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Abstract: Cancer drivers play an important role in regulating cell growth, cell cycles, and DNA
replication. Identifying these cancer drivers provides cancer researchers with indispensable knowl-
edge that has important implications for clinical decision making. Some methods have been recently
proposed to identify coding and non-coding cancer drivers through controllability analysis in net-
work and eigenvector centrality based on community detection. However, the performance of
these methods is not satisfactory. In this work, we focus on the strategy of selecting a set of critical
nodes in cancer-special network as cancer drivers, and propose a novel approach for identifying
coding and non-coding drives via a network-based voting mechanism. We name our approach
HWVoteRank. Compared with two recent methods to identify cancer drivers, CBNA and NIBNA,
and three algorithms for identifying key nodes on BRCA dataset, our method can achieve the best
efficiency. By analyzing the results, it is found that our approach has better ability in identifying
miRNA cancer drivers. We also applied our approach to identification of drivers of miRNA during
Epithelial–Mesenchymal transition and drivers for cancer subtype. Through literature research, we
found that those drivers explored by our approach are of biological significance.

Keywords: undirected weighted network; cancer driver; gene with/without mutation; miRNA;
voting mechanism

1. Introduction

Cancer is a kind of disease that can affect any part of the human body. It is the second
leading cause of death worldwide, killing about 10 million people a year and causing about
one in six deaths [1]. The main causes of cancer are genetic disorders and environmental
factors [2,3]. Cancer drivers are genes that play an active and crucial role in the evolution of
cancer and give tumor cells an advantage in selective growth [4]. Identifying all the genes
that drive tumors is a milestone in understanding and overcoming cancer.

Traditional cancer drivers refer to genes that have mutations in their DNA sequences.
In order to reduce the cost of biological experiments, many methods based on mutation
data and network structure have been proposed to identify cancer drivers. For example,
OncodriveFM [5] was proposed to detect cancer drivers based on the function impact of
gene mutation. MutSigCV, developed by Lawrence et al. [6], explores cancer genes by
calculating the significance of mutations in gene sequence. The structural consequences
of gene mutation is used by the models of OncodriveCLUST [7] and ActivaDriver [8].
Hou et al. [9] adopted a ranking framework of pagerank in gene–gene interaction networks
to predict cancer drivers. Horn et al. [10] expanded discovery of cancer driver genes from
cancer genomes by combining molecular network and tumor genome expression data.

However, genes without mutation and non-coding miRNA also have been proven as
causal factors contributing to cancer. For instance, the unmutated gene CDC42 has been
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shown to promote the formation of invadopodia in breast cancer cells by activating N-
WASp [11]. As oncomiR, the dysfunction of miR-423 leads to oncogenesis and is involved
in signaling pathways of multiple cancer progression [12]. The high expression of miR-
15b-3p promotes tumorigenesis and malignant transformation in gastric cancer cells [13].
Therefore, several models have been proposed to predict both coding and non-coding
cancer drivers. Pham et al. [14] first integrated multiple biological data sets into a directed
network, and proposed a model CBNA based on controllability analysis in network to
predict cancer drivers, including genes with/without mutation and miRNAs. The network
control idea is introduced by CBNA and the subset of nodes that guide the complex
network can be regarded as driver nodes. Although CBNA is a complement for tradition
methods in predicting cancer drivers, only a small percentage of cancer drivers can be
identified. In order to improve the performance, a network-based algorithm NIBNA [15]
was developed. The importance score is calculated for each node in the constructed
undirected network based on community detection and eigenvector centrality. The nodes
with higher importance score are more likely to be cancer drivers. NIBNA achieves better
performance than CBNA in uncovering coding drivers. As there is no experimentally
confirmed miRNA–miRNA association in the network constructed by CBNA and NIBNA,
similar to CBNA, NIBNA is weak in detecting cancer driver of miRNA. In order to further
improve the performance of the algorithm, it is necessary to design new algorithms to
identify cancer drivers.

As cancer drivers have a strong ability to influence other genes, we adopt a common
and classical strategy of a vote mechanism to select top-ranked key nodes as drivers. The
critical factors of nodes’ importance are weights and degrees of the underlying network. In
this work, we design a novel approach to identify key nodes in networks. We name our ap-
proach HWVoteRank. We take into account the local topology of nodes, as well as the state
of its neighboring nodes in our approach. Then, we apply HWVoteRank in detecting cancer
drivers in a special breast cancer network that is built by gene expression data of breast
cancer samples and multiple biological datasets. By comparison, HWVoteRank outper-
forms the state-of-the-art models CBNA and NIBNA. In particular, it has great advantages
in predicting miRNA cancer driver. HWVoteRank also achieves better performance than
three well-known algorithms, which have excellent performance in identifying key nodes
in weighted network. In order to further demonstrate the effectiveness of our method, we
use HWVoteRank to identify miRNA drivers during Epithelial–Mesenchymal transition
and drivers for cancer subtype. These results demonstrate that our method can identify
key drivers under different conditions.

2. Materials and Methods
2.1. Datasets

A total of 747 cancer samples were downloaded from the BRCA dataset in TCGA [16],
containing coding genes expression, miRNA expression, and mutation data. According
to the list of transcription factors (TFs) provided by Lizio et al. [17], coding genes can be
divided into transcription factors and mRNA. Then, we downloaded the protein–protein
interactions network (PPIs) [18] and deleted coding genes that are not in PPIs. In addi-
tion, we obtained miRNA–mRNA/TF associations from miRTarBase [19], TarBase [20],
miRWalk [21], and TargetScan databases [22], and TF–miRNA associations from TransmiR
Database [23].

2.2. Constructing Network

Pearson’s correlation coefficient is the commonly used measurement for the strength
of the association between a pair of genes as it conforms well to the intuitive biologi-
cal notion [24]. It is widely used to identify cancer drivers, prognostic genes, and key
regulators [15,25,26]. Based on the expression profile of tumor data, Pearson’s correlation
coefficients between miRNAs, TFs, and mRNAs were calculated. Then a miRNA–TF–
mRNA network can be constructed, in which miRNAs, TFs, and mRNAs are nodes, and
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the correlation coefficients between nodes are edge weights. Following the suggestion of
Pham et al. [15], we constructed a cancer-specific network by integrating multiple databases,
including PPIs, miRTarBase, TarBase, miRWalk, TargetScan, and TransmiR. The cancer-
specific network was built through removing the edges of miRNA–TF–mRNA network
that not exist in the above 6 databases. Finally, there are 7726 nodes and 128,264 edges in
this cancer-specific network. The node set includes 1719 miRNAs nodes, 839 TF nodes, and
5168 mRNA nodes. The edge set includes 16,087 miRNA-TF links, 73,347 miRNA-mRNA
links, 18,950 TF-miRNA links, 1812 TF-TF links, 1188 TF-mRNA links, and 16,880 mRNA-
mRNA links. It is worth noting that the cancer-specific network is an undirected, weighted
network without considering the directionality of edges.

2.3. Method

Identifying the key nodes in complex networks is a crucial task in various major fields.
The key nodes have very important influence on the whole network, and the influence of
nodes in the network is closely related to its location and topological structure of network.
At present, a number of methods have been proposed to identify the key nodes based on
closeness centrality [27], betweenness centrality [28], degree centrality [28], eigenvector cen-
trality [29], H-index [30], etc. VoteRank algorithm is one popular method. However, most
of the methods are only applicable to the unweighted network, and the remaining methods
that can deal with the weighted network have a common limitation. Due the phenomenon
of rich club, they cannot accurately identify the key nodes in the top ranked ones [31].
In order to overcome this difficulty, Sun et al. [32] extended VoteRank algorithm [33] to
the weighted network and proposed the WVoteRank algorithm to find influential nodes.
Subsequently, Kumar et al. [34] improved WVoteRank by considering 2-hop neighbors.
At the same time, Liu et al. [35] developed the VoteRank++ algorithm by redefining voting
mechanism in VoteRank algorithm. Although VoteRank++ cannot be applied to a weighted
network, it achieves excellent performance in unweighted networks. In this work, inspired
by the WVoteRank and VoteRank++ algorithms, we propose HWVoteRank to identify the
key nodes in heterogeneous network.

For a network G(V, E), V denotes the set of nodes and E denotes the set of edges.
HWVoteRank adopts the idea of VoteRank++ and WVoteRank to find key nodes through a
voting mechanism. Nodes in the network can be voted as key nodes by their neighbors,
and they can vote for their neighbors. We set a state tuple (vav, vsv) for each node in the
network, where vav represents the voting ability of the node and vsv represents the voting
score obtained by voting of neighbor nodes. The voting ability of each node is initialized.
We assigned voting ability as 1 for all nodes in G.

Then, a novel voting rule is defined. Liu et al. [35] think if the degree of a neighbor
node is larger, it is more likely to become a key node. In VoteRank++, the voting rule
is based on the ratio of the degree of the neighbor node to the sum of the degrees of all
neighbor nodes. Sun et al. [32] believe that nodes are more likely to vote for neighbor nodes
with high correlation. In other words, for node v, it is likely to obtain more voting scores
from node u when the edge weight w(u,v) is greater than that from u to its other neighbors.
Thus, the voting rule of WVoteRank is set by the weight of edges. In HWVoteRank, we take
into account the degree of the neighbor nodes and the edge weights between nodes, and
balanced their by a parameter of α. For node v, the voting score of u against v is calculated
as follows:

PVuv = α ∗ kv

∑w∈ψu kw
∗ vau + (1− α) ∗ |ψu| ∗

w(u,v)

∑w∈ψu w(u,w)
∗ vau. (1)
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Based on the assumption that the topology of the node and the topology of its neigh-
bors are equally important for identifying the key nodes, we set α = 0.5. After a round of
voting, the total voting score of node v can be calculated as follows:

vsv =

√
|ψv| ∑

u∈ψv

PVuv, (2)

where |ψu| is the number of neighbors of node u. After the voting, the node with the
highest voting score is selected as the key node. The voting capability of nodes in a network
needs to be updated for the next voting. First, the voting ability of the selected node is
set to 0 to prevent it from participating in the next round of voting. In order to avoid the
“rich club” phenomenon, both WVoteRank algorithm and VoteRank++ algorithm suppress
the voting ability of a key node’s neighbors. To reduce computation, they only update
1-hop neighbors and 2-hop neighbors by a parameter of p. For 1-hop neighbor nodes of the
selected key node, p = 1, and for 2-hop neighbor nodes of the selected key node, p = 2.
Their updated rules are defined as follows.

In WVoteRank algorithm,

vav = vav −
1

p ∗ kavg
,

where kavg is the average degree of network.
In VoteRank++ algorithm,

vav = λ
1
p ∗ vav,

where λ ∈ [0, 1] is a suppressing factor.
According to the definition of [36,37], a network with multiple types of nodes and/or

multiple types of edges can be called a heterogeneous network. For a network G(V, E),
φ : V → O is defined as the node type mapping function of G, where O is the set of node
type and the type of each node v ∈ V belongs to O. ψ : E→ R is defined as the edge type
mapping function of G, where R is the set of edge type and the type of each edge e ∈ E
belongs to R. If |O|+ |R| > 2, the network G can be called a heterogeneous network; other-
wise, it is a homogeneous network. At present, most key node identification algorithms
are applicable to homogeneous networks, including WVoteRank and VoteRank++. In this
study, we design a new, updated rule that enables our algorithm WVoteRank to be applied
to heterogeneous networks which have multiple types of nodes. We assume that there
is only suppression among nodes of the same type. The voting ability of the node v is
updated as follows:

vav =

{
vav − 1

p∗kavg_i
, if node v and the selected key node belong to the same type i

0. if node v and the selected key node not belong to the same type,
(3)

where kavg_i is the average degree of nodes whose type is i. The definition of p is the same
as WVoteRank and VoteRank++.

2.4. Identifying Cancer Drivers

Cancer drivers are closely related to the progress of cancer. In this paper, we identify
the drivers of cancer by identifying the key nodes in a cancer-specific network. The flow
chart of our model is shown in Figure 1. Firstly, we calculate Pearson’s correlation coeffi-
cient between genes through the expression profile of cancer, including coding genes of
TF/mRNA and non-coding genes of miRNA, and construct a miRNA–TF–mRNA fully
connected network. We then use multiple biological databases to calibrate the network
and delete coding gene nodes that do not exist in PPIs and edges that do not exist in these
databases. A cancer-specific network can be generated. Finally, using the topology of the
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network, we identify the cancer drivers in the network through a novel voting mechanism
in heterogeneous networks.

miRNA 

expression

TF/mRNA 

expression

(1) (2) (3)

(4)

(5)

(6)

Top ranked 

cancer driver

TF/mRNA

miRNA

cancer driver

Figure 1. An illustration of identifying cancer driver. (1) Calculating Pearson’s correlation coefficient
between genes; (2) Refining network; (3) Initializing voting ability; (4) Voting according to voting
mechanism; (5) Updating voting ability; and (6) Repeating step (4).

3. Results and Discussion

In this work, we proposed a network-based voting approach (HWVoteRank) to iden-
tify coding and non-coding cancer drivers. The idea of HWVoteRank is to detect key
nodes in the cancer-specific network. We adopted the innovation points of VoteRank++
and WVoteRank and considered the heterogeneous characteristics of biological network.
Compared with traditional algorithms for identifying key nodes, HWVoteRank takes into
full consideration the local topology of nodes, as well as the state of its neighboring nodes.
More importantly, HWVoteRank can be applied to heterogeneous networks, which prevents
the rich club phenomenon in the same type nodes through the voting approach. To our
knowledge, this is the first work to use network-based voting approach for identifying
cancer drivers.

3.1. Experiment Setting

The cancer-specific network contains coding genes and non-coding RNA of miRNA.
Based on mutation data from the BRCA dataset, we classified coding genes into mutated
and non-mutated. For mutated genes, we verified cancer drivers predicted by our method
through the Cancer Gene Census (CGC) of the COSMIC Database [38], a database that
collects mutated genes which have a direct causal association with cancer. For genes
without mutations, as there were no real ground-truth data, we performed GO enrichment
analysis through an online software of DAVID [39] to evaluate the ability of HWVoteRank of
identifying meaningful coding non-mutation cancer driver. For non-coding RNA of miRNA,
we validated miRNA drivers that result in tumorigenesis of BRCA through OncomiR [40],
an online resource for exploring miRNA dysregulation in cancer. In addition, we also
applied HWVoteRank algorithm to detect drivers in the process of Epithelial–Mesenchymal
transition and identify drivers used for cancer subtypes.

3.2. Comparison Experiments

In order to prove the performance of HWVoteRank in detecting cancer drivers in
cancer-specific networks, we compared HWVoteRank with CBNA [14] and NIBNA [15],
which are currently efficient methods for identifying both coding and non-coding cancer
drivers based on expression data. Some well-known methods for identifying key nodes in
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weighted networks include weighted degree [41], weighted H-index [42], weighted core-
ness [43], and weighted betweenness [44]. We also compared HWVoteRank with weighted
degree (w_degree), weighted H-index (w_hindex), and improved WVoteRank [34] (called
PWVoteRank in this paper) that has excellent performance in identifying key nodes in a
weighted network (by voting approach). As weighted coreness and weighted betweenness
need to traverse all paths from each node to other nodes in the network, they have very
high computational complexity and are not suitable for large biological information net-
works. In additional, according to the comparison results of [42], weighted degree is better
than weighted coreness and weighted betweenness, so we did not compare HWVoteRank
with weighted coreness and weighted betweenness. As CBNA cannot rank identified
cancer drivers of miRNA (it just ranks genes by mutation frequency), we only compared
HWVoteRank, NIBNA, PWVoteRank, w_degree, and w_hindex by the validated number of
cancer drivers, precision, recall, and F1 values among the top 200 identified cancer drivers,
excluding genes without mutations. The results are shown in Table 1 and Figure 2. Clearly,
HWVoteRank, proposed in this study, achieves the highest performance in exploring cancer
drivers of coding mutated gene and non-coding miRNA. We found that the performance of
w_degree is second only to ours, because as there is no experimentally confirmed miRNA–
miRNA association in cancer-specific network, the absence of edges between miRNA nodes
reduced the influence of rich club phenomenon on the performance of w_degree.
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Figure 2. Performance comparison among PHVoteRank, NIBNA, HWVoteRank, w_hindex, and
w_degree in top 200 predicted cancer drivers, excluding genes without mutations. (a) is the precision
comparison, (b) is the recall comparison, and (c) is the F1 score comparison.

We analyzed non-coding drivers of miRNA in the top 200 predicted cancer drivers. The
comparison results of number of validated miRNA are shown in Figure 3. In addition, CBNA
predicted 17 miRNA drivers, 11 of which were confirmed by OncomiR associated with BRCA
tumorigenesis. Obviously, HWVoteRank has ability to explore higher number of non-coding
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drivers of miRNA. The reason of HWVoteRank proves superior to other methods is that
HWVoteRank takes full advantage of the topology structural of cancer-special network.

Table 1. The comparison of validated number of cancer drivers among PHVoteRank, NIBNA, HWVoteR-
ank, w_hindex, and w_degree in top 200 predicted cancer drivers, excluding genes without mutations.

Methods Top 50 Top 100 Top 150 Top 200

HWVoteRank 41 84 115 143
NIBNA 36 70 99 122
PWVoteRank 40 67 70 80
w_hindex 33 66 94 121
w_degree 39 80 114 142

PWVoteRank

NIBNA

w_hindex

w_degree

HWVoteRank

Top N driver cancers
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Figure 3. Comparison of the number of confirmed miRNA drivers in the top 200 predicted cancer
drivers, excluding genes without mutations.

We compared HWVoteRank with NIBNA and CBNA, two of the most popular methods
for identifying coding and non-coding cancer drivers, in the number of predicted cancer driver
of gene with mutations in the top 50 genes. The comparison results are shown in Figure 4. It is
demonstrated that the proposed HWVoteRank approach outperforms the other two methods
in top 50. Therefore, methods based on key node identification can effectively identify cancer
drivers of genes with mutations. It is a novel development direction to identify cancer drivers
in biological network by the algorithms for identifying the key nodes in the network.
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Figure 4. Comparison of the number of confirmed drivers in the top 50 predicted cancer driver of
gene with mutations.
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3.3. Identifying Cancer Drivers of Coding Gene without Mutations

To evaluate the ability of HWVoteRank in discovering cancer drivers of coding genes
without mutations, Go enrichment analysis of biological processes (BP) and molecular
functions (MF) were performed by online software DAVID. We selected the top 50 predicted
candidate cancer drivers of coding genes without mutations. The top 10 enriched terms of
GO BP and GO MF involved with the highest number of predicted coding genes without
mutations, and the top 20 coding genes without mutations with the highest frequency
in the top 10 enriched terms, were selected. The results of the enrichment analysis are
presented as heatmaps in Figure 5, and the corresponding terms of biological processes
and molecular functions are provided in Tables A1 and A2 of Appendix A. Two heatmaps
show that there is a significant association between coding genes without mutations and
the enrichment terms of BP and MF. We conducted further analysis through literature
research, and there is much evidence demonstrating those cancer-drivers of genes without
mutations have biological significance. For example, CEBPB, involved both in BP and MF,
promotes migration and invasion of breast cancer cell by deregulating the expression of
CLDN4 [45]. Chen et al. [46] found that JunD activates proximal aromatase associated with
breast cancer by integrating prostaglandin E2. FGF2 has been shown to promote breast
cancer growth through independent ligand activation and interaction with MYC regulatory
sequence [47]. RBPJ was identified as a medullary breast carcinoma autoantigens, which
can block serological characteristics in breast cancer [48]. The expression of CEBPD is
reduced by promoter methylation in the sum-52pe human breast cancer cell line and
primary breast cancer [49], and the interaction between FOXP2 and FOXA2 can prevent
metastasis of breast cancer [50].
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Figure 5. The heatmaps of (a,b) show enrichment profiles for GO biological processes and GO
molecular functions, respectively.

3.4. Identifying Drivers during Epithelial–Mesenchymal Transition

Epithelial–Mesenchymal transition (EMT) is a complex process that drives cells to
become invasive and motile during cancer progression [51]. Non-coding RNA of miRNA
can regulate EMT via interacting with critical molecules involved in EMT engineering [52].
For example, miRNA-21 induces EMT by the AKT/PTEN pathway in breast cancer [53].
MiRNA-520f reverses EMT by targeting two targets of TGFBR2 and ADAM9 [54]. Consid-
ering that HWVoteRank has excellent performance in exploring cancer drivers of miRNA,
we applied it in identifying drivers during Epithelial–Mesenchymal transition. The BRCA
dataset used in this study was categorized into four phenotypes according to EMT score [55],
including epithelial, mesenchymal, intermediately epithelial, and intermediately mesenchy-
mal. HWVoteRank was performed on the mesenchymal class with the largest sample size to
detect EMT drivers of miRNA. We selected the top 100 EMT drivers, of which 19 predicted
EMT drivers of miRNAs were confirmed by the list of pro-mesenchymal miRNAs provided
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by [56]. The top 20 predicted EMT drivers of miRNAs are given in Table 2, which can be
prioritized for the study of their biological function in EMT.

Table 2. Top 20 miRNA EMT drivers, with the names of predicted drivers validated by [56] in bold.

EMT Drivers of miRNA

hsa-miR-17-5p, hsa-miR-93-5p, hsa-miR-15a-5p, hsa-miR-16-5p,
hsa-miR-20a-5p, hsa-miR-103a-3p, hsa-let-7b-5p, hsa-miR-106b-5p,
hsa-miR-107, hsa-miR-27a-5p, hsa-miR-23b-5p, hsa-miR-92a-1-5p,

hsa-let-7i-5p, hsa-miR-23a-5p, hsa-miR-22-5p, hsa-miR-19a-5p,
hsa-let-7a-5p, hsa-miR-24-1-5p, hsa-miR-182-5p, hsa-miR-15b-5p

3.5. Identifying Drivers for Cancer Subtype

Breast cancer with the same pathologic morphology is highly heterogeneous at the
molecular level. The subtype of breast cancer can reflect the biological behavior of tu-
mors more accurately, judge the prognosis, and facilitate the selection and research of
more targeted personalized treatment methods. We performed HWVoteRank to detect
candidate drivers that are capable of typing breast cancer. Following the suggestions of
Pham et al. [14,15], we classified the BRCA dataset used in this study into five subtypes
by Pam50 [57,58]. We obtained 221 samples of Luminal A, 165 samples of Luminal B,
158 samples of Basal, 108 samples of Her2, and 95 samples of Normal-like. For each type,
the drivers of coding gene with mutation, coding gene without mutation, and miRNA
were predicted and are listed in Table A3 of Appendix A. Coding genes with mutation are
considered as drivers if they mutate more frequently than any other cancer subtype, and
the top 10 of each type was selected. For coding genes without mutation, and miRNA, we
selected the top 10 candidate drivers for each breast cancer subtype ranked in the top 500
and top 200 predicted drivers, respectively, by removing common candidates between at
least two subtypes.

Among the predicted drivers, FN1 is a hub node of the protein–protein interactions
networks constructed by differentially expressed mRNAs in luminal subtype B breast cancer
tumor tissues and adjacent tissues [59]. STAT1 has been observed to have a statistically
significant correlation with IDO1, which is found in stromal cells and tumor-associated
macrophages, and has a higher incidence with luminal B samples [60]. The expression of
FOXA1 is closely related to luminal A breast cancer, and it can be used as a significant
predictor of survival in patients tumors [61]. Several miRNAs associated with breast
cancer subtype predicted by Pham et al. [15] were also identified by us, for example, the
expression of hsa-miR-590-5p, hsa-miR-10a-5p, and hsa-miR-877-5p in subtype of Basal
and the expression of hsa-miR-215-5p in subtype of Her2 are abnormal.

4. Conclusions

Cancer is one of the most common diseases that endangers human health. Cancer
drivers play an important role in the initiation, progression, and metastasis of cancer.
Successful identification of cancer drivers is helpful to understand the pathology of cancer
and to design accurate treatment and prognosis plans for cancer. In this work, we proposed
an efficient approach, HWVoteRank, to detect cancer drivers, including coding genes with
mutation, coding genes without mutation, and non-coding RNA of miRNA. In our method,
we first constructed a cancer-specific network by integrating several biological datasets.
Each gene in the network is endowed with a voting ability according to its degree, and it
also can be voted for by its neighbor genes through a voting mechanism, which considers
both the local topology of genes and its neighbors. After a round of voting, the node
with the highest voting score is considered a driver, and the voting ability of each node
is updated. With multiple votes, we can iterate to identify top cancer drivers in a cancer-
specific network. In order to prove the effectiveness of our method, we compared it with
other popular methods, CBNA, NIBNA, and three algorithms for identifying key nodes.
The results show that our method has the best performance, and especially has powerful
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capability in identifying cancer drivers of miRNA. An experiment based on identifying
drivers of miRNA during the Epithelial–Mesenchymal transition, and identifying drivers
for cancer subtypes, was also conducted in this work. Some drivers identified in different
condition by our method do have biological significance, found through literature research.
HWVoteRank is proven to be a reliable potential method for identifying cancer drivers, and
it contributes to the improvement for the understanding of cancer pathology.
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Appendix A

Table A1. Lists of top 10 enriched terms and the corresponding biological processes.

Enriched-Terms Term

GO:0045944 positive regulation of transcription from RNA polymerase II promoter
GO:0006366 transcription from RNA polymerase II promoter
GO:0006351 transcription, DNA-templated
GO:0045892 negative regulation of transcription, DNA-templated
GO:0045893 positive regulation of transcription, DNA-templated
GO:0043524 negative regulation of neuron apoptotic process
GO:0008285 negative regulation of cell proliferation
GO:0006357 regulation of transcription from RNA polymerase II promoter
GO:0045669 positive regulation of osteoblast differentiation
GO:0008284 positive regulation of cell proliferation

https://github.com/Ydongling/HWVoteRank.git/
https://github.com/Ydongling/HWVoteRank.git/
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Table A2. Lists of top-10 enriched terms and the corresponding molecular function.

Enriched-Terms Term

GO:0005515 protein binding
GO:0003677 DNA binding
GO:0003700 transcription factor activity, sequence-specific DNA binding
GO:0042802 identical protein binding
GO:0008134 transcription factor binding
GO:0019899 enzyme binding
GO:0000978 RNA polymerase II core promoter proximal region sequence-specific DNA binding
GO:0043565 sequence-specific DNA binding
GO:0031625 ubiquitin protein ligase binding
GO:0046982 protein heterodimerization activity

Table A3. Lists of drivers for breast cancer subtype.

Subtype Coding Gene with Mutation Coding Gene without Mutation miRNA

Luminal A AR, TK1, MBD3, CXXC1, FOXA1, CREB1,
TCF12, E2F1, RUNX1, FLI1 GATA6, FOSL1, CEBPD, PPP1CA

hsa-miR-128-1-5p, hsa-miR-296-5p,
hsa-miR-484, hsa-miR-491-5p,

hsa-miR-497-5p, hsa-miR-33a-5p,
hsa-miR-543, hsa-miR-665,

hsa-miR-153-3p, hsa-miR-708-5p

Luminal B YWHAG, STAT1, FN1, ATXN1, SRC,
DLG1, TAF1, TCF3, CTCF, RUNX1T1, ZBTB7A, TNFSF11, VDR

hsa-miR-615-5p, hsa-miR-122-5p,
hsa-miR-766-5p, hsa-miR-134-5p,

hsa-miR-647, hsa-miR-623

Basal EP300, MAPK1, ERG, SPI1, PRKCA,
CREBBP, SP1, VCL, MYC, CTNNB1

SUMO2, SNRPD1, CNOT7, SNTB2,
KLF1, IGF2, TOMM20

hsa-miR-19b-1-5p, hsa-miR-590-5p,
hsa-miR-98-5p, hsa-miR-219a-5p,
hsa-miR-877-5p, hsa-miR-10a-5p,
hsa-miR-191-5p, hsa-miR-342-5p,

hsa-miR-34a-5p, hsa-miR-137

Her2 MAPK6, LCK, TGFBR1, LYN, EGFR,
CDK2, ATF7IP, PDPK1, PTPN11, RASA1

USF2, SET, MYOD1, APOE, RAB11B,
RGS19

hsa-miR-215-5p, hsa-miR-193a-5p,
hsa-miR-224-5p, hsa-miR-4728-5p

Normal-like
KPNB1, COL1A1, CCND1, C8orf33,
ETS1, GOLGA2, PPP3CA, COL6A1,

HIPK2, BMPR1A

SUMO4, RASSF1, SSSCA1, PXN, GTF2B,
CAPNS1, CHMP1B, ADAM17, TBXA2R,

ACP1
hsa-miR-29a-5p
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