent research results include [11–23].

The above studies are very appealing, but their results are restricted by their assump-
tions. Actually, nearly all of the above research results are based on the common assumption
on the shift pattern of the process mean. In particular, they assume a step shift in the Poisson
mean, meaning that the process mean remains the same in its in-control state and moves to
a constant new level when the shift occurs. In practice, other types of shift patterns may
exist. Therefore, linear drifts, as one of the common mean shift pattern other than step shifts,
are worthy of research and investigation due to their occurrence in practice. For example,
in the industrial quality control, tool wear is usually a gradual process and may cause the
increase in the number of nonconformities in a product. In this sense, the mean number of
nonconformities may continue to increase due to the gradual tool wear process. In public
health surveillance, with the outbreak of an infectious disease, apparently the number of
daily new infected cases in a specific region will increase gradually. However, very little
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attention has been given to the detection of changes in the Poisson mean rate with linear
drifts, except for in [24,25]. However, they only compared the performance of the change
point estimators under a linear drift, and monitoring the Poisson mean rate under linear
drifts is not covered in their research.

To incorporate the Poisson mean under the linear trend issue, one can definitely
modify the CUSUM-type control charts with step shift, and apply the modified CUSUM-
type control charts to monitor the linear drifts in the Poisson process mean. Alternatively,
the generalized likelihood ratio chart is another option to address linear drifts in the Poisson
process mean, by estimating the change time using the maximum likelihood principle [26].
Furthermore, the EWMA chart can also be designed to detect the drifts in the Poisson mean
rate. For the sake of simplicity, we investigate the detection ability of the EWMA chart in
this research.

Note that the EWMA chart can be designed for a one-sided or two-sided form, accord-
ing to its potential applications. In industry quality control and public health surveillance,
an increase in the Poisson rate often indicates an increase in the nonconformities in a
product or an increase in the incidence rate of a disease, respectively. On the other hand,
a decrease in the Poisson mean implies an improvement of the corresponding systems.
Thus, the detection of one-sided change is often crucial. Unlike the widely used one-sided
Poisson CUSUM chart, the one-sided Poisson EWMA control chart lacks research, except for
in [27].

In this paper, we investigate the performance of the one-sided Poisson EWMA control
chart for monitoring linear drifts in the Poisson rate, by using Markov chain models.
The rest of this paper is organized as follows. In Section 2, the one-sided Poisson EWMA
chart based on transformations is presented. In Section 3, we provide the calculation based
on the Markov chain model for both zero-state and steady-state average run length and
investigate the approximation accuracy of the proposed methods. In Section 4, the design
of a one-sided Poisson EWMA chart is discussed. In Section 5, a numeric example is
demonstrated to illustrate the use of the proposed one-sided EWMA chart. In Section 6,
a concluding remark is presented.

2. One-Sided Poisson EWMA Chart

Assume there exists a sequence of count observations, denoted as X1, X2,. . . These
observations are independent and follow Poisson distribution with a mean of µt. When the
process is in-control, the process mean is assumed to be known a priori, which is given by
µt = µ0. At an unknown time τ, the process becomes out-of-control, and its mean increases
linearly at the rate of θ. The detailed expression is given by,

µt =

{
µ0 > 0 t ≤ τ − 1

µ0 + (t− τ + 1)θ t ≥ τ,
(1)

where θ is the drift size, and in this research we consider θ > 0 only. The traditional Poisson
EWMA statistic follows,

Qt = λXt + (1− λ)Qt−1, (2)

where λ is the smoothing parameter, which is between 0 and 1, and Q0 = µ0. The asymp-
totic control limits for the two-sided cases are given by,

LCL = max

{
0, µ0 − L

√
λ

2− λ
µ

}

UCL = µ0 + L

√
λ

2− λ
µ

(3)
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For the purpose of the quick detection of a one-sided drift, one may consider to reset
the EWMA statistics to µ0 whenever it is smaller than µ0 [27–30]. Then, the upper Poisson
EWMA chart follows,

EX
t = max

{
µ0, λXt + (1− λ)EX

t−1

}
, (4)

where EX
0 = µ0, and it signals when EX

t exceeds its control limit hX = µ0 + L
√

λ
2−λ µ.

Note that the Poisson distribution is asymmetric, and one may transform the obser-
vations to obtain a better normality. A simple way is to use the linear transformation [27],
which is given by,

Yt =
Xt − µo√

µ0
, (5)

where Yt is asymptotically normal with mean 0 and variance 1. Then, the upper Poisson
EWMA based on the transformed data becomes,

EY
t = max

{
0, λYt + (1− λ)EY

t−1

}
, (6)

where EY
0 = 0, and it signals when EY

t exceeds its control limits hY = L
√

λ
2−λ . Note

that different EWMA schemes can be formulated by applying different resetting rules or
different transformations (see examples in [22,31–35]). For the sake of simplicity, we only
investigate the EWMA chart in Equation (6) in our study.

3. Calculation of ARL and Approximation Accuracy

To evaluate the detection ability of a control chart, it is common to maintain its level
of false alarm, and then calculate its detection delay. A smaller value of detection delay
indicates a better performance of the corresponding control chart. A common measure of
the false alarm is the in-control ARL, which computes the expected number of observations
until a signal is generated, given no change occurring, denoted as ARL0 = E(tA|τ = ∞).
tA is the time when a control chart alarms and τ is the change time. τ = ∞ indicates that
no change occurs. Based on the definition of ARL0, the detection delay is often defined
as ARL1 = E(tA|τ = 1), which measures the expected number of observations until a
signal is generated, given that the change of the process mean occurs at the initial start-up
of the control chart. This measure is also called zero-state ARL (ZSARL). Furthermore,
the change in the process mean could take place at a later time rather than the initial time
step. In such scenarios, the steady-state ARL, defined as ARLSS = lim

τ→∞
E[tA − τ|tA ≥ τ],

is often used to describe the steady state performance of a control chart.

3.1. Calculation of Zero-State and Steady-State ARL

To compute the values of ARL0 and ARL1, various approaches have been proposed,
such as the Monte Carlo simulation and integral equation approaches. Furthermore,
the Markov chain model is another effective method to approximately compute ARL [8].
In the following, we present the ARL calculation of the proposed EWMA chart based on
the Markov chain model.

By dividing the in-control region [0, hY] of the proposed EWMA charting statis-
tic into m subregions, labeled as i = 1, 2, . . . , m, the width of each subregion becomes
w = 2hY/(2m− 1) except for the first one with width w/2. Denote Pt(i, j) as the transition
probability of EY

t from state i to state j at time t. Then, the calculation of Pt(i, j) is given by,
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Pt(i, j) = Pr{EY
t in state j | EY

t in state i}
= Pr{(j− 1)w− 0.5w < λYt + (1− λ)(i− 1)w ≤ (j− 1)w + 0.5w}

= Pr
{
[j− 1.5− (1− λ)(i− 1)]w

λ
< Yt ≤

[j− 0.5− (1− λ)(i− 1)]w
λ

}
= F(c2, µt)− F(c1, µt), (i = 1, 2, . . ., m, j 6= 1)

Pt(i, j) = Pr{Yt ≤ c2} = F(c2, µt), (i = 1, 2, . . ., m, j = 1)

(7)

where c1 = [j−1.5−(1−λ)(i−1)]w
λ

√
µ0 + µ0 and c2 = [j−0.5−(1−λ)(i−1)]w

λ

√
µ0 + µ0. F(·, µt) is the

cumulative distribution function of a Poisson-distributed random variable with mean µt.
According to [8], the probability transition matrix Rt is constructed by using Pt(i, j) as

its element in each row and column. When calculating the value of ARL0, the process mean
µ0 does not change. Thus, the probability transition matrix Rt remains the same, denoted
as R, and the ARL0 is computed by,

ARL0 = pT
ini(I− R)−11 (8)

where pini is the initial probability vector corresponding to EY
0 , and 1 is a column vector of

ones [8].
When computing ARL1, the process mean µt is time varying, so the probability

transition matrix Rt changes over time. Then, the ARL is calculated by,

ARL1 = pT
ini

∞

∑
t=1

(
t−1

∏
s=0

Rs1), (9)

where R0 is the identity matrix [36]. Note that with the increase in µt, the charting statistic
is becoming easier to signal. When the µt is large enough, the EWMA chart always signals
within one step. In this sense, the probability transition matrix Rt becomes stabilized,
denoted as R∞. The time for R to stabilize is denoted as tmax. Then the formula for ARL1
calculation follows,

ARL1 = pT
ini

{
tmax−1

∑
t=1

(
t−1

∏
s=0

Rs1) + (
tmax

∏
s=0

Rs)(I− R∞)−11

}
(10)

It is obvious that the ARL1 has to be computed through iterations until time t reaches
tmax. Instead of arbitrarily selecting a large value, we set a scheme to determine the value
of tmax. At each time t, we calculate the value of (I− R)1 which measures the probability
of reaching the out-of-control state. When the smallest element of (I− R)1 is larger than
0.9999, we believe the value of µt is large enough, indicating the transition matrix is
stabilized. The corresponding time t is the tmax we used.

Based on the process for calculating ARL1 through Equation (10), is it not compli-
cated to obtain the equation for approximating the steady-state ARL. According to [37],
the steady-state ARL can be obtained by replacing the initial probability vector pini in
Equation (10) with the cyclical steady-state probability vector pss. The vector pss can be
calculated by solving the following system, which is given by,

p = PT p

s.t. P =

(
R (I− R)1
1 · · · 0 0

)
1T p = 1

(11)

then the steady-state ARL can be approximated by the following,
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ARLss = pT
ss

{
tmax−1

∑
t=1

(
t−1

∏
s=0

Rs1) + (
tmax

∏
s=0

Rs)(I− R∞)−11

}
(12)

3.2. Approximation Accuracy

Note that the in-control ARL calculation does not need iterations, and the correspond-
ing formula has been widely used, since it was proposed by [8]. Thus, we investigate the
approximation accuracy of the ARL1 calculation.

When using the Markov chain model, the value of state m is the most important
parameter to specify. Table 1 presents the ARL1 values, which are calculated by Markov
chain model and Monte Carlo simulation. Furthermore, the standard errors of the ARL1
values are also presented for the results obtained by the Monte Carlo simulation. The
in-control mean is µ0 = 4, the smoothing parameter is λ = 0.05, and the ARL0 is 200.
The results obtained through the Monte Carlo simulation are based on 80,000 replicates.
Compared with the results from the Monte Carlo simulation, the Markov chain model
provides close results through all hypothetical drift sizes. A similar pattern could be found
in the results of the steady-state ARL, which are presented in Table 2.

Table 1. Zero-state ARL values with different drift sizes when µ0 = 4, λ = 0.05 and ARL0 = 200.

θ

Methods

Monte Carlo Markov Chain

m = 100 m = 200 m = 300

0.001 132.10 ± 0.47 131.59 132.13 132.02
0.010 55.65 ± 0.20 55.51 55.64 55.62
0.020 39.81 ± 0.14 39.72 39.80 39.79
0.050 25.02 ± 0.09 25.00 25.04 25.03
0.100 17.53 ± 0.06 17.52 17.55 17.55
0.200 12.31 ± 0.04 12.31 12.32 12.32
0.500 7.75 ± 0.03 7.75 7.75 7.75
1.000 5.47 ± 0.02 5.47 5.47 5.47

Table 2. Steady-state ARL values with different drift sizes when µ0 = 4, λ = 0.05 and ARL0 = 200,
given τ = 50.

θ

Methods

Monte Carlo Markov Chain

m = 100 m = 200 m = 300

0.001 125.11 ± 0.33 125.64 125.75 125.63
0.010 52.80 ± 0.10 52.82 52.84 52.81
0.020 37.64 ± 0.06 37.67 37.68 37.67
0.050 23.42 ± 0.03 23.49 23.5 23.49
0.100 16.31 ± 0.02 16.3 16.3 16.3
0.200 11.28 ± 0.01 11.29 11.3 11.3
0.500 6.97 ± 0.007 6.97 6.97 6.97
1.000 4.86 ± 0.005 4.86 4.86 4.86

Furthermore, we can find that larger m produces better approximation. More specifi-
cally, when m = 100, the results obtained by the Markov chain model is very close to the
values obtained by the Monte Carlo simulation, but still have very small differences. When
m = 200 and 300, the approximation results become even better. However, a large value of
m introduces the high computational load. Brook and Evans [8] suggested to use m = 30,
and in our study we propose to select m = 100. It is important to reduce the computational
load, since m = 100 already guarantees the approximation accuracy.
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4. Design of the One-Sided Poisson EWMA Chart

The design of the EMWA chart is to determine the value of the two parameters, λ
and L. According to [37], the design issue is to find the value of λ, which optimizes the
detection ability for a specified drift in the Poisson mean rate, and select the value of L to
produce the desired in-control ARL. Instead of theoretically calculating the optimal values
of λ and L, extensive computation is implemented to search the optimal values of λ and L
numerically. Tables 3–6 present a list of optimal λ and L pairs, which provide in-control
ARL of 200, 500, 800 and 1000, respectively.

Table 3. Optimal parameters for the EWMA chart when ARL0 = 200.

θ
µ0

4 8 12 16

0.01
(λ∗, L) (0.04, 2.109) (0.04, 2.094) (0.03, 1.969) (0.02, 1.777)
ARLmin 55.41 64.8 70.75 75.1

0.02
(λ∗, L) (0.05, 2.207) (0.04, 2.094) (0.04, 2.094) (0.05, 2.172)
ARLmin 39.81 47.04 51.91 55.49

0.03
(λ∗, L) (0.07, 2.344) (0.05, 2.184) (0.05, 2.176) (0.05, 2.172)
ARLmin 32.41 38.54 42.65 45.69

0.04
(λ∗, L) (0.07, 2.344) (0.06, 2.262) (0.06, 2.250) (0.05, 2.172)
ARLmin 27.9 33.32 36.92 39.65

0.05
(λ∗, L) (0.09, 2.441) (0.06, 2.262) (0.07, 2.305) (0.06, 2.250)
ARLmin 24.8 29.7 32.93 35.43

0.06
(λ∗, L) (0.09, 2.441) (0.08, 2.371) (0.07, 2.305) (0.06, 2.250)
ARLmin 22.49 26.96 29.94 32.27

0.07
(λ∗, L) (0.10, 2.480) (0.08, 2.371) (0.07, 2.305) (0.06, 2.250)
ARLmin 20.68 24.84 27.62 29.79

0.08
(λ∗, L) (0.10, 2.480) (0.09, 2.406) (0.09, 2.398) (0.08, 2.346)
ARLmin 19.23 23.11 25.73 27.76

0.09
(λ∗, L) (0.12, 2.551) (0.09, 2.406) (0.09, 2.398) (0.08, 2.346)
ARLmin 18.02 21.69 24.14 26.07

0.10
(λ∗, L) (0.12, 2.551) (0.11, 2.480) (0.09, 2.398) (0.08, 2.346)
ARLmin 17 20.48 22.81 24.64

0.11
(λ∗, L) (0.12, 2.551) (0.12, 2.512) (0.09, 2.398) (0.09, 2.391)
ARLmin 16.13 19.43 21.66 23.41

0.12
(λ∗, L) (0.12, 2.551) (0.12, 2.512) (0.11, 2.466) (0.09, 2.391)
ARLmin 15.38 18.52 20.65 22.33

0.13
(λ∗, L) (0.15, 2.633) (0.12, 2.512) (0.11, 2.466) (0.10, 2.430)
ARLmin 14.7 17.71 19.76 21.38

0.14
(λ∗, L) (0.16, 2.653) (0.12, 2.512) (0.11, 2.466) (0.11, 2.453)
ARLmin 14.1 17 18.97 20.52

0.15
(λ∗, L) (0.16, 2.653) (0.12, 2.512) (0.11, 2.466) (0.11, 2.453)
ARLmin 13.56 16.36 18.26 19.75

0.16
(λ∗, L) (0.16, 2.653) (0.12, 2.512) (0.12, 2.492) (0.11, 2.453)
ARLmin 13.08 15.79 17.62 19.06

0.17
(λ∗, L) (0.16, 2.653) (0.14, 2.555) (0.12, 2.492) (0.11, 2.453)
ARLmin 12.64 15.26 17.04 18.43

0.18
(λ∗, L) (0.16, 2.653) (0.14, 2.555) (0.12, 2.492) (0.11, 2.453)
ARLmin 12.24 14.78 16.51 17.86

0.19
(λ∗, L) (0.16, 2.653) (0.14, 2.555) (0.12, 2.492) (0.12, 2.484)
ARLmin 11.87 14.33 16.02 17.33

0.20
(λ∗, L) (0.18, 2.695) (0.15, 2.584) (0.12, 2.492) (0.13, 2.508)
ARLmin 11.53 13.93 15.57 16.84
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Table 4. Optimal parameters for the EWMA chart when ARL0 = 500.

θ
µ0

4 8 12 16
0.01

(λ∗, L) (0.03, 2.447) (0.03, 2.434) (0.02, 2.258) (0.02, 2.252)
ARLmin 70.14 84.01 93 100.01

0.02
(λ∗, L) (0.04, 2.568) (0.04, 2.541) (0.03, 2.428) (0.03, 2.418)
ARLmin 48.31 58.21 64.85 69.88

0.03
(λ∗, L) (0.05, 2.652) (0.04, 2.541) (0.04, 2.531) (0.04, 2.526)
ARLmin 38.61 46.64 52.06 56.28

0.04
(λ∗, L) (0.06, 2.721) (0.05, 2.627) (0.05, 2.613) (0.04, 2.526)
ARLmin 32.84 39.74 44.44 48.07

0.05
(λ∗, L) (0.07, 2.785) (0.06, 2.689) (0.05, 2.613) (0.05, 2.605)
ARLmin 28.93 35.05 39.23 42.48

0.06
(λ∗, L) (0.08, 2.824) (0.07, 2.748) (0.06, 2.672) (0.06, 2.666)
ARLmin 26.07 31.61 35.38 38.34

0.07
(λ∗, L) (0.09, 2.873) (0.07, 2.748) (0.06, 2.672) (0.06, 2.666)
ARLmin 23.85 28.95 32.43 35.13

0.08
(λ∗, L) (0.09, 2.873) (0.08, 2.787) (0.07, 2.726) (0.06, 2.666)
ARLmin 22.09 26.81 30.07 32.58

0.09
(λ∗, L) (0.10, 2.906) (0.08, 2.787) (0.08, 2.766) (0.07, 2.715)
ARLmin 20.64 25.06 28.09 30.46

0.10
(λ∗, L) (0.11, 2.938) (0.09, 2.827) (0.08, 2.766) (0.07, 2.715)
ARLmin 19.42 23.58 26.43 28.68

0.11
(λ∗, L) (0.11, 2.938) (0.10, 2.863) (0.08, 2.766) (0.08, 2.762)
ARLmin 18.37 22.32 25.02 27.15

0.12
(λ∗, L) (0.11, 2.938) (0.10, 2.863) (0.09, 2.804) (0.08, 2.762)
ARLmin 17.47 21.21 23.79 25.82

0.13
(λ∗, L) (0.13, 2.993) (0.10, 2.863) (0.10, 2.834) (0.08, 2.762)
ARLmin 16.67 20.25 22.71 24.66

0.14
(λ∗, L) (0.13, 2.993) (0.10, 2.863) (0.10, 2.834) (0.09, 2.795)
ARLmin 15.96 19.39 21.75 23.62

0.15
(λ∗, L) (0.14, 3.017) (0.11, 2.887) (0.10, 2.834) (0.10, 2.828)
ARLmin 15.33 18.63 20.89 22.69

0.16
(λ∗, L) (0.14, 3.017) (0.13, 2.936) (0.10, 2.834) (0.10, 2.828)
ARLmin 14.76 17.93 20.12 21.84

0.17
(λ∗, L) (0.14, 3.017) (0.13, 2.936) (0.11, 2.866) (0.10, 2.828)
ARLmin 14.24 17.3 19.42 21.08

0.18
(λ∗, L) (0.15, 3.041) (0.13, 2.936) (0.11, 2.866) (0.10, 2.828)
ARLmin 13.77 16.72 18.78 20.39

0.19
(λ∗, L) (0.15, 3.041) (0.13, 2.936) (0.12, 2.893) (0.11, 2.853)
ARLmin 13.34 16.2 18.19 19.75

0.20
(λ∗, L) (0.15, 3.041) (0.13, 2.936) (0.12, 2.893) (0.11, 2.853)
ARLmin 12.95 15.71 17.65 19.17

To demonstrate the use of these design tables and the process for calculating these
tables, we present an example. Suppose that we are aiming to find the optimal values
of λ and L for a target drift size θ = 0.01 with in-control mean µ0 = 4 and in-control
ARL ARL0 = 200. We first create a wide range of λ with step size 0.01, for example,
λ = 0.01, 0.02, . . . Then, we select the value of L for each λ to achieve ARL0 = 200. Based
on each pair of λ and L, the out-of-control ARL ARL1 is computed. The pair of λ and L
(λ = 0.04, L = 2.109), which produces the minimum value of ARL1 (ARLmin = 55.41),
becomes the optimal design for the above requirement.
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Table 5. Optimal parameters for the EWMA chart when ARL0 = 800.

θ
µ0

4 8 12 16

0.01
(λ∗, L) (0.03, 2.674) (0.02, 2.489) (0.02, 2.479) (0.02, 2.470)
ARLmin 76.75 92.54 103.11 111.35

0.02
(λ∗, L) (0.04, 2.783) (0.03, 2.646) (0.03, 2.636) (0.03, 2.631)
ARLmin 52.19 63.16 70.63 76.47

0.03
(λ∗, L) (0.05, 2.857) (0.04, 2.751) (0.04, 2.736) (0.04, 2.729)
ARLmin 41.35 50.3 56.29 61.01

0.04
(λ∗, L) (0.06, 2.924) (0.05, 2.826) (0.05, 2.814) (0.04, 2.729)
ARLmin 35.03 42.6 47.79 51.78

0.05
(λ∗, L) (0.07, 2.980) (0.06, 2.887) (0.05, 2.814) (0.05, 2.803)
ARLmin 30.78 37.45 42 45.58

0.06
(λ∗, L) (0.07, 2.980) (0.06, 2.887) (0.06, 2.873) (0.05, 2.803)
ARLmin 27.68 33.68 37.81 41.02

0.07
(λ∗, L) (0.10, 3.098) (0.07, 2.939) (0.06, 2.873) (0.06, 2.862)
ARLmin 25.26 30.78 34.56 37.53

0.08
(λ∗, L) (0.10, 3.098) (0.07, 2.939) (0.07, 2.920) (0.06, 2.862)
ARLmin 23.33 28.47 31.98 34.71

0.09
(λ∗, L) (0.10, 3.098) (0.08, 2.981) (0.07, 2.920) (0.07, 2.909)
ARLmin 21.75 26.56 29.84 32.41

0.10
(λ∗, L) (0.10, 3.098) (0.08, 2.981) (0.08, 2.959) (0.07, 2.909)
ARLmin 20.43 24.96 28.05 30.46

0.11
(λ∗, L) (0.10, 3.098) (0.09, 3.018) (0.08, 2.959) (0.07, 2.909)
ARLmin 19.32 23.6 26.51 28.81

0.12
(λ∗, L) (0.10, 3.098) (0.09, 3.018) (0.08, 2.959) (0.08, 2.949)
ARLmin 18.36 22.42 25.19 27.36

0.13
(λ∗, L) (0.10, 3.098) (0.09, 3.018) (0.09, 2.994) (0.08, 2.949)
ARLmin 17.52 21.39 24.02 26.1

0.14
(λ∗, L) (0.10, 3.098) (0.11, 3.075) (0.09, 2.994) (0.08, 2.949)
ARLmin 16.79 20.47 22.99 24.98

0.15
(λ∗, L) (0.13, 3.189) (0.11, 3.075) (0.09, 2.994) (0.09, 2.982)
ARLmin 16.12 19.64 22.07 23.99

0.16
(λ∗, L) (0.13, 3.189) (0.11, 3.075) (0.10, 3.025) (0.09, 2.982)
ARLmin 15.51 18.9 21.24 23.08

0.17
(λ∗, L) (0.13, 3.189) (0.11, 3.075) (0.10, 3.025) (0.09, 2.982)
ARLmin 14.96 18.23 20.49 22.27

0.18
(λ∗, L) (0.13, 3.189) (0.12, 3.103) (0.11, 3.050) (0.09, 2.982)
ARLmin 14.46 17.62 19.8 21.53

0.19
(λ∗, L) (0.15, 3.235) (0.12, 3.103) (0.11, 3.050) (0.09, 2.982)
ARLmin 14 17.06 19.17 20.86

0.20
(λ∗, L) (0.15, 3.235) (0.13, 3.126) (0.11, 3.050) (0.11, 3.035)
ARLmin 13.58 16.55 18.59 20.24

Note that small values of λ are sensitive to small drifts, and large values of λ are
sensitive to large drifts. Taking ARL0 = 200 and µ0 = 4 as an example, the optimal λ for
detecting drift θ = 0.01 is 0.04, and the optimal λ for drift size θ = 0.20 is 0.18. Furthermore,
the optimal values of λ increase with the increase in drift size θ.

It is interesting to note that the in-control mean µ0 affects the choice of optimal
parameters. For a desired in-control ARL, the optimal value of λ decreases with the
increase in µ0. This trend is more obvious when the target drift size is large. Furthermore,
there do exist exceptions. For example, the optimal value of λ is 0.12 for θ = 0.20, µ0 = 12,
and ARL0 = 200. However, the optimal value of λ is 0.13 for θ = 0.20, µ0 = 16, and
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ARL0 = 200. This phenomenon may result from the step size. If the step size is small
enough, the optimal value of λ can be more accurate.

Table 6. Optimal parameters for the EWMA chart when ARL0 = 1000.

θ
µ0

4 8 12 16

0.01
(λ∗, L) (0.03, 2.763) (0.02, 2.590) (0.02, 2.581) (0.02, 2.579)
ARLmin 79.69 96.31 107.57 116.37

0.02
(λ∗, L) (0.04, 2.875) (0.03, 2.741) (0.03, 2.731) (0.03, 2.725)
ARLmin 53.78 65.31 73.17 79.35

0.03
(λ∗, L) (0.05, 2.951) (0.04, 2.844) (0.04, 2.838) (0.03, 2.725)
ARLmin 42.57 51.81 58.08 63.05

0.04
(λ∗, L) (0.06, 3.025) (0.05, 2.929) (0.04, 2.838) (0.04, 2.825)
ARLmin 36.03 43.82 49.2 53.42

0.05
(λ∗, L) (0.07, 3.074) (0.05, 2.929) (0.05, 2.906) (0.05, 2.895)
ARLmin 31.62 38.48 43.23 46.97

0.06
(λ∗, L) (0.08, 3.122) (0.07, 3.029) (0.05, 2.906) (0.05, 2.895)
ARLmin 28.39 34.64 38.87 42.21

0.07
(λ∗, L) (0.08, 3.122) (0.07, 3.029) (0.06, 2.961) (0.05, 2.895)
ARLmin 25.9 31.6 35.5 38.59

0.08
(λ∗, L) (0.08, 3.122) (0.07, 3.029) (0.06, 2.961) (0.06, 2.947)
ARLmin 23.94 29.2 32.83 35.67

0.09
(λ∗, L) (0.09, 3.161) (0.08, 3.071) (0.07, 3.010) (0.06, 2.947)
ARLmin 22.34 27.24 30.61 33.28

0.10
(λ∗, L) (0.10, 3.198) (0.10, 3.129) (0.08, 3.042) (0.07, 2.994)
ARLmin 20.98 25.57 28.74 31.27

0.11
(λ∗, L) (0.10, 3.198) (0.10, 3.129) (0.08, 3.042) (0.07, 2.994)
ARLmin 19.83 24.13 27.14 29.55

0.12
(λ∗, L) (0.10, 3.198) (0.10, 3.129) (0.08, 3.042) (0.08, 3.033)
ARLmin 18.83 22.9 25.77 28.07

0.13
(λ∗, L) (0.11, 3.224) (0.10, 3.129) (0.08, 3.042) (0.08, 3.033)
ARLmin 17.96 21.82 24.58 26.76

0.14
(λ∗, L) (0.11, 3.224) (0.10, 3.129) (0.08, 3.042) (0.08, 3.033)
ARLmin 17.18 20.87 23.53 25.6

0.15
(λ∗, L) (0.12, 3.252) (0.10, 3.129) (0.08, 3.042) (0.09, 3.066)
ARLmin 16.49 20.03 22.59 24.57

0.16
(λ∗, L) (0.14, 3.302) (0.10, 3.129) (0.10, 3.110) (0.10, 3.098)
ARLmin 15.86 19.28 21.74 23.63

0.17
(λ∗, L) (0.14, 3.302) (0.10, 3.129) (0.10, 3.110) (0.10, 3.098)
ARLmin 15.29 18.6 20.96 22.78

0.18
(λ∗, L) (0.14, 3.302) (0.10, 3.129) (0.10, 3.110) (0.10, 3.098)
ARLmin 14.77 17.98 20.26 22.01

0.19
(λ∗, L) (0.14, 3.302) (0.10, 3.129) (0.10, 3.110) (0.10, 3.098)
ARLmin 14.3 17.42 19.61 21.3

0.20
(λ∗, L) (0.14, 3.302) (0.10, 3.129) (0.11, 3.138) (0.10, 3.098)
ARLmin 13.87 16.9 19.02 20.66

5. A Simulated Example

To demonstrate the use of the one-sided Poisson EWMA chart, a simulated example
studied by Perry [24] is discussed. Such an example could be an abstraction or expression on
the practice of monitoring daily new infected cases in a hospital. In this example, there are
totally 40 observations. The process is in-control for the first 25 observations, and becomes
out-of-control from the 26th observation. Note that all observations are generated from



Mathematics 2022, 10, 4786 10 of 12

the Poisson distribution. In particular, for the in-control state, the process mean is set to
5 (µ0 = 5). The process mean for the out-of-control state is set to µt = µ0 + 0.15(t− 25)
(26 ≤ t ≤ 40). It is not hard to observe that the process mean takes a linear drift time of 26.

To facilitate the EWMA chart, we need to specify the smoothing parameter λ and
the control limit hY. Assume that the desired in-control ARL is 200. According to Table 3,
the optimal parameters for detecting drift size θ = 0.15 can be chosen as λ = 0.15 and

hY = L
√

λ
2−λ = 0.7454 by interpolation. Figure 1 presents the simulated counts and the

charting statistics. The EWMA signals at time index 37.
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Figure 1. Simulated count data and the charting statistics.

6. Concluding Remarks

In this research, we analyze the detection ability of the one-sided Poisson EWMA chart
for monitoring the Poisson mean subject to linear drifts. We apply the Markov chain model
to evaluate the performance of the EWMA chart by extending it from step shifts to linear
drifts. The results obtained from the Markov chain model are compared with the results
generated by the Monte Carlo simulation. The comparison results demonstrated that the
extended Markov chain model can produce accurate approximation. Some design tables
are presented to facilitate the design of the one-sided Poisson EWMA chart.

In this work, only one type of the EMWA chart has been discussed. One can definitely
investigate the performance of other EWMA charts, and even compare their performance
when the Poisson mean performs a linear trend. Furthermore, we limited our studies to
linear drifts. Other mean shift types can be considered, and our method can be adjusted to
the other shift type easily, unless the shift pattern is known or can be estimated.

We assume that the in-control mean µ0 is known in this work. However, it is reasonable
that the in-control mean is unknown. As we discussed previously, the in-control mean
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impacts the optimal value of the parameters. Thus, the precise estimation of the in-control
mean µ0 becomes crucial. It could be interesting to incorporate the uncertainty of the
in-control mean, which is our further research.
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