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Abstract: The paper introduces a new approach to enhance optimization algorithms when solving
the piecewise linearization problem of a given function. Eight swarm intelligence algorithms were
selected to be experimentally compared. The problem is represented by the calculation of the
distance between the original function and the estimation from the piecewise linear function. Here,
the piecewise linearization of 2D functions is studied. Each of the employed swarm intelligence
algorithms is enhanced by a newly proposed automatic detection of the number of piecewise linear
parts that determine the discretization points to calculate the distance between the original and
piecewise linear function. The original algorithms and their enhanced variants are compared on
several examples of piecewise linearization problems. The results show that the enhanced approach
performs sufficiently better when it creates a very promising approximation of functions. Moreover,
the degree of precision is slightly decreased by the focus on the speed of the optimization process.

Keywords: swarm intelligence algorithms; piecewise linearization; optimization; parameter tuning;
approximation; experimental comparison

MSC: 68T20

1. Introduction

Linearization is one of the most powerful methods that deal with nonlinear systems.
One of the most important factors in piecewise linearization is the number of linear seg-
ments. Piecewise linear functions are often used to approximate nonlinear functions, and
the approximation itself is an important tool for many applications. This method can
be found in many applications, for example, dynamical systems, nonlinear non-smooth
optimization, nonlinear differential equations, fuzzy ordinary differential equations and
partial differential equations, petroleum engineering, and medicine [1–5].

Various existing approaches attempt to find a piecewise linear approximation of a
given function. Classical mathematical methods based on differentiable nonlinear functions
have been introduced, for example, the Newton–Kantorovich iterative method, analytical
linearization, forward–difference approximation, or center-difference approximation [6,7].
Other types of classical transforms or approximations, e.g., Laplace, Fourier, or integral,
are used for the construction of approximation models [8]. Methods based on fuzzy theory
are called fuzzy approximation methods, and the most known method is called a fuzzy
transform [9].

In [10], the authors introduced linearization methods that used the large deviation
principle, utilizing the Donsker–Varadhan entropy of a Gaussian measure and the relative
entropy of two probability measures. In [1], the author presented an easy and general
method for constructing and solving linearization problems. A spline algorithm to con-
struct the approximant and the interior point method to solve the linearization problem
was created. In [11], the Wiener models were composed of a linear dynamical system

Mathematics 2022, 10, 808. https://doi.org/10.3390/math10050808 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10050808
https://doi.org/10.3390/math10050808
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-2780-5541
https://orcid.org/0000-0003-2956-1226
https://doi.org/10.3390/math10050808
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10050808?type=check_update&version=2


Mathematics 2022, 10, 808 2 of 24

together with a nonlinear static part. If the nonlinear part is invertible, the inverse function
is approximated by a piecewise linear function estimated by the usage of the genetic al-
gorithm and evolution strategy. The linear dynamic system part is estimated by the least
square method.

In [12], the authors introduced a method to find the best piecewise linearization of
nonlinear functions based on an optimization problem that is reduced to linear program-
ming. Another algorithm that is used to find the optimal piecewise linearization for a
predefined number of linear segments with particle swarm optimization (PSO), without
the knowledge of the function and without ideal partitions, is introduced in [13]. Further,
the authors of [14] introduced a genetic algorithm-based clustering approach to obtain the
minimal piecewise linear approximation applied on nonlinear functions. The technique
uses a trade-off between higher approximation accuracy and low complexity of the approx-
imation by the least number of linearized sectors. Another piecewise linearization based on
PSO is applied to piecewise area division; the control parameter optimization of the model
was introduced in [15]. In [16], an effective algorithm to solve the stochastic resource allo-
cation problem that designs piecewise linear and concave approximations of the recourse
function of sample gradient information was introduced. In [17], the authors presented a
range of piecewise linear models and algorithms that provided an approximation that fits
well in their applications. The models involve piecewise linear functions using a constant
maximum number of linear segments, border envelopes, strategies for continuity, and a
generalization of the used models for stochastic functions.

We can already find some piecewise linearization problems solved by evolutionary
algorithms, where specific kinds of functions or the number of piecewise linear parts
are required. In this experiment, a kind of function is not restricted, and the number
of linear segments does not need to be predefined. Nevertheless, only the 2D functions
are used to be approximated in this experiment. Besides evolutionary algorithms, the
traditional mathematical approaches were mentioned in this section to solve the piecewise
linearization problems, however, these approaches will not be addressed in this paper, and
a comparison with our methods will be mentioned in future work.

The aim of this paper is to contribute to the problem of piecewise linearization using
popular swarm intelligence algorithms with automatic parameters tuning. The linearization
of a given nonlinear function is an approximation problem leading to the determination
of appropriate points. The goal is to find the best distribution of the points to minimize
the distance between the original function and the approximated piecewise linear func-
tion. As there is no acceptable analytical solution of this optimization problem, using the
stochastic-based (swarm intelligence) algorithms promises sufficient accuracy. Moreover,
the selected swarm intelligence algorithms will be enhanced by the automatic parameter
tuning approach and compared to provide an insight into the algorithm’s performance.

The rest of the paper is arranged as follows. In Section 2, the basic terms used in
this paper are introduced. In Section 3, swarm intelligence algorithms selected for the
comparison are briefly described. In Section 4, the application of the original swarm intel-
ligence algorithms on piecewise linearization with their parameters is proposed. Finally,
in Section 5, the application of the newly proposed automatic parameter tuning of the
swarm intelligence algorithms is introduced. A compendious discussion of the algorithm’s
efficiency and precision is assumed in Section 6.

2. Preliminaries

In this paper, we work with a real-value problem in a continuous search area. We
consider the objective function f (x), where x = (x1, x2, . . . , x`), ` ∈ N is defined on the
search domain X = [a, b]. The problems solved in a discrete search space could require
some modifications of the presented methods. Through this paper, for the simplicity of the
demonstrated method, the domain [0, 1] is used, but the problem can be easily reduced to
the more general domain.
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2.1. Piecewise Linear Function

Through this paper, piecewise linear functions are used, therefore the piecewise linear
function should be defined.

A piecewise linear function f : [0, 1]→ [0, 1] given by finite number of points (xi, yi) ∈
[0, 1]× [0, 1] for i = 1, . . . , `, is a function f : [0, 1] → [0, 1] such that x1 = 0, x` = 1, and
f (xi) = yi for each i = 1, 2, . . . , `, and f |[xi ,xi+1] is linear for every i = 1, 2, . . . , `− 1. Points
x are called turning points. More precisely,

f (x) =



y1 + (y2 − y1)
(x−x1)
(x2−x1)

, x1 ≤ x ≤ x2,

y2 + (y3 − y2)
(x−x2)
(x3−x2)

, x2 ≤ x ≤ x3,
...

y`−1 + (y` − y`−1)
(x−x`−1)
(xl−x`−1)

, x`−1 ≤ x ≤ x`.

2.2. Metrics

The difference between the original function and the approximated piecewise linear
function is calculated with chosen metrics. In this paper, two different metrics are applied
to achieve more complex results of compared methods.

Let (x, y) are vectors, where x = {x1, x2, . . . , xn}, y = {y1, y2, . . . , yn}. A Manhattan
metric is a function d1 : Rn ×Rn → R in n-dimensional space, which gives the distance
between vectors x, y by the sum of the line segments projection lengths between the points
onto the coordinate system. More precisely,

d1(x, y) =
n

∑
i=1
|xi − yi|.

A metric defined on a vector space, induced by the supremum or uniform norm,
where the two vectors distance is the biggest of the differences, is called Maximum metric.
More precisely,

d2(x, y) = max
i=1,2,...,n

|xi − yi|.

3. Selected Swarm Intelligence Algorithms

Now, the use of swarm algorithms for searching a global optima of an interval map
f : [0, 1]→ [0, 1] will be demonstrated. A population is represented as a finite set of n ∈ N
randomly chosen points x ∈ [0, 1]. Further, the population moves in the domain with the
help of the given algorithm strategy. The processes are mostly combined with the help of
stochastic parameters, adapted towards the required solution. These algorithms stop after
a certain number of iterations or under some predefined condition. The algorithms were
selected based on the popularity of the methods measured by the frequency of their real
applications and also based on our previous experiments [18,19].

3.1. Swarm Intelligence Algorithms

Swarm intelligence algorithms are stochastic algorithms from the group of evolution-
ary algorithms. These algorithms are used for solving global optimization problems that
model the social behaviors of a group of individuals. The inspiration comes mostly from
nature, especially from biological systems inspired by biological evolution, such as selec-
tion, crossover, and mutation. Most swarm intelligence in nature-based systems involve
algorithms of ant colonies, bird flocking, hawk hunting, animal herding, fish schooling,
and others. The difference between evolutionary algorithms and swarm intelligence is that
there is an interaction of more candidate solutions, but they differ in the model between
individuals. In swarm intelligence algorithms, there is also a group (population), but its
move in the domain is followed by the group behavior rules of a given population. In this
section, the swarm algorithms used in this manuscript will be introduced.
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3.1.1. Particle Swarm Optimization

A population in the PSO algorithm is composed of particles that move in a predefined
search area according to evolutionary processes. In each step, several characteristics are
computed and employed to illustrate how the particles are toward the solution [20–22].

The population is represented by a finite set of n ∈ N points x ∈ [0, 1] called particles is
given randomly. Then, the population is evaluated, and each particle controls its movement
in the search area according to its personal best position pbest, the best neighbour position
pg and with the stochastic parameters (acceleration coefficients Φ1, Φ2, constriction factor
χ). There exist several variants of the PSO algorithm. In this paper, the original PSO
algorithm from [21] with the modification by constriction factor χ is used. Parameter χ
does not change during the algorithm’s run and it has a restrictive impact on the result.
When the PSO algorithm runs without restraining velocities, it can rapidly increase to
unacceptable levels within a few iterations. The elements UΦ1 , UΦ2 are represented by
random points from a uniformly distributed intervals [0, Φ1], [0, Φ2], where Φ1, Φ2 ∈ R.
At first, pbesti

and f (xi) are compared, and if pbesti
≤ f (xi), then pi = xi and to the value

of pbesti
is saved a value of the function (pbesti

= f (pi)). In the next step, it finds the best
neighbour pg of i-th position and assign it j-th position, if f (pg) ≥ f (xj), then pg = xj and
f (pg) = f (xj). The main part of the calculation consists of computing the velocity and
updating the new particle positions which are given by the following formulas:

vi = χ(vi + UΦ1(pi − xi) + UΦ2(pg − xi)),

xi = xi + vi.

3.1.2. Self-Organizing Migrating Algorithm

A self-organizing migrating algorithm (SOMA) is a simple model of the hunting pack.
The individuals move across the domain, such that each individual in each migration round
goes straight to the leader of the pack, checks the place of each jump, and remembers the
best-found place for the next migration round. SOMA has several strategies, we use the’
AllToOne’ strategy, where all individuals move towards the best one from the population.
Each individual xi ∈ [0, 1] is evaluated by the fitness, and the one with the highest fitness is
chosen as a leader for the loop. Then the rest of the individuals jump towards the leader and
each of them is evaluated by the cost function after each jump. SOMA has three numerical
parameters defining a way of moving an individual behind the leader. These parameters
are the relative size of the skipping leader, the size of each jump, and the parameter which
determines the direction of movement of the individual behind the leader. The jumping
approach continues until a new individual-position restricted by PathLength is reached.
The new individual position at the end of each jump is determined by

xML+1
i = xML

i,start + (xML
L − xML

i,start)StepSize · PRTVector.

Then each individual moves toward the best position on its jumping trajectory. Before
an individual continues to jump towards the leader, a set of random numbers from the
interval [0, 1] is generated, and each member of this set is compared with PRT, where
PRT ∈ [0, 1]. If the generated random number is greater than PRT, the corresponding
ith coordinate will be taken from the new position (PRTVectorj = 1) otherwise it will be
taken from the original individuals position (PRTVectorj = 0). During the process, each
individual attempts to find its best position and the best position from all individuals [23].

3.1.3. Cuckoo Search

The Cuckoo search (CS) algorithm is inspired by brood parasitism of cuckoos which
give eggs in the nests of the host birds. The host bird throws the egg away from the nest or
abandons the nest whereas build a new nest by the fraction pa. The idea of the algorithm is
to create new and better solutions (cuckoos) that replace worse solutions from the nests.
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Each egg represents one solution and a cuckoo egg gives a new possible solution. In our
case, we use the easiest form of the algorithm when each nest has one egg.

Cuckoo search uses the Mantegna Lévy flight Lévy(β), which is given by the following
equation: step = u/|v|1/β. The parameter β is taken from the interval [0.3, 2), parameters
u, v are normally distributed stochastic variables and u is calculated as u · σ, where σ is the
standard deviation. The main part of the algorithm is the application of Lévy flights and
random walks in the equation that generates new solutions:

xt+1
i = xt

i + αLévy(β).

The parameter α > 0 is the step size, and mostly, the value α = 1 can be used. The
total number of possible host nests is constant, where the probability that the host bird
discovers a cuckoo’s egg is pa ∈ [0, 1] [24].

3.1.4. Firefly Algorithm

Firefly algorithm (FFL) is inspired by the flashing behavior of fireflies that produce
light at night. Fireflies are unisexual; therefore, they are attracted to each other no matter
their sex. A new generation of fireflies is given by the random walk and their attraction.
Fireflies can communicate with their light intensity that informs the swarm about its
features as species, location, and attractiveness. Between any two fireflies i and j the
Euclidean distance r(i, j) at positions xi and xj is defined. The attractiveness function of
a firefly j should be selected as any monotonically decreasing function with a distance

to the selected firefly defined as β = β0 · e
−γ·r2

ij , where rij is the distance, β0 is the initial
attractiveness at a distance rij = 0, and γ represents an absorption coefficient characterizing
the variation of the attractiveness value. The movement of each ith firefly attracted by a
more firefly j with higher attractiveness is given by the equation

xt+1
i = xt

i + β(xt
j − xt

i) + α(σ− 0.5).

The first component represents the ith firefly position, the second part enables the
model of the attractiveness of the firefly, and the last part is randomization, with α ∈ [0, 1]
represented by the problem of interest. The parameter σ represents a scaling factor that
determines the distance of visibility, and mostly σ ∈ [0, 1] that is given by a random uniform
distribution in the space can be used [25].

3.1.5. Grey Wolf Optimizer

Grey wolf optimizer (GWO) is inspired by wolves living in a pack. In the mathe-
matical model of the wolves’ social hierarchy, the best solution is represented by α, the
second-best solution is β, and δ represents the third-best solution. The rest of the candidate
solutions are in a group ω. The optimization in this algorithm is guided by the best three
wolves α, β, δ, and the wolves in ω follow these three wolves. The model is given by the
following equations:

d = |c · x(t)P − x(t)|

and
x(t+1) = x(t)p − a · d,

where t is the current iteration, variables a and c are coefficient vectors, xp is the prey’s
position vector, and x represents the position vector of a grey wolf. The vectors a and c are
determined as follows: a = 2ar1 − a, c = 2r2. Components of a are linearly decreased from
2 to 0 over the course of iterations by the formula 2− (2 FES

maxFES ), where maxFES is a total
count of fitness value evaluations, and r1, r2 are random values from interval [0, 1] [26].
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3.1.6. Artificial Bee Colony

The artificial bee colony (ABC) is inspired by the foraging behavior of honey bees,
and it employs three types of bees: employed foraging bees, onlookers, and food sources.
Employed foraging bees and onlookers search for food sources, and for one food source
equals to one employed bee. It means the number of employed bees is the same as the
number of food places around the hive. The algorithm randomly places a population of
initial vectors, which is iteratively improved. The possible solution is represented by the
position of the food, and the food source gives the quality (fitness) of a given problem [27].
The ABC algorithm is quite simple because it uses only three control parameters that should
be determined (size of the population, limit of scout L, dimension of the problem).

The new solution is given by the following formula

vi = xi + φi(xi − xk),

where k and j are randomly selected indexes and φ is random number from the range
[−1, 1]. Then, it computes the probability value p for the solutions x with the help of the
fitness value. The next step is to produce and evaluate new onlookers solutions vi, which
are based on the solutions xi that depends on pi.

3.1.7. Bat-Inspired Algorithm

The inspiration of the bat-inspired algorithm (BIA) comes from the echolocation
behavior of microbats, which use varying pulse rates controlled by emission and loudness.
Each bat flies randomly with a given velocity, and it has its position with a varying
frequency or wavelength and loudness. All bats use echolocation; thus, they know the
distance and the difference between food.

The population of bats is placed randomly, and after that, they fly randomly with
a given velocity vi to the position xi with a given frequency fmin, changing wavelength
λ, and loudness parameter A0. The bats automatically adjust the proper wavelength of
the emitted pulses, and also the pulse emission rate r ∈ [0, 1]. The loudness can vary, for
example, between A0 and a minimum value Amin. The frequency f is in a range [ fmin, fmax]
and it corresponds to the range of wavelengths [λmin, λmax]. Here, the wavelengths are not
used, instead, the frequency varies whereas the wavelength λ is fixed. This is caused by
the relation between λ and f , where λ · f is constant. For simplicity, the frequency is set
from f ∈ [0, fmax]. It is clear that higher frequencies give short wavelengths and provide a
shorter distance. The rate of the pulse can be in the interval [0, 1], where 0 denotes no pulses,
and 1 marks the maximum rate of pulse emission. The new solutions xt

i and velocities vt
i at

current time t are given by
fi = fmin + ( fmax − fmin)β,

vt
i = vt−1

i + (xt
i − xbest) fi,

xt
i = xt−1

i + vt
i ,

where β ∈ [0, 1] represents a uniformly distributed random vector, and value xbest demon-
strates the current global best position detected after comparing all bat-solutions. The local
search strategy generates a new solutions for each bat using random walk xnew = xold + εAt,
where ε ∈ [−1, 1] is a random number, while At = {At

i} is the mean loudness of whole bats
population in the current time step. The loudness parameter Ai and the pulse emission rate
ri are updated during the iterations proceed. Now we have At+1

i = αAt
i , rt+1

i = r0
i [1− e−γt],

where α and γ are constants. For any 0 < α < 1 and γ > 0, we have At
i → 0, rt

i → r0
i , as

t→ ∞ [28].

3.1.8. Tree-Seed Algorithm

The tree-seed algorithm (TSA) is based on the relationship observed between trees and
seeds, where seeds gradually grow, and new trees are created from them. The trees’ surface
is represented by a search area, and the tree and seed locations are mentioned as possible
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solutions of the optimization problem. It employs two peculiar parameters as the total
number of trees and the seed production. The main and important problem is to obtain the
seed location produced from a tree. The first equation finds the tree location used for the
production of the seed, whereas the second employs the locations of two different trees to
produce a new seed for the tree:

si,j = ti,j + αi,j × (bj − tr,j),

si,j = ti,j + αi,j × (ti,j − tr,j),

where si,j is jth dimension of ith seed position to produce ith tree and ti,j is the jth dimension
of the ith tree, bj represents the jth dimension of the best tree, where b is computed as
b = min{ f (ti)}, the jth dimension of rth tree tr,j is selected from the population randomly.
The scaling factor α is produced randomly from [−1, 1], i and r are different indices.

First, the initial tree locations that give us trial solutions of the optimization problem
are designed by using:

ti,j = lj,min + ri,j(hj,max − lj,min)

where, lj,min represents the lower bound of the search area, hj,max denotes the upper bound
of the search area, and ri,j ∈ [0, 1] is a uniformly distributed random number. The best
solution is selected from the population using b where n represents the size of the trees
population. The number of seeds can be higher than the number of trees [29].

3.1.9. Random Search

Random search (RS) is the simplest stochastic algorithm for global optimization, which
was proposed by Rastrigin in 1963. In every iteration, it generates a new point from the
uniform distribution in the search area. Then, the function value of this point is compared
with the best point found so far. If the new trial point is better, it replaces the old best
point. There is not used any learning mechanism or exploitation of knowledge from the
previous search [30]. This algorithm does not belong to the group of swarm algorithms,
but because it can have fast and good convergence to the given solution, it can be used as a
comparing algorithm.

4. Piecewise Linearization Using Swarm Intelligence Algorithms

Our implementation of the swarm algorithms consists of searching for a linearization l f
(the piecewise linear function definition is above) of a fixed interval map f : [0, 1]→ [0, 1].
To allocate a suitable solution, the optimization function (objective function) is represented
by a distance function given by the metric between f and its linearization l f . Every possible
linearization is represented by a finite number of points (` ∈ N), every population contains
n particles (`-dimensional vectors), where the stochastic parameters are adapted.

In this section, we introduce the testing functions, provide the setting of the algo-
rithm’s parameters that can be used for the problem of linearization, and we look at which
algorithm can give us the best results.

4.1. Test Functions

For testing, we chose continuous functions f : [0, 1] → [0, 1], where for simplicity,
we work only in the space [0, 1]. These functions were chosen from the most basic to the
complicated ones (see Figure 1), to demonstrate the algorithm behavior on different levels
of functions. The functions are given by the following formulas:

f1(x) = 4x− 4x2 (1)

f2(x) =
1
2
(sin

( 3
2

x + 1
10

)
+ 1) (2)

f3(x) =
1

25
(sin 20x + 20x · sin 20x · cos 20x) +

1
2

(3)
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f4(x) = 0.9 + (−1 + x)(0.9 + (−0.16 + (5.4 + (−27+

(36 + (510 + (−120− 2560(−0.9 + x))(−0.1 + x))

(−0.6 + x))(−0.2 + x))(−0.8 + x))(−0.4 + x))x)

(4)

f5(x) = sin
( 3

2

x + 13
200

)
+ 1 (5)

f6(x) =
(

x− 1
2
)

sin
(

1
x− 1

2

)
+

1
2

(6)

Figure 1. Graphs of the functions f1, f2, f3, f4, f5, and f6.

4.2. Parameter Settings of the Chosen Algorithms

The proper choice of parameters can have a large influence on the optimization
performance and, therefore, for each algorithm, in comparison, we tested which parameters
were suitable for our problem, in regard to searching for the best possible linearization. In
this subsection, we will discuss the setting of parameters for the algorithms introduced in
Section 3.1. Each algorithm proceeded 50 times with a fixed dimension ` = 16 and also
a fixed population size set to n = 25. Each algorithm runs as long as it takes to find a
solution with a good enough f itness_value, but it has to find it before maxFES = 10,000.
This fitness_value threshold was set to value 0.2.

In PSO, the setting of acceleration coefficients Φ1, Φ2 and constriction factor χ should
be set. Parameter Φ1 controls the importance of the particle’s personal best value, whereas
the importance of the neighbor best value is controlled by parameter Φ2. The algorithm
can be unstable when these parameters are too high because the velocity can grow up
faster. The equation Φ = Φ1 + Φ2, where Φ > 4, should be satisfied and the authors of
the algorithm recommended Φ1, Φ2 set to 2.05. Parameter χ has a restrictive effect on the
result, and it does not change in time. In the original version, PSO has χ = 2

(Φ−2+
√

Φ2−4Φ)
.



Mathematics 2022, 10, 808 9 of 24

In SOMA, there are a few parameters in which the settings should be considered and
tested. Parameter PathLength ∈ (1, 5] is a parameter that defines how far an individual
stops behind the leader. The StepSize is from the interval (0, PathLength] and step is from
the interval (0, 1]. One of the most sensitive parameters is PRT ∈ [0, 1], which represents the
perturbation and decides if an individual will travel towards the leader directly or not [23].

In the original version of the cuckoo search algorithm, parameter β is taken from the
interval [0.3, 2). The step size α > 0 is dependent on the scales of the problem, and mostly,
the value α = 1 is used. The total number of possible host nests is restricted, where the
probability that the host bird discovers a cuckoo’s egg is pa ∈ [0, 1].

In the firefly algorithm, the parameter β0 = 1 is the initial attractiveness for a distance
rij = 0. Parameter of γ represents an absorption coefficient that characterizes the variation
of the attractiveness value of a firefly. If β0 = 0, it becomes a simple random walk.

All parameters used in the grey wolf optimizer are given by random values, so there
is no need for more detailed parameter testing.

The control parameters in the ABC algorithm, which should be set, are the size of the
population CS and the limit for scout (L = (CS·D)

2 , where D is the dimension of the problem).
In the original version of the bat-inspired algorithm, the values fmin = 0 and fmax = 100

depends on the size of the search area dimension. Each bat has a randomly assigned fre-
quency with the uniform distribution of [ fmin, fmax]. For simplicity, it can be used α = γ,
and in the original version author used α = γ = 0.9, but for our case, we had to do experi-
mental testing. For each bat individual, different values of loudness and pulse emission
rate are recommended, based on randomization. In the tree-seed algorithm, importance
is given to the selection of an equation that will produce a new seed location. Control
parameter ST ∈ [0, 1], called search tendency, is used for the selection. The seed number
of each tree is determined randomly, and it should not be less than 1. The recommended
number of randomly generated seeds is between 10 and 25% of the number of trees.

For a better overview of the algorithm configuration, the settings of the numerical
parameters are assumed in Table 1. The Optimal Interval column presents the intervals
containing the achieved acceptable values of the parameters. In the Chosen Value column,
the final values of the parameters are presented.

Table 1. Parameters setting.

Algorithm Parameter Optimal Interval Chosen Value

PSO
χ - 0.69
φ1 - 2.45
φ2 - 1.65

SOMA
step [0.11, 0.31] 0.11

PathLength [3.5, 5.0] 4.7
PRT [0.6, 0.9] 0.6

CS pa [0.0, 1.0] 0.25
β0 [0.0, 1.66] 1.5

FFL
α [0.0, 1.0] 1.0
γ [7, 10] 10
β0 [0.6, 1.0] 0.8

ABC L - 50

BIA

α - 0.9
γ - 0.9
r0 [0, 0.2], [0.8, 1.0] 0.8
A0 [1.0, 1.6] 1.6

TSA
lj,min [0.05, 0.25] 0.25
hj,max [0.5, 1.0] 0.9

ST - 0.1
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4.3. Examples of Piecewise Linearization

In this subsection, we will demonstrate an example of linearization for Function f5
given by all chosen evolutionary algorithms. To demonstrate how the algorithm works,
the graph of results for Function f5 of each evolutionary algorithm is presented (Figure 2).
Each evolutionary algorithm has set its input parameters in accordance with Section 4.2.

ABC BIA CS

FFL GWO PSO

RS SOMA TSA

Figure 2. Each graph represents the best result of a specific algorithm. The total number of points
was set to 16 and maxFES = 10,000.

4.4. Summary of Results

In this subsection, we will introduce a set of tables showing the results of each evolu-
tionary algorithm, and to make the results clearer, we chose to use only the four testing
functions introduced in Section 4.1.

The following tables (Tables 2–5) show results of min, max, mean, median, and
standard deviation values computed from 50 independent runs for each function. The fol-
lowing functions run with the same settings of parameters as was introduced in Section 4.2.
Figures 3 and 4 show graphs of distance convergence means for a selected maxFES where
checkpoints are taken each 100th iteration.
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Table 2. Comparison of algorithms for Function f1.

Mean Median SD Min Max

PSO 0.206 0.204 0.007 0.202 0.235
SOMA 0.211 0.209 0.005 0.204 0.234
CS 0.202 0.202 0.001 0.202 0.203
FFL 0.284 0.283 0.013 0.252 0.313
GWO 0.223 0.220 0.018 0.199 0.264
ABC 0.203 0.203 0.004 0.191 0.212
BIA 0.430 0.431 0.059 0.329 0.567
TSA 0.214 0.212 0.004 0.204 0.227
RS 0.231 0.231 0.011 0.204 0.258

Table 3. Comparison of algorithms for Function f3.

Mean Median SD Min Max

PSO 2.388 2.283 0.353 1.931 3.656
SOMA 2.377 2.352 0.256 1.973 3.309
CS 2.524 2.533 0.180 2.152 3.116
FFL 5.245 5.269 0.267 4.594 5.742
GWO 3.575 3.304 0.718 2.908 5.649
ABC 2.088 2.079 0.079 1.908 2.256
BIA 6.014 6.093 0.621 4.509 6.935
TSA 2.453 2.440 0.203 2.137 2.951
RS 3.372 3.389 0.227 2.831 3.830

Table 4. Comparison of algorithms for Function f4.

Mean Median SD Min Max

PSO 0.847 0.828 0.062 0.783 1.112
SOMA 0.892 0.881 0.052 0.820 1.024
CS 0.863 0.854 0.039 0.803 0.983
FFL 2.180 2.206 0.184 1.707 2.523
GWO 1.824 1.808 0.143 1.524 2.347
ABC 0.822 0.820 0.017 0.789 0.895
BIA 2.320 2.230 0.354 1.831 3.447
TSA 0.912 0.914 0.044 0.832 1.032
RS 1.187 1.184 0.077 0.981 1.335

Table 5. Comparison of algorithms for Function f5.

Mean Median SD Min Max

PSO 1.719 1.705 0.321 0.890 3.066
SOMA 1.927 1.966 0.132 1.426 2.140
CS 1.662 1.704 0.187 1.143 2.067
FFL 3.347 3.400 0.251 2.625 3.772
GWO 2.174 2.023 0.291 1.886 2.705
ABC 1.632 1.688 0.220 1.112 1.977
BIA 3.726 3.771 0.419 2.501 4.351
TSA 1.718 1.729 0.146 1.149 1.959
RS 2.144 2.159 0.139 1.499 2.383
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Function f1 Function f3

Function f4 Function f5

Figure 3. Graphs of distance convergence means for maxFES = 2500.

function F1 function F3

function F4 function F5

Figure 4. Graphs of distance convergence means for maxFES = 10,000.
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From the results (see Tables 2–5) it is obvious that there is simply no evolutionary
algorithm suitable to use for linearization of all functions. Results show that for the
function f1 the best algorithm is CS. On the other hand, f3 and f4 are best handled by the
ABC algorithm. In the case of f5, there is no clear which method performs the best.

If we disregard the best values for each tested function, other evolutionary algorithms
can get the job done with sufficient results. We are talking mainly about PSO, SOMA, and
TSA algorithms, which have results across all tested functions similar to the best results.
It means that we have some degree of freedom to choose which evolutionary algorithm
to use.

5. Piecewise Linearization Using Swarm Intelligence Algorithms with Automatic
Parameters Tuning

In this section, we introduce an algorithm that is used for automatic detection of
points ` used for linearization, and automatic detection of discretization points discr_step
representing the length between equidistant points. This algorithm tries to find the number
of input points ` and a set of equidistant points given by a discretization step disc_step
to achieve the best possible solution evaluated based on an algorithm output fitness
function value.

The main goal of this algorithm is to run a total number of six evaluations of an
evolutionary algorithm in every loop iteration using parallel computing as long as it is
needed to find an optimal solution. We chose to use this approach because we need to try
several combinations of ` and discr_step in each iteration.

In the beginning, our algorithm sets the input parameters for an evolutionary algo-
rithm and default values for ` = 10 and discr_step = 1/100. Then, the loop starts where
every iteration consists of setting up six different discr_step values and six different `
values, and each of the six parallel runs takes one discr_step and one `. The six ` and
discr_step, where `i−1 and discr_stepi−1 is a ` and discr_step of the best result from the
previous iteration, can be seen in the Table 6.

Table 6. Six variants of ` and discr_step.

` discr_step

`i−1 + 3 discr_stepi−1/1.5
`i−1 + 6 discr_stepi−1/1.5
`i−1 + 3 discr_stepi−1/2
`i−1 + 6 discr_stepi−1/2
`i−1 + 3 discr_stepi−1
`i−1 discr_stepi−1/1.5

Each of these six parallel runs is processed, and then their results are evaluated. This
evaluation is done by computing the linearization provided f inal_points of all six results
given as an output of an evolutionary algorithm run and a fixed discr_step = 1/200. We
need to ensure that all six results are evaluated using the same evaluation criterion, which
is done by setting up discr_step the same for all results. Based on this evaluation, it gives
the results f inal_distance computed with Manhattan metric, and it keeps the result with the
smallest f inal_distance value. The distance value serves as a f itness_value for all selected
evolutionary algorithms. The best results discr_step, f inal_distance, f inal_points, and ` are
saved to be used in the next iteration.

Next, we examine all linear segments created from f inal_points. This examination
consists of creating three equidistant points on a linear segment and calculating the distance
of these points from the initial function. We always take the output of the maximum metric
from all points of all linear segments. Linear segments whose slope value is too high and
a maximum metric value of their equidistant points are under the set threshold are ignored.
It is because they tend to get a high maximum metric output value even when these linear
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segments sufficiently overlap with the initial function part. The maximum of all linear
segments illustrates whether the linearization is close enough to the real function or not.

At the end of every iteration, it checks whether the f itness_value value, and a maxi-
mum metric value are good enough. Thus, we check whether we should continue with the
next iteration.

There is a special case when we set `1,...,6 = `i and discr_step1,...,6 = discr_stepi−1
before we process parallel runs. This special case occurs when the best result from the
previous iteration has a good enough f itness_value (but not a good enough maximum
metric value). The idea is that the previous iteration’s best result was almost the optimal
result, but the algorithm placed the final points a little off. Thus, for the next three iterations,
we take all six parallel runs and use them to determine if the current discr_step and ` are
sufficient to get an optimal solution.

It also keeps f inal_points of the best result and provides them to all six evolutionary
algorithms run in parallel in the next iteration. This approach enables speeding-up the
process of finding the optimal result by enabling an evolutionary algorithm in the next
iteration to start from a position where the best result of the previous iteration ended
up. The only scenario where we do not provide f inal_points is when the special case is
triggered because we do not want to influence the parallel runs with the previous result
because it was close but not close enough. Pseudocode of parameter tuning approach is in
Algorithm 1.

Algorithm 1 Pseudocode of the parameter tuning algorithm.

def evaluate_evolutionary_algorithm
Set evolutionary algorithm input parameters
while the previous best results f inal_distance is not small enough OR the previous results
maximum metric value is not small enough do

set `1,...,6 and discr_step1,...,6
if special case AND special case count <3 then

modify `1,...,6 and discr_step1,...,6
end if
run all six parallel runs
collect all six results
compute a f inal_distance for all six results
select the best result of this iteration
save the best results discr_step, f inal_points, f inal_distance, and `
get a maximum metric value of the best results linear segments

end while

5.1. Examples of Tuning Algorithm

In this subsection, the evolutionary algorithms selected in Section 3 will be applied
to the algorithm introduced in Section 5 on Function f5. Therefore, two sets of results
were achieved, where the first one was achieved for maxFES = 2500 and the second for
maxFES = 10,000. In both sets of results, each evolutionary algorithm optimal result should
have a f inal_distance calculated with Manhattan distance to be equal or better than 2.0. All
evolutionary algorithms use input parameter values from Section 4.2. Each experiment is
executed 50 times in Python 3.8 on a computer with the CPU: AMD 2920X, RAM: 32 GB
DDR4, GPU: AMD RX VEGA64. The time complexity of the compared algorithms of each
run is estimated in seconds.

Example 1. This example consists of the results of selected evolutionary algorithms with a value of
maxFES = 2500. The graph of results for Function f5 approximation of each algorithm is presented
(Figure 5). The best result of each parallel run is saved as a checkpoint result. Then, we take the best
run out of all 50 runs and illustrate its checkpoint results in graphs in Figure 6 and Table 7.
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ABC BIA CS

FFL GWO PSO

RS SOMA TSA

Figure 5. Graphs of algorithms with a value of maxFES = 2500.

ABC BIA CS

FFL GWO PSO

Figure 6. Cont.
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RS SOMA TSA

Figure 6. Checkpoints of each algorithm automatic parameter tuning with maxFES = 2500. Red lines
are values of f inal_distance and blue ones show the maximum value of Manhattan distance. Grey
dashed lines show values thresholds.

Table 7. The best results of evolutionary algorithms with a value of maxFES = 2500.

` Discr_Step Final_Distance Time (s)

PSO 22 0.003 1.945 13.16
SOMA 43 0.001 1.886 31.03
CS 52 0.001 0.845 77.26
FFL 43 0.001 1.786 22.29
GWO 22 0.004 1.961 9.74
ABC 34 0.001 1.505 30.06
BIA 61 0.001 1.670 49.82
TSA 43 0.001 1.193 31.73
RS 37 0.002 1.965 15.44

Example 2. The second example consists of results with maxFES = 10,000. The graph of results
for Function f5 approximation of each algorithm is presented (Figure 7). The best result of each
parallel run is saved as a checkpoint result. Then, we take the best run out of all 50 runs and
illustrate its checkpoint results in graphs in Figure 8 and Table 8.

ABC BIA CS

FFL GWO PSO

RS SOMA TSA

Figure 7. Graphs of algorithms with a value of maxFES = 10,000.
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ABC BIA CS

FFL GWO PSO

RS SOMA TSA

Figure 8. Checkpoints of each algorithm automatic parameter tuning with maxFES = 10,000. Red
lines are values of f inal_distance and blue ones show the maximum value of Manhattan distance.
Grey dashed lines show values thresholds.

Table 8. The best results of evolutionary algorithms with a value of maxFES = 10,000.

` Discr_Step Final_Distance Time (s)

PSO 22 0.003 1.957 14.20
SOMA 49 0.001 1.149 151.99
CS 46 0.001 0.753 88.07
FFL 34 0.001 1.927 41.47
GWO 22 0.003 1.669 85.72
ABC 22 0.003 1.904 12.26
BIA 58 0.001 1.571 123.00
TSA 43 0.001 0.882 146.58
RS 37 0.001 1.827 69.51

5.2. Comparison Results Summary

The comparison of the algorithms mentioned in this section was done on all testing
functions from Section 4.1. For demonstration, we chose only four functions, to not
overwhelm readers with tables (see Functions f1, f3, f4, and f5).

We calculated the values of arithmetic mean of `, discr_step, f inal_distance, and time
what has estimated time complexity measured in seconds from 50 runs for each testing
function and each evolutionary algorithm. All 50 runs were calculated for maxFES = 2500
and maxFES = 10,000. Results show that the maxFES = 10,000 variant offers almost the
same results as maxFES = 2500 variant or there is a slight decrease in a total number of
points but at the expense of increasing time.

The most important value is always f inal_distance, but we cannot decide which al-
gorithm is the best one based only on this value. In general, we need to find the balance
between f inal_distance and the time it takes to achieve this value where time is affected
by ` (the higher, the worse) and discr_step (the lower, the worse). We even have to con-
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sider a situation when f inal_distance is good enough, but that is due to bad linearization,
which results in taking longer to accomplish an optimal result. It also means that an
evolutionary algorithm will need more iterations to get to this optimal result and, thus, it
will have more points `, which improves f inal_distance, which takes more time. Finally,
f inal_distance is so good thanks to the evolutionary algorithm’s inability to create a good
linearization. In some cases, it is recommended to favor an evolutionary algorithm with a
worse f inal_distance but with significantly better `, discr_step, and time.

In Table 9, the best three algorithms for the testing functions f1, f3, f4, and f5 are
presented.

Table 9. The three best evolutionary algorithms for each testing function.

Function FES 1st 2nd 3rd

f1 2500 PSO RS ABC
f3 2500 PSO ABC CS
f4 2500 PSO ABC FFL
f5 2500 GWO PSO CS
f5 10,000 PSO ABC GWO

Based on the finding, we decided to show only one set of results of maxFES = 10,000
variant (see Tables 10–14). It is obvious that the best overall evolutionary algorithm to use
for linearization is PSO. Except for f5 (variant maxFES = 2500) where PSO ended up the
second best, it was always the best evolutionary algorithm to use. Based on the results,
we can also see that the ABC algorithm can also be considered as a suitable evolutionary
algorithm to overall use for linearization.

Table 10. The mean results for Function f1 for 50 runs of evolutionary algorithms with a value of
maxFES = 2500.

` Discr_Step Final_Distance Time (s)

PSO 15 0.006 1.139 2.66
SOMA 15 0.005 1.413 3.21
CS 16 0.005 1.426 3.79
FFL 15 0.006 1.455 2.00
GWO 15 0.005 1.477 5.31
ABC 16 0.005 1.330 2.96
BIA 17 0.004 1.423 3.88
TSA 16 0.005 1.378 4.28
RS 15 0.006 1.283 3.01

Table 11. The mean results for Function f3 for 50 runs of evolutionary algorithms with a value of
maxFES = 2500.

` Discr_Step Final_Distance Time (s)

PSO 68 0.001 1.536 74.17
SOMA 81 0.001 1.658 119.26
CS 74 0.001 1.540 74.49
FFL 88 0.001 1.727 81.51
GWO 95 0.001 1.615 345.76
ABC 61 0.001 1.711 54.77
BIA 85 0.001 1.704 79.29
TSA 73 0.001 1.562 114.93
RS 86 0.001 1.539 114.40
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Table 12. The mean results for Function f4 for 50 runs of evolutionary algorithms with a value of
maxFES = 2500.

` Discr_Step Final_Distance Time (s)

PSO 29 0.002 1.519 12.25
SOMA 34 0.001 1.682 18.02
CS 35 0.001 1.638 17.11
FFL 35 0.001 1.588 16.10
GWO 33 0.001 1.631 37.28
ABC 29 0.002 1.645 11.40
BIA 36 0.001 1.688 16.46
TSA 35 0.001 1.626 22.15
RS 35 0.001 1.666 20.64

Table 13. The mean results for Function f5 for 50 runs of evolutionary algorithms with a value of
maxFES = 2500.

` Discr_Step Final_Distance Time (s)

PSO 28 0.002 1.489 15.52
SOMA 86 0.001 1.016 142.64
CS 74 0.001 0.615 76.08
FFL 69 0.001 1.346 149.29
GWO 28 0.002 1.374 32.87
ABC 53 0.001 1.156 98.07
BIA 91 0.001 1.055 168.31
TSA 75 0.001 0.619 91.78
RS 61 0.001 1.234 108.15

Table 14. The mean results for Function f5 for 50 runs of evolutionary algorithms with a value of
maxFES = 10,000.

` Discr_Step Final_Distance Time (s)

PSO 27 0.002 1.463 41.41
SOMA 78 0.001 0.783 273.57
CS 73 0.001 0.422 207.79
FFL 63 0.001 1.305 331.04
GWO 25 0.002 1.495 101.53
ABC 29 0.002 1.499 53.39
BIA 94 0.001 1.021 538.83
TSA 72 0.001 0.500 280.39
RS 54 0.001 1.302 252.29

5.3. Statistical Results Summary

In this section, the results of the compared algorithms will be statistically assessed.
We assess whether or not our proposed method of automatic parameters tuning algorithm
proves itself successful or not.

The mean ranks from the Friedman tests [31] can be seen in Table 15. The results
of the algorithms without tuning to the value maxFES = 10,000 are labeled without any
upper/lower index. The tuning algorithm results using maxFES = 10,000 are labeled with
an upper asterisk index. The tuning algorithm results where maxFES = 2500 was set are
labeled with an upper asterisk index and lower s letter index. The best three performing
algorithms are variants with maxFES = 2500 using a tuning algorithm. They also achieved
similar results in the Friedman test, so it is a good indicator that they are all good to use for
the piecewise linearization of functions.
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Table 15. The mean ranks of all algorithms from the Friedman test.

Algorithm PSO∗
s RS∗

s TSA∗
s ABC RS∗ SOMA∗

m.rank 9.5 9.75 9.75 10 10.5 11

PSO∗ PSO ABC∗s CS∗s CS ABC∗ TSA∗

11.5 11.5 11.75 11.75 11.75 12.375 12.75

SOMA TSA SOMA∗s CS∗ FFL∗s BAT∗s RS
13 13.5 14.25 15 15.375 15.5 15.75

GWO∗s BAT∗ GWO∗ FFL∗ GWO FFL BAT
16 16.5 16.5 19 19.75 21.5 22.5

In Table 16 are the median values for each algorithm and each setting. There are four
different settings: O10 and O25 are the original algorithms with maxFES = 2500 (O25) and
10,000 (O10). The T10 and T25 settings represent the automatic-parameter-tuning versions
with maxFES = 2500 (T25) and 10000 (T10). For O10, the best algorithm is ABC. On the
other hand, O25 is the best to use with PSO. Results of setting variants T10 and T25 are
not that straightforward, but it is obvious that the PSO algorithm is the overall best choice
to use.

Table 16. The median values for each algorithm and each set.

SET f ABC BAT CS FFL GWO PSO RS SOMA TSA

O10 1 0.204 0.432 0.203 0.281 0.224 0.205 0.232 0.209 0.213
O10 3 2.080 6.093 2.534 5.269 3.305 2.284 3.390 2.352 2.441
O10 4 0.820 2.230 0.855 2.207 1.808 0.828 1.184 0.882 0.914
O10 5 1.688 3.828 1.704 3.401 2.024 1.705 2.160 1.966 1.729

T10 1 1.167 1.494 1.574 1.498 1.627 1.056 1.311 1.281 1.616
T10 3 1.654 1.742 1.666 1.862 1.703 1.613 1.517 1.643 1.561
T10 4 1.630 1.721 1.736 1.764 1.518 1.647 1.636 1.685 1.702
T10 5 1.529 1.014 0.410 1.238 1.699 1.412 1.266 0.774 0.457

T25 1 1.277 1.441 1.493 1.477 1.525 1.098 1.257 1.386 1.351
T25 3 1.741 1.725 1.603 1.840 1.654 1.553 1.516 1.702 1.604
T25 4 1.601 1.718 1.686 1.627 1.689 1.545 1.664 1.710 1.644
T25 5 1.110 1.029 0.596 1.355 1.352 1.521 1.201 1.027 0.555

O25 1 0.233 0.427 0.214 0.309 0.231 0.205 0.253 0.268 0.234
O25 3 2.996 5.969 3.233 5.447 3.818 2.339 3.725 4.138 3.322
O25 4 1.024 2.387 1.056 2.246 1.962 0.819 1.297 1.381 1.083
O25 5 2.129 3.726 2.025 3.457 2.652 1.785 2.399 2.480 1.987

The next level of statistical comparison provides the Kruskal–Wallis test [32] (see
Table 17). This method provides us with the same results as Table 16. The variant O10 is
the best to use together with the ABC algorithm. The variant O25, on the other hand, is
the best to use together with the PSO algorithm. We cannot say which algorithm to use
together with T10 and T25 variants because there is no straightforward choice suitable for
all tested functions. Overall, the best choice would be the PSO algorithm which can be
found in the first place most times compared to the rest of the algorithms.
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Table 17. The first, second, third, and the last position of all algorithms and each setting from the
Kruskal–Wallis tests.

SET f Sig. 1st 2nd 3rd Last

O10 1 <0.001 CS ABC PSO BAT
O10 3 <0.001 ABC PSO SOMA BAT
O10 4 <0.001 ABC PSO CS BAT
O10 5 <0.001 ABC CS TSA BAT

T10 1 <0.001 PSO ABC SOMA TSA
T10 3 <0.001 RS TSA PSO FFL
T10 4 <0.01 GWO ABC PSO CS
T10 5 <0.001 CS TSA SOMA ABC

T25 1 <0.001 PSO RS ABC GWO
T25 3 <0.001 RS PSO CS FFL
T25 4 <0.05 PSO FFL GWO BAT
T25 5 <0.001 CS TSA SOMA PSO

O25 1 <0.001 PSO CS ABC BAT
O25 3 <0.001 PSO ABC CS BAT
O25 4 <0.001 PSO ABC CS BAT
O25 5 <0.001 PSO TSA CS BAT

Finally, the results of the Wilcoxon rank-sum statistical test [33] are presented (see
Table 18). The variant T25 was selected as a reference method, and it is compared against
variants T10 and O10. The symbol of ‘+’ is used for significantly better results of counter-
part, a symbol of ‘−’ is used for significantly better results of reference method, and finally,
the symbol of ‘≈’ illustrates no significant difference between algorithms. The comparison
of T25 and T10 shows only several significant differences between settings, so it is obvious
that these two variants score very similarly. Both variants seem to find good results very
quickly, and thanks to this, the importance of maxFES is not that high. Comparing T25 and
O10, there are 15 cases where the O10 variant performs significantly better than the T25
variant (especially for problem f1), but there are 21 cases in total when the O10 variant
is significantly worse than the variant T25. We can interpret the results slightly different,
though. The variant T25 delivers more consistent results across all cases, whereas the O10
variant delivers either very good or very bad results.

Results also show that the non-tuning algorithm suffers from lowering maxFES from
10,000 to 2500, and that is the reason we did not include the O10 variant at all. On the
other hand, the automatic parameters tuning algorithm is resistant to the length of the
optimization process, therefore, it does not matter if we choose the value of maxFES = 2500
or 10,000.

Table 18. The median values and significance of all algorithms from the Wilcoxon rank-sum tests.

f alg T25 T10 O10

1 ABC 1.2768 1.1673(++) 0.20377(+++)
1 BAT 1.4415 1.4942(≈) 0.43178(+++)
1 CS 1.4928 1.574(−) 0.20281(+++)
1 FFL 1.4774 1.4976(≈) 0.28131(+++)
1 GWO 1.5246 1.627(≈) 0.22386(+++)
1 PSO 1.098 1.0557(≈) 0.20484(+++)
1 RS 1.2572 1.3113(≈) 0.23168(+++)
1 SOMA 1.3856 1.2814(≈) 0.20902(+++)
1 TSA 1.3507 1.6165(−−−) 0.21299(+++)



Mathematics 2022, 10, 808 22 of 24

Table 18. Cont.

f alg T25 T10 O10

3 ABC 1.7409 1.654(≈) 2.0797(−−−)
3 BAT 1.7248 1.7422(≈) 6.0932(−−−)
3 CS 1.603 1.6659(≈) 2.5338(−−−)
3 FFL 1.8396 1.8621(≈) 5.2694(−−−)
3 GWO 1.6536 1.7029(≈) 3.3049(−−−)
3 PSO 1.5535 1.6128(≈) 2.2837(−−−)
3 RS 1.5156 1.5173(≈) 3.3899(−−−)
3 SOMA 1.7017 1.6433(≈) 2.3522(−−−)
3 TSA 1.6039 1.5613(≈) 2.4407(−−−)

4 ABC 1.6015 1.6296(≈) 0.82008(+++)
4 BAT 1.7178 1.7211(≈) 2.2302(−−−)
4 CS 1.6855 1.7358(≈) 0.85474(+++)
4 FFL 1.6296 1.7641(−) 2.2069(−−−)
4 GWO 1.6887 1.5177(+) 1.808(−−−)
4 PSO 1.5454 1.6473(−) 0.82815(+++)
4 RS 1.6641 1.6358(≈) 1.1841(+++)
4 SOMA 1.7101 1.6848(≈) 0.88182(+++)
4 TSA 1.6438 1.7023(≈) 0.91401(+++)

5 ABC 1.1098 1.5286(−−−) 1.6882(−−−)
5 BAT 1.0294 1.0142(≈) 3.8278(−−−)
5 CS 0.5961 0.4104(+++) 1.7042(−−−)
5 FFL 1.3547 1.2379(≈) 3.4007(−−−)
5 GWO 1.3519 1.6986(≈) 2.0238(−−−)
5 PSO 1.5213 1.4122(≈) 1.7051(−−−)
5 RS 1.2013 1.2659(≈) 2.1597(−−−)
5 SOMA 1.0273 0.77375(+++) 1.9665(−−−)
5 TSA 0.5553 0.45704(++) 1.7291(−−−)

6. Conclusions

In this paper, we introduced two ways to solve the optimization of the piecewise
linearization of a given function. In the first approach, the usage of optimization algorithms
for searching piecewise linearization with a predefined number of piecewise linear parts
and discretization points with the calculation of the distance between the original and
piecewise linear function is proposed. The second method extends the previous approach
by the automatic selection of the number of piecewise linear parts and discretization points.

Based on the experimental part of the paper, the following conclusions were achieved.
Enhancing the swarm-based optimization algorithms by the proposed tuning approach
enables a significant increase in the performance of the optimization process. When the
algorithms were applied to the piecewise linearization problem with 2500 function evalu-
ations, the variants of PSO and GWO provided sufficient results, where GWO performs
substantially better (Table 7). For maxFES = 10,000, GWO, PSO, and ABC provide results
with a similar quality, where ABC was the fastest method (Table 8).

From the results of the optimization problems, it is obvious that the variant of PSO was
always located on the best positions (Tables 10–14). Moreover, a variant of ABC provided an
acceptable quality solution (Table 9). Studying the complexity of the compared algorithms,
the variants of PSO and ABC achieved mostly low time demands.

Results of the application of the proposed tuning approach illustrate the substantially
increasing performance of the compared swarm algorithms (Table 15). In eight algorithms
out of nine, the better overall performance was achieved by the tuning approach, where
the biggest difference was achieved in variant of RS, which provided second-best results. It
is also obvious that several swarm methods provide worse results compared to the simple
RS method, which generates random solutions (BAT, FFL, GWO).

Comparing the achieved median values in three out of four optimization problems, the
best performance is provided with the proposed tuning approach (Table 16). Surprisingly,
the best results of the piecewise linearization problem f4 provided the RS algorithm with
the tuning mechanism.
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The main benefit of our tuning approach is the lower time complexity of the opti-
mization process (measured by a number of function evaluations) with sufficient solutions.
Using the PSO algorithm as the main swarm intelligence algorithm for solving piecewise
linearization problems is, without a doubt, the best choice. This conclusion was clearly
demonstrated in Section 5.3.

The proposed tuning approach performs worse than the original swarm intelligence
algorithms, especially in problem f1. This provides motivation to further study the ap-
proach settings. The first step in the research is to generalize the proposed algorithms for
functions with higher dimensions and use them for solving other real problems.

The next natural step is to extend this algorithm into higher dimensions and to compare
the swarm-based optimization algorithms with the classical mathematical approaches.
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