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Abstract: We consider the Steffensen-Hayashi inequality and remainder identity for V-fractional
differentiable functions involving the six parameters truncated Mittag—Leffler function and the
Gamma function. In view of these, we obtain some integral inequalities of Steffensen, Hermite—
Hadamard, Chebyshev, Ostrowski, and Griiss type to the V-fractional calculus.
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1. Introduction and Preliminaries

One useful and important branch of science which involves derivatives and integrals
taken to fractional orders is fractional calculus, in general [1-4].

Various fractional derivatives are given until now, some of them are Riemann-Liouville,
Caputo, Hadamard, Caputo-Hadamard, Riesz, and many others can be found in [3,5].

Sousa and Oliveira [6] defined M-fractional derivative via Mittag—Leffler function
of one parameter [7]. Most recently, Sousa and Oliveira [8] introduced the V-fractional
derivative involving the six parameters truncated Mittag-Leffler function and the Gamma
function.

Let us recall the six truncated Mittag-Leffler function and the truncated V-fractional
derivative which will be used in the sequel.

Six parameters truncated Mittag-Leffler function is defined by:

s, £ (o)
ng,((SQ,qp(é> = k;() (5)

qk
S R— 1
kT kT 0) @
for 0,7,0,6 € Cand p,q > 0such that R(6) > 0,R(y) > 0,R(0) > 0,R(5) > 0, R(y) +
p > q, where (0),x and (9), are given by the symbol of Pochhammer:
_ Tl +qk) _ L0 +qk)
(Q)qk = Wf (5)qk = W 2)
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Remark 1. It is easy to see that

(i) when £ — oo, then

> (0)gx &k
BNy (©) = Jim @) = Y Gtk

(ii) From (1), we can obtain directly by determining some parameters to be 1, some particular cases
regarding the following truncated Mittag—Leffler functions:

(a) For p =1, we get the five parameters truncated Mittag—Leffler function

95‘1 i((gk .

(c) Inthecase p = 6 = q = 1, we get the three parameters truncated Mittag—Leffler function

P (s
@=L tkre)

(d) Forp =6 =q =0 =1, we get the two parameters truncated Mittag—Leffler function

4 érk

(B 0(8) = k;) Tk 0)

(e) Withp =6 =q =0 =0 =1, we get the one parameter truncated Mittag-Leffler function

l ék
(Ey(C) = l;) NCTESIN

(f) Particularly, for p =06 = q =0 = 0 = v = 1, we get the truncated exponential function

¢
=L

For more general Mittag—Leffler type functions that have been investigated rather
systematically and extensively, see, for details, [9-12]).

Definition 1 ([8,13] (V-fractional derivative)). Let u € (0,1) with the function f: [0,00) — R,
and 6,7,0,6 € C for p,q > 0, and R(6) > 0,R(y) > 0,R(0) > 0,R(5) >0, R(y)+p > 4.
The truncated V-fractional derivative of f of order y > 0, is given as:

F(EHE ) = £()

0y)0.p4 — 1
Vyeyf(t) = llg% . forallt >0, (©)]
where the truncated function [H,Y 0 p( ) is defined as follows
MO (e 11) (£) o= T(6) B2 (2) = T(8) Y 2ok & 4
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It should be mentioned that if f is differentiable, then

BIT(6) o),
eEIORA ©

Definition 2 ([8,13] (V-fractional integral)). Let u € (0, 1) with the function f: [a;,00) — R
and ay > 0. Also, let 6,7, 0,0 € C, where p,q > 0, and R(6) > 0, R(y) > 0,R(0) > 0,R(J) >
0, R(7y) + p > q. The V-fractional integral of f of order y > 0, is given by:

PVILAF(E) =

o TOPA £ /f dt*(lyL/f Ve ldt forall & > 0. ©)

a1y,0 V (6
Theorem 1 ([8] (Integrating by Parts)). Let u € (0,1), 6,7v,0,0 € C, where p,q > 0, and

R(O) > 0,R(y) >0,R(0) >0,R(6) > 0with R(y) + p > q. If the functions f,g: [a1,a2] —
R are both differentiable with ay > ay > 0, then

AT“Q VIRR(8) ) dud = £(2) ()

S [Cs@ (i@ )

Remark 2. Several results similar to the results found in the classical calculus are obtained from
the truncated V-fractional derivative using the six parameters truncated Mittag—Leffler function

EESYI{;,Z?(@ and the well-known gamma function T'(0). We can mention here the fact that the
truncated V-fractional derivative is linear and continuous. For more details, see [8,13] (Section 3).

Motivated by above results and literatures, the main motivation of this article is to
derive the fractional Steffensen-Hayashi inequality and some interesting applications to var-
ious inequalities involving V-fractional operators in the proposed framework, such as Stef-
fensen, Chebyshev, Ostrowski, Griiss and Hermite-Hadamard type integral inequalities.

The structure of this article is organized as follows. We derive the fractional Steffensen—
Hayashi inequality and Remainder identity in Section 2. In Section 3, we give some
interesting applications to various inequalities involving V-fractional operators. Section 4
is devoted to discussion and conclusion of our article.

2. Fractional Steffensen-Hayashi Inequality and Remainder Identity

For more details about the well-known Steffensen’s inequality and Hayashi’s inequal-
ity, see [14-17]. Many further results have been derived from these; however, so far such
kind of interesting inequalities have not been extended, improved and investigated using
Mittag—Leffler kernels. Based on this motivation, in the present section, we will focus on
our attention to the study of fractional Steffensen-Hayashi inequality.

Lemma 1. Let u € (0,1), where ay,a; € Rand 0 < aq < ap, with 0,7, 0,5 € C, where p,q > 0,
and R(0) > 0, R(y) > 0,R(0) > 0,R(5) > 0and R(y) + p > q. Also, let g [a1,a2] — [0, A]
with A > 0, be a V-fractional integrable function on [ay,a;). If @ € [0,ap — a1] holds, where @ is
defined by

p(az —a1)I'(6)(0)g

@ = " st )
A(dl —a} )T (r+0)(6), -/ﬂl $E)e

then , . o
L Adds [Ce@aes [T Ads ®

ap

Proof. From definition of V-fractional integral and (7), we have
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pzom MO [y, Koo d
<=l oo /. 04 1y " HG / i

=a)—m )

for ¢(&) € [0, A] and ¢ € [ay,a5]. Employing the facts that the function &~ is a decreasing
on [a, 4], or (0,a;] for u € (0,1) and d,,& = &¥~1d¢, implies

1 ap 1 ap u1+a>
~ [T di< / dué < 7/
@ Ja,—@ a —ai Jm n

Hence, we get

" Ad I " ad
< < .
/uz*(D Vé Ta—m /111 Vé - /ﬂl MC:

Combining the above inequality with (9), we obtain the desired inequality (8). O

The main results of the section concerning fractional Steffensen-Hayashi inequality is
provided as follows.

Theorem 2 (Fractional Steffensen—Hayashi Inequality). Let u € (0,1), where a;,a, € R with
0<aj; <apandb,v,0,0 € C, where p,q > 0 with R(6) > 0,R(y) > 0,R(e) >0,R(5) >0
and R(y) +p > q. Let f: [ay,a2]) — Rand g: [a1,a2] — [0, A] with A > 0 are V-fractional
integrable functions on [ay, az). If

(i)  f is non-negative and non-increasing, then it holds

A /:wf@dué < /:f(é)g(é)dyr’; <A /:Wf(r’;)dyg. (10)

(ii)  f is non-positive and non-decreasing, then the inequalities in (10) are reversed.

Proof. (i) We will prove only the left-hand side of (10) because the proof of the right-hand
side is similar. Let f: [a1, 3] — R be a non-negative and non-increasing function. It follows
from Lemma 1 (21 < a, — @ < ap) that

[ r@s@ac-a [7 p@ue
= [ r@s@ac+ [T f@s@ac-4 [T poue

ay
ap—@

= [ r@s@de - [T (A-s@)r@de

a

> [* 8@t~ fla—a) [T (A-g@)de

Applying Lemma 1 again, we utilize the facts, f, g are non-negative and f is non-
increasing, to find

/:2 f(&)g(g)dud —A /l:_w f(&)dug > /ar@f({f)g(g)dug — f(ay — @) /‘:zw 2O
B / — flaz — @))g(g)dué = 0.

This means that the first inequality of (10) is valid.
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(ii) Whereas, let the function f: [a1,42] — R be a non-positive and non-decreasing. By
the same manner of assertion (i), it reads

/ F(&) (€00 — A /‘”mf(a)dya

= Jy o (080G + / A)f(&)dyé
az a;+@
> al+@f(§)g(§)du§+f(ﬂ1+w) / (3(2) — A)duc

> " r@s@u - s+ [7 @

= (f(§) — f(ar +@))g(&)dug >0,

a1+w

where we have used the facts that g is non-negative. So, the right-hand side of the reversed
(10) holds, which completes the proof. O

Furthermore, we shall invoke the above inequalities to establish several significant
equalities, remainder identity.

Lemma 2 (Remainder Identity). Let u € (0,1], where 6,v,0,6 € C with p,q > 0 and
RO) > 0,R(y) > 0,R(e) > O,R(6) > 0, and R(y)+p > q. If f: [0,00) — Risa
V-fractional differentiable function, then

0)(o B gH
AN (o

I(
- /l:zf(s)dys + ( (v +0)( ijp [(gﬂ _ az 1) — (gﬂ _ ﬂ?)f(ﬂl)}, (11)

holds for all & € [0, ).

Proof. Integrating by parts using Theorem 1, we have

5 T(y +6)(8),(& — sM)
[ e () e
()@@ =)\ ([T
_( (9) ) >f()]+/a1f()dﬂ

(v+0)(0);
= [ e+ (o ) (€ =) flam) = (& ) )

for all ¢ € [0,00), which completes the proof. [

Corollary 1. Taking, respectively, ¢ = a1 and ¢ = ap in Lemma 2, we get the following

(v +0)(8),(a; —s! o
/m QViZZf(s)( ( : ))d?‘s " Jay f(s)dps

P
#T(6)(e)q
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and

a2 T(y+6)(6)p(ay —s" a2
/a1 gVi”z,’Zf(s) ( ;’( 2 >>dys = ; f(s)dys

uT(o (Q)q
T(y+06)(6) al — g
_( AR (2 1>)f(a1).

4
#T(6)(e)q

3. Applications to Various Inequalities Involving V-Fractional Operators

In the section, we shall employ the previous results obtained in Section 2 to explore
various inequalities involving V-fractional operators.

3.1. Steffensen Inequality
Theorem 3. Let u € (0,1] and f: [a1,a2] — R be a V-fractional differentiable function.

i) If OVOP £ is increasing function and f is decreasing on ay,ap|, then
4 ')/,9,]4 g g

ay + a nI(0)(o) o
f< E > : r(v+9)(5)p(a§—a§’) /al Js)dys

< fla) +fla) - (52 a2)

i) If 9V f is decreasing function and f is increasing on ay,ay|, then inequalities (12)
Y4 ')//QIH g g q

are reversed.

Proof. Here, we just prove the assertion (i), because the second conclusion could be ob-
tained easily by the similar way. Let gV,i: ZZ f be increasing function and f be decreasing on

ay,a]. So, the function F := — QV‘S’p "1 f is decreasing on [a1, a3]. Denote
AT &
K
a, — ¢t
g(g) = ﬁ S [0/ 1]/ g S [al,ﬂz].
4 —m

Since F and g satisfy the assumptions of Theorem 2 (i) with A = 1, then

@ = (a2 —a1)I'(0)(0)q “2 ()dnE = ﬂZ*ﬂll
(ﬂg—ﬂi’)F('H@)(&)p /“1 SO 2

and

H

ap ap at — ¢H a1+

_ 0~,0,0.9 . 040,09 2§ . 01,04
/usz [V'Y,Q,yf(g)dﬂg S /al év'y,e,yf(g) (aél _ 11# ) d]/lg S /a1 évy,e,ydﬂé

1

From Corollary 1, we get

2

am+a@ nT(0)(0)q
Z) <
(rw +0)(6)p (a5 — af

a
ay a)—@

) ) [ £~ flan) < @
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Hence, we obtain

at+a) pI( s—fla
f( > > f(l)g((qure)(é “2—‘11 )/ f(s)dus — f(a1)

< fla) - £(252),

which completes the proof. [

3.2. Chebyshev Inequality

In the subsection, we are devoted to investigate Chebyshev’s inequality with V-fractional
integrals.

Theorem 4 (Chebyshev Inequality). Let 6,7, 0,6 € C, where p,q > 0, and R(y) > 0, R(6) >

0,R(0) > 0,R(6) > 0 with R(y) +p > q. If f and g are both increasing or both decreasing
functions on [ay, az], and u € (0,1], then

[ r@s@aez )r = /Qf e [ )

If f and g are monotone functions with opposite monotonicity, then inequality (13) is reversed.

Proof. By using the similar arguments of the proof of classical Chebyshev’s inequality (i.e.,
u = 1), it is not difficult to show that the above fractional Chebyshev’s inequality is true.
So, we omit here the proof. O

The following theorem, extends the recent result [18] for g-calculus to the case of
V-fractional.

Theorem 5. Let p € (0,1] and the function f : [a1,a3] — R be a V-fractional differentiable. If

QViZZf is increasing on [ay, az)|, then
nI6)(0 fla1) + f(a2)
s)d,s < 1 T JA2) (14)
T(y+6)(5), (az —a}) / fEe ==

Moreover, if ; QV p 1 f is decreasing on [aq, ay|, then inequality (14) is reversed.

Proof. Assume that gVi:g:Z f is increasing. Let 6,7, 0,6 € C, where p,q > 0and R(y) > 0,
R(0) > 0,R(0) > 0,R() > 0with R(y) + p > g. Also, denote

T(7+6)(0)p (af — )
HT(0)(0)q '

Since F is increasing and G is decreasing, it follows from inequality (13), that

2 T(6)(0) o
F(€) G() duf < £ 1 F@)dud [ GE)due.  (15)
/”1 ! T(y+6)(5), (a’; - a’f) /“1 g /ﬂl ;

F(&) = VITf@), G(@) =
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From the facts,

and Corollary 1, it finds

0 0 (v +0)(8),(a —a"
Ag@ﬂ@ﬂﬁzﬁf@%%( WVH&Silnﬂm)

The latter combined with (15) implies

a T(y+6)(5), (aé’ - a?)
o f(s)dys - ( VT(G)(Q)q f(ﬂl)
T (0)()g(f(a2) — f(ar) 1 Ly +0)(0)y (e} —a}) 2
T T(y+0)(5) (a;‘ —ag‘) 2 nI(0)(0)g

Hence, we get

1T (6)()g f(@) + f(a)
f ds<7,
I(7+6)(0) @2—% o 2

which completes the proof. [

Furthermore, by the use of Theorems 3 and 5, we have the following result.

Corollary 2 (Hermite-Hadamard 1nequahty) Let u € (0,1] and the function f: [a1,a2] — R

be a V-fractional differentiable. If ; QV 1 f is increasing and f is decreasing on [ay,ay), then

79;4
aj; + ap 1T(0)(0)q o2 dos flar) + f(a2)
A 2>SM+w%w—ﬁAJ”%S 7z

3.3. Ostrowski Inequality

In the subsection, we will utilize a Montgomery identity obtain establish the Os-
trowski’s type inequality involving V-fractional integral. For more detail on Ostrowski’s
inequalities, the reader is welcome to consult [19].
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Lemma 3 (Montgomery Identity). Let 6,7, 0,6 € C, where p,q > 0 and R(6) > 0,R(y) > 0,
R(0) > 0,R(6) > 0 with R(y) + p > q. Also let ay,az,5,¢ € R satisfy 0 < a; < ayp. If the
function f: [a1,ay] — R is a V-fractional differentiable for u € (0,1], then

r'(0)(o) a
H=—0" £(s)dys
F(7+9)((5)p(ag —aﬁ') /”1 :

K1) (e, ” QVOPA £(5)dys, (17
r(we)(&»(é‘-q)/al W(&:5) Voppf (8)dps, (17)

holds for all & € [aq,ay], where w(¢, s) is given as

T(y+0)(0)y (s —a} )

(6;7 , 1 <s<g
w(é,s) = (18)
T +0@) (s —d)
O, TR

Proof. Integrating by parts (see e.g., [8] (Theorem 13)), we have

(T +0)@)p (s =a})\ , ;. T(7+0)(6), (2" —a})
/al( o, ) e O T e, Y

/:rf(s)dp,s,
and
w (T +0)E) (" =)\ . 50 Ty +0)(0) (a5 — )
! ( @, ) el g, Y
_ ;zf(s)dys

Summing the above inequalities, it yields

T(7+6)(0) (a5 —af)
T ) (0), 0=

¢ T(y+6)(0), (st —al 5
* /m ( (9;(() 1>) VoS (5)dus

+60)(8), (s —a
+/ ( : <9>p<(s> al))‘\’vié’,if(s)dys.

N
Dividing both sides of above equality by the factor %

result. [

, we obtain the desired

Using Lemma 3, we get the following Ostrowski inequality involving V-fractional
operators.
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Theorem 6 (Ostrowski Inequality). Let 0,,0,6 € C, where p,q > 0and R(0) > 0, R(y) >0
R(0) > 0,R(6) > 0 with R(y) + p > q. Also let ay,az,5,¢ € R satisfy 0 < a; < ayp. If the
function f: [a1,a3] — R is a V-fractional differentiable, and y € (0,1], then

‘f(g)_ f ;4
('7+9 az—al o

MT(y +6)(9) 2 )
= r(60)(0)q (a —pa’f) [(gy =)+ (o ) } (19)

o,p,
where M := supg¢ §V7,§/Zf(§) ’

a1,a)

Proof. From Lemma 3, we have

T(6)(0) o
£(6) - £ g F(5)dys
‘ T(y+0)(4)p (ag —aﬁ’) /“1 g

T(7+6)(5), (s” - aﬁ‘)

MpuT(6)(e)g Vé’ e
T(y+6)(0)y (a;—a’f) a nI(0)(e)q !
w|T(7 +0)()p (ah —st)
@, d“S]
B MuT(6)(0)q [/é F(7+9)(5)p(5"—a’f) s
- T(y+0)(4)p (ag - a?) a uI(6)(0)g :
o ([ T(7+6)(8)y (ab —st)
e ( HT(0)(0)g )d”sl

MT(y+6)(9) £ ) . )
= r(e)(Q;yq (ag — ag) [/‘11 (S” — af)si‘ ds + /g (ag _ SH)Sy 1ds}

_ MT(y+0)(9), [(szﬂ—bﬁs“)g
£(6)(0)q (a5 —a} ) 2

MT(y +0)(6), 2 (o a)?
" 2uT(6)(e)g (a4 — ) () (e,

which completes the proof. [

Especially, if we choose f({) = Hlly"?@(; )y ¢t for all ¢ € [ay,ay], then from the fact

w(é,a1) =0forall ¢ € [ay,a], QV (& )—1ande1 we get

T O.p
T'(6)(0)q &
f@) - —+ £(5)dys
| T(v+0)(0) (a5 —af ) Ju 7"
T +0)0)p uI(0)(e)q 2 T(y +6)(d)p
uT(6)(0)q ¢ r(7+9)(5)p(xg_x§‘) -/x1 HT(0)(0)q o
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v +0)©)p,

X2

T(r+6)(0)p &

1T(0)(0)q

(

HT(0)(0)g (¥ — x|

2

X1

)

T 0@, [ TO+0)E), | x5 -
HT(0)(0)g HT(O)(0)y (5 — ) ) 2
(’Y+9)(5)p %y—xiy
nT(0)(e)q 2
M y
@), (" ).

by taking a; = x1 and a; = x».

3.4. Griiss Inequality

The main goal of the subsection is to use the Jensen’s inequality to explore the Griiss
inequality with V-fractional operator, which generalizes the recent results [20].

From Bohner-Peterson [21] (Theorem 6.17) and [22] (Theorem 3.3), the following Jensen
inequality holds.

Theorem 7 (Jensen Inequality). Let u € (0,1] and a1,a;,81,& € [0,00) with 0 < a; < ap,
and let w: R — Rand ¢: R — (&1,8&>) be two non-negative and continuous functions with
/ :12 w(¢) dyG > 0. Assume that F: (Gq,2) — R is a continuous and a convex function, then

) (f;f W(C)g(é)dyé‘> e
Jopw@dud )T [
Theorem 8 (Griiss Inequality). Let 6,,0,6 € C, where p,q > 0and R(y) > 0,R(68) > 0

R(o) > 0,R(6) > 0 with R(y) +p > q. Also, let u € (0,1],a1,a3,x € [0,00) satisfy
0 < ay < ap. Assume that f,g: [a1,a3] — R are continuous functions such that

w(¢) F(8(¢))dy
w(¢) dud

my < f(§) <My, mp <g(g) < M. (20)

for some my, my, M1, My € R, then
uT(0)(
" f(¢
T(y+6)( )p -~ } /
uI(6)
- f(&)dug
( (”H—G)((S) az—al ) / U /
%(M1 my) (M — my).

Proof. Firstly, we consider the case f = g. Let

f(é)—m

o(@) =5 = e o,

ie., f(&) = my + (M — mq)v(E). If we assume that, then

#T(6)(0)q K
f(&)dug =0.
T(y+0)(8)y (a5 —af) /al '
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So, we can see that m; < 0 and

miT(y +0)(6), (a5 — af)
(

[P @se < [oon = — e
This implies
I'(6)(0)4 2,
(R —— FAE)duE
F(’y+9)(5)p(ag—a§') /ﬂl :

2
_( #F(e)(e)q_a) i fe u§/ dyg)

T(7+0)(8), (af
( e a ) /“2 [m1+ (M1 — m1)o(8)]du

T(y+0)(9)p (ug
1
< —myp My = ZJ M1+m1)]
1
< g (My—m m)?.
Additionally, when the case occurs
I'(6)(0) %2

o F(@)du #0.

ri=
H

T(y+6)(8)p (ab —a}) Ju

:= f(&) — r. Then, we have that 1(§) €

Introduce the function h(§) := [my —r, Mj —r] and

nI(0)(0)q ., B uT(8)(0)g a2
(§)dué = (f(¢) —r)dug
T(7+6)(8)p (a —a}) /ﬂl ' F(y+6)(0)y (a5 — af) /al ”
_ IOy
=r- E=0.
T(y+0)(6), (a5 — af) /ul g

Consequently, for function £, it has

—_

(k) < 3 1My~ — (my — 1) = %(Ml — )2

However, the facts

Jn ) = IOy ) IRCGERERT:

[(7+6)(0)p (a5 — af

nI(6)(0)q 2 5 2
@) due = =J(f, f),
T(7+0)(8), (af — a) /al '

guarantee

(My — my)%.

»Jk\»—\

J(f, f) =1k h) <
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Using

r'(6)(
J(/ ):: £
/.8 T'(y+06)( )p az—al /ﬂ fe

(o)
_( (7+Z)(5 ‘12_”1 ) / f& y@/

and the similar proof for the case u = 1 of [20] (Theorem 3.1), one can easily complete the
proof of this case. O

Corollary 3. Let 6,v,0,6 € C, where p,q > 0and ®(6) > 0,R(y) > 0,R(e) > 0,R(6) >0
with R(y) +p > q. Also, let i € (0,1],a1,a2,&,5 € [0,00) satisfyO < ay < ap. Assume that the

0
function f: [a1,ay] — R is a V-fractional differentiable and V7 o 7 f is continuous such that

m< WPTEE) <M, €€ [ay,anl

V.
for some m, M € R, then
r(6)(e) 2 2 —al — o)
5) - — ,mms—( : ) fla)]
F('y—i—(?)(é)p(ag —a’f) /ﬂl . (a2 —aﬁ‘) '
LTy +0)(8)p (a5 —af)
< 1 (0>( ) (M - m) (21)
holds for all x € [ay, a3].
Proof. Indeed, Lemma 3 implies
I'(6)(0)q a2
- — £(s)dus
T(7+0)(8), (af — a) /al "
pI(0)(0)g

= az Qvépq dys, (22
r(7+9)(5)p(ag—a}f) /ﬂl w(& ) 76”f< ) B (22)

where w(§, s) is defined in (18). Notice that

F(v+0)(0)p (8 — a)
HT(©)(0)g

L(y+0)(6), (2" —a})

= e = T TE ),
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forall ¢ € [ay,az]. Applying Theorem 8 to functions w(¢, s) and QVW b Z f, we obtain

HT(0)(0), o .
1—‘(7_‘_9)(5) <ﬂ;{ —gi‘) /1 (U( ) V’yeyf( )dys

2
#I(0)(0) 1)
_ (F(')f—i—@)(é)p(a: y)) /“1 w(¢, S)dys/ 9V$5Zf(s)dﬂs

2 T M
1 (TOr+0)@)p(e" —a})  T(v+0)(0), (& —ab)
§4( HT(0)(0)q - HT(0)(0)q (M =m)
L(y+6)(9), (ﬂg ”)
= T mre,  Mm )

The latter together with the facts

2
#T(6)(0)q o )
(F(’He)((s)p(ag_a?)) /a1 w(g,s)dps

N HT(0)(2), 2>£q¢%wﬁ

- = 1790 (4
2(ay —al) 2(ah —a})
and
/,1 QVfrZZf(ﬂdus = f(a2) — f(m1), (25)

concludes the desired inequality (21). [

Corollary 4 (Trapezoidal Inequality). Let 6,v,0,6 € C, where p,q > 0 and R(y) > 0,
R(O) >0, R(0) > 0,R(5) > 0 with R(y) +p > gq. Also, let u € (0,1],a1,a2,&,s € [0,00)
satisfy 0 < ay < ap. Assume that the function f: [aq,a;] — R is a V-fractional differentiable and
QVi 5 Zf is continuous such that

m< IR <M, E€ lm,a

for some m, M € R, then

fla) + flaa) _ VT /
2 I(y+6)(0 az—al a

T'(y+6)(5) (a’; —a;f) (
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Proof. Using Corollary 3 with { = a», we get the desired result. [J

4. Conclusions

In this article, we have established the Steffensen-Hayashi inequalities and remainder
identity for V-fractional differentiable functions involving the six parameters truncated
Mittag-Leffler function and the well-known Gamma function. In addition, we presented
some interesting and useful applications from our main results via the frame of V-fractional
calculus such that Steffensen, Chebyshev, Griiss, Hermite-Hadamard, and Ostrowski type
integral inequalities. In any case, we hope that these results continue to sharpen our
understanding of the nature of fractional-type and its affect on the qualitative properties of
such V-fractional operators.
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