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Abstract: The electric charged particles optimization (ECPO) technique is inspired by the interaction
(exerted forces) between electrically charged particles. A developed version of ECPO called MECPO
is suggested in this article to enhance the capability of searching and balancing the exploitation
and exploration phases of the conventional ECPO. To let the search agent jumps out from the
local optimum and avoid stagnation in the local optimum in the proposed MECPO, three different
strategies in the interaction between ECPs are modified in conjunction with the conventional ECPO.
Therefore, the convergence rate is enhanced and reaches rapidly to the optimal solution. To evaluate
the effectiveness of the MECPO, it is executed on the test functions of the CEC’17. Furthermore, the
MECPO technique is suggested to estimate the parameters of different photovoltaic models, such as
the single-diode model (SDM), the double-diode model (DDM), and the triple-diode model (TDM).
The simulation results illustrate the validation and effectiveness of MECPO in extracting parameters
from photovoltaic models.

Keywords: electric charged particles optimization (ECPO); CEC 2017 test suite; PV parameter
estimation; single-diode model; double-diode model; triple-diode model; solar energy
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1. Introduction

To deal with the increase in energy shortage as well as the several disadvantages of
fossil fuels, increased research studies on renewable energy sources (RES) are urgently
required [1,2]. Solar energy is one of the most important RES that researchers focus on
due to its many advantages such as cleanness, safeness, and abundance [3]. The principal
kind of solar energy is photovoltaic power generation [4]. PV solar installations around the
world increased from about 217 GW in 2015 to just over 707 GW in 2020 [5]. However, using
photovoltaic systems to produce electric energy is a big challenge because of their reliance
on the climate and other factors [1]. Consequently, a precise model that almost represents
the non-linear current–voltage (I–V) and the power–voltage (P–V) output characteristics
of the PV model under normal operation is required for simulation and evaluation of
photovoltaic systems [6]. These non-linearity challenges are difficult for any possibility and
approximation to boost efficiency [7].

A solar PV cell is the main unit of the photovoltaic system. Therefore, it is important to
estimate its unknown parameters to acquire a relative analysis of the PV panel performance.
The equivalent circuits for the single-, double- and triple-diode model for parameter identi-
fication are well-known and most extensively used ways [8,9]. There are five parameters
required in the single-diode model (SDM), while there are seven unknown parameters in
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the double-diode model (DDM) and nine unknown parameters in the triple-diode model
(TDM). In many works of literature, the SDM and DDM are generally employed, in which
the researchers have used several techniques to estimate the parameters of the PV model
based on analytical and numerical methods and optimization techniques [10,11]. Despite
the analytical approaches are the simplest and they reach the result rapidly, they do not
have the precision under normal conditions [7].

Several metaheuristic techniques have been improved and employed to reach the
optimum solution for the PV parameters extraction problem. An artificial electric field
algorithm (AEFA) was proposed to extract nine parameters of the triple-diode photovoltaic
model [12]. Meiying Ye employed the particle swarm algorithm (PSO) to solve the solar cell
parameters [13]. In [14], the direction of movement (DM) in the gradient-based optimizer
(GBO) algorithm is used to converge around the area of the solution, and it was suggested
to change the DM value gradually in the modified gradient-based optimizer (MGBO) to
improve the balancing between exploration and exploitation phases in the search process.
The flower pollination algorithms (FPA) were used to extract the global parameters of
both the single-diode and the double-diode models based on the experimental data [15].
Additionally, other recent optimization algorithms were used to find the best values of PV
parameters, including transient search optimization (TSO) [16], cuckoo search (CS) [17],
whale optimization algorithm (WOA) [18], supply demand-based optimization (SDO) [19],
salp swarm algorithm (SSA) [20], improved bonobo optimizer (IBO) [21], multiverse opti-
mizer (MVO) [22], tree growth algorithm (TGA) [23], grey wolf optimization (GWO) [24],
triple-phase teaching-learning-based optimization (TPTLBO) [25], ant lion optimization
(ALO) [26], chaos game optimization (CGO) [27], Harris hawk optimization (HHO) [28],
Rao algorithm [29], slime mould algorithm (SMA) [30], and hybrid techniques, such as hy-
brid adaptive TLBO with DE algorithm (ATLDE) [31], GWOCS [1], PSOGWO [32], Marine
predator algorithm (MPA) [33], Coyote optimization [34], and Jaya algorithm and its vari-
ants [35]. Each technique has various strategies to achieve a certain objective, and the power
of each technique depends on the precision of the estimated parameters, computation time,
and computational complexity.

In this article, a development version of ECPO called MECPO is suggested to enhance
the search capability of searching and to increase the balance between the exploitation
and exploration for the conventional ECPO. In addition, this new algorithm is utilized
for extracting the PV module parameters. The performance of the MECPO technique is
compared with the recent techniques, such as COOT [36], equilibrium optimizer (EO) [37],
Giza pyramids construction (GPC) [38], and MPA [39] algorithms, as well as the original
ECPO algorithm [40]. However, the major contributions of this paper are summarized
as follows:

• Proposing an effective optimizer called MECPO with the aim of improving the perfor-
mance of the original algorithm.

• The CEC’17 test suite is used to assess the MECPO efficiency.
• The proposed MECPO algorithm is employed for the PV models: SDM, DDM, and

TDM of PV modules.
• The obtained statistical results using the proposed algorithm are compared with

state-of-the-art techniques.
• The superiority and reliability of the MECPO-based methodology in solving the

parameter estimating for the PV model’s problem are verified.

The rest of the article is organized as follows: Section 2 of the paper analyzes the
problem formulation, including SDM, DDM, and TDM, and presents the objective function
for identifying the parameters of the solar PV module. Section 3 presents an overview
of the ECPO technique and the proposed MECPO technique. Section 4 describes the
results, discussions, and comparisons. Section 5 gives the conclusion of this article with the
final remarks.
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2. PV Models

In this section, the PV models are presented. The PV models include the single-diode
model (SDM), the double-diode model (DDM), and the triple-diode model (TDM).

2.1. Single-Diode Model (SDM)

SDM is simple, and Figure 1 illustrates its equivalent circuit diagram. In this figure,
there are many significant parameters such as photocurrent IPh, the current of diode ID1,
shunt resistance Rsh, series resistance Rs, and output current I. It is observed from Figure 1
that it is easy to compute the output current for this model as follows:

I = IPh − ID1 − Ish (1)

where Ish is the shunt resistor current.
The modeling of SDM is represented in the following equation:

I = IPh − Isd

[
exp

(
q(V + IRS)

NKT

)
− 1
]
− V + IRs

Rsh
(2)

where

n Isd is the reverse saturation current of D1.
n The variable q = 1.60217646× 10−19 C is the charge of the electron.
n V is the total voltage.
n K = 1.3806503× 10−23 (J/k) is the Boltzmann’s constant.
n T is the temperature in Kelvin.
n N is the ideality factor of D1.
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Figure 1. SDM mathematical model.

2.2. The Double-Diode Model (DDM)

Compared to the first case (SDM), the impact of compound current loss is taken into
consideration in the DDM. Figure 2 displays the structure of DDM. It can be seen from this
figure that there are two diodes, in this case, in parallel with the source of current. The
output current of the DDM is calculated from the following equation:

I = IPh − ID1 − ID2 − Ish (3)

I = IPh − Isd1

[
exp

(
q(V + IRS)

N1KT

)
− 1
]
− Isd2

[
exp

(
q(V + IRS)

N2KT

)
− 1
]
− V + IRs

Rsh
(4)

where

n Isd1 and Isd2 are the reverse saturation current of D1 and D2, respectively.
n N1, and N2 are the ideality factor of D1 and D2, respectively.
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2.3. The Triple-Diode Model (TDM)

TDM has three diodes in parallel with the current source, as shown in Figure 3.
Therefore, the output current can be given by the following equations:

I = IPh − ID1 − ID2 − ID3 − Ish (5)

I = IPh − Isd1

[
exp

(
q(V + IRS)

N1KT

)
− 1
]
− Isd2

[
exp

(
q(V + IRS)

N2KT

)
− 1
]
− Isd3

[
exp

(
q(V + IRS)

N3KT

)
− 1
]
− V + IRs

Rsh
(6)

where

n Isd1, Isd2, and Isd3 are the reverse saturation current of D1, D2, and D3, respectively.
n N1, N2, and N3 are the ideality factor of D1, D2, and D3, respectively.
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2.4. The Objective Function

The objective function is to extract the best parameter values of the PV models by
reducing the variance between the estimated data and the measured data. The objective
function of SDM, DDM, and TDM is given as follows [33]:

1. The objective function of SDM is given as:

fSD(V, I, x) = I − x3 + x4

[
exp

(
q(V + Ix1)

x5KT

)
− 1
]
− V + Ix1

x2
(7)
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2. The objective function of DDM is given as:

fDD(V, I, x) = I − x3 + x4

[
exp

(
q(V + Ix1)

x6KT

)
− 1
]
+ x5

[
exp

(
q(V + Ix1)

x7KT

)
− 1
]
− V + Ix1

x2
(8)

3. The objective function of TDM is given as:

fTD(V, I, x) = I − x3 + x4

[
exp

(
q(V + Ix1)

x6KT

)
− 1
]
+ x5

[
exp

(
q(V + Ix1)

x7KT

)
− 1
]
+ x8

[
exp

(
q(V + Ix1)

x9KT

)
− 1
]
− V + Ix1

x2
(9)

where

n V and I values can be given from a solar cell.
n x = [x1, x2, . . . xn] is the estimating parameters vector for n-parameters for

each solar cell model and can be defined as:

(1) x = [Rs, Rsh, Iph, Isd, n] for SDM.
(2) x = [Rs, Rsh, Iph, Isd1, Isd2, n1, n2] for DDM.
(3) x = [Rs, Rsh, Iph, Isd1, Isd2, Isd3, n1, n2, n3] for TDM.

The lower and upper boundaries of the unknown parameters are presented in Table 1.

Table 1. The limits of extracted photovoltaic parameters.

Parameter Lower Limit Upper Limit

Iph (A) 0 1

Isd1, Isd2, Isd3 (µA) 0 1

Rs (Ω) 0 0.5

Rsh (Ω) 0 100

n1, n2, n3 1 2

In this paper, the root mean square error (RMSE) is the error between the estimated
and the measured data of the diode model. Therefore, The RMSE can be calculated from
the following equation [41]:

RMSE =

√√√√ 1
N

N

∑
i=1

( fh(V, I, x))2 (10)

where

n h is the solar cell model to be used.
n N identifies a set of samples is employed to verify the best optimum.

3. The Proposed MECPO

In this section, an overview of the MECPO algorithm is presented in detail, which
improves the original ECPO as (1) a new parameter called transfer factor (TF) is added to
transfer from exploration to exploitation and vice versa; (2) the three different strategies
in the interaction between ECPs are modified to avoid gradually move closer to better
individuals who easily make the algorithm stagnation in local optimum and convergence
prematurely, and (3) the diversification phase is modified to let the search agent jumps out
from local optimum and avoid stagnation in local optimum efficiently.

3.1. Advanced Transfer Factor (TF)

The balance between the exploration and exploitation phases is regarded as the major
process to the success of any optimization algorithm and is controlled by a specific parame-
ter. The performance of ECPO is affected by the transferring parameter from exploration
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to exploitation, which is missing. To resolve this issue, the non-linear parameter called
transfer factor (TF) is injection into ECPO as follows:

TF = C1 × cos
(

1− t
T

)C2

(11)

where C1 and C2 are constant 3 and 0.25, respectively.
This enhances the switching phase between exploration and exploitation in a proper

manner and maintains the diversity of the solutions.

3.2. Modified Interaction Phase

In this subsection, some setting will be proposed to avoid gradually moving closer
to better individuals, which easily make the algorithm stagnation in local optimum and
convergence prematurely.

3.2.1. Strategy 1

In this strategy, two new ECPs are created, called ECPinew1 and ECPinew2, while i
denotes the index of the chosen ECP). This results from three interacting ECPs.

For ECP1 , ECP2, and ECP3:
Where ECP1 is the best agent, ECP2 is the second-best agent, and ECP3 is the

third-best agent.
ECP1 is affected by ECP2 and ECPbest to move from ECP to ECP1new1. The total force

exerts on ECP1 become:
F = F21 + D× Fbest1 (12)

D = ±1—this parameter is proposed to give high opportunities with different values
on resulting F to give high opportunities to change the direction of agents that results in a
good scan of the given search space in all possible directions.

The total force that pushes ECP1 to the move to ECP1new1 and it illustrates as below:

ECP1new1 = ECP1 + F
= ECP1 + Fbest1 + F21

= ECP1 + D× TF× β× (ECPbest − ECP1) + β× (ECP1 − ECP2)
(13)

where β is a random number. F21 refers to the force on ECP1 of ECP2 and Fbest1 is the force
on ECP1 of ECPbest.

Then, ECP1 is affected simultaneously by ECP3 and ECPbest to move to ECP1new2.

ECP1new2 = ECP1 + D× TF× β× (ECPbest − ECP1) + β× (ECP1 − ECP3) (14)

3.2.2. Strategy 2

To resolve the issue of the lack of interaction between ECPbest and the rest of ECPs,
in the proposed method of three interacting ECPs, each ECP creates one new ECP called
ECPinew.

ECP1new1 = ECP1 + F
= ECP1 + F21 + F31

= ECP1 + D× TF× β× (ECP1 − ECP2) + β× (ECP1 − ECP3)
(15)

For ECP2: The second particle ECP2 is influenced at the same time by the first and
third particles (i.e., ECP1 and ECP3), which moves to ECP2new. The resulting force to move
ECP1 to ECP1new can be defined as:

F = F12 + F32
ECP2new1 = ECP2 + F
= ECP2 + F12 + F32

= ECP2 + D× TF× β× (ECP2 − ECP1) + β× (ECP2 − ECP3)

(16)
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where F12 is the force of ECP1 on ECP2, and F32 is the force of ECP3 on ECP2.
For ECP3:
The ECP3 is affected by ECP1 and ECP2 at the same time with the force given by:

F = F13 + F23
ECP3new1 = ECP3 + F
= ECP3 + F13 + F23

= ECP3 + D× TF× β× (ECP3 − ECP1) + β× (ECP2 − ECP3)

(17)

where F13 is the force of ECP1 on ECP3 and F23 is the force of ECP2 on ECP3.

3.2.3. Strategy 3

In the previous strategies, new ECPs are generated. Illustratively, the three interacting
ECPs (nECPI = 3) will generate nine new ECPs (six ECPs from strategy 1 and three from
strategy 2). In strategy 3, the equations defined in the previous two strategies are used.

3.3. Modified Diversification

The diversification phase updates the portion of ECPs population based on a variable
called probability of diversification (Pd = 0.2). The new ECPs update their positions by
selecting a random archive pool previously created. In the proposed enhancement, the new
ECPs update their positions with five cases, including selecting a random archive pool, the
remaining proposed four cases are (1) new ECPs update their positions based on boundary
constraints to create new ECPS in new regions that may be not visited before; (2) new
ECPs update their position with the best ECP in the population; (3) new ECPs update
based on information from the archive and random ECPs with controlling parameter aj
that initializes with a random value and decreases with problem size by multiplying it with
another random number [0, 1]; (4) the new ECPS will equal the old ECPs (no change).

The proposed diversification phase jumps out from the local optimum and avoids
stagnation in the local optimum.

For i = 1: newECP
aj = rand (18)

For j = 1: ProblemSize

newEPCi,j =


newEPCi,j = Lj + r1 ×

(
Uj − Lj

)
r2 < 0.3

newEPCi,j = ECPbest,j r2 < 0.4(
1− aj

)
× archiveECPK,j + aj × randECPj r2 < 0.5 where aj = aj ∗ rand

newEPCi,j = archiveECPK,j r2 < 0.8
newEPCi,j = EPCi,j othewise

(19)

End If;
End For;
Eventually, the pseudo-code of the MECPO method is reported in Algorithm 1, while

Figure 4 illustrates the flowchart.
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Algorithm 1: Pseudo-code of the MECPO technique

1. Randomly initialize an nECP charged particles (solutions) using normal distribution
2. Calculate the fitness and sort them from the best to the worst
3. Create Archive pool with the best ECPs
4. Update transfer factor (TF) using Equation (11)
5. Selection: nECPI particles are randomly selected
6. Interaction: based on the specified strategy

a. Strategy 1 using Equations (12)–(14)
b. Strategy 2 using Equations (15)–(17)
c. Strategy 3 using both of Strategy 1 and Strategy 2

7. For each individual Xi

if (Xi < Xmin)
Xi = Xmin

else if (Xmax < Xi)
Xi = Xmax

End If
End For

8. Diversification

a. For individual newECP (using Equation (19))

n If r < 0.3 then update its solution
n Else If r < 0.4 then update its solution
n Else If r < 0.5 then update its solution
n Else If r < 0.8 then update its solution
n Else update its solution

End If

End for

9. Termination criterion

4. Performance Evaluation of MECPO

To assess the performance of the MECPO technique, the 2017 IEEE Congress on
Evolutionary Computation (CEC’17) test suite [42] is solved. In addition, several statistical
metrics are extracted, including mean value and standard deviation (STD) for optimal
values achieved. The achieved results are compared with seven recent metaheuristic
techniques, for instance, gravitational search algorithm (GSA) [43], grey wolf optimizer
(GWO) [44], WOA [45], sine cosine algorithm (SCA) [46], EO [37], HHO [47], and the
original electric charged particles optimization (ECPO) [40].

4.1. Parameter Settings Values

Table 2 reports the parameters setting values; all the counterparts are evaluated on
30 independent runs and 1000 iterations (max_Itr) for every function for fair benchmarking
comparison. We choose the default parameters values for the counterparts to decrease the
risk of bias in the comparison, as illustrated in [48].

4.2. Definition of CEC’17 Benchmark Functions

CEC’17 test suite [42] including 29 functions is divided into three categories: (1) uni-
modal functions (F1–F3) has a single optimum solution and is used to evaluate the ex-
ploitation capability; (2) multimodal functions, which are from function F4 to function F10,
have multiple local minima, and are employed to test the exploration capability; (3) hybrid
functions from F11 to F20, and finally, the composition functions, which are from function
F21 to function F30, have a huge number of local minima and are employed to evaluate
the capability of the technique to avoid the local minima and try to maintain the stability
between exploitation and exploration stages.
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Table 2. The settings of the parameter for the MECPO technique and the counterparts.

Techniques The Setting of Parameters

Public settings

Number of independent runs: 30
Maximum iterations: 1000
Population size: N = 30
Dim = 30,

GSA α = 20, G0 = 100, Rnorm = 2, Rpower = 1

GWO a linearly decrease from 2 to 0

WOA a2 linearly decreases from −1 to −2
α variable decreases linearly from 2 to 0

SCA A = 2

EO a_1 = 2, a_2 = 1, GP = 0.5

HHO E0 ∈ [−1, 1], β = 1.5

ECPO Strategy = 1, archSize = 30 and NPI = 2

MECPO Strategy = 1, archSize = 30, NPI = 2, C1 = 3, C2 = 0.25,
and β = random number

4.3. Statistical Results

The mean and STD of the optimum value acquired by the MECPO method and
the counterparts are reported in Table 3 for each CEC’17 function; the optimal results are
highlighted in boldface. The obtained results proved that the MECPO technique is achieved
the best values in solving 21 of CEC’17 functions. Moreover, MECPO gained the first rank.

Table 3. The mean and STD of optimal values of the OF for thirty trials achieved with the various
techniques on the CEC’17 benchmark with dimension = 30.

# Measure GSA GWO WOA SCA EO HHO EPCO MEPCO

1
Mean 7.46 × 107 1.99 × 109 1.08 × 109 1.84 × 1010 6.40 × 103 3.17 × 107 7.14 × 108 3.78 × 103

STD 1.57 × 108 1.30 × 109 3.15 × 108 3.07 × 109 6.54 × 103 7.47 × 106 1.31 × 109 4.94 × 103

3
Mean 9.62 × 104 5.33 × 104 2.95 × 105 6.66 × 104 2.69 × 104 3.99 × 104 2.23 × 104 1.06 × 105

STD 1.10 × 104 1.32 × 104 7.46 × 104 1.33 × 104 8.38 × 103 6.79 × 103 2.29 × 104 2.52 × 104

4
Mean 6.54 × 102 5.96 × 102 8.74 × 102 2.35 × 103 4.99 × 102 5.55 × 102 5.18 × 102 4.90 × 102

STD 1.25 × 102 5.81 × 101 4.64 × 101 6.92 × 102 2.48 × 101 1.46 × 101 4.36 × 101 3.48 × 101

5
Mean 7.39 × 102 6.16 × 102 8.58 × 102 8.14 × 102 6.77 × 102 7.40 × 102 6.16 × 102 5.55 × 102

STD 2.43 × 101 2.30 × 101 5.22 × 101 2.64 × 101 2.44 × 101 4.90 × 101 2.55 × 101 5.50 × 101

6
Mean 6.58 × 102 6.11 × 102 6.91 × 102 6.60 × 102 6.01 × 102 6.73 × 102 6.19 × 102 6.00 × 102

STD 3.99 4.34 1.52 × 101 6.28 8.31 × 10−1 9.36 6.71 1.88 × 10−1

7
Mean 9.62 × 102 8.86 × 102 1.29 × 103 1.21 × 103 8.40 × 102 1.30 × 103 9.68 × 102 8.40 × 102

STD 5.50 × 101 5.02 × 101 5.18 × 101 4.61 × 101 3.33 × 101 5.43 × 101 7.65 × 101 6.25 × 101

8
Mean 9.63 × 102 8.96 × 102 1.07 × 103 1.09 × 103 8.86 × 102 9.68 × 102 9.01 × 102 8.35 × 102

STD 1.64 × 101 1.56 × 101 4.81 × 101 2.13 × 101 1.81 × 101 3.46 × 101 2.20 × 101 2.73 × 101

9
Mean 4.17 × 103 2.26 × 103 1.16 × 104 7.92 × 103 1.26 × 103 7.55 × 103 2.28 × 103 9.48 × 102

STD 4.17 × 102 6.75 × 102 5.87 × 103 1.54 × 103 4.48 × 102 1.90 × 103 1.01 × 103 4.73 × 101

10
Mean 5.39 × 103 4.80 × 103 6.73 × 103 8.66 × 103 5.21 × 103 6.14 × 103 4.68 × 103 8.04 × 103

STD 4.92 × 102 1.15 × 103 9.07 × 102 3.33 × 102 7.53 × 102 3.57 × 102 7.77 × 102 5.16 × 102

11
Mean 3.97 × 103 2.04 × 103 6.90 × 103 3.45 × 103 1.29 × 103 1.29 × 103 4.04 × 101 1.17 × 103

STD 1.12 × 103 8.34 × 102 3.18 × 103 1.08 × 103 4.29 × 101 3.41 × 101 7.49 × 102 1.68 × 103
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Table 3. Cont.

# Measure GSA GWO WOA SCA EO HHO EPCO MEPCO

12
Mean 1.25 × 108 1.34 × 108 3.17 × 108 2.15 × 109 7.58 × 105 3.69 × 107 2.99 × 106 1.23 × 106

STD 1.29 × 108 2.48 × 108 1.29 × 108 5.75 × 108 7.77 × 105 2.63 × 107 3.71 × 106 6.53 × 105

13
Mean 3.40 × 104 3.51 × 105 1.21 × 106 9.15 × 108 1.79 × 104 6.68 × 105 2.16 × 105 1.39 × 104

STD 9.35 × 103 6.03 × 105 3.84 × 105 4.21 × 108 1.68 × 104 4.26 × 105 8.31 × 105 1.37 × 104

14
Mean 1.03 × 106 5.06 × 105 3.17 × 106 4.70 × 105 5.14 × 104 4.12 × 105 1.19 × 105 9.76 × 104

STD 3.52 × 105 4.37 × 105 2.59 × 106 3.85 × 105 3.70 × 104 2.54 × 105 4.22 × 105 8.76 × 104

15
Mean 1.78 × 104 5.95 × 105 2.27 × 106 4.26 × 107 6.10 × 103 1.11 × 105 1.08 × 104 6.10 × 103

STD 5.93 × 103 1.23 × 106 3.67 × 106 3.22 × 107 5.89 × 103 1.13 × 105 9.09 × 103 5.50 × 103

16
Mean 3.47 × 103 2.53 × 103 4.06 × 103 3.95 × 103 2.41 × 103 3.23 × 103 2.65 × 103 2.57 × 103

STD 3.34 × 102 2.52 × 102 1.09 × 103 2.38 × 102 3.42 × 102 2.66 × 102 2.89 × 102 5.61 × 102

17
Mean 2.88 × 103 2.07 × 103 2.91 × 103 2.64 × 103 2.12 × 103 2.50 × 103 2.26 × 103 1.93 × 103

STD 2.44 × 102 2.00 × 102 3.23 × 102 2.88 × 102 2.19 × 102 3.09 × 102 2.51 × 102 2.20 × 102

18
Mean 5.16 × 105 2.43 × 106 1.24 × 107 9.49 × 106 7.54 × 105 2.54 × 106 1.95 × 105 1.88 × 106

STD 4.03 × 105 5.15 × 106 6.47 × 106 4.99 × 106 5.47 × 105 1.02 × 106 2.42 × 105 2.75 × 106

19
Mean 1.35 × 105 3.06 × 106 6.09 × 106 7.10 × 107 5.99 × 103 8.94 × 105 1.19 × 104 9.67 × 103

STD 1.08 × 105 8.77 × 106 5.06 × 106 4.12 × 107 2.03 × 103 5.59 × 105 1.16 × 104 1.15 × 104

20
Mean 3.07 × 103 2.45 × 103 2.82 × 103 2.90 × 103 2.29 × 103 2.85 × 103 2.49 × 103 2.21 × 103

STD 2.66 × 102 1.73 × 102 1.98 × 102 1.43 × 102 1.26 × 102 1.86 × 102 2.40 × 102 1.85 × 102

21
Mean 2.62 × 103 2.40 × 103 2.60 × 103 2.59 × 103 2.437 × 103 2.61 × 103 2.40 × 103 2.36 × 103

STD 3.59 × 101 2.46 × 101 2.00 × 101 2.62 × 101 2.02 × 101 4.52 × 101 2.44 × 101 5.82 × 101

22
Mean 7.25 × 103 4.99 × 103 6.55 × 103 9.01 × 103 3.51 × 103 5.77 × 103 4.53 × 103 7.79 × 103

STD 5.08 × 102 1.84 × 103 2.45 × 103 2.49 × 103 1.97 × 103 2.99 × 103 1.88 × 103 3.09 × 103

23
Mean 3.80 × 103 2.80 × 103 3.07 × 103 3.05 × 103 2.73 × 103 3.25 × 103 2.81 × 103 2.68 × 103

STD 1.85 × 102 6.09 × 101 1.06 × 102 2.96 × 101 1.92 × 101 6.49 × 101 4.82 × 101 8.28

24
Mean 3.44 × 103 2.94 × 103 3.23 × 103 3.24 × 103 2.99 × 103 3.43 × 103 2.96 × 103 3.00 × 103

STD 1.32 × 102 5.36 × 101 6.98 × 101 3.01 × 101 2.34 × 101 1.17 × 102 3.88 × 101 1.47 × 101

25
Mean 2.99 × 103 3.01 × 103 3.10 × 103 3.48 × 103 2.95 × 103 2.94 × 103 2.93 × 103 2.89 × 103

STD 2.57 × 101 4.51 × 101 3.28 × 101 1.43 × 102 2.73 1.62 × 101 3.42 × 101 1.27 × 101

26
Mean 7.85 × 103 4.90 × 103 9.31 × 103 7.60 × 103 5.87 × 103 8.21 × 103 5.21 × 103 4.08 × 103

STD 6.30 × 102 3.12 × 102 1.01 × 103 3.93 × 102 7.24 × 102 1.18 × 103 8.11 × 102 1.79 × 102

27
Mean 5.10 × 103 3.25 × 103 3.48 × 103 3.51 × 103 3.22 × 103 3.65 × 103 3.27 × 103 3.22 × 103

STD 4.19 × 102 1.78 × 101 8.82 × 101 4.41 × 101 9.77 3.28 × 102 3.14 × 101 1.33 × 101

28
Mean 3.56 × 103 3.51 × 103 3.56 × 103 4.23 × 103 3.22 × 103 3.35 × 103 3.30 × 103 3.23 × 103

STD 2.08 × 102 1.98 × 102 1.50 × 102 2.36 × 102 1.93 × 101 3.48 × 101 8.87 × 101 2.34 × 101

29
Mean 5.28 × 103 3.95 × 103 5.42 × 103 5.05 × 103 3.68 × 103 4.90 × 103 3.94 × 103 3.46 × 103

STD 3.33 × 102 1.80 × 102 3.70 × 102 1.93 × 102 2.27 × 102 6.31 × 102 2.23 × 102 1.43 × 102

30
Mean 3.18 × 106 9.29 × 106 3.98 × 107 1.41 × 108 9.95 × 103 7.82 × 106 2.52 × 104 9.01 × 103

STD 4.09 × 106 8.10 × 106 3.06 × 107 4.86 × 107 3.45 × 103 3.85 × 106 5.26 × 104 2.89 × 103

The optimal values obtained are in bold.
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4.4. Convergence Analysis

The convergence characteristics curves analysis of the MECPO technique and the
other recent techniques over the CEC’17 functions are illustrated in Figure 5. It is clear
from the charts that the proposed MECPO reached a stable point; therefore, it reaches the
lowest average of the best so-far solutions on all functions. The achieved fast convergence
qualifies the proposed MECPO to be in the first rank and solves problems that require
fast computation.
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4.5. Boxplot’s Analysis

Hence, the CEC’17 test suite has many local optima, so to know the distribution of
best fitness, the boxplot analysis is drawn to describe data distributions into quartiles for
each technique and each function in Figure 6. The box plots of the MECPO technique are
very narrow for most functions compared to various recent methods distributions and,
therefore, with the best values. In fact, the MECPO technique performs better than the
other methods in most test functions.
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4.6. The Wilcoxon Signed-Rank Test

Although metaheuristics are stochastic methods, the predicted performance should
be more accurate. To verify the obtained statistical results and evaluate the significance,
Wilcoxon’s rank-sum test was performed. More details about Wilcoxon’s test are given
in [49]. The average pair-wise comparison of the optimal solutions with a significance level
equal to 5% is reported in Table 4. In the same context, the results are statistically significant
for all CEC’17 functions for most functions. The obtained results in Table 4 reveal that the
performance of MECPO is superior over the other counterparts.
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Table 4. Results of Wilcoxon’s test (p ≥ 0.05) between the MECPO technique and the various recent
techniques for the CEC’17 functions with Dim = 30.

# GSA vs.
MECPO

GWO vs.
MECPO

WOA vs.
MECPO

SCA vs.
MECPO EO vs. MECPO HHO vs.

MECPO
EPCO vs.
MECPO

1 0.0030 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 0.2226 3.0199 × 10−11 8.9934 × 10−11

3 0.0748 7.3891 × 10−11 5.0723 × 10−10 8.4848 × 10−9 3.0199 × 10−11 3.0199 × 10−11 1.4643 × 10−10

4 6.6955 × 10−11 4.1997 × 10−10 3.0199 × 10−11 3.0199 × 10−11 0.5011 3.1967 × 10−9 0.0251

5 3.0199 × 10−11 4.2175 × 10−4 3.0199 × 10−11 3.0199 × 10−11 0.0025 3.0199 × 10−11 4.2175 × 10−4

6 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 0.0013 3.0199 × 10−11 3.0199 × 10−11

7 3.4971 × 10−9 0.0017 3.0199 × 10−11 3.0199 × 10−11 0.8883 3.0199 × 10−11 6.0459 × 10−7

8 7.7725 × 10−9 9.0632 × 10−8 4.5043 × 10−11 3.0199 × 10−11 9.0632 × 10−8 8.8910 × 10−10 7.6950 × 10−8

9 3.0199 × 10−11 3.6897 × 10−11 3.0199 × 10−11 3.0199 × 10−11 0.2519 3.0199 × 10−11 3.3384 × 10−11

10 1.6132 × 10−10 6.5183 × 10−9 8.1200 × 10−4 9.8329 × 10−8 1.2057 × 10−10 8.1014 × 10−10 8.1527 × 10−11

11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 6.9125 × 10−4 1.6132 × 10−10 6.6955 × 10−11

12 2.1544 × 10−10 6.0658 × 10−11 3.0199 × 10−11 3.0199 × 10−11 0.1120 3.0199 × 10−11 0.0339

13 4.3106 × 10−8 3.6897 × 10−11 3.0199 × 10−11 3.0199 × 10−11 0.0292 3.0199 × 10−11 0.0850

14 6.6955 × 10−11 0.0191 7.7725 × 10−9 2.3897 × 10−8 0.0030 2.6784 × 10−6 8.8411 × 10−7

15 1.3111 × 10−8 8.9934 × 10−11 3.0199 × 10−11 3.0199 × 10−11 0.8073 3.6897 × 10−11 0.0117

16 3.4971 × 10−9 0.1907 6.0658 × 10−11 3.0199 × 10−11 0.5895 2.0283 × 10−7 0.5493

17 3.0199 × 10−11 6.0459 × 10−7 4.0772 × 10−11 3.0199 × 10−11 5.8587 × 10−6 4.0772 × 10−11 2.1947 × 10−8

18 2.8389 × 10−4 0.3183 3.5708 × 10−6 2.9215 × 10−9 6.3560 × 10−5 0.0501 2.1947 × 10−8

19 6.6955 × 10−11 8.1014 × 10−10 3.0199 × 10−11 3.0199 × 10−11 0.1809 3.0199 × 10−11 0.7731

20 4.0772 × 10−11 5.9706 × 10−5 6.0658 × 10−11 9.9186 × 10−11 0.0080 9.7555 × 10−10 1.6062 × 10−6

21 3.0199 × 10−11 6.9125 × 10−4 3.0199 × 10−11 3.0199 × 10−11 0.0176 4.9752 × 10−11 0.0014

22 0.0080 0.0080 0.1580 5.5329 × 10−8 5.8737 × 10−4 0.0170 0.0080

23 3.0199 × 10−11 2.6695 × 10−9 3.0199 × 10−11 3.0199 × 10−11 2.1540 × 10−6 3.0199 × 10−11 5.5727 × 10−10

24 3.0199 × 10−11 1.7836 × 10−4 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.3384 × 10−11 6.2027 × 10−4

25 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 0.0519 9.7555 × 10−10 2.1540 × 10−6

26 3.0199 × 10−11 6.1210 × 10−10 3.0199 × 10−11 3.0199 × 10−11 4.4592 × 10−4 1.8731 × 10−7 1.0666 × 10−7

27 3.0199 × 10−11 1.1058 × 10−4 3.0199 × 10−11 3.0199 × 10−11 0.1453 3.0199 × 10−11 1.2860 × 10−6

28 3.0199 × 10−11 3.3384 × 10−11 3.0199 × 10−11 3.0199 × 10−11 0.0053 5.4941 × 10−11 8.3520 × 10−8

29 3.0199 × 10−11 1.8500 × 10−8 3.0199 × 10−11 3.0199 × 10−11 0.0018 3.0199 × 10−11 8.1014 × 10−10

30 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 0.0315 3.0199 × 10−11 6.2828 × 10−6

5. The Results and Discussion of Real-World Application

The numerical simulation of the proposed MECPO algorithm for identifying parame-
ters of SDM, DDM, and TDM is illustrated in this section. Figure 7 displays the estimation
process for the PV models and their validation procedure. The seven recent techniques
COOT, EO, GPC, and MPA, as well as the conventional ECPO, are used in the comparison.
Table 5 presents the parameter settings of the selected algorithms. All mentioned techniques
have been executed for 20 independent runs using MATLAB 2016a platform with an Intel®

core TM i5-4210U CPU, 1.70 GHz, 8 GB RAM Laptop.
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Table 5. Parameter settings of the selected techniques.

Algorithms Parameters Setting

Common settings
Population size: nPop = 100 for SDM and nPop = 200 for DDM and TDM
Maximum iterations: Max_iter = 1000
Number of independent runs: 20

GPC G = 9.8, Tetha = 14, MuMin = 1, MuMax = 10, pSS = 0.5

EO a1 = 2, a2 = 1

MPA FADs = 0.2, P = 0.5, C = 0.05, e = 0.25

5.1. Case 1: Single-Diode Model (SDM)

In the first case, Table 6 tabulated the optimal parameter values and the fitness values
obtained by the MECPO algorithm, original ECPO, and four well-known algorithms for
the SDM. The convergence characteristics for all techniques are displayed in Figure 8. The
value of the parameters in the case of the SDM achieved using the five algorithms are
presented in Table 6. Moreover, Figure 9 presents the boxplot of COOT, ECPO, EO, GPC,
MPA, and the proposed MECPO techniques for the single diode, which illustrates the
distribution of results achieved by various techniques in 20 trails. Table 6 tabulates the
measured data’s voltage and current values and the simulated current value, simulated
power value, relative error, and absolute error using the proposed MECPO for SDM.

Table 6. Calculated parameter in case of the SDM obtained by the proposed algorithm and other
recent techniques.

Algorithm MECPO ECPO COOT GPC EO MPA

Rs (Ω) 0.036377 0.151767 0.033574 0.000748 0.027151 0.038619

Rsh(Ω) 53.71852 35.53006 100 17.97128 99.52477 40.87662

Iph (A) 0.760776 0.677648 0.760476 0.776792 0.761999 0.761135

Isd (A) 3.23 × 10−7 0.000155 6.57 × 10−7 1.87 × 10−5 2.07 × 10−6 1.79 × 10−7

n 1.215672 1.984596 1.277162 1.684806 1.39214 1.168594

RMSE 9.86 × 10−4 0.717356 0.001731 0.018806 0.004147 0.00149
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In Table 7, the fitness value (9.86 × 10−4) obtained by the proposed MECPO technique
is less than any other algorithm. As shown in Figure 8, The MECPO algorithm has a high
convergence speed compared with the other recent algorithms from the initial search stage
to the end of iterations, and this confirms the high precision of the proposed algorithm. The
five metrics results after 20 independent runs of all algorithms in Table 7 indicate that the
effectiveness and robustness of the proposed algorithm are better than other techniques.
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Table 7. Statistical results of the proposed MECPO algorithm and other recent algorithms in the case
of the SDM.

Algorithm Best Mean Median Worst STD

MECPO 0.000986 0.000986 0.000986 0.000986 2.31 × 10−16

ECPO 0.717356 1.395899 1.390179 1.985481 0.316597

COOT 0.001731 0.004135 0.004434 0.005851 0.001238

GPC 0.018806 0.081121 0.076739 0.171743 0.035797

EO 0.004147 0.211926 0.222861 0.222861 0.048906

MPA 0.00149 0.009937 0.011736 0.012607 0.003505
The optimal values obtained are in bold.

According to the comparisons on the solution distribution in Figure 9, it can be seen
that the MECPO technique gives the best performance compared with the other techniques
in terms of precision and strength. As can be seen from Table 8, the calculated data of the
SDM obtained by the proposed MECPO technique are compatible with the measured data.

Table 8. Measured and simulated data of voltages, currents, and power and the absolute errors
values using MECPO for SDM.

Rank
Experimental Data Simulated Current Data Simulated Power Data

V (V) I (A) P (W) Isim (A) IAEI (A) Psim (W) IAEP (W)

1 −0.2057 0.764 −0.157155 0.76409 8.80 × 10−5 −0.15717 2.00 × 10−5

2 −0.1291 0.762 −0.098374 0.76266 6.63 × 10−4 −0.09846 9.00 × 10−5

3 −0.0588 0.7605 −0.044717 0.76136 8.55 × 10−4 −0.04477 5.00 × 10−5

4 0.0057 0.7605 0.004335 0.76015 3.46 × 10−4 0.00433 0.00 × 10+00

5 0.0646 0.76 0.049096 0.75906 9.45 × 10−4 0.04903 6.00 × 10−5

6 0.1185 0.759 0.089942 0.75804 9.58 × 10−4 0.08983 1.10 × 10−4

7 0.1678 0.757 0.127025 0.75709 9.20 × 10−5 0.12704 2.00 × 10−5

8 0.2132 0.757 0.161392 0.75614 8.59 × 10−4 0.16121 1.80 × 10−4

9 0.2545 0.7555 0.192275 0.75509 4.13 × 10−4 0.19217 1.10 × 10−4

10 0.2924 0.754 0.22047 0.75366 3.36 × 10−4 0.22037 1.00 × 10−4

11 0.3269 0.7505 0.245338 0.75139 8.91 × 10−4 0.24563 2.90 × 10−4

12 0.3585 0.7465 0.26762 0.74735 8.54 × 10−4 0.26793 3.10 × 10−4

13 0.3873 0.7385 0.286021 0.74012 1.62 × 10−3 0.28665 6.30 × 10−4

14 0.4137 0.728 0.301174 0.72738 6.18 × 10−4 0.30092 2.60 × 10−4

15 0.4373 0.7065 0.308952 0.70697 4.73 × 10−4 0.30916 2.10 × 10−4

16 0.459 0.6755 0.310055 0.67528 2.20 × 10−4 0.30995 1.00 × 10−4

17 0.4784 0.632 0.302349 0.63076 1.24 × 10−3 0.30175 5.90 × 10−4

18 0.496 0.573 0.284208 0.57193 1.07 × 10−3 0.28368 5.30 × 10−4

19 0.5119 0.499 0.255438 0.49961 6.07 × 10−4 0.25575 3.10 × 10−4

20 0.5265 0.413 0.217445 0.41365 6.49 × 10−4 0.21779 3.40 × 10−4

21 0.5398 0.3165 0.170847 0.31751 1.01 × 10−3 0.17139 5.50 × 10−4

22 0.5521 0.212 0.117045 0.21215 1.55 × 10−4 0.11713 9.00 × 10−5

23 0.5633 0.1035 0.058302 0.10225 1.25 × 10−3 0.0576 7.00 × 10−4

24 0.5736 −0.0100 −0.005736 −0.00872 1.28 × 10−3 −0.005 7.40 × 10−4

25 0.5833 −0.1230 −0.071746 −0.12551 2.51 × 10−3 −0.07321 1.46 × 10−3

26 0.59 −0.2100 −0.1239 −0.20847 1.53 × 10−3 −0.123 9.00 × 10−4
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Figure 10 displays the individual absolute error for the current and power of the SDM
using the proposed technique. Furthermore, the characteristics curve of I–V and P–V for
SDM is redrawn according to the best-optimized parameters obtained by executing the
proposed MECPO algorithm and presented in Figure 11. This figure confirms that our
algorithm could significantly estimate the parameter values that could concretely predict
the curve of experimental data.
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Figure 11. Comparisons between measured data and data achieved using the MECPO method for
SDM (a) I–V characteristics and (b) P–V characteristics.

5.2. Case 2: Double-Diode Model (DDM)

In the second case, Table 9 presents the best values of the control variables regarding
the optimal performance for the compared techniques. As shown, MECPO reaches the
lowest RMSE of 0.000977 compared to the other algorithms. According to the results of
the proposed MECPO algorithm, the series resistance is 0.03687 Ω; shunt resistance is
57.12581 Ω; the photo-generated current is 0.760789 A; the reverse saturation currents of
D1 and D2 are 3.07 and 0.231 µA, respectively; the ideality factor of the diode of D1 and D2
is 2.190954. Figure 12 shows the convergence characteristics curves of the algorithms and
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demonstrates that the capability of the MECPO technique to obtain the smallest RMSE is
the fastest.

Table 9. Calculated parameter in case of the DDM obtained by the proposed algorithm and other
recent techniques.

Algorithm MECPO ECPO COOT GPC EO MPA

Rs (Ω) 0.03687 0.229884 0.0389 0.000206 0.037022 0.042933

Rsh(Ω) 57.12581 73.68355 72.85675 100 52.11317 37.18875

Iph (A) 0.760789 0.233682 0.760767 0.712533 0.76082 0.76005

Isd1 (A) 3.07 × 10−6 0.433524 5.79 × 10−6 1.28 × 10−10 3.41 × 10−7 2.84 × 10−19

Isd2 (A) 2.31 × 10−7 0.91553 3.76 × 10−8 1.47 × 10−5 1.36 × 10−9 5.55 × 10−8

n1 2 1.932754 1.754744 1 1.228865 1.00292

n2 1.190954 1.912091 1.073828 1.659771 1.000002 1.085403

RMSE 0.000977 1.515062 0.001115 0.041377 0.001001 0.003574
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Apparently, it is seen in Table 10 that MECPO reaches the minimum STD of 4.26 × 10−6,
which is less than ECPO, COOT, GPC, EO, and MPA that acquired STD of 0.404779, 0.002359,
0.023745, 0.000674, and 0.002805, respectively. Figure 13 shows the box plot of the RMSE
values for DDM in 20 individual runs using the MECPO and other recent algorithms.

Table 11 shows the values of measured, simulated current and the absolute errors
between them (IAEI). Furthermore, it displays the values of measured, simulated power,
and the absolute errors between them (IAEP) when applying the proposed MECPO on
DDM. Moreover, Figure 14 illustrates the absolute errors of measured and simulated current
and the absolute errors of experimental and simulated power using the MECPO for the
DDM. Figure 15 presents the estimated parameters obtained by the proposed algorithm for
the DDM that lead to the high closeness between the estimated I–V and P–V characteristics.
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Table 10. Statistical results of the MECPO technique and other recent techniques in the case
of the DDM.

Algorithm Best Mean Median Worst STD

MECPO 0.000977 0.00098 0.000977 0.000989 4.26 × 10−6

ECPO 1.515062 2.285728 2.343209 3.069671 0.404779

COOT 0.001115 0.004534 0.004441 0.009303 0.002359

GPC 0.041377 0.080475 0.072482 0.131687 0.023745

EO 0.001001 0.00141 0.001138 0.003264 0.000674

MPA 0.003574 0.011005 0.012211 0.012964 0.002805
The optimal values obtained are in bold.
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Figure 13. Best RMSE boxplot in 20 individual runs of the MECPO and other recent algorithms for
the DDM.

5.3. Case 3: Triple-Diode Model (TDM)

In this case, in the case of the TDM, RMSE and the extracted nine parameters’ values
are displayed in Table 12. It can be clearly seen from this table that the MECPO algorithm
achieves the optimal RMSE value (0.00097) among the five algorithms; further, the EO
algorithm acquires the second-best RMSE value (0.001031), followed by MPA, COOT, GPC,
and ECPO. Figure 16 presents the convergence curve for this case study using MECPO and
other algorithms for the TDM. It is obvious that MECPO has a faster convergence rate than
other techniques for single-, double-, and triple-diode models.

Table 13 gives the statistical results for the TDM. We can conclude that our algorithm
can achieve the best RMSE statistical values (Min, Mean, Median, Max, and STD) in the
case of the TDM compared with the other recent techniques. Moreover, to display the
distribution results obtained from various algorithms, the boxplot of TDM is presented in
Figure 17. It can be seen that MECPO achieves superior performance in terms of precision
and robustness. The statistical results of the IAE values based on the current and power for
the measured and simulated data on TDM are tabulated in Table 14. In addition, the IAEs
for current and power using MECPO for TDM are displayed in Figure 18.
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Table 11. Experimental and simulated data of voltages, currents, and power and the absolute errors
values using MECPO for DDM.

Rank
Experimental Data Simulated Current Data Simulated Power Data

V (V) I (A) P (W) Isim (A) IAEI (A) Psim (W) IAEP (W)

1 −0.2057 0.764 −0.157155 0.7639 1.00 × 10−4 −0.15713 2.10 × 10−5

2 −0.1291 0.762 −0.098374 0.76256 5.60 × 10−4 −0.09845 7.20 × 10−5

3 −0.0588 0.7605 −0.044717 0.76133 8.30 × 10−4 −0.04477 4.90 × 10−5

4 0.0057 0.7605 0.004335 0.7602 3.00 × 10−4 0.004333 2.00 × 10−6

5 0.0646 0.76 0.049096 0.75916 8.40 × 10−4 0.049041 5.50 × 10−5

6 0.1185 0.759 0.089942 0.75819 8.10 × 10−4 0.089845 9.60 × 10−5

7 0.1678 0.757 0.127025 0.75726 2.60 × 10−4 0.127069 4.40 × 10−5

8 0.2132 0.757 0.161392 0.75632 6.80 × 10−4 0.161246 1.46 × 10−4

9 0.2545 0.7555 0.192275 0.75523 2.70 × 10−4 0.192207 6.80 × 10−5

10 0.2924 0.754 0.22047 0.75375 2.50 × 10−4 0.220396 7.40 × 10−5

11 0.3269 0.7505 0.245338 0.75139 8.90 × 10−4 0.245628 2.90 × 10−4

12 0.3585 0.7465 0.26762 0.74725 7.50 × 10−4 0.267889 2.69 × 10−4

13 0.3873 0.7385 0.286021 0.73993 1.43 × 10−3 0.286576 5.55 × 10−4

14 0.4137 0.728 0.301174 0.72716 8.40 × 10−4 0.300827 −3.47 × 10−4

15 0.4373 0.7065 0.308952 0.70678 2.80 × 10−4 0.309076 1.24 × 10−4

16 0.459 0.6755 0.310055 0.67518 3.20 × 10−4 0.309908 1.47 × 10−4

17 0.4784 0.632 0.302349 0.63077 1.23 × 10−3 0.301761 5.87 × 10−4

18 0.496 0.573 0.284208 0.57204 9.60 × 10−4 0.283731 4.77 × 10−4

19 0.5119 0.499 0.255438 0.49976 7.60 × 10−4 0.255828 3.90 × 10−4

20 0.5265 0.413 0.217445 0.41378 7.80 × 10−4 0.217853 4.08 × 10−4

21 0.5398 0.3165 0.170847 0.31756 1.06 × 10−3 0.171419 5.72 × 10−4

22 0.5521 0.212 0.117045 0.2121 1.00 × 10−4 0.117101 5.60 × 10−5

23 0.5633 0.1035 0.058302 0.10212 1.38 × 10−3 0.057522 7.80 × 10−4

24 0.5736 −0.0100 −0.005736 −0.00883 1.17 × 10−3 −0.00507 6.70 × 10−4
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Table 12. Calculated parameter in case of the TDM obtained by the proposed algorithm and other
recent techniques.

Algorithm MECPO ECPO COOT GPC EO MPA

Rs (Ω) 0.03687 0.04303 0.040051 0.001854 0.037781 0.03846

Rsh(Ω) 57.12579 100 99.89583 10.52881 54.91819 85.03041

Iph (A) 0.760789 0.721768 0.760434 0.776297 0.760872 0.76019

Isd1 (A) 6.97 × 10−20 0.462181 9.59 × 10−9 1.23 × 10−5 6.19 × 10−7 7.53 × 10−8

Isd2 (A) 3.07 × 10−6 0.288811 5.14 × 10−6 1 × 10−9 8.63 × 10−9 1.4 × 10−8

Isd3 (A) 2.31 × 10−7 0.992376 2.08 × 10−7 1 × 10−9 9.67 × 10−9 1.85 × 10−6

n1 1.220835 2 1.000105 1.650069 1.322086 1.982829

n2 2 1.886728 1.664525 1 1.836014 1.030268

n3 1.190954 2 1.999564 1 1.031254 1.486103

RMSE 0.000977 1.360341 0.001311 0.027075 0.001013 0.001181
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Table 13. Statistical results the MECPO technique and other recent algorithms in the case of the TDM.

Algorithm Best Mean Median Worst STD

MECPO 0.000977 0.000979 0.000977 0.000997 5.1 × 10−6

ECPO 1.360341 1.978315 2.019703 2.895647 0.551247

COOT 0.001311 0.004247 0.004408 0.00884 0.001786

GPC 0.027075 0.101053 0.078046 0.410851 0.085461

EO 0.001013 0.001631 0.001267 0.003046 0.000735

MPA 0.001181 0.009682 0.011312 0.012131 0.003687
The optimal values obtained are in bold.
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Table 14. Measured and simulated data of voltages, currents, and power and the absolute errors
values using MECPO for TDM.

Rank
Experimental Data Simulated Current Data Simulated Power Data

V (V) I (A) P (W) Isim (A) IAEI (A) Psim (W) IAEP (W)

1 −0.2057 0.764 −0.157155 0.7639 8.30 × 10−4 −0.15713 2.00 × 10−5

2 −0.1291 0.762 −0.098374 0.76256 3.00 × 10−4 −0.09845 7.00 × 10−5

3 −0.0588 0.7605 −0.044717 0.76133 8.40 × 10−4 −0.04477 5.00 × 10−5

4 0.0057 0.7605 0.004335 0.7602 8.10 × 10−4 0.00433 0.00 × 10+00

5 0.0646 0.76 0.049096 0.75916 2.60 × 10−4 0.04904 5.00 × 10−5

6 0.1185 0.759 0.089942 0.75819 6.80 × 10−4 0.08985 1.00 × 10−4

7 0.1678 0.757 0.127025 0.75726 2.70 × 10−4 0.12707 4.00 × 10−5

8 0.2132 0.757 0.161392 0.75632 2.50 × 10−4 0.16125 1.50 × 10−4

9 0.2545 0.7555 0.192275 0.75523 8.90 × 10−4 0.19221 7.00× 10−5

10 0.2924 0.754 0.22047 0.75375 7.50 × 10−4 0.2204 7.00× 10−5

11 0.3269 0.7505 0.245338 0.75139 1.43 × 10−3 0.24563 2.90× 10−4

12 0.3585 0.7465 0.26762 0.74725 8.40 × 10−4 0.26789 2.70× 10−4

13 0.3873 0.7385 0.286021 0.73993 2.80 × 10−4 0.28658 5.50× 10−4

14 0.4137 0.728 0.301174 0.72716 3.20 × 10−4 0.30083 3.50× 10−4

15 0.4373 0.7065 0.308952 0.70678 1.23 × 10−3 0.30908 1.20× 10−4

16 0.459 0.6755 0.310055 0.67518 9.60 × 10−4 0.30991 1.50× 10−4

17 0.4784 0.632 0.302349 0.63077 7.60 × 10−4 0.30176 5.90× 10−4

18 0.496 0.573 0.284208 0.57204 7.80 × 10−4 0.28373 4.80× 10−4
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Table 14. Cont.

Rank
Experimental Data Simulated Current Data Simulated Power Data

V (V) I (A) P (W) Isim (A) IAEI (A) Psim (W) IAEP (W)

19 0.5119 0.499 0.255438 0.49976 1.06 × 10−4 0.25583 3.90× 10−4

20 0.5265 0.413 0.217445 0.41378 1.00 × 10−4 0.21785 4.10× 10−4

21 0.5398 0.3165 0.170847 0.31756 1.38 × 10−4 0.17142 5.70× 10−4

22 0.5521 0.212 0.117045 0.2121 1.17 × 10−4 0.1171 6.00× 10−5

23 0.5633 0.1035 0.058302 0.10212 2.56 × 10−4 0.05752 7.80× 10−4

24 0.5736 −0.0100 −0.005736 −0.00883 1.68 × 10−3 −0.00507 6.70× 10−4

25 0.5833 −0.1230 −0.071746 −0.12556 8.30 × 10−4 −0.07324 1.49× 10−3

26 0.59 −0.2100 −0.1239 −0.20832 3.00 × 10−4 −0.12291 9.90× 10−4
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Figure 18. Individual absolute errors for current and power by the MECPO for TDM. (a) Individual
absolute errors for current. (b) Individual absolute errors for power.
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The I–V and P–V characteristics achieved by the proposed technique between the
measured data and simulated data are shown in Figure 19. The results obviously show
that the simulated data achieved by the MECPO algorithm extremely coincide with the
measured data in the different PV models, which means that the identified parameters
of the proposed MECPO are highly precise. The above-mentioned comparisons illustrate
that the MECPO algorithm has better searching precision, reliability, and more speed
convergence rate for determining the parameters extraction problems of various PV models
(SDM, DDM, TDM), and its performance is outstanding or competitive in contrast with all
other recent techniques.
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6. Conclusions

This paper has proposed an improved version of the ECPO called MECPO to solve
global optimization problems well. This modification has been implemented to escape
dropping on the local minima in the conventional ECPO. Therefore, the convergence speed
is improved. First, the proposed MECPO’s effectiveness has been tested on the different
functions of the CEC’17 test suite. The MECPO achieved better performance compared
with seven recent optimization algorithms, including GSA, GWO, WOA, SCA, EO, HHO,
and the original ECPO. Following that, the suggested strategy based on MECPO has been
employed to extract the many parameters of three models of PV cells. An evaluation
study is used to test the ability of the MECPO compared with the other optimizers. The
comparative study was carried out for the same data set. The statistical results were
employed to analyze the efficacy of the MECPO technique. The greatest proximity between
the simulated P–V and I–V curves was obtained by the MECPO algorithm in comparison
with the measured data. Furthermore, the proposed technique has strong performance and
better convergence rates for all tested cases. In future work, the uncertainty of the climate
condition as well as the shading effect will be incorporated in the PV models. Additionally,
the proposed algorithm is planned to be applied to other fields of energy such as maximum
power point tracking (MPPT) and the energy scheduling problem of PV systems.
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