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Abstract: Recent advances in computational power, algorithms, and sensors allow robots to perform
complex and dangerous tasks, such as autonomous missions in space or underwater. Given the
high operational costs, simulations are run beforehand to predict the possible outcomes of a mission.
However, this approach is limited as it is based on parameter space discretization and therefore cannot
be considered a proof of feasibility. To overcome this limitation, set-membership methods based on
interval analysis, guaranteed integration, and contractor programming have proven their efficiency.
Guaranteed integration algorithms can predict the possible trajectories of a system initialized in
a given set in the form of tubes of trajectories. The contractor programming consists in removing
the trajectories violating predefined constraints from a system’s tube of possible trajectories. Our
contribution consists in merging both approaches to allow for the usage of differential constraints in a
contractor programming framework. We illustrate our method through examples related to robotics.
We also released an open-source implementation of our algorithm in a unified library for tubes,
allowing one to combine it with other constraints and increase the number of possible applications.

Keywords: interval analysis; constraint programming; guaranteed integration; underwater robotics
applications; tube arithmetic

MSC: 37-04

1. Introduction
1.1. Context

Robots are usually designed to replace humans in difficult, dangerous, or repetitive
jobs. Their application domains range from underwater inspection and maintenance to
space exploration, assembly lines, search and rescue missions, and military applications.
The number of missions that robots can tackle is ever increasing, thanks to advances in
computational power, algorithms, and sensors that allow the robots to better understand
their environment and act on it.

Therefore, the robots become more autonomous and can achieve most of the tasks of
a mission without human supervision. However, some specific tasks remain challenging,
and their failure could cause equipment damage, loss, and human casualties. Consider,
for example, a rendezvous task. The latter is a component of different types of missions:
recovering an autonomous underwater vehicle using a docking station (see Figure 1a
and [1–3]), docking a spacecraft onto another one (Figure 1b), or destroying a rocket using a
missile. While algorithms and sensors exist to perform localization, control, and navigation
tasks, they usually do not ensure the feasibility and success of the mission. This proof is
essential since failure involves unpredictable costs or casualties. Therefore, there exists a
need for methods that allow for the proving of the feasibility of autonomous missions, i.e.,
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that would allow the operators to be sure that a robot, equipped with a specific range of
sensors and algorithms and deployed in a particular area, would be able to reach another
specific one. Therefore, the primary motivation of our work is to guarantee the success of a
mission performed by an autonomous system, such as a robot.

(a) (b)

Figure 1. Rendezvous missions. (a) Recovery of a ROV (courtesy of Forssea Robotics). (b) Spacecraft
docking (copyright free picture from NASA).

1.2. State of the Art

It is worth noting that methods that prove the outcome of a process have been devel-
oped in different domains, illustrating the need for such tools in real-life applications. For
example, special programming languages exist to validate software embedded in critical
systems [4] or to rigorously simulate and verify hybrid systems [5–7]. However, these tools
do not fully meet our requirements: they either concentrate on the software part of a system,
while we aim to validate the system’s algorithms and dynamics as a whole, on simulating
the systems, or they are intended for linear system verification. However, mobile robots
are inherently nonlinear.

In [8,9], we proposed a tool that can prove stability of a nonlinear, discrete, continuous,
or hybrid system. Thanks to this tool, one can prove that a system will exponentially
converge towards an attractor. Uncertainties in the system are tackled using interval
analysis. While this tool is powerful when a mission can be formalized as a stability
problem, it remains specific. Therefore, we worked on a new approach based on reachability
analysis and interval computation to prove feasibility of an autonomous mission.

Reachability analysis consists in proving that a dynamical system can reach a specific
area of its state space. Multiple methods exist to analyze a system’s reachable regions [10].
The most intuitive one consists in simulating as many outcomes as possible by considering
as many values for the system’s parameters as possible to obtain a rough idea of the system’s
behavior with various initial conditions [11,12] (Chapter 8). While easy to understand
and implement, this method lacks the mathematical guarantees we seek for our approach.
Symbolic reachability analysis can be used: the methods developed in this field allow for
this guarantee by enclosing all the possible states of a system inside a mathematical object
(usually a set representation that a computer can handle) and studying its evolution in
time [13–18]. Boxes, zonotopes, or polytopes are generally used to enclose the actual set of
possible states for the system, and guaranteed integration algorithms have been developed
to propagate these sets in time through a differential equation (or equivalently, a vector
field). A promising approach consists in using tubes of trajectories [19], i.e., using a single
mathematical object to enclose both state and time information and uncertainties. Each
of these approaches has its pros and cons, some being more accurate thanks to the use of
more complex sets to the expense of computational power (e.g., zonotopes or polytopes
based methods). In contrast, others allow for higher dimensional systems while keeping
the required computational power low (some box-based methods). The main difficulty
when performing guaranteed computations comes from the balance between accuracy and
computational power.
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1.3. Contribution

Our method uses tubes to represent the set of trajectories. We then use a guaranteed
integration algorithm coupled with contraction mechanisms to narrow this set of trajec-
tories. This allows for the enforcement of differential constraints, given in the form of an
autonomous differential equation on a set of trajectories. In a robotics application, a tube
obtained using contractors based on external measurements can then be further narrowed
using the robot’s behavior described by a differential equation. A similar approach was
proposed in [20]: the authors also proposed a contractor for tubes of trajectories based
on a guaranteed integration algorithm (using Runge–Kutta approaches, instead of Taylor
models). Additionally, they implemented a feature that narrowed the contracted tube
even further by using confidence intervals and probability distributions. This approach
is interesting since the contraction power can be modulated using application-motivated
confidence levels. The obtained results are therefore given with respect to this parameter,
which can be challenging to set or interpret.

This paper proposes a guaranteed integration algorithm implemented in a contrac-
tor programming framework. This algorithm is our main contribution: we present the
theory behind it in the rest of this study, and its implementation can be found online at
http://codac.io/slam (accessed on 29 January 2022). We start by presenting the main
concepts used in the rest of the article, particularly the original guaranteed integration
algorithm and its working principle. Then, we propose a new tube contractor for temporal
constraints, expressed as nonlinear differential equations, based on this algorithm. Finally,
we detail the different use cases of our contractor through various examples in the field of
robotics and autonomous vehicles.

2. Formalization

In this section, we present the notations used in the rest of this article that allow us to
formalize a rendezvous problem and represent uncertainties.

2.1. Formalizing Robots as Dynamical Systems

Mathematically speaking, a robot can be represented as a dynamical system [21,22].
According to [23,24], a dynamical system is a function φ : T × S → S where:

• T is the system’s time set in which the time parameter t evolves;
• S is the system’s state space containing the system’s state x;
• φ(0, ·) is the identity function, ∀x ∈ S , φ(0, x) = x;
• φ(t1, φ(t2, x)) = φ(t1 + t2, x) for any t1, t2 ∈ T and for any x ∈ S .

Usually, T = R and S ⊂ Rn. Consider a constant state x0 ∈ S , then φx0(t) denotes the
flow of the system passing through x0. Consider a constant duration t0, then φt0(x) denotes
the state transition of duration t of the system.

Now, dynamical systems are closely related to autonomous differential equations of
the form

ẋ(t) = f(x(t)), (1)

where f ∈ Ck(Rn) is the evolution function, t ∈ R represents time, and x(t) is the system’s
state at time t. Indeed, Equation (1) has a unique solution φt(x0) passing through the point
x0 ∈ Rn at time t = 0, which corresponds to the flow of the associated dynamical system
initialized at x0 and t = 0. This is a consequence of the famous existence and uniqueness
theorem [24].

In robotics-related literature [12,21,25], a robot is usually described by a differential
equation of the form

ẋ(t) = h(x(t), u(t)), (2)

where x(t) is the state of the robot and u(t) a control vector. Furthermore, a robot requires
a state estimator and a controller to be autonomous. Assuming that the state of the robot

http://codac.io/slam
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is known, e.g., using a state estimator such as a Kalman filter, the control vector is then
computed according to a control law of the form

u(t) = g(x(t)), (3)

depending on the state x. This control law can be implemented as a PID controller, for
example. Therefore, one can combine Equations (2) and (3) to obtain the autonomous system

ẋ(t) = f(x(t)) = h(x(t), g(x(t))), (4)

also depicted by Figure 2.

ẋ (t) = h (x (t) ,u (t))
∫

u (t) = g (x (t))

ẋ (t) = f (x (t))

Figure 2. A robot and its controller can be modeled as a dynamical system.

Equation (4) describes the behavior of the robot over time, and it can be made as
complex as required to match reality. Therefore, one can predict the robot’s state at a
later time t = t f and thus its position by choosing an initial condition x(t = 0) = x0 and
integrating over time the corresponding Initial Value Problem (IVP){

ẋ = f(x)
x(t = 0) = x0

(5)

Various methods exist to solve an IVP, the most famous ones being the Euler integra-
tion scheme and the Runge–Kutta methods. However, these algorithms cannot handle
uncertainties, in particular numerical uncertainties as introduced in the next section. We
present in Section 3.1 a so-called guaranteed integration algorithm, whose goal is to solve
an uncertain IVP.

2.2. Accounting for System’s Uncertainties

Of course, it would be unrealistic to believe one can predict the actual future state of
the robot simply by solving Equation (5). However, if the model is close enough to reality,
and if uncertainties are taken into account, one can predict the possible future behaviors of
the system. In particular, assuming that the scenario of the mission is specified, and if all
uncertainties are taken into account, one could successfully find a subset of Rn containing
the actual state of the system at time t f .

To model uncertainties we chose to use intervals of R. Below, we will only introduce
the notations used later in this article, and we refer the reader to [26–30] for more details
about interval analysis.

An interval of R is usually denoted by [x] = [x−, x+]. Intervals can be stacked into
so-called interval vectors, or boxes, denoted by [x], and interval matrices [X]. We denote by
IRn the set of boxes of Rn. Usual arithmetic and set operations are defined for intervals. An
interval (a vector or a matrix, respectively) has a mid-point, denoted by mid([x]) = x−+x+

2 .
Similarly, one can compute the image of an interval by a function. Rigorously, the

image of a set is defined as the set of its members’ images. Since this set may not be an
interval anymore, so-called inclusion functions are used to compute an interval enclosure
of the image of an interval by a function. However, this introduces the wrapping effect. In
Figure 3, [x] ⊂ R2 is an interval vector, f([x]) is the image of [x] by f : R2 → R2, [f([x])]
denotes the minimal inclusion function of f, i.e., it introduces the least wrapping effect, and
[f]([x]) denotes a general inclusion function. An example of an inclusion function for f is



Mathematics 2022, 10, 1130 5 of 20

the so-called natural inclusion function, which is built using the interval counterparts of
the elementary functions (sin, cos, . . . ) composing f.

x1

x2

y1

y2

[x] f ([x])
[f] ([x])

[f ([x])]

Figure 3. Types of inclusion functions.

Example 1. Consider the function f : x 7→
√

x and the interval [x] = [2, 4]. Then f ([x]) =[
−2,−

√
2
]
∪
[√

2, 2
]

is not an interval, hence the need for inclusion functions. The image of [x] by

the minimal inclusion function of f is [−2, 2]. The union operation added the interval
[
−
√

2,
√

2
]

to the set of solutions, which illustrates the wrapping effect.

An interval can be used to enclose the possible values of a quantity. In particular, the
state of a system and its parameters can be represented using intervals. What remains
necessary is a method allowing to solve an IVP while considering all the possible trajectories
of the system induced by its inner uncertainties. Such a method is usually referred to as a
guaranteed integration method. We present one of them in Section 3.1.

2.3. Tube Arithmetic

Dynamical systems, and consequently robots, describe trajectories in their state space.
Therefore, it would be convenient to be able to manipulate “intervals of trajectories” instead
of sequences of intervals to represent their state through time. Tube arithmetic was first
introduced in [31] and precisely allows for the representation of sets of trajectories of
dynamical systems, so-called tubes of trajectories (see Figure 4).

t

[x]

x+ (·)

x− (·)

x∗ (·)

t0 t f

Figure 4. One-dimensional tube.

Definition 1 (Tube). A tube [x](·) : R→ IRn, defined on the time domain
[
t0, t f

]
, is an interval

of trajectories [x−(·), x+(·)] such that ∀t ∈
[
t0, t f

]
, x−(t) ≤ x+(t).

Usual operators can be defined over tubes: let [x](·) and [y](·) be two tubes and
choose an operator � ∈ {+,−, ·, /}. The resulting binary operation between the two tubes
is defined as

[x](·) � [y](·) = [{x(·) � y(·) ∈ (R→ Rn)|x(·) ∈ [x](·), y(·) ∈ [y](·)}]. (6)
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Consider a function f : Rn → Rn. The image of a tube [x](·) by f is given by

f([x](·)) = [{f(x(·))|x(·) ∈ [x](·)}]. (7)

This brief introduction to tube arithmetic will be sufficient for the rest of this article.
We refer the reader to [32] for more details.

Remark 1. Note that some trajectories of a tube may not be solutions of an IVP. Mathematically
speaking, a trajectory in the sense of tube arithmetic can be seen as a continuous function of time
x : R→ Rn. In the rest of this article, we denote by x(·) a trajectory and by x(t) a point belonging
to the latter, i.e., the evaluation at time t of the function x : R→ Rn.

2.4. Constraint Programming

Constraint programming is a method that consists in specifying a list of constraints
that the elements of a set must verify. The contractor concept is fundamental: it can be seen
as an operator that removes elements of the initial set that do not match the constraint.

We refer the reader to [28] for more details about constraint programming applied to
interval analysis. What interests us in this article is constraint programming applied to
tubes [19,32,33].

Definition 2 (Tube contractor). Consider a constraint L and a tube [x](·). A contractor for L
over [x](·) is an operator C : IRn → IRn such that

∀t, C([x](·))(t) ⊆ [x](t), (8)(
L(x(·))

x(·) ∈ [x](·)

)
=⇒ x(·) ∈ C([x](·)). (9)

Equation (8) (monotonicity property) states that the contracted tube is a subset of the original
one, and Equation (9) (completeness property) ensures that no trajectory verifying the constraint L
is removed from the original tube.

Now, unlike intervals, tubes inherently embed time information. Two types of con-
tractors can then be defined: static contractors are based on constraints that are time-
independent, while temporal contractors impose time constraints, such as differential
constraints based on differential equations modeling dynamical systems. The goal of a
temporal contractor based on a differential equation is to remove from a tube [x](·) all the
trajectories that are not compatible with the said differential equation.

2.5. Tube Implementation and the Codac Library

Codac [34] is a library for constraint programming over reals, trajectories, and sets.
Its development was motivated by mobile robotic problems such as the localization of
underwater robots. It proposes various tools to deal with constraints on sets of feasible
solutions; several contractors are available and can be used on sets for which the library pro-
vides numerical implementations. For instance, various contractors are at hand to compute
tubes of trajectories of robots. This allows for the reliable bracketing of a set of trajectories
compliant with some sensor measurements and a given differential equation [19,32,35].

The library is available in Python and C++. As an example, one can create a tube [x](·)
over some temporal domain [t0, t f ] = [0, 10], set a restriction on the trajectories at some
point: x(t0) ∈ [−0.1, 0.1], and define a derivative tube [v](t) = exp(sin(t)) + [−0.1, 0.1]
related to a constraint ẋ = v. The result after contraction, depicted by Figure 5, would be
obtained in Python with the following instructions:

tdomain = Interval(0,10)
x = Tube(tdomain, 0.01) # last arg. is a discretization parameter
x.set(Interval(-0.1,0.1), 0.) # x0 \in [-0.1,0.1]
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v = Tube(tdomain, 0.01, TFunction("exp(sin(t))+[-0.1,0.1]"))
ctc.deriv.contract(x,v) # a contractor for xdot=v

Figure 5. Tube [x](·) obtained after contraction with Codac.

In Codac, tubes are implemented as a sequence of slices (see Figure 6). The slicing
corresponds to the result of a sampling of the tube over time: let [x](·) = [x−(·), x+(·)] be a
tube defined over a time interval

[
t0, t f

]
, and denote by δ > 0 the sampling period. Then,

[x](·) is outer approximated by a sequence of slices denoted by [x](k), k ∈ N, such that

[x](k) = [kδ, (k + 1)δ]×
[
x−(τk), x+(τk)

]
, (10)

where τk ∈ [kδ, (k + 1)δ] and x−(t) and x+(t) are piece-wise constant functions such that

∀t ∈
[
t0, t f

]
, x−(t) ≤ x−(t) ≤ x+(t) ≤ x+(t). (11)

A tube (mathematical object [x](·)) implemented in a computer using Codac and eval-
uated at time t will then return the value of the slice [x](k), k ∈ N where t ∈ [kδ, (k + 1)δ].
When t = kδ precisely, the tube is evaluated using the (k− 1)th and the kth slices:
[x](t) ⊆ [x](k− 1) ∩ [x](k). [x](kδ) is called the input gate of slice k and analogously
the output gate of slice k− 1.

t

[x]

x+ (·)

x− (·)

x∗ (·)

t0 t f

x− (·)

x+ (·)

kδ (k + 1)δ

[x] (kδ) [x] (k)

Figure 6. Implementation of a tube inside Codac.

Codac provides a list of static contractors on tubes, such as a contractor C+([a](·), [b](·),
[c](·)) for the constraint ∀t, a(t) = b(t) + c(t) with a(·) ∈ [a](·), b(·) ∈ [b](·), c(·) ∈ [c](·).
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These operators narrow the tubes as much as possible, according to the related constraint
and the bounds of the tubes. Other temporal contractors are also available and rely on
differential or inter-temporal constraints, such as delays x(t) = y(t− τ) or time uncertain-
ties: y = x(t1), t1 ∈ [t1]. Since this approach does not remove any feasible solution from
the sets, the contractors can be easily combined to deal with realistic problems that are
usually difficult to solve. For instance, Codac is used to solve Simultaneous Localization
And Mapping (SLAM) problems with strong uncertainties and nonlinear equations. See,
for instance: http://codac.io/slam (accessed on 29 January 2022).

3. Guaranteed Integration: A Constraint Programming Approach

Now that we introduced the main concepts used in this article, we will present the
main contribution of this work: the implementation of a temporal contractor for tubes
based on a famous guaranteed integration method proposed by Lohner in [36]. We start
by introducing the latter, providing a simple implementation, and then we propose a
contractor based on this method to deal with differential constraints. For more information
about guaranteed integration, we refer the reader to [29,30].

3.1. Lohner Algorithm

Many guaranteed integration algorithms have been proposed over the last 60 years.
Here, we chose to present a method from which most current algorithms originate. Lohner’s
algorithm is based on a temporal Taylor decomposition with Lagrange remainder, centered
form evaluation of inclusion functions, and non-axis-aligned boxes of Rn. For a complete
derivation of this algorithm, we refer the reader to [36] and for more details to [37,38].

Consider an IVP, such as the one described by Equation (5), where x0 ∈ [x0], and
denote by φ(t, x) the associated dynamical system. Denote by δ the integration step size
and by [xk] the enclosure of the system’s state at time tk = kδ. To solve this problem, Lohner
proceeds as follows (see Figure 7):

1. Find a global enclosure [x̃k] for the system’s trajectories over the time interval [tk, tk+1];
2. Using [x̃k], find an enclosure for the state at time tk+1, i.e., [xk+1].

The first step is performed by a so-called First Order Enclosure algorithm: it is based
on the Picard–Lindelöf operator and Banach’s fixed-point theorem (see [27,39,40] for more
details). Below, we give a simple implementation of this algorithm and illustrate its working
principle in Figure 8.

Algorithm 1 takes three parameters as inputs: the state’s enclosure [xk] at time tk, a
reduction parameter µ, an inflation parameter ε, and a maximum number of iterations imax.
The input/output parameter δ denotes the integration step size and can be modified. It
computes the global enclosure [x̃k], i.e., the box containing all possible trajectories of the
system in the time interval [tk, tk+1].

Algorithm 2 integrates φ(t, x) over N integration steps of size δ. It uses the result of
Algorithm 1 to compute the state enclosure at each integration step. This algorithm is based
on a second-order Taylor decomposition of φ(t, x) and requires the computation of the
Jacobian matrix of f, denoted by Jf. It uses the global enclosure to outer-approximate the
Lagrange remainder of the decomposition. The state enclosure is represented inside the
algorithm by a tilted box Bk+1[rk+1] (Bk+1 being an orthogonal matrix and [rk+1] a box of
Rn) centered in x̂k+1, to avoid including too much wrapping effect in the computations.

To sum up:

1. Given an initial state enclosure [x0], Algorithm 2 can compute a sequence of boxes
[xk] that contains the system’s state at time tk = kδ;

2. For all k ≥ 0, the enclosure [xk] is actually represented by a tilted box in Algorithm 2:
[xk] = x̂k + Bk[rk], where both [xk] and [rk] represent the system’s state enclosure,
respectively, in the canonical basis and in the one defined by the orthogonal matrix Bk;

3. Algorithm 2 computes at each time step k the global enclosure [x̃k], such that for all
t ∈ [tk, tk+1] and for all xk ∈ [xk], φ(t− tk, xk) ∈ [x̃k].

http://codac.io/slam
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x1

x2

[xk]

[x] (·)

[xk+1]

[x̃k]

Figure 7. Guaranteed integration by Lohner’s algorithm [36].

x1

x2

f1

f2

[
x̃0

k
]

[
x̃1

k
]

[0, δ] ·
[
f
([

x̃0
k
])]

[xk]

[xk+1]

(a)

x1

x2

f1

f2

[
x̃1

k
]

[0, δ] ·
[
f
([

x̃0
k
])]

[xk] =
[
x̃0

k
]

[xk+1]

(b)

Figure 8. First order enclosure algorithm. (a) First iteration:
[
x̃1

k
]
6⊂
[
x̃0

k
]
. (b) Second iteration:[

x̃1
k
]
⊂
[
x̃0

k
]
.

Algorithm 1 GlobalEnclosure (in: [xk], ε, µ, imax, out: [x̃k], inout: δ)[
x̃0

k
]
← [xk]

2:
[
x̃1

k
]
← [xk] + [0, δ]f

([
x̃0

k
])

i← 0
4: while

[
x̃1

k
]
6⊆
[
x̃0

k
]

do
i← i + 1 Increase the number of iterations

6: if i ≥ imax then
i← 0 Reset the iteration counter

8: δ← µ · δ Reduce the time step by a factor µ

Reset the a priori estimates
10:

[
x̃0

k
]
← [xk][

x̃1
k
]
← [xk] + [0, δ]f

([
x̃0

k
])

12: end if[
x̃0

k
]
← (1 + ε)

[
x̃1

k
]
− ε
[
x̃1

k
]

Inflate the a priori estimate
14:

[
x̃1

k
]
← [xk] + [0, δ]f

([
x̃0

k
])

Compute the new a priori estimate
end while

16: return
[
x̃0

k
]
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Algorithm 2 SimpleLohner (in: [x0], δ, N, out: [xN ])
x̂0 ← mid([x0]) initialisation

2: [z0]← [x0]− x̂0
m0 ← mid([z0]) = 0

4: [r0]← [z0]−m0 = [z0]
B0 = I

6: for k = 0 to N − 1 do
[Ak]← I + δ[Jf]([xk])

8: [x̃k]←GlobalEnclosure([xk] . . . ) see Algorithm 1 (for the sake of simplicity, we consider that δ

does not change during the evaluation of GlobalEnclosure)

[zk+1]←
δ2

2
[Jf]([x̃k])[f]([x̃k])

10: mk+1 ← mid([zk+1])
Bk+1 ← Qr(mid([Ak]Bk)) orthogonal part of the QR factorisation

12: [rk+1]←
(

B−1
k+1[Ak]Bk

)
[rk] + B−1

k+1([zk+1]−mk+1)

x̂k+1 ← x̂k + δf(x̂k) + mk+1
14: [xk+1]← x̂k+1 + Bk+1[rk+1]

end for
16: return [xN ]

3.2. Lohner Contractor

This section presents our main contribution: merging the guaranteed integration
algorithm and contractor programming. We use the contractor programming paradigm to
remove trajectories that would be unfeasible according to a given differential constraint
(i.e., an autonomous differential equation) from a tube of trajectories. To check whether
a trajectory is feasible, we use Lohner’s algorithm and the information contained in the
tube’s implementation, as explained below.

Remark 2. An approach merging contractor programming with a guaranteed integration algorithm
is not new, as it can be found in [41,42], for example. However, additionally to thoroughly presenting
our work, we provide an open-source implementation of our contractor in the library Codac, as well
as examples of applications. The reader can then easily reuse our contractor, coupled with others also
provided by Codac, to solve problems in various fields of application.

Consider a tube [x](·) enclosing the state of a system defined by an autonomous differ-
ential equation ẋ = f(x) over a time interval

[
t0, t f

]
. Assume that the tube is represented

by slices of width δ, and let us define the sequence tk = kδ. Then, one can notice that:

1. [x](t0) can be seen as the input gate of slice 0 and the system’s initial condition, i.e.,
forming an IVP;

2. [x](tk) can be interpreted as the kth slice’s input gate, the (k− 1)th slice’s output gate,
and the system’s state enclosure at time tk;

3. [x](k) is the kth slice of [x](·), thus containing all the system trajectories over the time
interval [tk, tk+1]. [x](k) can therefore be seen as a global enclosure for the system over
[tk, tk+1].

Let us now explain how we implement our contractor, using Algorithm 2:

1. Assume that we initialize the algorithm with the initial box [x](t0);
2. Then, all the system trajectories during the time interval [tk, tk+1] must be contained

both in the slice [x](k) and in the global enclosure [x̃k];
3. Consider the kth slice: at time tk, the system’s state is enclosed by [x](tk), and at

time tk+1, it is enclosed both in the slice’s output gate [x](tk+1) and in the box [xk+1]
computed by Algorithm 2;

4. Finally, we have [xk] = x̂k + Bk[rk].



Mathematics 2022, 10, 1130 11 of 20

Algorithm 3 is the implementation of our Lohner contractor for tubes of trajectories,
and it is illustrated by Figure 9. Figure 9a is a scheme representing a 1D tube, the input
of the Lohner contractor. Figure 9b–f illustrate the contraction of the initial tube by our
algorithm, in forward (increasing time) and backward (decreasing time) modes. This
contraction is performed thanks to an arbitrary differential equation. In particular, one
should notice that the contraction of a slice is performed using the latter’s input gate. This
demonstrates the interest of our contractor. Let us imagine that the initial tube has been
obtained using a contractor enforcing state measurement constraints; our contractor can
then be used to contract this tube with respect to the system model.

Algorithm 3 CLohner (inout: [x](·))
Initialisation:

2: [x0]← [x](t0)
x̂0 ← mid([x0])

4: [z0]← [x0]− x̂0
m0 ← mid([z0]) = 0

6: [r0]← [z0]−m0 = [z0]
B0 = I

8: Main loop:
for k = 0 to

t f
δ do

10: Lohner integration: see Algorithm 2
[Ak]← I + δ[Jf]([xk])

12: [x̃k]←GlobalEnclosure([xk] . . . ) see Algorithm 1 (for the sake of simplicity, we consider that δ

does not change during the evaluation of GlobalEnclosure)

[zk+1]←
δ2

2
[Jf]([x̃k])[f]([x̃k])

14: mk+1 ← mid([zk+1])
Bk+1 ← Qr(mid([Ak]Bk)) orthogonal part of the QR factorization

16: [rk+1]←
(

B−1
k+1[Ak]Bk

)
[rk] + B−1

k+1([zk+1]−mk+1)

x̂k+1 ← x̂k + δf(x̂k) + mk+1
18: [xk+1]← x̂k+1 + Bk+1[rk+1]

Tube contraction:
20: [xk+1]← [xk+1] ∩ [x](tk+1) contracts [xk+1]

x̂k+1 ← mid([xk+1]) adjusts the center of the tilted box

22: [rk+1]← [rk+1] ∩
(

B−1
k+1 · ([xk+1]− x̂k+1)

)
contracts uncertainties in tilted frame

[x](t) =

{
[x](t) ∩ [x̃k] if t ∈ [tk, tk+1[;
[x](t) ∩ [xk+1] if t = tk+1.

contracts the slice and the output gate

24: end for

Proposition 1. Consider a dynamical system described by ẋ = f(x), and a tube of trajectories
[x](·) defined over

[
t0, t f

]
. Then the operator CLohner is a contractor for [x](·) over

[
t0, t f

]
.

Proof. The monotonicity property (Equation (8)) comes from the 23rd line of Algorithm 3:
for all t ∈ [tk, tk+1], we have

CLohner([x](·))(t) = [x](t) ∩
{
[x̃k] if t 6= tk;
[xk] if t = tk.

⊂ [x](t)

The completeness property comes from lines 20 and 23. Indeed, the state at time tk+1 is
contained both in [xk+1] (according to Algorithm 2) and in [x](tk+1) (according to the initial
tube). Furthermore, the system’s trajectories over the time interval [tk, tk+1] are contained
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both in [x](k) and in [x̃k]. Therefore, no solution verifying both the differential constraint
and the initial tube is removed.

t

[x]

(a)

t

[x]

(b)

t

[x]

(c)

t

[x]

(d)

t

[x]

(e)

t

[x]

(f)

Figure 9. Lohner contractor’s working principle. (a) Initial tube [x](·). (b) Contraction of the first
three slices: CLohner considers [xk] ∩ [x](tk) to compute [xk+1]. (c) Contraction of the two next slices:
CLohner considers [xk] ∩ [x](tk) to compute [xk+1]. (d) Contraction of the remaining slices in forward
mode. (e) Beginning of backward mode. (f) Contracted tube CLohner([x](·)).

Remark 3. Once the tube has been contracted from its first to last slice (forward mode), the con-
tractor can be used in the reverse direction (backward mode) simply by considering ẋ = −1 · f(x)
as a dynamical system. CLohner can be composed with itself or other tube contractors, multiple times
if necessary (see [28] for more details about contractor composition).

Remark 4. The Lohner contractor takes a tube as an input. Its complexity therefore depends both
on its time span (i.e., the number of slices) and its dimension. Let us recall that m denotes the
number of slices, and n denotes the tube’s dimension. CLohner has O(m) time complexity and O(n3)
dimension complexity. Indeed, the most complex operations in the algorithm are matrix products,
inversions, and QR decompositions.

The Lohner contractor has been added to the Codac library, and its documentation
can be found online at http://codac.io/lohner (accessed on 29 January 2022). It has been
implemented both in Python and in C++ and allows for forward and backward contractions.

4. Applications

This section aims to illustrate our Lohner contractor with various examples. The first
one is a one-dimensional differential equation. Although simple, this equation amplifies
the wrapping effect when dealt with using a simpler differential contractor, justifying the
need for ours. The second example illustrates how our contractor could be used to solve a
robotics-related problem.

4.1. Simple Illustrating Example

As a first example, let us consider the one-dimensional system given by

ẋ = − sin(x). (12)

http://codac.io/lohner
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Let us take [x0] = [0.9, 1.1] as an initial state, thanks to which we initialize the tube
[x](·) with

[x](t) =

{
[x0] if t = 0;
[−∞, ∞] otherwise.

Now, we compute CLohner([x](·)), and we obtain Figure 10, where the tube was con-
tracted using slices of duration δ = 0.1.

0 1 2 3 4 5

0.1

0.3

0.5

0.7

0.9

1.1

t

[x]

Figure 10. Differential constraint ẋ = − sin(x) applied using CLohner.

Let us now compare this result with a tube obtained using the Picard contractor
CPicard (see Figure 11). The latter is also a differential contractor for tubes, simply based
on the Picard–Lindelhöf operator (we refer the reader to [38] (Chapter 4) for an extensive
presentation of the latter).

0 1 2 3 4 5

-2

0

2

t

[x]

Figure 11. Differential constraint ẋ = − sin(x) applied using CPicard.

The Picard contractor, which does not take into account the derivatives of the differen-
tial equation, cannot appropriately deal with the wrapping effect, and the contraction of
the tube diverges. Both in Figures 10 and 11, the blue trajectories correspond to the actual
trajectories of a distribution of points contained inside the initial state [x0]. The goal behind
representing these trajectories is to visualize the difference between the tube contracted
by the two contractors and an approximation of the system’s trajectory when initialized
in [x0].

4.2. Underwater Docking Mission Feasibility

Our second example demonstrates a possible usage of the Lohner contractor for a real-
life problem: an autonomous underwater robot has to dock inside a docking station [d] at a
given time T. The robot can localize itself with respect to the latter and measure its velocity.
It is controlled by a velocity controller, which drives it along a vector field, attracting the
robot to the docking station. To dock successfully, the robot needs to arrive right in front of
the station’s entrance, with a certain velocity. Finally, currents are quite strong around the
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docking station. The goal is to find the area D+ inside which it is mathematically proven
that the robot will dock afterwards, despite measurement errors and current-induced drift.

4.2.1. Modeling the Robot as a Dynamical System

Modeling the dynamics of an underwater robot can be quite complex, as the involved
external forces are strongly nonlinear (see [21] for more details). In this paper, we propose
a simplified model for an autonomous ROV (Remotely Operated Vehicle). We assume
that the ROV is equipped with an accurately performing attitude controller, which keeps
it aligned in the right direction to dock inside the docking station. We also assume that
the ROV is holonomic, i.e., it can move in any direction. Finally, we limit ourselves to the
XY plane. These design constraints are enforced not because they would complexify the
equations but because a six-dimensional (surge, sway, heave, roll, pitch, and yaw) state
would be much harder to visualize. Furthermore, while our contractor’s performance has a
polynomial complexity with respect to the state’s dimension (because of matrix products),
we bisect the initial state to get a better approximation of D+ in the form of a paving of the
state space, leading to an algorithm with exponential complexity. Note that the latter is not
a problem, since approximating D+ is a problem that ought to be solved offline; therefore,
computational power is available.

We then define the system’s state as x =
(
x, y, vx, vy

)
, where the first two elements

are the ROV’s position and the two last are the ROV’s velocity. We denote the current’s
velocity by c =

(
cx, cy

)
. Let us now introduce the equations describing the system dynam-

ics (Equation (13)), the system’s controller (Equation (14)), and the steering vector field
(Equation (15)), as follows:

ẋ(t) = h(x(t), u(t)) =


vx
vy

ux − k f x(vx − cx)|vx − cx|
uy − k f y

(
vy − cy

)∣∣vy − cy
∣∣
, (13)

u(t) = g(vd(t), x(t)) =

(
kpx(vdx − v̄x) + k f x(v̄x − c̄x)|v̄x − c̄x|
kpy

(
vdy − v̄y

)
+ k f y

(
v̄y − c̄y

)∣∣v̄y − c̄y
∣∣
)

, (14)

vd(t) = j(x(t)) =

(
v0

(
1− tanh2(ȳ)

)
−v0 tanh(ȳ)

)
, (15)

where k f x, k f y are damping coefficients, kpx, kpy are the proportional controller’s coefficients,
v0 is the desired velocity, and ·̄ denotes a measured variable, i.e., a state variable with added
uncertainty.

Equation (13) describes the dynamics of the robot in a plane, ux and uy being the
accelerations imposed by the robot’s thrusters and the remaining term corresponding to a
friction force. Equation (14) describes the proportional controller driving the robot along the
vector field~vd and pre-compensating the effects of the water currents. Finally, Equation (15)
describes the vector field drawn in Figure 12a. These equations can be composed into an
autonomous differential equation of the form ẋ = f(x).

4.2.2. Computing D+

To compute an approximation of D+, we start taking a large initial box [x0], where we
believe that the robot will be able to dock inside the docking station after T seconds. We
initialize a tube [x](·) with [x0], and we contract it using CLohner over a time interval [0, T].
Then, if [x](T) ⊂ [d], this means that all the trajectories starting from [x0] will end up in
[d], i.e., the robot will dock inside the docking station at T seconds. If [x](T) ∩ [d] = ∅, the
robot will not dock. Otherwise, the initial box [x0] is too large to decide. We then bisect it
into two smaller boxes and restart the reasoning for each of them. Algorithm 4 sums up
this process.
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Algorithm 4 (in: [x0], [d], ε)
listD+ ← []

2: listD− ← []
listB ← []

4: listtmp ← [[x0]]
while listtmp is not empty do

6: [x]← listtmp.pop() pop a box from the temporary list

[x](t) =

{
R4 if t ∈ ]0, T];
[x] if t = 0.

initialize the tube [x](·) with [x]

8: [x](·)← CLohner([x](·)) contract the initial tube with CLohner
if [x](T) ⊂ [d] then

10: listD+ .append([x])
else if [x](T) ∩ [d] = ∅ then

12: listD− .append([x])
else if diam([x]) > ε then

14: [x1], [x2]← bisect([x]) bisect [x] to obtain a thinner trajectory
listtmp.append([x1], [x2])

16: else
listB .append([x])

18: end if
end while

This approach is a classical way of paving a set (see [28] for more details). In our case,
we are able to identify two subsets of [x0] in the form of two non-overlapping pavings (sets
of boxes): the first one corresponds to an inner approximation of D+, i.e., the set where the
robot must start to successfully dock inside the docking station, while the second one is the
set where the robot will not dock inside the docking station, denoted by D−. The border
between these two sets corresponds to boxes for which nothing can be concluded, either
because the boxes are too large or due to system uncertainties. B denotes the frontier.

4.2.3. Numerical Results

To produce Figure 12b–d, we used the following physical parameters: v0 = 0.3 m/s, k f x =
0.5 kg/m, k f y = 1.0 kg/m, cx = 0 m/s, cy = 0.5 m/s, c̄ = c + ([−0.1, 0.1], [−0.1, 0.1]) m/s,
x̄ = x + ([−0.01, 0.01], [−0.01, 0.01], [−0.01, 0.01], [−0.01, 0.01]), [x0] = ([−1, 1], [−2.5, 2.5] ,
[0, 0], [0, 0]), and [d] = ([2.9, 3.5], [−0.05, 0.05], [0.1, 0.31], [−0.05, 0.05]). The tubes are sliced
every δ = 0.01 s. These physical parameters were chosen so as to approximately match
a realistic scenario. For example, when the docking station entrance is 10 cm wide, the
robot needs to dock with a certain velocity, and the current velocity can be measured with
0.2 m/s uncertainty.

Figure 12b was computed with kpx = kpy = 1, Figure 12c with kpx = kpy = 2, and
Figure 12d with kpx = kpy = 5.

Table 1 contains the parameters used and the results depicted in Figure 12b–d.

Table 1. Parameters and metadata of Figure 12b–d.

Figure 12b Figure 12c Figure 12d

kpx 1 2 5
kpy 1 2 5

B area
(
m2) 1.47 0.72 0.33

D+ area
(
m2) 0 0.88 1.59

Number of boxes 1816 1293 2243



Mathematics 2022, 10, 1130 16 of 20

-1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

x

y

(a)

-1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

x

y

(b)

-1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

x

y

(c)

-1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

x

y

(d)

Figure 12. Vector field and results of Algorithm 4 for different controllers. (a) red: vector field
ẋ = f(x), green: [d]. (b) kpx = kpy = 1, blue: D−, yellow: B, green: [d]. (c) kpx = kpy = 2, blue: D−,
yellow: B, red: D+ and extreme trajectories, green: [d]. (d) kpx = kpy = 5, blue: D−, yellow: B, red:
D+ and extreme trajectories, green: [d].

In each figure, the blue boxes are part of D−, the yellow ones of B, and the red ones of
D+. We also represent two tubes to give an idea of the system’s trajectories starting at the
two ends of D+. The docking station is displayed in green.

4.2.4. Discussion

In Figure 12b, one can notice that no trajectory can surely reach the green box (the
docking station). This means that with the given settings (robot’s and controller’s param-
eters), there is no guarantee that the robot will dock at the given time T. It might either
miss the docking time or miss the docking station. In Figure 12c, D+ does exist: if the
robot is initialized inside the latter, it will dock inside the docking station. An explanation
for this better behavior is the fact that the controller’s coefficients were increased, leading
to a faster convergence towards the docking station and in turn to the robot arriving on
time at the right place. In Figure 12d, we increased the controller’s coefficients even more.
However, this leads to a slight overshoot for some trajectories and a higher velocity than in
the previous examples. This time, the robot might miss the docking time by being too fast
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or because of that overshoot. The border B is also larger than in the previous example due
to an amplification of the uncertainties resulting from the increased coefficients.

5. Conclusions and Outlook on Future Work
5.1. Summary

In this article, we proposed a dynamical contractor for tubes of trajectories, which
allows removing from a given tube [x](·) all the trajectories that are not compatible with a
differential constraint of the form ẋ = f(x). We presented the algorithm itself and illustrated
its working principle using two examples. While the first one was purely academic, the
second one gave insight into how our contractor can be used to solve robotics-related
problems. Indeed, our goal was to find the area D+ from which a robot should leave to
successfully dock inside a docking station after a given time T. Our example simulated
measurement errors, as well as ocean currents for a more realistic result, and we were able
to identify a controller setting that would yield an enhanced result (i.e., a larger area D+).

5.2. Future Recommendations

Our contractor is based on Lohner’s algorithm [36]. Therefore, it has the same lim-
itations as the latter: it will work fine with small boxes, and thin tubes of trajectories,
but it will quickly diverge when uncertainties become too large, because of the wrap-
ping effect inherent to interval computations. Some improvements of Lohner’s algorithm
were proposed more recently [43,44] and some of them were implemented in the CAPD
(Computer-Assisted Proofs in Dynamics) library [45]. However, to the extent of our knowl-
edge, none of these methods has been made compatible with a contractor programming
approach for tubes of trajectories. While these methods can improve the results, they are
limited by the sets’ representation in the computer’s memory. While boxes can easily
approximate small sets, this representation might include too much wrapping effect in the
computations. There is always a trade-off between the set representation in memory and
how accurate a set enclosure can be.

Note that a similar approach, based on the consideration of physical conservation
properties, has been presented in [41], used in [42], and implemented using the VALENCIA-
IVP verified solver. However, our goal was to propose a similar tool in the Codac library
to broaden the use of guaranteed integration algorithms in the mobile robotics world. Our
contractor is a first step towards this goal. However, we believe that two new significant
contractors for tubes could be implemented in the future:

• The first contractor that could be of use in robotics is the one enforcing a differential
constraint of the form ẋ(t) = f(x(t), u(t)), where u(t) is not computed using the
robot’s state but another tube of trajectories in the command space, possibly without
analytical expression. This would come down to dealing with non-autonomous and
time-varying differential equations ẋ(t) = f(x(t), t), which can be useful, for example,
when the command is simply measured or when the system is operated in an open-
loop mode and the mission is to compute the actual robot’s trajectory using this
command and the available sensor data;

• A second contractor could extend Poincaré maps to the world of contractor program-
ming. A Poincaré map returns the impact point, where the trajectory of a dynamical
system transversely crosses an arbitrary surface (we refer the reader to [24,46,47] for
more details). This contractor could help solve the docking problem presented in this
article, as the trajectories would not be limited by the time constraint modeled by T
anymore: any trajectory “impacting” the entrance of the docking station could be
considered valid. The method for stability analysis, extended to Poincaré maps, can
also be used to analyze more general dynamic systems such as systems with hybrid
dynamics in which the state transitions result from event-triggered control approaches.

Finally, our work could also be combined with the synthesis of a nonlinear command
based on state-feedback linearisation, such as that presented in [48,49]. This synthesis



Mathematics 2022, 10, 1130 18 of 20

indeed requires a guaranteed integration technique to analyze the sensibility of trajectories
when some model or controller parameters are not perfectly known.
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