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Abstract: Many researchers have investigated the time-varying (TV) matrix pseudoinverse problem
in recent years, for its importance in addressing TV problems in science and engineering. In this paper,
the problem of calculating the inverse or pseudoinverse of an arbitrary TV real matrix is considered
and addressed using the singular value decomposition (SVD) and the zeroing neural network (ZNN)
approaches. Since SVD is frequently used to compute the inverse or pseudoinverse of a matrix, this
research proposes a new ZNN model based on the SVD method as well as the technique of Tikhonov
regularization, for solving the problem in continuous time. Numerical experiments, involving the
pseudoinversion of square, rectangular, singular, and nonsingular input matrices, indicate that the
proposed models are effective for solving the problem of the inversion or pseudoinversion of time
varying matrices.

Keywords: singular value decomposition (SVD); zeroing neural network (ZNN); Moore–Penrose
inverse; Tikhonov regularization; dynamical system

MSC: 15A09; 65F20; 68T05

1. Introduction and Preliminaries

In this paper, the zeroing neural network (ZNN) approach is used to address the
problem of calculating the inverse or pseudoinverse of an arbitrary time-varying (TV) real
matrix. On the one hand, the pseudoinverse, or Moore–Penrose inverse, of A ∈ Rm×n is
the unique matrix A†, such that the system of Penrose equations holds for X := A† [1–3]:

A = AXA, X = XAX, (XA)T = XA, (AX)T = AX, (1)

where AT denotes the transpose of A. Note that, if A is a nonsingular square matrix, A†

becomes the usual inverse A−1. On the other hand, the singular value decomposition (SVD)
of A ∈ Rm×n is a factorization of the form [4]:

A = USVT, (2)
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where U ∈ Rm×m and V ∈ Rn×n are orthogonal matrices, i.e., UT = U−1 and VT = V−1,
while S ∈ Rm×n is a rectangular (or square, in the case m = n) diagonal matrix with the
singular values of A on its main diagonal. SVD is frequently used to compute the inverse
or pseudoinverse of a matrix, while commonly existing in fields of scientific research,
such as medical treatment and industrial applications, lattice computing [5], automatic
classification of electromyograms [6], and face recognition [7]. In a recent work [8], the
authors provided a zeroing neural network for computing the singular value decomposition
of an arbitrary matrix. This work move things one step further, by designing a new ZNN
model for calculating the inverse or pseudoinverse of an arbitrary TV matrix based on the
singular value decomposition. For comparison purposes, we build another model based
on direct pseudoinversion in accordance with the paper [9], and the experiments section
demonstrates the efficacy of the proposed SVD model.

Zhang et al. in [10], developed a ZNN design for generating online solutions to TV prob-
lems. It is worth noting that most ZNN based dynamical systems fall under the category of
recurrent neural networks (RNN) that are designed to find equation zeros. As a consequence,
numerous valuable research findings have been presented in the literature. Addressing
generalized inversion problems [11,12], tensor and matrix inversion problems [13], systems
of linear equations [14,15], systems of matrix equations [14,16], quadratic optimization prob-
lems [17], and diverse matrix functions approximation [18,19] are the main applications of
ZNNs. The first stage in developing ZNN dynamics is to design an error function E(t) that
is tailored to the underlying problem, commonly known as the Zhang function [20]. The
second stage takes advantage of the proper dynamical evolution that follows:

Ė(t) =
dE(t)

dt
= −λF (E(t)), (3)

where Ė(t) ∈ Rm×n is the time derivative of E(t) ∈ Rm×n, λ > 0 is the design parameter
that is used for scaling the convergence, while F (·) : Rm×n → Rm×n means elementwise
utilization of an odd and increasing activation function on E(t). In our research, we will
consider the ZNN evolution (3) under the linear activation function. That is,

Ė(t) =
dE(t)

dt
= −λE(t). (4)

This work’s key points may be summarized as below:

• A novel ZNN approach, which is based on SVD, is employed for solving the problem
of calculating the pseudoinverse of an arbitrary TV real matrix.

• Two ZNN models for calculating the pseudoinverse of an arbitrary TV matrix are
offered: one called ZNNSVDP, which is based on SVD, and the other called ZNNP,
which is based on a more direct approach to the problem and is offered for comparison
purposes.

• Four numerical experiments, involving the pseudoinversion of square, rectangular,
singular, and nonsingular input matrices, indicate that both models are effective
for solving the problem and that the ZNNSVDP model converges to the problem’s
solution faster than the ZNNP model.

Additionally, it is worth mentioning some of the paper’s general notations: the symbols
1n, 0n denote a vector inRn consisting of ones and zeros, respectively; On×n ∈ Rn×n denotes
a zero matrix of n× n dimensions; In ∈ Rn×n denotes the identity n× n matrix; ⊗ denotes
Kronecker product; vec(·) denotes the vectorization technique; � denotes the Hadamard
(or element wise) product; and ‖·‖F denotes the matrix Frobenius norm.

The paper is constituted as follows. Sections 2 and 3, respectively, define and analyse
the ZNNSVDP and ZNNP models. Section 4 presents and discusses the results of four
numerical experiments employing the pseudoinversion of square, rectangular, singular,
and nonsingular input matrices. Lastly, the final remarks and conclusions are offered in
Section 5.
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2. Time-Varying Pseudoinverse Computation Based on SVD

This section presents and analyses the ZNNSVDP model for calculating the pseudoin-
verse of an arbitrary TV real matrix. Considering a smooth TV matrix A(t) ∈ Rm×n, the
inverse or pseudoinverse of A(t) based on SVD (2) is the following:{

A−1(t) = V(t)S−1(t)UT(t), m = n = rank(A(t))

A†(t) = V(t)S†(t)UT(t), otherwise,
(5)

where U(t) ∈ Rm×m and V(t) ∈ Rn×n are TV orthogonal matrices, and S(t) ∈ Rm×n is
a rectangular (or square, in the case m = n) diagonal matrix with the singular values of
A(t) on its main diagonal. Here, we consider decomposition so that the singular values
of A(t) are in descending order on the main diagonal of S(t). Based on (2) and (5), the
ZNNSVDP model considers the following group of error functions for calculating the
inverse or pseudoinverse of A(t):

E1(t) = A(t)V(t)−U(t)S(t)

E2(t) = UT(t)U(t)− Im

E3(t) = VT(t)V(t)− In

E4(t) = X(t)−V(t)Y(t)UT(t),

(6)

where X(t) is the desired solution of the problem, i.e., the inverse or pseudoinverse of A(t),
and

Y(t) =

{
S−1(t), m = n = rank(A(t))

S†(t), otherwise.
(7)

The following proposition about the structure and construction of the pseudoinverse of a
diagonal matrix is offered, whereas [21] provides a full examination of this proposition.

Proposition 1. For a rectangular (or a square singular) diagonal matrix B ∈ Rm×n, let b1, b2 . . . , bw
with w = rank(B) signify the elements of the main diagonal of B. Then, the pseudoinverse matrix
of B is the following:

B† =

[
B̄−1 Ow×(n−w)

O(m−w)×w O(m−w)×(n−w)

]
, with B̄−1 =


1
b1

0 . . . 0
0 1

b2
. . . 0

...
...

. . .
...

0 0 . . . 1
bw

. (8)

In addition, the first time derivative of (6) is the following:
Ė1(t) = Ȧ(t)V(t) + A(t)V̇(t)− U̇(t)S(t)−U(t)Ṡ(t)

Ė2(t) = U̇T(t)U(t) + UT(t)U̇(t)
Ė3(t) = V̇T(t)V(t) + VT(t)V̇(t)
Ė4(t) = Ẋ(t)− V̇(t)Y(t)UT(t)−V(t)Ẏ(t)UT(t)−V(t)Y(t)U̇T(t),

(9)

where the first time derivative of Y(t) is the following [22]:

Ẏ(t) =


Ṡ−1(t) =−S−1(t)Ṡ(t)S−1(t), m = n = rank(A(t))

Ṡ†(t) = −S†(t)Ṡ(t)S†(t) + (S†(t)(S†(t))T)ṠT(t)(Im − S(t)S†(t))
+(In − S†(t)S(t))ṠT(t)((S†(t))TS†(t)), otherwise,

(10)
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or equivalent

Ẏ(t) =−Y(t)Ṡ(t)Y(t) + (Y(t)YT(t))ṠT(t)(Im − S(t)Y(t))

+ (In −Y(t)S(t))ṠT(t)(YT(t)Y(t)).
(11)

Notice that (11) is simplified to Ẏ(t) = −Y(t)Ṡ(t)Y(t) for m = n = rank(A(t)). Then,
combining (6), (9) and (11) with the ZNN design under the linear activation function (4),
the following may be acquired:

Ȧ(t)V (t) + A(t)V̇(t)− U̇(t)S(t)−U(t)Ṡ(t) = −λE1(t)

U̇T(t) U(t) + UT(t)U̇(t) = −λE2(t)
V̇T(t) V(t) + VT(t)V̇(t) = −λE3(t)
Ẋ(t)− V̇(t)Y(t)UT(t)−V(t)

(
−Y(t)Ṡ(t)Y(t) + (Y(t)YT(t))ṠT(t)(Im − S(t)Y(t))

+(In −Y(t)S(t))ṠT(t)(YT(t)Y(t))
)
UT(t)−V(t)Y(t)U̇T(t) = −λE4(t).

(12)

Using vectorization and the Kronecker product, the dynamics of (12) are modified as
follows:

−(ST(t)⊗ Im)vec(U̇(t)) + (In ⊗ A(t))vec(V̇(t))− (In ⊗U(t))vec(Ṡ(t))

= vec(−λE1(t)− Ȧ(t)V(t))
(UT(t)⊗ Im)vec(U̇T(t)) + (Im ⊗UT(t))vec(U̇(t)) = vec(−λE2(t))
(VT(t)⊗ In)vec(V̇T(t)) + (In ⊗VT(t))vec(V̇(t)) = vec(−λE3(t))
−(Im ⊗V(t)Y(t))vec(U̇T(t))− (U(t)YT(t)⊗ In)vec(V̇(t))−K1(t) + Imnvec(Ẋ(t))

= vec(−λE4(t)),
(13)

where
K1(t) =−

(
U(t)YT(t)⊗V(t)Y(t)

)
vec(Ṡ(t))

+
(
U(t)(Im − S(t)Y(t))T ⊗V(t)Y(t)YT(t)

)
vec(ṠT(t))

+
(
U(t)YT(t)Y(t)⊗V(t)(In −Y(t)S(t))

)
vec(ṠT(t))

(14)

Note that (13) must be simplified in order to produce a simple and explicit dynamical
model that may easily calculate U(t), V(t), S(t), and X(t). As a result, the following
lemmas about vectorization and the Kronecker product are offered, whereas [23] provides
a full examination of Lemmas’ 1 and 2 content.

Lemma 1.
(LT ⊗ A)vec(X) = vec(Y).

Lemma 2. For B ∈ Rm×m, let vec(B) ∈ Rm2
signify the matrix B vectorization. The following

occurs:
vec(BT) = Qm vec(B), (15)

where Qm ∈ Rm2×m2
is a constant permutation matrix defined exclusively by m.

The following, Algorithm 1, presents an algorithmic process for obtaining the permu-
tation matrix Qm in (15), which corresponds to a matrix of m×m dimensions. Note that
the notations eye(.) and reshape(.) in Algorithm 1 have the typical notion of the related
MATLAB functions [24].
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Algorithm 1 Permutation matrix calculation

Require: The rows or columns number m of a square matrix B ∈ Rm×m.
1: procedure PERMUTATION_MATRIX(m)
2: Set a =eye(m2) and b =reshape(1 : m2, m, m)
3: return Q = a(:,reshape(b′, 1, m2))
4: end procedure

Ensure: Qm, i.e., the permutation matrix.

Furthermore, because S(t) and ST(t) are rectangular (or square, in the case m = n)
diagonal matrices, just the nonzero elements of Ṡ(t) and ṠT(t) that are placed in their main
diagonal must be obtained. By doing so, we may confine S(t) to being a diagonal matrix,
while also reducing the dimensions of (13). Hence, employing the nonzero elements on the
main diagonal of S(t) and ST(t), whose number is w = rank(A(t)), we utilize the equations
vec(Ṡ(t)) = G1ṡ(t) and vec(ṠT(t)) = G2ṡ(t), respectively, to replace Ṡ(t) and ṠT(t) in (14),
where the matrices G1, G2 ∈ Rmn×w are operational matrices that can be calculated using
the algorithmic procedure presented Algorithm 2. Additionally, the notation sum(.), min(.),
zeros(.), mod(.) and floor(.) in Algorithm 2 have the typical notion of the related MATLAB
functions [24].

Algorithm 2 Operational matrix calculation

Require: The number of the rows and columns, respectively, m and n of a matrix B ∈ Rm×n,
and w = rank(B).

1: procedure OPERATIONAL_MATRIX(m, n, w)
2: if w < min(m, n) then
3: Set h = w
4: else
5: Set h = m
6: end if
7: Set G =zeros(mn, w)
8: for k = 1 : mn do
9: Set c =mod(k− 1, h) + 1 and d =floor( k−1

h ) + 1
10: if d == c then
11: Set G(k, c) = 1
12: end if
13: end for
14: return G
15: end procedure
Ensure: The operational matrix G.

Based on the aforementioned discussion, (13) can be reformulated as follows:

−(ST(t)⊗ Im)vec(U̇(t)) + (In ⊗ A(t))vec(V̇(t))− (In ⊗U(t))G1ṡ(t)

= vec(−λE1(t)− Ȧ(t)V(t))
(UT(t)⊗ Im)Qmvec(U̇(t)) + (Im ⊗UT(t))vec(U̇(t)) = vec(−λE2(t))
(VT(t)⊗ In)Qnvec(V̇(t)) + (In ⊗VT(t))vec(V̇(t)) = vec(−λE3(t))
−(Im ⊗V(t)Y(t))vec(U̇T(t))− (U(t)YT(t)⊗ In)vec(V̇(t))−K2(t)ṡ(t)

+Imnvec(Ẋ(t)) = vec(−λE4(t)),

(16)

where
K2(t) =−

(
U(t)YT(t)⊗V(t)Y(t)

)
G1

+
(
U(t)(Im − S(t)Y(t))T ⊗V(t)Y(t)YT(t)

)
G2

+
(
U(t)YT(t)Y(t)⊗V(t)(In −Y(t)S(t))

)
G2

(17)
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As a result, setting

Z1(t)=


−(ST(t)⊗ Im)

(UT(t)⊗ Im)Qm+(Im⊗UT(t))
0n2×m2

−(Im⊗V(t)Y(t))

, Z3(t)=


−(In⊗U(t))G1

0m2×w
0n2×w
−K2(t)

,

Z2(t)=


(In⊗A(t))

0m2×n2

(VT(t)⊗ In)Qn+(In⊗VT(t))
−(U(t)YT(t)⊗ In)

, Z4(t)=


0mn×mn
0m2×mn
0n2×mn

Imn

,

Z(t)=
[
Z1(t) Z2(t) Z3(t) Z4(t)

]
,

(18)

q(t)=


vec(−λE1(t)−Ȧ(t)V(t))

vec(−λE2(t))
vec(−λE3(t))
vec(−λE4(t))


T

, ẋ=


vec(U̇(t))
vec(V̇(t))
vec(ṡ(t))
vec(Ẋ(t))

, x=


vec(U(t))
vec(V(t))
vec(s(t))
vec(X(t))

, (19)

we propose the following ZNN model:

ZT(t)Z(t)ẋ(t) = ZT(t)q(t), (20)

where ZT(t)Z(t) is a singular mass matrix. To solve the singularity problem, the Tikhonov
regularization is used and (20) is converted into:

(ZT(t)Z(t) + βIm2+n2+w+mn)ẋ(t) = ZT(t)q(t), (21)

where β ≥ 0 signifies the regularization parameter. The ZNN model (21) is termed as the
ZNNSVDP model and can be solved efficiently with an appropriate ode Matlab solver.
The exponential convergence of the ZNNSVDP model (21) to the theoretical TV inverse or
pseudoinverse of the input matrix A(t) is proven in Theorem 1.

Remark 1. According to MATLAB’s ode solvers syntax [24], the mass matrix is a symmetric
matrix M that expresses the connection between the time derivative ẋ of the generalized coordinate
vector x of a system, by the equation:

Mẋ = x.

Theorem 1. Let U(t) ∈ Rm×m, V(t),∈ Rn×n, S(t) ∈ Rm×n be differentiable and S(t) be a
rectangular diagonal matrix. The ZNNSVDP model (21), starting from any initial value x(0),
converges exponentially to the theoretical TV inverse or pseudoinverse of the input matrix A(t).

Proof. In order to obtain the solution x(t), which corresponds to the TV inverse or pseu-
doinverse of the input matrix A(t), the error matrix equation group is defined as in (9),
inline with the ZNN design. Following that, by adopting the linear design formula for
zeroing (9), the model (12) is obtained. From [Theorem 1] [10], each error matrix equation
in the error matrix equation group (12) converges to the theoretical solution when t→ ∞.
As a result, the solution of (12) converges to the theoretical TV inverse or pseudoinverse
of the input matrix A(t) when t→ ∞. Furthermore, from the derivation procedure of (21)
from (12), the proof is completed.

3. Alternative Time-Varying Pseudoinverse Computation

This section presents and analyzes a ZNN model, namely, ZNNP, for calculating
the pseudoinverse of any TV real matrix, based on a recent work [9] on ZNN pseu-
doinverse computation, and this new model will serve as a strong and fair competitor
to the proposed ZNNSVDP model. Considering a smooth TV matrix A(t) ∈ Rm×n,
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then, if rank(A(t)) = n < m, the MP inverse A†(t) becomes the left inverse A†(t) =
A−1

L (t) ≡ (AT(t)A(t))−1 AT(t) of A(t), where AT(t)A(t)A†(t) = AT(t). Otherwise, if
rank(A(t)) = n > m, the MP inverse A†(t) becomes the right inverse A†(t) = A−1

R (t) ≡
AT(t)(A(t)AT(t))−1, where A†(t)A(t)AT(t) = AT(t). Therefore, we can design a ZNN
model according to the following equations:

AT(t)A(t)A−1(t) = AT(t), m = n = rank(A(t))

AT(t)A(t)A†(t) = AT(t), rank(A(t)) ≤ n < m
A†(t)A(t)AT(t) = AT(t), rank(A(t)) ≤ m < n.

(22)

Based on (22), the ZNNP model considers the following error function for calculating the
inverse or pseudoinverse of A(t):

ED(t) =

{
AT(t)A(t)X(t)− AT(t), rank(A(t)) ≤ n ≤ m

X(t)A(t)AT(t)− AT(t), rank(A(t)) ≤ m < n.
(23)

where X(t) is the desired solution of the problem, i.e., the inverse or pseudoinverse of A(t).
Furthermore, the first time derivative of (23) is the following:

ĖD(t)=

 ȦT(t)A(t)X(t)+AT(t)Ȧ(t)X(t)+AT(t)A(t)Ẋ(t)−ȦT(t), rank(A(t))≤n≤m

Ẋ(t)A(t)AT(t)+X(t)Ȧ(t)AT(t)+X(t)A(t)ȦT(t)−ȦT(t), rank(A(t))≤m<n.
(24)

Then, combining (23) and (24) with the ZNN design (4), under the linear activation function,
the following can be obtained:

ȦT(t)A(t)X(t) +AT(t)Ȧ(t)X(t)+AT(t)A(t)Ẋ(t)−ȦT(t)

=−λ(AT(t)A(t)X(t)−AT(t)), rank(A(t))≤n≤m
Ẋ(t)A(t)AT(t) +X(t)Ȧ(t)AT(t)+X(t)A(t)ȦT(t)−ȦT(t)

=−λ(X(t)A(t)AT(t)−AT(t)), rank(A(t))≤m<n.

(25)

Using vectorization and the Kronecker product, the dynamics of (25) are modified as follows:
(Im⊗AT(t)A(t))vec(Ẋ(t)) =vec

(
−λ(AT(t)A(t)X(t)−AT(t))−ȦT(t)A(t)X(t)

−AT(t)Ȧ(t)X(t)+ȦT(t)
)
, rank(A(t))≤n≤m

(A(t)AT(t)⊗ In)vec(Ẋ)(t) =vec
(
−λ(X(t)A(t)AT(t)−AT(t))−X(t)Ȧ(t)AT(t)

−X(t)A(t)ȦT(t)+ȦT(t)
)
, rank(A(t))≤m<n.

(26)

As a result, setting

L(t)=


Im⊗AT(t)A(t)+βImn, rank(A(t))<n≤m

Im⊗AT(t)A(t), rank(A(t))=n≤m
A(t)AT(t)⊗ In+βImn, rank(A(t))<m<n
A(t)AT(t)⊗ In, rank(A(t))=m<n,

r(t)=


vec
(
−λ (AT(t)A(t)X(t)−AT(t))−ȦT(t)A(t)X(t)−AT(t)Ȧ(t)X(t)

+ȦT(t)
)
, rank(A(t))≤n≤m

vec
(
−λ (X(t)A(t)AT(t)−AT(t))−X(t)Ȧ(t)AT(t)−X(t)A(t)ȦT(t)

+ȦT(t)
)
, rank(A(t))≤m<n.

ẋ(t)=vec(Ẋ(t)), x(t)=vec(X(t)),

(27)

where β ≥ 0 signifies the Tikhonov regularization parameter, we have the next ZNN model:

L(t)ẋ(t) = r(t), (28)
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where L(t) is a mass matrix. Note that the Tikhonov regularization is used in L(t) to
solve the singularity problem of the cases rank(A(t)) < n ≤ m and rank(A(t)) < m < n,
respectively, because the products A(t)AT(t) and AT(t)A(t) result to singular matrices.
The ZNN model (28) is termed as the ZNNP model and can be solved efficiently with
an ode Matlab solver, while its exponential convergence to the theoretical TV inverse or
pseudoinverse of the input matrix A(t) is proven in Theorem 2.

Theorem 2. The ZNNP model (28) starting form any initial value x(0), converges exponentially
to the theoretical TV inverse or pseudoinverse of the input matrix A(t).

Proof. In order to obtain the solution x(t), which corresponds to the TV inverse or pseu-
doinverse of the input matrix A(t), the error matrix equation group is defined as in (23),
inline with the ZNN design. Following that, by adopting the linear design formula for
zeroing (23), the model (25) is obtained. From [Theorem 1] [10], each error matrix equation
in the error matrix equation group (25) converges to the theoretical solution when t→ ∞.
As a consequence, the solution of (25) converges to the theoretical TV inverse or pseudoin-
verse of the input matrix A(t) when t→ ∞. Moreover, from the derivation procedure of
(28), we know it is (25) in a different form. The proof is, thus, completed.

4. Numerical Experiments

This section compares and contrasts the performances of the ZNNSVDP model (21)
with the ZNNP model (28) on four numerical experiments (NE), involving the pseudoin-
version of square, rectangular, singular, and nonsingular input matrices. In all NE, the time
interval is restricted to [0, 10] during the computation, which indicates that the starting
time is t0 = 0 and the ending time is tf = 10, while the ZNN design parameter has been
set to λ = 10 and the Tikhonov regularization parameter has been set to β = 1e− 8. It
is worth mentioning that the notation ZNNSVDP and ZNNP in the legends of Figure 1,
respectively, denote the solutions produced by the ZNNSVDP and ZNNP models. Lastly,
the MATLAB solver ode45 has been used, while the initial value for both models has been
set to x(0) = sign(x∗(0)), where x∗(0) is the theoretical solution at t = 0 and sign is the
signum function.

4.1. Experiment 1

This NE deals with the inversion of the following square matrix:

A(t) =
[

4/(t + 18) sin(t) + 2
(t + 18)/(2t + 2) cos(t)− 20

]
.

Note that A(t) is a full rank matrix with dimensions 2× 2.

4.2. Experiment 2

This NE deals with the pseudoinversion of the following rectangular matrix:

A(t) =


3 sin(t) + 7 3 + cos(t) sin(2t) + 4
5− sin(t) 4/(t + 8) 7− sin(t)

7/2 + sin(3t) 4 + cos(t) 6 + cos(3t)
3 sin(t) cos(t)− 20 7/2 + sin(5t)

5− sin(t) sin(t) + 1 3 + cos(t)

.

Notice that A(t) is a full column rank matrix with dimensions 5× 3.
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Figure 1. The convergence of ZFs and the solutions’ convergence and trajectories in NEs
Sections 4.1–4.4. (a) NE Section 4.1: Convergence of ZFs. (b) NE Section 4.1: Solutions convergence.
(c) NE Section 4.1: Solutions trajectories. (d) NE Section 4.2: Convergence of ZFs. (e) NE Section 4.2:
Solutions convergence. (f) NE Section 4.2: Solutions trajectories. (g) NE Section 4.3: Convergence
of ZFs. (h) NE Section 4.3: Solutions convergence. (i) NE Section 4.3: Solutions trajectories. (j) NE
Section 4.4: Convergence of ZFs. (k) NE Section 4.4: Solutions convergence. (l) NE Section 4.4:
Solutions trajectories.
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4.3. Experiment 3

The pseudoinversion of the following rectangular matrix is the subject of this NE:

A(t) =
[
5− cos(πt) 3 + sin(πt) −4− cos(t) 1 + 3 sin(t)

]T � 14×2.

The matrix A(t) is rank deficient, with rank(A(t)) = 1, and its dimensions are 4× 2.

4.4. Experiment 4

This NE is related to the pseudoinversion of the rectangular matrix given below:

A(t) =
[
2 + sin(t) 2 + 1/2 sin(t) . . . 2 + 1/n sin(t)

]
� 1m×n.

With rank(A(t)) = 1, the matrix A(t) is rank deficient, and its dimensions are m× n, where
m = 4 and n = 9.

4.5. Analysis of Numerical Experiments—Results and Comparison

The performance of the ZNNSVDP and ZNNP models for calculating the inverse or
pseudoinverse of an arbitrary matrix A(t) is investigated through the four NE defined in
Sections 4.1–4.4. For all the experiments, the results produced by the ZNNSVDP and ZNNP
models are depicted in Figure 1. It is worth noting that Figure 1 has the following layout:
the first column figures show the convergence of the error function, i.e., ‖Ei(t)‖, i = 1, . . . , 4,
of the ZNNSVDP model and ‖ED(t)‖ of the ZNNP model; the second column figures
show the convergence of the models according to the appropriate error function, i.e.,
residual errors; the third column figures show the trajectories of the solutions generated by
the models.

The following can be deduced from the NE of this section. Overall, the error functions
of the ZNNSVDP model, i.e., ‖Ei(t)‖, i = 1, . . . , 4, receive lower values than the error func-
tion of the ZNNP model, i.e., ‖ED(t)‖, in all NE, as depicted in Figure 1a,d,g,j. When X(t)
corresponds to the solution of the ZNNSVDP model rather than the solution of the ZNNP
model, the convergence in Figure 1b,h,k is faster, while the convergence in Figure 1e is
almost identical. It is worth noting that Figure 1b depicts the residual error ‖I − A(t)X(t)‖F
in the case of NE Section 4.1, Figure 1e depicts the residual error ‖I − X(t)A(t)‖F in the case
of NE Section 4.2, Figure 1h depicts the residual error

∥∥AT(t)− X(t)A(t)AT(t)
∥∥

F in the
case of NE Section 4.3, and Figure 1b depicts the residual error

∥∥AT(t)− AT(t)A(t)X(t)
∥∥

F
in the case of NE Section 4.4. Finally, Figure 1c,f,i,l show that both models’ solutions match
the theoretical inverse in the case of NE Section 4.1, and the theoretical pseudoinverse in
the cases of NE Sections 4.2–4.4.

According to the presented NE, the following are some general generalizations that
can be drawn. The ZNNSVDP model presented in this paper, which is based on the SVD
method, shows better performances than the ZNNP model, which is based on a more direct
approach for calculating the inverse or pseudoinverse. In addition, the ZNNSVDP model
generates the minimum amount for the Frobenius norm of both the error functions and the
residual errors. It is also important to note that, for both models, the larger the value of the
design parameter λ, the higher the degree of convergence.

5. Conclusions

The problem of calculating the inverse or pseudoinverse of an arbitrary TV real matrix
is addressed using the ZNN approach in this paper. Two ZNN models for calculating
the inverse or pseudoinverse of an arbitrary TV matrix, one called ZNNSVDP, which is
based on SVD, and the other called ZNNP, which is based on a more direct approach to the
problem, are defined, analysed and compared. Four numerical experiments, involving the
pseudoinversion of square, rectangular, singular, and nonsingular input matrices, indicate
that both models are effective for solving the problem and that the ZNNSVDP model
converges to the problem’s solution faster than the ZNNP model.
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Some potential study areas can be identified:

1. It is possible to explore the streams of the ZNNSVDP and ZNNP models that are
accelerated by a nonlinear activation function, as well as nonlinear ZNNSVDP and
ZNNP model flows, with a terminal convergence in this direction.

2. Another option is to use carefully chosen fuzzy parameters to define future ZNN
dynamics upgrades.

3. The presented ZNNSVDP and ZNNP models have the drawback of not being noise
tolerant, because all types of noise have a substantial impact on the accuracy of
the proposed ZNN approaches. As a consequence, future research could focus on
adapting the ZNNSVDP and ZNNP models to an integration enhanced and noise-
handling ZNN class of dynamical systems.
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