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Abstract: This paper introduces a strategy to enrich swarm intelligence algorithms with the prefer-
ences of the Decision Maker (DM) represented in an ordinal classifier based on interval outranking.
Ordinal classification is used to bias the search toward the Region of Interest (RoI), the privileged zone
of the Pareto frontier containing the most satisfactory solutions according to the DM’s preferences.
We applied this hybridising strategy to two swarm intelligence algorithms, i.e., Multi-objective Grey
Wolf Optimisation and Indicator-based Multi-objective Ant Colony Optimisation for continuous do-
mains. The resulting hybrid algorithms were called GWO-InClass and ACO-InClass. To validate our
strategy, we conducted experiments on the DTLZ problems, the most widely studied test suit in the
framework of multi-objective optimisation. According to the results, our approach is suitable when
many objective functions are treated. GWO-InClass and ACO-InClass demonstrated the capacity of
reaching the RoI better than the original metaheuristics that approximate the complete Pareto frontier.

Keywords: preference incorporation; ant colony optimisation; grey wolf optimisation; interval
outranking; multi-criteria decision analysis

1. Introduction

Organisations from different sectors and domains often face problems with multi-
ple conflicting objectives to optimise. The scientific literature classifies these problems
according to the number of objectives as Multi-objective Optimisation Problems (MOPs)
for problems with 2–4 objectives and Many-objective Optimisation Problems (MaOPs)
for problems with more than four objectives. Typically, MOPs and MaOPs are addressed
through the so-called a posteriori approach, which consists of the following two phases:

1. A set of efficient solutions is approximated (the Pareto optimal set).
2. The Decision Maker (DM) has to choose the best compromise: the solution that best

matches their preferences.

Metaheuristic algorithms are promising alternatives to address Phase 1. Multi-objective
Evolutionary Algorithms (MOEAs) and Multi-objective Swarm Intelligence Algorithms
(MOSIAs) are quite popular because their application does not demand particular math-
ematical properties on the objective functions, the geometry of the Pareto frontier or the
constraints of the problem [1–3].

Even though MOEAs and MOSIAs have been widely used in addressing MOPs, most
of them cannot adequately approximate the Pareto frontier for MaOPS. They have to cope
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with severe difficulties as the number of objectives increases; remarkably, the number of
dominance resistant solutions, the high cost to ensure diversity, and the low effectiveness
of the genetic operators. Studies on the difficulties and challenges found by MOEAs in
addressing MaOPs are discussed by Bechikh et al. [4], López Jaimes and Coello Coello [5],
Sudeng and Wattanapongsakorn [6], and Ikeda et al. [7]. One of the main criticisms
of the a posteriori approaches is that they require reaching a sufficiently representative
approximation of the complete Pareto front before the multi-criteria decision making.

Even supposing a good approximation of the Pareto frontier, the DM has to solve
a multi-criteria selection problem in this set to address Phase 2. An alternative is to
make a heuristic selection; the DM is supposed to consistently compare solutions on the
approximated Pareto frontier until the best compromise is identified. This task is likely to
become pretty hard and impractical in problems with many objective functions because of
the human mind cognitive limitations (as stated by Miller [8]). Another alternative is to
apply a Multi-Criteria Decision Analysis (MCDA) method that articulates the preferences
of the DM. Again, this approach assumes that the solution set effectively contains the most
preferred solutions, which is questionable under the presence of many objective functions.

As a consequence of the above discussion, there has been an increasing interest in
combining MOEAs and MCDA methods in recent years. One way is to consider the
preferences to bias the search toward the Region of Interest (RoI). The RoI is the region of
the Pareto frontier with the solutions that best match the DM’s preferences; accordingly,
the best compromise is a solution belonging to the RoI.

The preference incorporation requires considering non-trivial aspects such as defining
the model of the DM’s preferences, characterising the RoI, and determining the relevance of
the solutions [9]. Most methods for preference incorporation admit at least one of the follow-
ing kinds of information on the preferences [10,11]: weights, e.g., [12]; ranking of solutions,
e.g., [13]; ranking of objective functions, e.g., [14]; reference points, e.g., [15]; trade-offs be-
tween objective functions, e.g., [16]; desirability thresholds, e.g., [17]; solution classification,
e.g., [18]; and pairwise comparisons based on preference relations, e.g., [19,20].

The two alternatives to incorporate the above strategies are the interactive approach
and the a priori approach, and both have advantages over the a posteriori one. On the one
hand, better solutions are found because there is an increment in the selective pressure
toward the RoI [21]. On the other hand, preference incorporation can alleviate the DM’s
cognitive effort to select the best compromise because the number of candidate solutions
is relatively short. Still, the interactive approaches are strongly criticised because they
require preference relations with full comparability and transitivity (as the dimensionality
increases, these properties become unlikely) [22]. Contrastingly, the a priori preference
incorporation does not mandatorily require such properties. However, it demands a model
that reflects the DM’s preferences about the solutions.

In many real-world MaOPs, the models should support imprecision and vagueness
in the DM’s preferences. For instance, if the DM is a heterogeneous group (e.g., a board
of directors) or an ill-defined entity (e.g., a community in social networks). In those
circumstances, the task of eliciting the parameters of a preference model is highly difficult
and is only reachable with some level of imprecision. If such imperfect knowledge is not
considered, the best compromise could hardly be identified among the existing alternatives.
Interval mathematics is a straightforward but effective way to express imprecision [23].

Fernandez et al. [24] introduced an extension of the outranking method by incorpo-
rating interval numbers in the preference parameters. This MCDA method can handle
incomparability, veto situations, and non-transitive preferences. These properties become
critical to address real-world MaOPs because many DMs have non-transitive and non-
compensatory preferences. Additionally, the DM feels more comfortable eliciting the values
of the parameters as interval numbers than as precise values. If the DM cannot (or not want
to) directly give a value for some required parameters, they may use an indirect elicitation
method to infer them, e.g., [25].
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In light of the above discussions, this paper presents a further analysis to observe
how incorporating interval outranking in MOSIAs impacts the performance. We pro-
pose embedding multi-criteria ordinal classification based on interval outranking (strictly
speaking, the INTERCLASS-nC method [26]) into many-objective optimisation algorithms.
Similar to previous approaches based on ordinal classification, e.g., [11], our proposal
also requires representative samples of solutions classified by the DM as ‘Satisfactory’ or
‘Dissatisfactory’. However, we extended this notion with two artificial classes (for internal
use of the algorithms) that increase the selective pressure toward the RoI. By applying this
strategy, we introduce the a priori versions of two relevant a posteriori algorithms based on
swarm intelligence; specifically, Multi-objective Grey Wolf Optimisation (MOGWO) [27]
and Indicator-based Multi-objective Ant Colony Optimisation for continuous domains
(iMOACOR) [28]. The a priori preference incorporation significantly increased the perfor-
mance of the MOSIAs according to a non-parametric test (Mann–Whitney–Wilcoxon).

The remainder of this paper is organised as follows. Section 2 includes some pre-
liminaries on multi-objective optimisation, interval outranking, ordinal classification, and
the MOSIAs taken as baseline. Section 3 details the proposed algorithms with preference
incorporation. Section 4 shows the experimental results. Lastly, Section 5 discusses the
conclusions and provides some directions for future research.

2. Background

This section presents an overview of the theoretical foundations. Section 2.1 presents
some preliminaries on optimisation with multiple objectives. Section 2.2 briefly describes
the baseline versions of the MOSIAs used in this paper. Lastly, Section 2.3 presents the
model for multi-criteria ordinal classification based on interval outranking.

2.1. Preliminaries on Multi-Objective Optimisation

Optimisation refers to finding the values in the decision variables (independent vari-
ables) that provoke extreme values of one or more objective functions (dependent variables).
It is called ‘mono-objective’ optimisation if a single function is treated. In contrast, it is
called ‘multi-objective’ optimisation if a few objective functions are treated (typically, up to
four). Farina and Amato [29] recognised that most MOEAs are severely affected when they
address problems with more than four objective functions, named them ‘many-objective’
optimisation problems.

Real-world applications often involve optimising several functions that are essentially
conflicting [30]. As a consequence, no point is simultaneously optimal in all objective
functions.

Here, x = 〈x1, x2, x3, . . . , xn〉 represents a solution of a MOP/MaOP: a vector of
decision variables that optimises a vector function f (x) whose components represent the
values of the objectives. Equation (1) defines f (x), where m is the number of objectives
(dimensionality of the problem), and n is the number of decision variables. Applied
optimisation models usually add constraints to Equation (1) to reflect real situations.

f (x) = 〈 f1(x), f2(x), f3(x), . . . , fm(x)〉 fk : Rn → R (1)

Pareto dominance is widely accepted to compare two solutions, determining which of
them is better. Thus, Pareto dominance discriminates between solutions by comparing their
f (x). Without loss of generality, let us consider minimising the m objectives; the Pareto
dominance relation, represented by the symbol 4, may be expressed as [31]

x 4 y =

{
(x, y) : fk(x) 6 fk(y) ∀k ∈ {1, 2, 3, . . . , m} ∧

fk(x) < fk(y) ∃k ∈ {1, 2, 3, . . . , m}
}

.
(2)
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The non-dominated solutions make up the Pareto set, expressed as

PS = {x ∈ RF : y 4 x @y ∈ RF}, (3)

where RF is the feasible region.
The Pareto frontier, PF = { f (x) : x ∈ PS}, is the image of the Pareto set. In the absence

of information on the preferences of the DM, a sufficiently representative sample of the
Pareto frontier should be calculated.

Identifying a set of Pareto efficient solutions is indeed necessary to solve MOPs
and MaOPS. Still, it is not sufficient since the DM must select the best compromise (the
solution to implement). The DM chooses the best compromise according to their personal
preferences about the objective functions. In practice, the best compromise is the ultimate
solution to the problem.

2.2. An Overview of Two Swarm Intelligence Algorithms to Address MaOPs

In this section, we provide a brief description of MOGWO [27] and iMOACOR [28].

2.2.1. Multi-Objective Grey Wolf Optimisation

Mirjalili et al. [27] proposed MOGWO—Multi-Objective Grey Wolf Optimiser—which
extends the mono-objective algorithm Grey Wolf Optimiser (GWO) [32] to treat multiple
objectives. This swarm intelligence algorithm is inspired by nature, specifically by the
behaviour of grey wolves in tracking and hunting their prey. By analogy, the solution
with the best value in the objective function is named the α wolf. The second-best and the
third-best solutions are named β and δ wolves, respectively. The remaining solutions are
known as Ω wolves. The leaders (α, β, and δ) guide the optimisation process, and the Ω
wolves follow the leaders in the search for the global optimum.

Let n be the number of decision variables, ι be the number of the current iteration,
xι

i =
〈

xι
i,1, xι

i,2, xι
i,3, . . . , xι

i,n

〉
be the n-dimensional location point of the ith wolf during the

ιth iteration, and xι =
〈

xι
1, xι

2, xι
3, . . . , xι

h̄
〉

be the positions of a pack with h̄ wolves. The
following equation simulates how the Ω wolves are relocated to siege their prey during
hunt following the social leadership:

xι+1
i =

xι
1 + xι

2 + xι
3

3
∀i ∈ {1, 2, 3, . . . , h̄}, (4)

where xι
1, xι

2, and xι
3 are n-dimensional vectors reflecting the influence of the three leader

wolves during the ιth iteration. Each component of them is calculated as

xι
1,j = xα,j − Aj · Dα,j ∀j ∈ {1, 2, 3, . . . , n}, where Dα,j =

∣∣∣Cj · xα,j − xι
i,j

∣∣∣, (5)

xι
2,j = xβ,j − Aj · Dβ,j ∀j ∈ {1, 2, 3, . . . , n}, where Dβ,j =

∣∣∣Cj · xβ,j − xι
i,j

∣∣∣, (6)

xι
3,j = xδ,j − Aj · Dδ,j ∀j ∈ {1, 2, 3, . . . , n}, where Dδ,j =

∣∣∣Cj · xδ,j − xι
i,j

∣∣∣. (7)

In Equations (4)–(7), xα,j, xβ,j and xδ,j are the positions of the leader wolves at the jth
coordinate, ι + 1 is the number of the next iteration, and A and Dα are coefficient vectors
modelling the encircling behaviour of wolves as

Aj = 2aj · r1,j − aj ∀j ∈ {1, 2, 3, . . . , n}, (8)

and
Dα,j =

∣∣∣Cj · xα,j − xι
i,j

∣∣∣ ∀j ∈ {1, 2, 3, . . . , n}, where Cj = 2 · r2,j. (9)

In Equations (8) and (9), a is an n-dimensional vector whose elements linearly de-
crease from two to zero throughout the run of the algorithm, and r1 and r2 are random
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n-dimensional vectors with values in [0, 1]. The components of Dβ and Dδ are similarly
calculated as those of Dα in Equation (9).

Exploration is promoted by A with values greater than one (or less than –1); with
that setting, the Ω wolves diverge from the leaders. C is another component of GWO that
favours exploration, whose components represent weights and are generated at random
to emphasise (Cj > 1) or de-emphasise (Cj < 1) the influence of the α, β and δ wolves
in defining the distance in Equations (5)–(7). According to Mirjalili et al. [27], p. 109: “C
is not linearly decreased in contrast to A. The C parameter was deliberately required to
provide random values at all times in order to emphasise exploration not only during initial
iterations but also final iterations”.

GWO exploits the search space if |Aj| < 1 because, when the components of A are in
[−1, 1], the position of the ith wolf in the next iteration will be located between its current
position and the position of the leader. This setting assists Ω wolves to converge toward an
estimated position of their prey, provided by xα, xβ and xδ.

GWO starts the optimisation process by generating solutions at random during the
first population. Then, the three best solutions so far are considered as the α, β and δ

wolves. In the next iteration, each Ω wolf updates its position by applying Equations (4)–(7).
Simultaneously, the components of a are linearly decreased in each iteration. Therefore,
the pack of wolves tends to widely explore the search space during the first iterations and
intensively exploit it during the last iterations. The algorithm stops when a maximum
number of iterations is reached, and xα is returned as the best solution obtained throughout
the optimisation process.

To treat MOPs via GWO, MOGWO integrates the following two extensions into GWO:
(i) an archive with the Pareto optimal solutions obtained so far, and (ii) a criterion for
picking the leaders (xα, xβ and xδ) from the archive.

If the archive is full of non-dominated solutions (note that there is a predefined size)
and there is a new solution to be entered; then, a grid technique determines the region in
the Pareto frontier that is the most crowded by the archive. A solution is removed from
this region at random; then, the new solution may be added to the archive. Thus, the
probability of a solution being deleted is proportional to the number of points in each
hypercube (region).

Complementarily, the criterion to select xα, xβ and xδ favours the least crowded
regions in the Pareto front. The selection is based on a roulette-wheel method with the
following probability for each hypercube:

pl =
C
Nl

, (10)

where C is a constant (C > 1), and Nl is the number of solutions in the lth hypercube. The
two extensions of MOGWO jointly promote the representativeness in the sample of the
Pareto frontier.

2.2.2. Indicator-Based Multi-Objective Ant Colony Optimisation for Continuous Domains

Socha and Dorigo [33] proposed ACOR, an extension of Ant Colony Optimisation
(ACO) [34] to optimise mono-objective problems with continuous decision variables. In
ACOR, the pheromone matrix (τ) is an archive that stores the best-so-far solutions. Here,
a vector xl =

〈
xl,1, xl,2, xl,3, . . . , xl,n

〉
represents a solution of a problem with n decision

variables, and f (xl) is the objective function to minimise. The κ best-evaluated solutions
are stored in τ, following the implicit order given by f (xl). The position in τ of each xl
determines a weight (ωl) that measures the quality of xl , defined in Equation (11).

ωl =
e−ϕ(l)

ς · κ
√

2π
, where ϕ(l) =

(l − 1)2

2ς2κ2 (11)
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Equation (11) defines ωl as a value of the Gaussian function with standard deviation
ς · κ, mean 1.0, and argument l. Here, κ is the number of solutions in τ, and ς is a parameter
(0 6 ς 6 1). The effect of ς is to establish the proper balance between the pressures exerted
by the best-so-far solution (with values close to one) and the iteration-best solutions (with
values close to zero).

Furthermore, a Gaussian kernel (Gj) is calculated for each decision variable (1 6 j 6 n)
as

Gj(x) =
κ

∑
l=1

ωl g
j
l(x), (12)

where

gj
l(x) =

e−φj(l)

sj
l

√
2π

, where φj(l) =

(
x− xl,j

)2

2
(

sj
l

)2 . (13)

According to Equation (13), gj
l(x) is a normal distribution, where sj

l is the standard
deviation, and xl,j is the mean. The former is calculated in each iteration as ants construct

solutions. Then, Gj in Equation (12) is a weighted sum of gj
l(x) ∀l ∈ {1, 2, 3, . . . κ}, which

defines the one-dimensional Gaussian function for the jth decision variable of the lth
solution in τ.

Ants construct solutions by performing n steps. The ith ant sets the value for the
variable xi,j at the jth step. Here, only Gj—the resulting Gaussian kernel—is needed. Then,
the weights ωl are computed through Equation (11) and used to sample, by following two
phases:

1. One Gaussian function is picked from the Gaussian kernel. The probability pl of
choosing the lth Gaussian function is given by

pl =
ωl

∑κ
r=1 ωr

. (14)

To exploit the synergy among decision variables, gj
l(x) is the single Gaussian function

ants use to construct a solution incrementally during a complete iteration.
2. The chosen Gaussian function (l) is used to sample new solutions. At the jth step, the

standard deviation (sj
l) is required to calculate the Gaussian function, gj

l(x), picked
in Phase 1 (de facto, the sampled Gaussian function will be different in each jth
construction step). Here, sj

l is dynamically calculated by Equation (15).

sj
l = ξ

κ

∑
r=1

∣∣∣xr,j − xl,j

∣∣∣
κ − 1

(15)

Equation (15) defines the standard deviation as the average distance from xl (the
picked solution) to other solutions (xr) in τ. The parameter ξ weights this distance
(0 6 ξ 6 1). The effect of the parameter ξ is similar to the pheromone evaporation in
ACO, influencing the behaviour of the colony: with low values, exploitation is more
promoted than exploration. The value of the jth decision variable is inferred by the
ith ant by following

xi,j ∼ gj
l(x). (16)

2.3. Multi-Criteria Ordinal Classification Based on Interval Outranking

The notion behind outranking is that the credibility of the proposition ‘x is at least
as good as y’—represented as σ(x, y)—may be calculated by analysing each pair of their
criteria scores [35]. ELECTRE is the most representative MCDA method of the outranking
approaches. Typically, ELECTRE defines σ(x, y) = c(x, y) · d(x, y), where
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• c(x, y), the concordance index, cumulates the weights of the criteria in favour of the
statement ‘x is at least as good as y’; and

• d(x, y), the discordance index, assesses the combined strength of the criteria against ‘x
is at least as good as y’.

Both indexes are calculated in function of a series of parameters that must be appropri-
ately inferred so that σ models the preferences of the DM. Interval outranking generalises
the classic outranking to the framework of interval numbers, providing support when the
values of the preference parameters are imprecisely known.

If the reader is be unfamiliar with interval mathematics, Appendix A compiles the
basic notions to understand interval outranking. Note that interval numbers in this paper
are written in boldface italic letters.

Let O be a set of alternatives (solutions). Each x ∈ O is evaluated with an m-
dimensional objective function f (x) = 〈 f1(x), f2(x), f3(x), . . . , fm(x)〉. Without loss of
generality, we suppose that each fk(x) is a minimising objective and, consequently, the
preference of the DM increases as the value of fk(x) decreases. The parameters of the
outranking model are:

• The vector of weights, wk =
[
wk, wk

]
∀k ∈ {1, 2, 3, . . . , m}, where

m

∑
k=1

wk 6 1 and

m

∑
k=1

wk > 1;

• The vector of veto thresholds, vk =
[
vk, vk

]
∀k ∈ {1, 2, 3, . . . , m};

• The majority threshold, λ =
[
λ, λ

]
, where 0.5 6 λ 6 λ 6 1; and

• The credibility threshold, β, where 0.5 6 β 6 1.

The concordance coalition of two solutions (x, y), denoted as Cx,y =
{

k ∈ {1, 2, 3, . . . , m} :
P( fk(y) > fk(x)) > 0.5

}
, is the subset of objectives favouring the statement ‘x is at least

as good as y’. The concordance index for the statement ‘x is at least as good as y’ is the
interval number c(x, y) =

[
c(x, y), c(x, y)

]
, defined as

c(x, y) =


∑

k∈Cx,y

wk if ∑
k∈Cx,y

wk + ∑
k∈Dx,y

wk > 1,

1− ∑
k∈Dx,y

wk otherwise,
(17)

and

c(x, y) =


∑

k∈Cx,y

wk if ∑
k∈Cx,y

wk + ∑
k∈Dx,y

wk 6 1,

1− ∑
k∈Dx,y

wk otherwise.
(18)

Moreover, the discordance coalition consists of the objectives that are not in the
concordance coalition, defined as Dx,y = {1, 2, 3, . . . , m} \ Cx,y. These objectives justify
arguments invalidating the outranking relation ‘x is at least as good as y’. The value
P
(

fk(x)− fk(y) > vk
)

models the degree of credibility of the proposition ‘the kth criterion
alone vetoes the statement x outranks y’. The discordance index, d(x, y), is calculated
appraising the credibility of veto of each objective in Dx,y, and is expressed as

d(x, y) = 1− max
k∈Dx,y

{
P
(

fk(x)− fk(y) > vk
)}

. (19)

Accordingly, σ(x, y) is redefined as

σ(x, y) = min
{

P
(
c(x, y) > λ

)
, d(x, y)

}
. (20)
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By following Equation (20), Fernandez et al. [24] introduced a pair of binary preference
relations. First, the crisp outranking relation (S) is presented in Equation (21), where β is a
threshold on the credibility of ‘x is at least as good as y’. Lastly, Equation (22) presents the
crisp relation ‘x is preferred to y’.

xSy = {(x, y) : σ(x, y) > β} (21)

xPry = {(x, y) : x 4 y ∨ (xSy ∧ ¬ySx)} (22)

Fernandez et al. [26] proposed INTERCLASS-nC, an extension of ELECTRE TRI-
nC [36] in the framework of interval outranking to multi-criteria ordinal classification.
INTERCLASS-nC is applicable in circumstances in which other MCDA methods fail, specif-
ically when the DM does not want to (or cannot) set precise values for the model parameters
(majority threshold, veto thresholds, and weights). INTERCLASS-nC is especially advan-
tageous if the DM has only a vague idea about the boundaries between adjacent classes;
nonetheless, they can quickly identify one representative solution at least in each category,
which may be characterised by intervals.

INTERCLASS-nC considers the array of classes C = 〈C1, C2, C3, . . . , Cv〉, increas-
ingly sorted by preference (v > 2), and the subset of reference solutions introduced to
characterise each C`, R` =

{
r`,

}
(where 1 6  6 |R`|, and 1 6 ` 6 v). Additionally,

〈r0, R1, R2, R3, . . . , Rv, rv+1〉 is the array of all reference solutions sorted by preference,
where r0 is the anti-ideal point and rv+1 is the ideal point. Following the interval outrank-
ing, the following condition is true for 1 6 ` < v:

¬xSy ∀x ∈ R`, y ∈ R`+1. (23)

Then, Equations (24) and (25) are used to define the categorical credibility indices
between an alternative x and the category C`.

ϑ(x, R`) = max
166|R` |

{
σ
(

x, r`,

)}
(24)

ϑ(R`, x) = max
166|R` |

{
σ
(

r`,, x
)}

(25)

The crisp relation of interval outranking is extended to compare actions with the sets
of characteristic actions as

1. xSR` = {(x, R`) : ϑ(x, R`) > β};
2. R`Sx = {(R`, x) : ϑ(R`, x) > β}.

To suggest a class for a new alternative x, INTERCLASS-nC uses the selection func-
tion S f (x, R`) = min{ϑ(x, R`), ϑ(R`, x)} and two heuristics—the ascending rule and the
descending rule—that are conjointly used. Each one of these heuristics proposes a class
for an alternative x. If the classes do not coincide, they define a range of assignments for x
(any category within such a range is admissible as the class of x).

The steps of the ascending rule are the following

1. Compare x to R` for ` = 1, 2, 3, . . . , v + 1 until the first ` such that R`Sx;
2. If ` = 1, select C1 as a possible class for x;
3. If 1 < ` < v + 1, select C` as a possible class for x if S f (x, R`) > S f (x, R`−1);

otherwise, select C`−1.
4. If ` = v + 1, select Cv as a possible class for x.

The descending rule has the following steps

1. Compare x to R` for ` = v, v− 1, v− 2, . . . , 0 until the first ` such that xSR`;
2. If ` = v, select Cv as a possible class for x;
3. If 0 < ` < v, select C` as a possible class for x if S f (x, R`) > S f (x, R`+1); otherwise,

select C`+1.
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4. If ` = 0, select C1 as a possible class for x.

3. Proposed Algorithms

In this section, we describe how ordinal classification based on interval outranking
was embedded in MOGWO and iMOACOR to incorporate the preferences of the DM. The
primary strategy is to measure the quality of the solutions in terms of the class suggested
by INTERCLASS-nC. Consequently, the selective pressure increases toward the solutions
the DM is highly satisfied with. Note that both proposed algorithms are not intended
for searching representative approximations of the complete Pareto frontier; instead, they
search for the RoI: a relatively short subset of Pareto optimal solutions that best match the
DM’s preferences. Here, we propose that the RoI is made of solutions classified as ‘Highly
Satisfactory’, and the best compromise—the final prescription chosen by the DM—should
be a solution belonging to the RoI. Section 3.1 introduces the Grey Wolf Optimiser with
Interval outranking-based ordinal Classification, abbreviated as GWO-InClass. Section 3.2
introduces Ant Colony Optimisation with Interval outranking-based ordinal Classification,
abbreviated as ACO-InClass.

3.1. The GWO-InClass Algorithm

GWO-InClass extends MOGWO by classifying the solutions in each iteration utilising
INTERCLASS-nC before picking the leaders from the archive, keeping the solutions ranked
in the following order: ‘Highly Satisfactory’, ‘Satisfactory’, ‘Dissatisfactory’, and ‘Strongly
Dissatisfactory’.

We suggest using an ordinal classifier that has already been validated in an evolu-
tionary algorithm for many-objective optimisation [37]. In this approach, the DM should
classify the reference solutions (input) in two classes, ‘Dissatisfactory’ and ‘Satisfactory’
(respectively, C1 and C2), the minimum number of classes to apply INTERCLASS-nC. Then,
the model is extended by artificially adding the classes ‘Highly Satisfactory’ and ‘Strongly
Dissatisfactory’. Each new solution x generated during the evolutionary search is classified
according to the following assumptions:

• If xPry ∀y ∈ R2, then the DM is highly satisfied with x; otherwise, the DM is satisfied
with x.

• If yPrx ∀y ∈ R1, then the DM is strongly dissatisfied with the solution x; otherwise, the
DM is dissatisfied with x.

Algorithm 1 presents an outline of the ordinal classifier proposed by Balderas et al. [37].
A crucial process of GWO-InClass is to update the archive and select the α, β and

δ wolves; this process is presented in Algorithm 2. Here, Lines 1–2 initialise the vari-
ables; Lines 3–12 rank the solutions according to the class suggested by Algorithm 1;
Lines 13–15 make sure that the archive (A) is not larger than the maximum size allowed by
the parameter h̄; and, lastly, Lines 16–20 pick three different solutions from the non-empty
best-evaluated class to be the leader wolves.

Algorithm 3 provides an algorithmic outline of GWO-InClass. Unlike MOGWO,
GWO-InClass needs information about the preferences of the DM, which is exploited to
become closer to the RoI. The preferences of the DM are articulated through an interval
outranking model. We suggest using the proposal by Fernandez et al. [25] to infer the model
parameters that reflect the preferences of the DM. Furthermore, GWO-InClass also needs
the reference sets with solutions labelled by the DM as ‘Satisfactory’ or ‘Dissatisfactory’.
Initially, synthetic solutions are helpful to perform this task; however, if the DM is not
confident about those initial sets, they may additionally have some interactions with
GWO-InClass throughout the optimisation process and directly classify the solutions in
the archive, updating the reference sets. Binary classification of solutions is one of the least
cognitively demanding ways to interact with the DM.
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Algorithm 1 Ordinal classifier based on interval outranking
Input: Number of objectives (m), parameters of the outranking model (λ, β, v, w), a
solution x, representative sets R1 and R2
Output: The class for x (class)

1: cnc ← INTERCLASS-nC(x, R1, R2) . Descending and ascending rules
2: if cnc = ‘Satisfactory’ then
3: if xPry ∀y ∈ R2 then
4: class← ‘Highly Satisfactory’
5: else
6: if yPrx ∀y ∈ R1 then
7: class← ‘Strongly Dissatisfactory’
8: return class

Algorithm 2 Selection of the leader wolves
Input: Archive ( A ), solutions of the current iteration (xι), maximum size of the archive (h̄)
Output: The leader wolves (xα, xβ, xδ)

1: R ← 〈∅, ∅, ∅, ∅〉
2: T ← PS(A∪ xι) . Filtering only Pareto efficient solutions, see Equation (3)
3: for xi ∈ T do . Main loop for ranking solutions
4: class← extended_INTERCLASS-nC(xi) . Classifying by Algorithm 1
5: if class = ‘Highly Satisfactory’ then
6: R1 ← R1 ∪ {xi}
7: if class = ‘Satisfactory’ then
8: R2 ← R2 ∪ {xi}
9: if class = ‘Dissatisfactory’ then

10: R3 ← R3 ∪ {xi}
11: if class = ‘Strongly Dissatisfactory’ then
12: R4 ← R4 ∪ {xi}
13: if |T | > h̄ then
14: Remove the |T | − h̄ worst solutions according to the ranking
15: A ← T
16: leaders← 〈xα, xβ, xδ〉
17: for xi ∈ leaders do . Main loop for picking the leaders

18: topRanked←


R1 ifR1 6= ∅
R2 ifR1 = ∅ ∧ R2 6= ∅
R3 ifR1 = R2 = ∅ ∧ R3 6= ∅
R4 otherwise

. Choosing the best evaluated

set that is not empty
19: xi ← roulette_wheel(topRanked) . Probabilities calculated by Equation (10)
20: Remove xi fromR . To avoid selecting the same solution as xα, xβ or xδ
21: return xα, xβ, xδ

In Algorithm 3, Lines 1–5 initialise the parameters and generate the initial positions
of the wolves. Line 6 picks the first leader wolves. Lines 7–12 present the iterated process
of GWO-InClass; here, Line 8 applies Equations (4)–(9) to update the positions of the Ω
wolves, following the social leadership of the α, β and δ wolves; Line 10 updates the archive
and obtains the latest positions of the leader wolves; and lastly, Lines 11–12 update the
parameters and variables to perform the next iteration.
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Algorithm 3 The Grey Wolf Optimiser with Interval outranking-based ordinal Classification
Input Number of objectives (m), number of decision variables (n), parameters of the
outranking model (wk, vk ∀k ∈ {1, 2, 3, . . . , m}, λ, β), reference solution sets (R1, R2), maxi-
mum size of the archive (h̄)
Output: An approximation of the RoI (A)

1: Initialise the parameters of MOGWO (a, A, and C)
2: x0

i ← random_solution() ∀i ∈ {1, 2, 3, . . . , h̄} . Generating the initial pack of wolves
at random

3: Calculate fk(x0
i ) ∀k ∈ {1, 2, 3, . . . , m}, i ∈ {1, 2, 3, . . . , h̄} . Getting the values of the

objective functions for each wolf
4: A ← ∅
5: ι← 1
6: (xα, xβ, xδ)← get_leaders(A, x0, h̄) . Algorithm 2
7: while ι 6 itermax do . Main loop of the optimisation process

8: xι
i ←

xι−1
1 +xι−1

2 +xι−1
3

3 ∀i ∈ {1, 2, 3, . . . , h̄} . Updating the pack of wolves by applying
Equations (4)–(9)

9: Calculate fk(xι
i) ∀k ∈ {1, 2, 3, . . . , m}, i ∈ {1, 2, 3, . . . , h̄}

10: (xα, xβ, xδ)← get_leaders(A, xι, h̄) . Algorithm 2
11: Update a, A, and C
12: ι← ι + 1
13: return A

3.2. The ACO-InClass Algorithm

Like GWO-InClass, ACO-InClass stores the best solutions in the pheromone matrix
τ—its archive—considering the class suggested by Algorithm 1. Figure 1 depicts the
pheromone representation used in ACO-InClass; here, κ is the size of the archive, n is the
number of decision variable, xl ∀l ∈ {1, 2, 3, . . . , κ} is the vector of the lth solution in the
archive, xl,j is the value of the jth decision variable of xl , Gj ∀j ∈ {1, 2, 3, . . . , n} is the
Gaussian kernel for the jth decision variable, and ωl ∀l ∈ {1, 2, 3, . . . , κ} is the weight of
the lth solution.

Figure 1. Pheromone matrix in ACO-InClass.

The chief difference between iMOACOR and ACO-InClass is the criteria to sort τ.
Falcón-Cardona and Coello Coello [28] suggested R2 scores [38] as the primary criterion
to rank the solutions in τ. Contrarily, in this paper, we propose the class indicated by
Algorithm 1 as the primary criterion, and R2 scores as the secondary criterion (intra-class
solutions are sorted using the R2 metric). The archive is set to store the κ top-ranked
solutions.

Algorithm 4 provides an algorithmic outline of ACO-InClass. Lines 1 and 7 initialise
the parameters and variables of the algorithm; Lines 2–6 generate and evaluate the initial
random solutions of the colony. Lines 8–16 present the iterated process of ACO-InClass;
here, Lines 9–10 generate the solutions of the colony by following the equations provided in
Section 2.2.2, particularly Equations (14)–(16); Lines 11–14 evaluate and rank the solutions;
and, lastly, Lines 15–16 update the data structures to perform the next iteration.
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Algorithm 4 Ant Colony Optimisation with Interval outranking-based ordinal
Classification
Input Number of objectives (m), number of decision variables (n), parameters of the
outranking model (wk, vk ∀k ∈ {1, 2, 3, . . . , m}, λ, β), reference solution sets (R1, R2), maxi-
mum size of the archive (κ)
Output: An approximation of the RoI (τ)

1: Initialise the parameters of iMOACOR (ξ and ς)
2: xi ← random_solution() ∀xi ∈ τ . Generating the initial solutions of the pheromone

trail at random
3: Calculate fk(xi) ∀k ∈ {1, 2, 3, . . . , m}, xi ∈ τ . Getting the values of the objective

functions for each ant
4: τ ← PS(τ) . Filtering only Pareto efficient solutions, see Equation (3)
5: Normalise(τ)
6: Rank solutions in τ . See Algorithm 1
7: ι← 1
8: while ι 6 itermax do . Main loop of the optimisation process
9: for xi ∈ Λ do . Λ is the colony (with κ ants)

10: Generate a new solution based on τ . Applying Equation (16)
11: Calculate fk(xi) ∀k ∈ {1, 2, 3, . . . , m}, xi ∈ Λ . Getting the values of the objective

functions for each ant
12: O ← PS(Λ ∪ τ) . Filtering only Pareto efficient solutions, see Equation (3)
13: Normalise(O)
14: Rank solutions in O . See Algorithm 1
15: Copy into τ the κ first solutions of O
16: ι← ι + 1
17: return τ

4. Experimental Validation

We implemented GWO-InClass and ACO-InClass in Java using OpenJDK 11.0.10, on a
computer with an Intel Core i7-10510U CPU 1.80 GHz, 16 GB of RAM, and Manjaro 5.10 as
operating system. This computer setting applies to all experiments reported in this section.

GWO-InClass has three main parameters to be adjusted: a, C, and h̄. The components
of the vector a are initially set in two, and are linearly decreased to reach zero in the last
iteration. The vector C is dynamically generated during each iteration, providing random
numbers (cf. [27]). The parameter setting of ACO-InClass is ς = 0.1 and ξ = 0.5 (cf. [28]).
The parameter settings of the reference algorithms—NSGA-III, MOGWO and iMOACOR—
are also those originally published by the authors in the articles [27,28,39]. A particular
case is the size of the population (h̄ in GWO-InClass and κ in ACO-InClass), which depends
on the number of objective functions (m): h̄ = κ = 92 for m = 3, h̄ = κ = 212 for
m = 5, and h̄ = κ = 276 for m = 10. These values were inspired by the discussion of
Deb and Jain [39] on suitable population sizes for evolutionary algorithms. The maximum
number of iterations for all the algorithms reported in this section is itermax = 1000 for
m ∈ {3, 5} and itermax = 1500 for m = 10.

The adjective ‘significant’ is used in this section if a non-parametric U test (also know
as Mann–Whitney test or Wilcoxon rank-sum test) with a 0.95-confidence level validates
the difference as statistically significant. Furthermore, we performed all tests for statistical
significance through STAC [40].

The rest of this section is organised as follows. Section 4.1 presents the test suite used
to validate the results, as well as the indicators to measure the quality of the solutions.
Section 4.2 describes the results obtained by GWO-InClass. Lastly, Section 4.3 presents the
results by ACO-InClass.
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4.1. Benchmark Problems and Performance Indicators

DTLZ [41] has become the standard test suite most broadly accepted to assess the
performance of MOEAs and MOSIAs. Accordingly, we ran our algorithms on the nine
problems in the DTLZ suite, named DTLZ1–DTLZ9. These problems have continuous
decision variables, and are scalable regarding the number of decision variables and objec-
tive functions, offering Pareto frontiers with challenging properties (e.g., bias, concavity,
convexity, degeneration, multi-frontality, and separability). We explored the dimensionality
of each DTLZ problem by considering 3, 5, and 10 objective functions (m); accordingly,
there are 27 different instances to validate our algorithms. The numbers of position-related
variables (k) and decision variables (n) for each problem are the following:

• DTLZ1: k = 5 and n = m + k− 1.
• DTLZ2–DTLZ6: k = 10 and n = m + k− 1.
• DTLZ7: k = 20 and n = m + k− 1.
• DTLZ8 and DTLZ9: k = m− 1 and n = 10m.

As GWO-InClass and ACO-InClass consider the DM’s preferences, each of the 27 test
instances was validated using ten interval outranking models, representing different DMs.
Some state-of-the-art studies [42–44] have proposed and used these synthetic DMs to vali-
date a priori optimisation methods run on the DTLZ suite. The primary motivation behind
this choice is that an acceptable approximation to the true RoI is known for these synthetic
DMs, and these Approximated RoIs (abbreviated as ‘A-RoI’ from hereon) are in compliance
with the interval outranking model described in Section 2.3, which is the keystone of the
interval ordinal classifier GWO-InClass and ACO-InClass use (see Algorithm 1).

The A-RoI should contain the most preferred solutions in terms of interval outranking;
Rivera et al. [44] followed this underlying principle to calculate the A-RoI as follows
(cf. [42,43]):

1. A representative sample with 100,000 Pareto optimal points is generated, represented
by the set O.

2. Considering the preference relation xPry, the set of the ‘least weak’ solutions is
calculated as

NW(O) = arg min
y∈O

 ∑
x∈O\{y}

$Pr(x, y)

, where $Pr(x, y) =
{

1 if xPry,
0 otherwise.

3. Then, the A-RoI is finally calculated as

A-RoI(O) = arg max
x∈NW(O)

 ∑
y∈O\{x}

$S(x, y)

, where $S(x, y) =
{

1 if xSy,
0 otherwise.

The proposed algorithms ran 30 times on each test instance using each synthetic
DM (as a consequence, each algorithm was run 300 times per instance). The benchmark
algorithms—NSGA-III, MOGWO and iMOACOR—were also run 300 times.

There are several indicators for evaluating the performance of a multi-objective opti-
miser that approximates the complete Pareto frontier (e.g., hypervolume, spacing, spread,
and inverted generational distance). However, these indicators are inadequate for assessing
the performance of preference-based multi-objective algorithms because no metric can
be directly applied when only a partial Pareto frontier is considered [45]. Furthermore,
some attempts to assess the quality of a preferred solution adapt these indicators in an
oversimplified way, making the assessments misleading. In line with this notion, we mea-
sured the performance via three indicators that consider the solutions that maximise the
preferences of the DM. Let X∗ be the latest set of solutions of an algorithm, the following
three indicators are utilised:

• Minimum Euclidian distance. The distance from the A-RoI to the closest point in X∗.
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• Average Euclidian distance. The average distance from the points in the A-RoI to
those in X∗.

• Satisfaction. The proportion of solutions in X∗ belonging to the class ‘Highly Satisfac-
tory’.

On the one hand, the distance-based indicators measure the quality in terms of the
similarity between X∗ and the A-RoI; the minimum distance considers the best solution
alone, and the average distance considers the overall trend. For these indicators, the
lower the values, the closer the approximation. On the other hand, the satisfaction-based
indicator measures the quality of the algorithm considering the number of solutions that
could potentially become the best compromise solution. For this indicator, greater values
are preferred.

4.2. On the Performance of GWO-InClass

Table 1 shows the results of GWO-InClass in comparison with MOGWO. Given a
number of objectives (Column 1), Table 1 presents the average performance in terms of the
indicators (referred to in Column 2) obtained by each algorithm (referred to in Column 3)
on each DTLZ problem (referred to in Columns 4–12); here, the cells were shaded if the
difference is statistically significant: in blue if it is in favour of GWO-InClass, in yellow if it
is in favour of MOGWO.

Table 1. Average results obtained by GWO-InClass and MOGWO.

Benchmark Problems
m Indicator Algorithm DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ5 DTLZ6 DTLZ7 DTLZ8 DTLZ9
3 Min. Euclid. MOGWO 1164.89 4.99 606.87 11.94 0.91 3.73 0.25 0.04 5.39

GWO-InClass 37.01 2.12 374.02 21.14 0.90 5.16 0.35 0.05 5.21
Avg. Euclid. MOGWO 1283.63 5.61 776.68 26.70 0.95 4.53 1.56 0.36 7.23

GWO-InClass 74.11 2.85 487.44 21.69 0.93 6.06 1.66 0.40 6.98
Satisfaction MOGWO 1.28 25.17 1.89 23.22 0.00 2.71 48.59 48.37 1.60

GWO-InClass 8.84 48.40 3.49 50.96 1.61 7.44 48.51 50.00 1.62
5 Min. Euclid. MOGWO 131.74 693.38 8201.95 0.00 0.17 74.29 0.61 0.76 9.09

GWO-InClass 24.04 1.61 193.63 6.37 0.00 2.64 0.56 0.76 9.05
Avg. Euclid. MOGWO 168.45 693.91 8226.69 0.64 5.73 76.75 2.81 2.68 9.45

GWO-InClass 78.02 3.03 414.04 17.69 0.26 3.08 2.68 1.28 9.48
Satisfaction MOGWO 0.84 12.91 0.28 33.00 1.61 0.18 48.49 49.36 1.61

GWO-InClass 14.05 48.92 19.84 50.26 49.83 31.84 51.39 50.63 1.61
10 Min. Euclid. MOGWO 20.16 148.91 189.48 7.03 3.94 2.64 1.96 1.48 7.97

GWO-InClass 14.12 1.64 186.59 6.26 0.02 0.02 1.89 1.48 8.25
Avg. Euclid. MOGWO 84.21 920.18 435.90 16.45 4.82 4.79 5.98 2.22 8.45

GWO-InClass 87.16 4.67 425.63 16.86 0.08 0.11 5.79 2.22 8.73
Satisfaction MOGWO 4.32 0.15 30.69 49.14 1.61 0.00 47.93 48.61 1.59

GWO-InClass 49.63 53.45 53.70 50.81 50.90 50.18 50.45 51.38 1.63

The information in Table 1 may be summarised in the following points:

• Considering the satisfaction-based indicator: The results of GWO-InClass were sig-
nificantly better than those of MOGWO in DTLZ1, DTLZ2, and DTLZ6 regardless
of the number of objectives. In other problems (DTLZ3, DTLZ5, and DTLZ7), the
advantage of including ordinal classification only became significant when m in-
creased. On the whole, our strategy had a greater impact on the ‘satisfaction’ indicator
in many-objective optimisation (m ∈ {5, 10}) than in multi-objective optimisation
(m = 3).

• Considering the Euclidean indicators: The results on DTLZ1–3 were particularly
encouraging because the averages of GWO-InClass were consistently lower than those
of MOGWO, having statistical significance in the great majority of the instances. In
DTLZ5 and DTLZ6, GWO-InClass became closer to the RoI only in many-objective
instances. Contrastingly, when m = 3, our strategy was inconvenient to treat DTLZ4
and DTLZ6.
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• Considering DTLZ8 and DTLZ9: The embedding of ordinal classification in MOGWO
does not yield any significant benefit. It is worth noting that they are the only problems
with side constraints in this benchmark [46].

As a partial conclusion, we would recommend using GWO-InClass instead of MOGWO
to address MaOPS. GWO-InClass was at least as good as MOGWO; what is more, it was sig-
nificantly better on a regular basis. A test for statistical significance supports this hypothesis
on the DTLZ test suit.

Additionally, we compared the results of GWO-InClass with NSGA-III, which has
been widely accepted by the scientific community as a benchmark algorithm for evolu-
tionary many-objective optimisation. Table 2 presents the results of both algorithms on
the DTLZ test suit. Again, the three indicators—the average Euclidean distance, the mini-
mum Euclidean distance, and satisfaction—are considered, and the cells with significant
differences are shaded (blue in favour of GWO-InClass, yellow in favour of NSGA-III).

Table 2. Average results obtained by GWO-InClass and NSGA-III.

Benchmark Problems
m Indicator Algorithm DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ5 DTLZ6 DTLZ7 DTLZ8 DTLZ9
3 Min. Euclid. GWO-InClass 45.82 2.13 8589.97 21.14 0.01 56.40 0.1 0.05 8.83

NSGA-III 0.55 0.01 0.17 0.0 0.0 0.00 0.0 0.00 0.17
Avg. Euclid GWO-InClass 80.58 2.85 8617.98 21.7 7.30 56.40 1.43 0.40 15.14

NSGA-III 1.01 0.97 0.99 0.81 0.03 0.00 1.32 0.41 0.78
Satisfaction GWO-InClass 5.57 48.35 1.91 48 1.6 0.03 48.44 50.11 1.61

NSGA-III 5.12 35.29 20.78 34.66 0.94 2.26 44.70 32.99 5.31
5 Min. Euclid. GWO-InClass 35.86 1.61 400.36 16.43 0.0 2.91 0.56 0.76 38.57

NSGA-III 0.31 0.04 0.33 0.01 0.0 0.44 0.20 0.84 1.69
Avg. Euclid GWO-InClass 102.66 3.03 627.42 27.26 0.26 3.18 2.68 1.28 39.05

NSGA-III 0.80 0.98 1.10 0.8 0.13 0.58 2.53 1.33 2.15
Satisfaction GWO-InClass 7.07 48.74 5.26 48.55 49.93 22.54 50.01 48.97 1.61

NSGA-III 14.49 3.06 10.97 1.12 10.46 0.83 48.35 51.02 27.30
10 Min. Euclid. GWO-InClass 0.18 1.64 0.04 1.50 0.02 0.02 1.90 1.85 8.25

NSGA-III 0.22 0.34 0.79 0.16 1.35 8.73 1.13 1.46 15.25
Avg. Euclid GWO-InClass 1.04 2.50 4.40 6.26 0.08 0.11 5.79 2.02 8.73

NSGA-III 0.54 2.11 1.49 1.17 1.99 9.73 5.66 2.10 15.85
Satisfaction GWO-InClass 45.22 49.90 55.39 51.48 67.50 45.73 51.61 89.02 2.82

NSGA-III 48.72 47.90 28.59 39.93 0.43 42.69 48.38 10.97 0.39

According to Table 2, the worst performance was observed when m = 3. Contrarily,
GWO-InClass approximated the RoI significantly better than NSGA-III in most of the
10-objective instances. Considering the satisfaction-based indicator, DTLZ1, DTLZ7, and
DTLZ9 are especially challenging for GWO-InClass. To conclude, the performance of
GWO-InClass becomes competitive as the number of objectives increases according to this
standard of the literature.

Lastly, we plotted the results of some single runs of GWO-InClass in Figure 2. We took
those runs on the three-objective problems with the results closest to the A-RoI. Although
such runs are not representative, they clearly depict how GWO-InClass biases the search
toward a privileged region in the Pareto frontier. The best compromise would be a solution
belonging to such region (coloured in red in Figure 2).
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(a) Results of GWO-InClass on DTLZ2

(b) Results of GWO-InClass on DTLZ4

(c) Results of GWO-InClass on DTLZ5

(d) Results of GWO-InClass on DTLZ7

Figure 2. Results of GWO-InClass on some 3-objective problems.

4.3. On the Performance of ACO-InClass

Table 3 presents the results of ACO-InClass in comparison with iMOACOR; its
columns should be interpreted with the same meaning provided for Table 1. As a summary
of the information provided, let us discuss the following remarks:

• Considering ten objective functions: The advantage of embedding ordinal classifica-
tion became statistically significant only when m = 10. Taking DTLZ1–4 and DTLZ6–8,
ACO-InClass outperformed iMOACOR in at least one indicator, performing especially
well in DTLZ1, DTLZ3, DTLZ6, and DTLZ8.
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• Considering three and five objective functions: With the only exception of a specific
setting (DTLZ6, average Euclidean distance, and m = 5), ACO-InClass was at least as
good as iMOACOR regardless of the number of objectives.

• Considering DTLZ5 and DTLZ9: Like in the case of GWO-InClass, no advantage was
observed in DTLZ9. Additionally, this situation also occurred in DTLZ5.

We would strongly recommend using ACO-InClass instead of iMOACOR to address
MaOPS with about ten objective functions. This insight is relevant because the efficiency
of MOSIAs and MOEAs is degraded as the number of objectives increases. The strategy
proposed in this paper could become a viable means of mitigating this severe drawback.
Still, the DM should be prepared to devote the necessary time to express their preferences.

Table 3. Average results obtained by ACO-InClass and iMOACOR.

Benchmark Problems
m Indicator Algorithm DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ5 DTLZ6 DTLZ7 DTLZ8 DTLZ9
3 Min. Euclid. iMOACOR 35.33 2.84 506.46 12.77 0.00 5.46 1.30 0.43 14.04

ACO-InClass 47.72 0.19 497.91 7.28 0.00 5.70 1.21 0.44 13.61
Avg. Euclid. iMOACOR 73.25 3.70 633.16 6.21 3.26 5.74 8.16 0.91 14.71

ACO-InClass 79.33 1.33 634.59 14.12 2.99 5.98 7.72 0.91 14.23
Satisfaction iMOACOR 11.62 28.51 24.42 32.82 1.37 2.47 23.37 46.21 0.00

ACO-InClass 11.18 32.21 15.38 31.79 2.08 2.64 24.27 52.14 3.22
5 Min. Euclid. iMOACOR 44.73 0.94 256.49 0.00 0.00 6.50 2.01 7.62 18.28

ACO-InClass 30.93 1.19 200.61 4.29 0.00 6.78 1.88 11.95 17.74
Avg. Euclid. iMOACOR 93.16 3.73 305.69 0.81 0.15 7.59 13.75 51.32 19.28

ACO-InClass 77.75 4.22 275.32 6.79 0.17 7.97 14.47 83.02 18.73
Satisfaction iMOACOR 21.26 18.22 24.56 23.50 16.63 3.99 33.71 60.70 0.00

ACO-InClass 22.91 18.92 22.77 24.55 15.54 3.97 34.43 38.26 3.22
10 Min. Euclid. iMOACOR 20.57 0.39 224.90 6.28 0.09 8.13 7.85 56.96 25.79

ACO-InClass 6.44 0.19 148.08 7.59 0.16 7.09 2.34 1.16 26.22
Avg. Euclid. iMOACOR 53.85 1.23 308.24 6.95 0.21 9.45 26.70 217.89 26.82

ACO-InClass 33.53 1.22 220.34 9.09 0.49 9.12 17.06 2.48 27.34
Satisfaction iMOACOR 28.47 28.61 22.27 40.27 16.13 15.19 48.16 12.24 3.22

ACO-InClass 49.84 47.47 61.03 59.72 11.94 25.63 49.13 87.75 2.21

Furthermore, Table 4 shows the results of ACO-InClass in comparison with those of
NSGA-III. The columns of Table 4 should be analogously interpreted as in Table 2. These
results together with the statistical tests allow concluding that ACO-InClass is competitive
to address 10-objective problems according to the standard established by NSGA-III; in
fact, ACO-InClass outperformed NSGA-III in the vast majority of these instances. As a
welcome side effect, ACO-InClass can also support the a posteriori decision analysis; this
feature would reduce the DM’s cognitive effort invested in identifying the best compromise.
Adversely, these results clearly imply that ACO-InClass was unsuitable for treating three-
objective instances.

Again, we plotted the results of some runs of ACO-InClass, which are shown in
Figure 3. These runs presented the best results on the three-objective instances and clearly
depicted how ACO-InClass biases the search toward the A-RoI. Here, the best compromise
would be a solution obtained by ACO-InClass (coloured in red in Figure 3).
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Table 4. Average results obtained by ACO-InClass and NSGA-III.

Benchmark Problems
m Indicator Algorithm DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ5 DTLZ6 DTLZ7 DTLZ8 DTLZ9
3 Min. Euclid. ACO-InClass 1782.09 0.00 478.51 12.80 0.00 0.00 70.01 40.91 9.12

NSGA-III 0.56 0.01 0.17 0.00 0.00 0.00 0.01 0.01 0.18
Avg. Euclid ACO-InClass 1786.36 0.93 612.73 16.15 3.18 0.12 78.33 53.03 15.64

NSGA-III 1.02 0.98 0.99 0.82 0.04 0.01 1.32 0.42 0.79
Satisfaction ACO-InClass 0.27 28.04 2.80 31.89 1.86 0.00 1.11 0.03 0.00

NSGA-III 5.48 37.86 20.59 33.40 0.44 2.18 88.27 66.34 6.49
5 Min. Euclid. ACO-InClass 58.84 0.01 3.38 4.29 0.00 1.44 6.83 41.87 2.83

NSGA-III 0.31 3.05 0.33 0.02 0.00 0.44 0.20 0.85 1.33
Avg. Euclid ACO-InClass 122.12 0.08 327.58 4.81 0.13 9.10 17.02 40.31 5.61

NSGA-III 0.81 10.99 1.10 2.80 3.18 0.59 2.54 2.15 2.69
Satisfaction ACO-InClass 15.39 15.76 11.42 1.21 10.18 1.95 7.98 0.14 28.91

NSGA-III 2.91 3.35 2.97 19.94 12.44 1.08 8.63 9.77 0.00
10 Min. Euclid. ACO-InClass 0.45 0.20 0.79 0.17 0.00 7.04 2.70 1.46 25.25

NSGA-III 0.23 0.35 5.06 7.59 22.54 8.94 1.13 25.30 26.22
Avg. Euclid ACO-InClass 0.72 1.23 1.49 1.17 0.25 9.04 5.66 2.10 25.85

NSGA-III 0.55 1.11 33.26 9.10 26.48 9.68 16.85 71.46 27.35
Satisfaction ACO-InClass 85.44 54.43 77.10 55.70 24.74 44.58 68.46 96.62 0.00

NSGA-III 10.38 35.42 4.31 32.38 0.00 28.60 29.24 3.38 3.23

(a) Results of ACO-InClass on DTLZ1

(b) Results of ACO-InClass on DTLZ5

(c) Results of ACO-InClass on DTLZ6

Figure 3. Cont.
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(d) Results of ACO-InClass on DTLZ9

Figure 3. Results of ACO-InClass on some 3-objective problems.

5. Conclusions and Directions for Future Research

This paper introduces a novel strategy to incorporate preferences into swarm intel-
ligence algorithms. Following the taxonomy of Bechikh et al. [4], the proposed strategy
falls into the category of ‘solution classification’. Initially, the DM should express their
preferences about the solutions by classifying them as ‘Satisfactory’ or ‘Dissatisfactory’. The
proposed strategy is one of the least cognitively demanding in the framework of solution
classification because the DM must merely classify solutions into just two categories.

Then, we suggest that the optimisation algorithms additionally identify two artificial
classes—‘Highly Satisfactory’ and ‘Strongly Dissatisfactory’—through an ordinal classifier
based on interval outranking to model different levels of intensity in the DM’s preferences.
Consequently, the classifier increases its ability to discriminate. Here, we hypothesised
that swarm intelligence algorithms can obtain the edge by increasing the selective pressure
toward the region of the Pareto frontier containing ‘Highly Satisfactory’ solutions. A
straightforward way to achieve it is to consider ordinal classification as the major criterion
to rank the solutions in the archive.

Typically, swarm intelligence algorithms use an archive with the best so-far approx-
imation of the Pareto frontier. These solutions are sorted to pick the solution(s) whose
patterns will be exploited in the next iteration, hence its relevance.

By applying this strategy, ordinal classification was embedded in two swarm intelli-
gence algorithms, expressly Multi-objective Grey Wolf Optimisation and Indicator-based
Multi-objective Ant Colony Optimisation for continuous domains. The extended versions
were called Grey Wolf Optimiser with Interval outranking-based ordinal Classification
(GWO-InClass) and Ant Colony Optimisation with Interval outranking-based ordinal
Classification (ACO-InClass). We used ten synthetic DMs to validate the results; we also
considered each problem in the DTLZ test suite and explored different numbers of objective
functions (three, five, and ten). The algorithms ran 30 times for each setting.

The impact of our strategy depended on several factors: the number of objectives,
the baseline algorithm, and the properties of the test problem. Despite this, our strategy
conferred marked benefits when many objective functions were treated. In the case of
GWO-InClass, such benefits became significant in six of the nine DTLZ problems when the
number of objectives was at least five. In the case of ACO-InClass, the ordinal classifier
impacted the performance in seven DTLZ problems only when ten objective functions were
considered.

Although our strategy requires that the DM is well-disposed to spend the necessary
time to elicit their preferences, such an effort can be favourably compensated when prob-
lems with many objective functions are treated; especially, keeping in mind that these
problems are still highly challenging for a posteriori algorithms (that approximate the com-
plete Pareto frontier). The embedding of ordinal classification based on interval outranking
contributed to coping with these difficulties. Numerical results and tests for statistical
significance supported these conclusions.
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Perhaps, the major criticism of our approach is that it is only applicable when the
preferences of the DM are compatible with the underlying principles of outranking. That is,
the DM admits veto effects and has a non-compensatory preference about the objectives.

Further research is needed to draft conclusions with a greater generalisation. First, it
is necessary to know the impact of this strategy on other swarm intelligence algorithms
(e.g., particle swarm optimisation, artificial bee colony, and elephant herding optimisation).
Second, it is also necessary to conduct more experimentation with a deeper analysis to con-
nect the performance with the properties of the problem, providing plausible explanations
for those problems in which no advantage was observed (e.g., DTLZ9).
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Appendix A. Basic Notions of Interval Mathematics

An interval number represents a quantity whose precise value is uncertain; yet, the
range in which the value lies is known [47]. Moore [48] defines an interval number E as
E =

[
E, E

]
, where E denotes the lower bound and E the upper bound of E. Note that

interval numbers are written in boldface italic letters in this paper.
Considering two interval numbers E =

[
E, E

]
and D =

[
D, D

]
, the basic arithmetic

operations are defined as follows:

• Addition: E + D =
[
E + D, E + D

]
.

• Subtraction: E− D =
[
E− D, E− D

]
.

• Multiplication: E · D =
[
min

{
ED, ED, ED, ED

}
, max

{
ED, ED, ED, ED

}]
.

• Division: E
D =

[
E, E

]
·
[

1
D , 1

D

]
.

A realisation of an interval number E is any real number e ∈
[
E, E

]
[49]. Let e and d

be realisations of E and D, respectively, E > D if the proposition ‘e is greater than d’ has
greater credibility than ‘d is greater than e,’ which can be calculated through the possibility
function:

P(E > D) =


1 if pED > 1,
0 if pED < 0,
pED otherwise,

(A1)

where pED = E−D
(E−E)+(D−D)

. If E and D are real numbers E and D, then

P(E > D) =

{
1 if E > D,
0 otherwise.

(A2)

The possibility function P(E > D) = α is taken as the degree of credibility that the
realisation d will be smaller than the realisation e [50]. The order relations are defined as:

• E = D if P(E > D) = 0.5.
• E > D if P(E > D) > 0.5.
• E > D if P(E > D) > 0.5.
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Let us consider P(E > D) = α1 and P(D > C) = α2, the possibility function is
transitive because

α1 > 0.5 ∧ α2 > 0.5 ⇒ P(E > C) > min{α1, α2}, (A3)

as a consequence, the relations > and > also meet the transitivity property on interval
numbers.
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