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Abstract: Dynamic motion simulators cannot provide the same stimulation of sensory systems as real
motion. Hence, only a subset of human senses should be targeted. For simulators providing vestibular
stimulus, an automatic bodily function of vestibular–ocular reflex (VOR) can objectively measure how
accurate motion simulation is. This requires a model of ocular response to enforced accelerations, an
attempt to create which is shown in this paper. The proposed model corresponds to a single-layer
spiking differential neural network with its activation functions are based on the dynamic Izhikevich
model of neuron dynamics. An experiment is proposed to collect training data corresponding to
controlled accelerated motions that produce VOR, measured using an eye-tracking system. The
effectiveness of the proposed identification is demonstrated by comparing its performance with a
traditional sigmoidal identifier. The proposed model based on dynamic representations of activation
functions produces a more accurate approximation of foveal motion as the estimation of mean square
error confirms.

Keywords: nonparametric model; artificial neural network; Izhikevich artificial neuron; vestibular–
ocular reflex; control Lyapunov function

MSC: 93B30; 93-10; 93D30; 93C10; 94C30

1. Introduction

Currently, a significant multidiscipline effort deals with developing technologies that
can be applied for training in simulated environments. Such training can be used in
different scenarios, from studying drivers’ behavior to improving road safety and pilot
training, the latter of which has been one of the leading forces for the development of these
systems since the early years. These technologies require understanding human sensory
systems and their influence to be studied effectively with the proposer instrumentation
and modeling tools.

During simulator training, body movements cannot precisely match what is being
shown on screen, causing a mismatch in sensory information and leading to simulator
sickness as described in [1,2]. This discrepancy is caused by several factors like delays due
to tracking and rendering of the output image and physical limitations of the movement
range of training systems. Consequently, attempts to overcome this problem covers several
different research directions, including but not limited to dynamic motion systems, fore-
casting movement, and galvanic vestibular stimulation [3]. However, the problem can also
be reversed, so that body reaction is used to estimate the accuracy of simulated motion.

Mathematics 2022, 10, 855. https://doi.org/10.3390/math10060855 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10060855
https://doi.org/10.3390/math10060855
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-7157-2052
https://orcid.org/0000-0002-8407-1046
https://orcid.org/0000-0001-5945-6000
https://doi.org/10.3390/math10060855
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10060855?type=check_update&version=2


Mathematics 2022, 10, 855 2 of 12

One of such indicators is an ocular response to enforced accelerations by an external system
or device, just like a flight simulator.

Due to the size and position of the fovea, which is the part of a human eye retina
with a high density of light-sensitive photoreceptors, clear vision is achieved when the
object of interest is moving slower than 4◦/s. A unique mechanism exists so that the
region of interest on the acquired image stays on the retina as the body moves. It is called
the vestibular–ocular reflex (VOR), and it is one of the interaction processes between a
human body and the surrounding environment. It operates via a neural path between
the vestibular and oculomotor systems: eyes compensate head rotations by rotating in the
opposite direction [4].

Incorrect functioning of VOR leads to disruptions of clear vision such as the inability
to compensate micromovements of the head. However, as an existing connection between
external accelerations and angular velocities with the vestibular response is not entirely
understood, VOR cannot be estimated directly. A natural way to study VOR is to observe it
using immersive technologies (such as virtual or mixed reality) and produce reliable and ac-
curate mathematical models of VOR with human motion as input and electrophysiological
response as output. This response could be electroencephalographic signals, oculographic
information, or eye motion data, among others. Despite the importance of such mathe-
matical model design, the number and complexity of physiological aspects increase the
difficulty of generating specific models for given motion cues that use a reasonably small
number of parameters [5].

An alternative way to represent VOR dynamics is to use nonparametric models to
reproduce the aforementioned input–output relationship while maintaining a tractable
numerical complexity. Several methodologies propose nonparametric models, including
adaptive autoregressive systems, polynomial approximations, swarm optimization tech-
niques, and artificial neural networks. Nevertheless, the dynamic nature of VOR limits
the applicability of the models under a wide variety of working scenarios. Dynamic ap-
proximate models can also be considered as modeling options for systems describing VOR
dynamics. In particular, differential neural networks (DNNs) have been used for a long
time as efficient modeling strategies of dynamic systems with uncertain mathematical
models that are affected by perturbations and modeling inaccuracies. Notice that DNN
based models could be well fitted to represent the VOR dynamics [6,7]. Still, the selection
of activation functions could be a matter of discussion, considering that sigmoidal or other
monotonical functions may not capture the complex electrophysiological VOR response.

Izhikevich model of neuron activity [8] is a bioinspired characterization of electrophy-
siology-based approximate mathematical models. Izhikevich artificial mathematical models
have been proven to be an efficient model of diverse neuron responses [9]. Therefore, an
aggregation of several Izhikevich artificial neurons is named electrophysiology-inspired
approximated DNN or spiking DNNs [10,11].

Because of the modeling abilities of DNN using Izhikevich neuron dynamics, this
paper proposes a method to approximate oculomotor response using the described spiking
DNN model. The main contributions of this study can be summarized as follows:

• a novel modeling strategy is proposed for the ocular response on head movements
based on a spiking DNN with no parameters;

• a new aggregated system is used to confirm the validity of the proposed model.
It consists of an experimental system with a motion platform, inertial sensors, an
eye-tracking device for acquiring data, and a neural network for processing it.

This manuscript is organized as follows. In Section 2, we provide a general description
of the vestibular–ocular response. In Section 3, we introduce the uncertain model of
ocular response, which is then formulated as a spiking-differential-neural-network-based
nonparametric identifier in Section 4. In Section 5, we describe general modeling strategy
as the process of collecting experimental data. In Section 6, we cover processing of the
obtained data and assessing performance of the proposed model. Conclusions and final
remarks of Section 7 close the study.
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2. Description of Vestibular–Ocular Connection

As jet aviation and then crewed spaceflight progressed, they brought attention to
several physiological phenomena: a vestibular–ocular reflex. Its disruption was stated
to lead to deterioration of a human being in the pioneering work by A.L. Yarbus [12].
Possible causes of disorder include biological prerequisites like vestibular neuronitis [13]
or congenital predisposition [14] as well as environmental change. Crewed spaceflight
provided an essential context for studying the activity of the vestibular system and its
connection to the rest of the body. The papers by I. Kozlovskaya and L. Kornilova (Institute
of Biomedical Problems, Moscow, Russia) [15,16] examine vestibular–sensory disorders in
a weightless environment and methodology for diagnosing the VOR functioning.

A general approach for detecting dysfunctions is to compare actual data with the
reference. For vestibular–sensory disorders, the latter takes the form of a VOR model. The
most common method of creating such models is to describe the system as a dynamic
one formed by differential and difference equations. One such example is [17] that uses a
bilateral model of an eye. It describes ocular dynamics based on the activity of extraocular
muscles connected to the right and left sides of an eye. These muscles are more sensitive to
positive difference, so they are more active when the difference is negative [18]. The down-
side of this model is that muscle behavior is described using a large number of parameters
that require the application of genetic algorithms to improve the model accuracy [19].

An alternative method was proposed in [20]. It uses statistical methods to approximate
the actual dynamics of optokinetic–vestibule–cervical and vestibular nystagmus. Typical
dynamics of nystagmus’ slow phase drive the values of the five parameters of the model.
With known dynamics of head rotations and depending on supporting visual information,
this model generates both phases of nystagmus. However, such modeling approaches do
not provide enough flexibility and require vast processing power to solve the underlying
optimization problem.

3. Modeling Ocular Response to Enforced Acceleration

This study is focused on developing a nonparametric model based on a single-layer
DNN able to characterize ocular response. The network uses artificial neurons implemented
as Izhikevich models, so it operates as a Spiking DNN or SDNN for short. The proposed
model produces a vector of two angular coordinates of ocular rotation based on linear accel-
eration and angular velocities from a vestibular system which serves as an input. Training
input data come from a tracking system and ground truth output from a bidimensional eye
tracker. The two signals were resampled to have equally acquired information.

Let ζ = [xeye, yeye]> be the coordinates vector of the eye movement. Its evolution over
time is forced by information from the vestibular system—linear acceleration a = [ax; ay; az]

and angular velocity ω = [ωx; ωy; ωz]>. These values are obtained with respect the
body motion.

The electrophysiological system relating inertial information with ocular movement
operates using the physiological process of VOR. The continuous dynamics of ζ as the
system state vector, coupled with input vector u = [a>; ω>]> justifies that a model of this
relation has uncertain dynamics defined by the following differential equation:

d
dt

ζ(t) = f (ζ(t), u(t)) + η(t). (1)

Here ζ = ζ(t) is the state vector, u ∈ R6 is the input vector that drives uncertain
dynamics described by the proposed vector function f : R2 ×R6 → R2. f is Lipschitz with
respect to its first argument with a positive constant L f > 0. η ∈ R2 is the vector of external
perturbations to the system not involved in the modeling process. These perturbations
belong to a subset of Σ =

{
η | ‖η‖2 ≤ η0, η0 > 0

}
. Such class is admissible considering the

nature of inputs and signals that affect the VOR dynamics.
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4. Formulation of Spiking-Differential-Neural-Network-Based Model

For the vestibular–ocular system with an uncertain mathematical model (1), the SDNN
formulation assumes the following form:

d
dt

ζ(t)=Aζ(t) + Wo
1 φ1(ζ(t)) + Wo

2 φ2(ζ(t))u(t) + f̃e(ζ(t), t) + η(t),

ζ(0) = ζ0 ∈ R2.
(2)

The vector ζ ∈ R2 defines the SDNN state. The matrix A ∈ R2×2 describes the linear
component of the network dynamics. This matrix is selected as a Hurwitz one to provide
boundedness for the state ζ. The two following components form approximation of an
uncertain system with traditional SDNN. Wo

1 ∈ R2×p1 and Wo
2 ∈ R2×p2 are the weights

matrices and φ1 : R2 → Rp1 and φ2 : R2 → Rp2×6 are the vector and matrix of activation
functions respectively. Choice of the exact values of p1 and p2 is left to the SDNN designer,
depending on the value of expected approximation error and methodologies of selecting
the size of each layer of general artificial neural networks.

Dynamic nature of the real biological neural networks bioinspired the proposal in this
study to use activation functions based on neuron evolution. Thus, each component of φ1
and φ2 is described as the output of the Izhikevich model of neuron [8]:

d
dt

$i(t) = f0($i(t), ζ(t)),

f0($i, ζ) =

[
0.04v2

i + 5vi − ui + 140 + ZT
i ζ

ai(bivi − ui)

]
, $i =

[
vi
ui

]
,

(3)

if vi ≥ 30 mV, then
{

vi := ci
ui := ui + di.

(4)

Here ai, bi and ci are the scalar parameters of the Izhikevich model. φji = [1, 0]$i

characterizes the artificial neuron response and is used as the model output in (2). Zi ∈ R2

is a vector of input weights.
Function f̃e(ζ(t)) : R2 ×R→ R2 in (2) represents approximation error due to selection

of a finite number of Izhikevich neurons in the proposed SDNN design. Based on SDNN mod-
eling characteristics this error belongs to the following set: Ω =

{
f̃e | ‖ f̃e‖2 ≤ f̃0, f̃0 > 0

}
.

This result is a consequence of the dynamics of the Izhikevich artificial neuron.
The term η ∈ R2 in (2) characterises external perturbations, or elements affecting VOR

system dynamics while being independent of the states values. This term can be said to
belong to the set Σ =

{
η | ‖η‖2 ≤ η0

}
with η0 being a positive scalar. Together, the two

terms f̃e and η represent the degree of vagueness of the underlying electrophysiological
system when describing dynamic activation functions of the SDNN representation.

Based on the described approximate dynamical model, this study considers a model
for uncertain dynamics of the VOR based on the design of an adaptive SDNN. The proposed
approximate adaptive model can be described as follows:

d
dt

ζ̂(t)=Aζ̂(t) + W1(t)φ1(ζ̂(t)) + W2(t)φ2(ζ̂(t))u(t), ζ̂(0) = ζ̂0 ∈ R2. (5)

Vector ζ̂ defines the approximated dynamics of the 2 eye coordinates. The right-hand
side of the VOR dynamics consists of spiking neurons and satisfies the model structure
described in (2). The parameters W1 and W2 in (5) must be adjusted by a set of learning
laws. It is necessary to have the learning laws derived in such a way so that the pro-
posed identifier operating under these learning laws and identical input can reproduce
state trajectories of (1). The aforementioned allows issuing the following problem for-
mulation corresponding to the modeling process based on the application of Izhikevich
artificial neurons.



Mathematics 2022, 10, 855 5 of 12

Problem statement for the nonparametric modeling with SDNN.
The problem considered in this study is designing the nonlinear algorithm Σ(x, x̂, x, u)

adjusting the weights W = [W1 W2] in a way that ensures the identification error ∆ = ζ − ζ̂
has a stable equilibrium point at the origin:

lim sup
T→∞

 sup
η∈Σ, f̃e∈Ω

‖∆(T)‖2
P

 ≤ γ (6)

where γ > 0 defines the quality of approximation of the proposed SDNN. P ∈ R2×2 is
a positive definite matrix that adjusts influence of different components of the modeling
error vector to the overall approximation quality.

This problem can be solved using Lyapunov stability theory by deriving dynamics of
W1 and W2 from identification error ∆. To develop the stability study, the dynamics of ∆
admits the following ordinary differential equation:

d
dt

∆(t)=A∆(t) + W∗1 φ̃1
(
ζ̂(t)

)
+ W∗2 φ̃2

(
ζ̂(t)

)
u(t)+

W̃1(t)φ1
(
ζ̂(t)

)
+ W̃2(t)φ2

(
ζ̂(t)

)
u(t) + f̃e(t) + η(t).

(7)

The process of applying Lyapunov-based stability confirms that identification error
has an upper ultimate bound [21,22]. The suggested Lyapunov function has a quadratic
form that depends on identification error and SDNN weights. Dynamics of these weights
must be selected in such a way to ensure identification error may have an ultimate bound.
The following theorem demonstrates that such a bound exists.

Theorem 1. If there exist positive definite matrices Λ1 > 0 and Λ2 > 0 and positive and bounded
scalar α > 0 such that for the matrix inequality Ric(P, α) < 0

Ric(P, α):=P
(

A +
α

2
I2×2

)
+
(

A +
α

2
I2×2

)>
P + PRP + Q,

R :=
2
∑

j=1
W+

j

(
Λ−1

j

)
I2×2, Q := 2I2×2 +

2
∑

j=1
LjΛj,

(8)

there exists at least one positive definite solution P ∈ R2×2, P = P> > 0 then the learning laws
described by

d
dt

Wj(t) = −k−1
j Ωj(t) + αW̃j(t),

Ωj(t) = P∆(t)φ>j (ζ̂(t)),

W1(0) = W1,0, W2(0) = W2,0, j = {1, 2},

(9)

with scalars k1, k2 > 0, W̃j = Wtr
j −Wj, with Wtr

j any matrix satisfying ‖Wtr
j −W0

j ‖
j
F ≤ W+

j
justify the identification error ∆ converging to a ball with its center at the origin and an ultimate
bound given by

γ ≤ η0 + f̃0

α
. (10)

Proof of Theorem 1. Taking into consideration the dynamics of the identification error
∆ presented in (7), one may propose an energetic function depending on the deviation
between the state ζ and ζ̂ as well as the deviation between the weights estimated with the
identifier and the actual values of the approximation.

For the particular case of the SDNN considered in this study, the aforementioned
energetic function is given by:

E
(
∆, W̃1, W̃2

)
= ‖∆‖2

2,P + k1‖W̃1‖2
F + k2‖W̃2‖2

F. (11)



Mathematics 2022, 10, 855 6 of 12

Here ∆ is the tracking error already, for which its dynamics has been defined in (7).
The symbol ‖ · ‖2

2,P represents the weighted l2 norm of finite-dimensional vectors with the
positive definite and symmetric matrix P ∈ R2×2. Additionally, the terms ‖W̃j‖2

F, j = 1, 2
are the matrix norms of the deviation weights W̃j. For this study, the trace operator is
selected as the matrix norms for the weights deviations. Hence, the energetic function is

E
(
∆, W̃1, W̃2

)
= ∆>P∆ + k1tr

{
W̃>1 W̃1

}
+ k2tr

{
W̃>2 W̃2

}
. (12)

Notice that the function E operates as a Lyapunov-like class with a positive definite,
null value when the three arguments vanish and are radially unbounded. Now, the full-time
derivative of E corresponds to

d
dt

E(t) = 2∆>(t)P
d
dt

∆(t) + 2k1tr
{

W̃>1
d
dt

W1

}
+ 2k2tr

{
W̃>2

d
dt

W2

}
(13)

where E(t) := E
(
∆(t), W̃1(t), W̃2(t)

)
. The term 2∆>(t)P

d
dt

∆(t) admits the following up-
per bound

2∆>(t)P
d
dt

∆(t) ≤ ‖∆(t)‖2
2,LM(P) + γ + 2k1tr

{
W̃>1 ΩW,1(t)

}
+ 2k2tr

{
W̃>2 ΩW,2(t)

}
(14)

where LM(P) = PA + A>P + PRP + Q, while the value of ΩW,1(t) and ΩW,2(t) have been
presented in the learning laws for the proposed identifier.

Transition in (14) was obtained by applying the Young’s inequality [21] YZ> + ZY> ≤
YΛY>+ ZΛ−1Z>, which is valid for any Y ∈ Rr×s, Z ∈ Rr×s and any positive definite and
symmetric matrix Λ ∈ Rs×s a number of times. Taking the result in (14) into the right-hand

side of the time derivative of
d
dt

E(t), leads to

d
dt

E(t) ≤ ‖∆(t)‖2
LM(P) + γ + 2k1tr

{
W̃>1 ΩW,1(t)

}
+ 2k2tr

{
W̃>2 ΩW,2(t)

}
+

2k1tr
{

W̃>1
d
dt

W1

}
+ 2k2tr

{
W̃>2

d
dt

W2

}
.

(15)

With the addition and subtraction of the following terms α‖∆(t)‖2
P, αtr

{
W̃>1 W̃1

}
and

αtr
{

W̃>2 W̃2
}

, the next right hand side holds for the time derivative of E(t)

d
dt

E(t) ≤ ‖∆(t)‖2
Ric(P,α) + γ− α‖∆(t)‖2

P+

2k1tr
{

W̃>1 ΩW,1(t)
}
+ 2k2tr

{
W̃>2 ΩW,2(t)

}
+

tr
{

W̃>1

(
2k1

d
dt

W1 + αk1W̃1

)}
+ tr

{
W̃>2

(
2k2

d
dt

W2 + αk2W̃2

)}
−

αk1tr
{

W̃>1 W̃1
}
− αk2tr

{
W̃>2 W̃2

}
.

(16)

Using the learning laws (9) and the matrix inequality (8) presented in the theorem
statement, transforms the right-hand side of the derivative of E into

d
dt

E(t) ≤ γ− α‖∆(t)‖2
P − αtr

{
k1W̃>1 W̃1

}
− αtr

{
k2W̃>2 W̃2

}
. (17)

Using the definition of the Lyapunov yields the following outcome:

d
dt

E(t) ≤ γ− αE(t). (18)

The integration of these last differential inclusions and following the convergence to
an invariant set scheme presented in [21], yields to prove the ultimate boundedness of the
identification error as well as the weights.
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The obtained values of W1 and W2 that minimize the expression (6) may be fixed
and used further for solving the prediction problem. The scheme of the whole process
(identification and prediction) is shown in Figure 1.

Figure 1. Identification and prediction workflow.

5. Modeling Process and Experimental Validation

The proposed approximate model was tested in an experiment that collects the data
from a volunteer using an instrumented controlled acceleration motion device. The data
were recorded at a predefined frequency and then injected (offline) to the proposed SDNN-
based identifier. This section details all the aspects of the experiment.

A rotating dynamic platform was used to enforce controlled rotational movements
on a test subject. This experiment used an XD-motion platform with 4 degrees of freedom
produced by Vympel corporation. The data collecting system is based on a virtual reality
headset HTC Vive Pro Eye. The headset’s position and orientation quaternion in a fixed
coordinate system were obtained from the SteamVR tracking system. SRanipal software
gathered data provided by a built-in eye-tracking system and produced view origin and
direction vectors for each eye as the output at a maximum frequency of 120 Hz. The
whole experimental setup is shown in Figure 2. The resulting ocular movements and head
dynamics were recorded and later processed to be modeled by the proposed SDNN.

The experimental process is as follows. First, a test subject puts on and adjusts the
belts of the headset for it to stay firmly fixed on the head throughout the whole experiment.
Then, the eye tracker is calibrated according to SRanipal documentation and guidelines.
After finishing the calibration procedure, any adjustment of the headset by the test subject
leads to resetting the experiment, according to SRanipal guidelines. The test subject is
then sat on the dynamic platform straight. The platform performs rotational movements
around the vertical axis, alternating clockwise and counterclockwise. Movement frequency
and amplitude remain constant for 30 s, after which a 20-s break takes place, and new
movement parameters are loaded. The order of these parameter sets is randomized. The
test subject isn’t provided any indication of these parameters. Visual and audio cues of
motion are further reduced with the headset screen showing solid black and headphones
playing static during the experiment.

The choice of movement pattern is based on several factors. First, horizontal semi-
circular channels are stimulated more than the other two for this kind of movement, so
ocular response is also primarily horizontal, allowing to focus on a single axis. Second,
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the platform has the most reach on this rotational axis, which allows for more diverse
movement patterns. Additionally, pitch and roll rotations on this platform are performed
by adjusting the length of the legs. However, this adjustment happens even in an idle state
when no rotation is being performed, leading to additional platform vibrations introducing
parasitic ocular response.

Figure 2. Experimental setup for collecting the ocular response to the controlled accelerated movements.

During the processing phase, each movement pattern is handled individually. The
leading and trailing 3 s of each recording are trimmed. The view direction vector is
converted from a headset coordinate system into angles of eye rotation in horizontal and
vertical planes. The head coordinates data were sampled at a lower frequency than eye-
tracking data, so the former were smoothed using a Gaussian filter. Head orientation
quaternion was converted into Euler angles. After leaving only data corresponding to
horizontal angles, angular velocity and linear acceleration were calculated.

6. Numerical Simulation

The collected data from the two motion patterns were used to test the proposed SDNN
model. These two patterns are 18 25-degree rotation cycles per minute and 50-degree rota-
tions at a rate of 4.8 cycles per minute. They are later referred to as high- and low-frequency
movements. As described earlier, linear accelerations and angular velocities formed the
system input u while eye rotation angles were used as a reference state ζ. Figures 3–6 com-
pare dynamics of the proposed SDNN identifier with Izhikevich and sigmoidal activation
functions on the obtained data. Figures 3a and 5a demonstrate recorded head rotation
profile. Figures 3b and 5b show evolution of identification error (shown as mean square
error) of the proposed identifier. In both cases, the origin is shown to be a practical stable
equilibrium point for the analyzed modeling error. Direct comparison between recorded
and modeled data is shown in Figures 3c and 5c. Finally, Figures 3d and 5d show evolu-
tion of the weights from initial conditions. The highlighted dashed line on both figures
illustrates the work of VOR. The correspondence between ground truth eye-tracking data
and identifier state shows the validity of the proposed identifier.

The identification performance of the proposed spiking identifier was compared
against the traditional sigmoidal DNN-based identifier, shown in Figures 4 and 6. These
figures are structured identically to Figures 3 and 5. Note the different y-axis scales



Mathematics 2022, 10, 855 9 of 12

between all figures on the weights dynamics plot. Parameter values for both identifiers
are presented in Table 1. Numerical values are compared in Table 2 as the performance
of the two approaches using mean square error (MSE), mean absolute error (MAE), and
standardized mean absolute error (sMAE).
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Figure 3. Identification with Izhikevich activation function for high-frequency rotations: (a)—recorded
head rotation; (b)—identification error; (c)—recorded data and identification results comparison;
(d)—evolution of weights.
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Figure 4. Identification with sigmoidal activation function for high-frequency rotations: (a)—recorded
head rotation; (b)—identification error; (c)—recorded data and identification results comparison;
(d)—evolution of weights.
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Figure 5. Identification with Izhikevich activation function for low-frequency rotations: (a)—recorded
head rotation; (b)—identification error; (c)—recorded data and identification results comparison;
(d)—evolution of weights.
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Figure 6. Identification with sigmoidal activation function for low-frequency rotations: (a)—recorded
head rotation; (b)—identification error; (c)—recorded data and identification results comparison;
(d)—evolution of weights.

Table 1. Parameters of the compared identifiers.

Parameter Izhikevich Sigmoidal

Matrix A 20× diag(−1,−2) 20× diag(−2,−2)
Matrix P 1575.9× diag(60, 40) 1575.9× diag(60, 40)
Matrix K1 0.15× diag(10, 1) 0.0001× diag(20, 10)
Matrix K2 0.15× diag(1, 1) 0.0001× diag(20, 10)

Matrix W1(0) 20×
[

1 1
1 1

]
0.1×

[
1 1
1 1

]

Matrix W2(0) 20×
[

1 1
1 1

]
20×

[
1 1
1 1

]
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Table 2. Comparison of identification performance.

Identifier
Type

High-Frequency Data Low-Frequency Data

MSE MAE sMAE MSE MAE sMAE

Izhikevich 0.000186 0.008948 0.119975 0.000187 0.009647 0.140333

Sigmoidal 0.000710 0.021099 0.282897 0.000588 0.021496 0.312143

Overall, correspondence between modeled behavior and ground truth data shows
the applicability of the proposed system under different patterns of rotational movements.
Additionally, Izhikevich activation functions for both patterns demonstrate over 50%
better performance for modeling ocular response than the DNN implementing sigmoidal
activation functions. This shows that SDNN can be used as a generalized approximation
class for ocular response dynamics.

7. Conclusions

This study examines modeling physiological VOR systems using SDNN. The proposed
nonparametric model implements an arrangement of the artificial neurons described by
Izhikevich dynamics with fixed parameters to follow eye movements caused by known
head accelerations. Learning laws have been derived for the proposed SDNN to ensure
convergence to the origin of identification error. An experimental setup is proposed and
used to obtain data and confirm the validity of the proposed SDNN-based nonparametric
model. Comparison of the proposed modeling strategy and a traditional identifier with
sigmoidal activation functions was performed for different experimental conditions and
demonstrated the efficacy of the proposed approach. One potential use of this study
is estimating the accuracy of motion cues simulation. Suppose the ground truth of the
ocular motion is acquired using a model of vestibular–ocular response. In that case, it can
be compared with experimental data on a dynamic platform to assess how accurate the
movement was in terms of vestibule system reaction. Despite the additional computational
complexity produced with the application of Izhikevich models, the identification quality
improves significantly compared to the traditional sigmoidal (algebraic form) forms. This
fact justifies the approximated model proposed in this study and opens novel options to
create representations of complex biological systems with multirate dynamics.

8. Patents

A derivative from this work is currently undergoing software registration process.
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