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Abstract: The poor real-time performance and high maintenance costs of the dynamometer card
(DC) sensors have been significant obstacles to the timely fault diagnosis in the sucker rod pumping
system (SRPS). In contrast to the DCs, the motor power curves (MPCs), which are accessible easily
and highly associated with the entire system, have been attempted to predict the working conditions
of the SRPS in recent years. However, the lack of labeled MPCs limits the successful applications in
the industrial scenario. Thereby, this paper presents an unsupervised fault diagnosis methodology
to leverage the generated MPCs of different working conditions to diagnose the actual unlabeled
MPCs. Firstly, the MPCs of six working conditions are generated with an integrated dynamics
mathematical model. Secondly, a framework named mechanism-assisted domain adaptation net-
work (MADAN) is proposed to minimize the distribution discrepancy between the generated and
actual MPCs. Specifically, benefiting from introducing the mechanism analysis to label the collected
MPCs preliminarily, a conditional distribution discrepancy metric is defined to guarantee a more
accurate distribution matching with respect to different working conditions. Eventually, validation
experiments are performed to evaluate the mathematical model and the diagnosis method with a set
of actual MPCs collected by a self-developed device. The experimental result demonstrates that the
proposed method offers a promising approach for the unsupervised diagnosis of the SRPS.

Keywords: domain adaptation; fault diagnosis; mathematical model; motor power curve; sucker
rod pump

MSC: 68T07

1. Introduction

The sucker rod pump system (SRPS) plays an indispensable role in the field of oil
exploitation [1]. Due to the long-time operations and harsh working environment, some
faults will inevitably occur, resulting in economic loss and energy consumption [2]. With
the rapid development of machine learning, many data-driven fault diagnosis methods
have been utilized to guarantee manufacturing security and improve production efficiency
in the SRPS [3,4]. However, the most traditional and commonly used diagnostic methods
universally depend on the dynamometer card (DC), which is measured by the load sensor
installed on the “horse head”. These DC-based methods inevitably suffer from the high
maintenance cost and low detection frequency, resulting in poor ability in the real-time
diagnosis of the SRPS.

Owing to power’s advantages of accessibility and high correlation with the SRPS,
the motor power-based diagnosis methods have received ever-increasing attention [5].
Ref. [6] distilled seven features from the motor power curves (MPCs) and utilized improved
hidden conditional random fields to diagnose different working conditions. An MPC-based
broad learning method was proposed in [7].

Even though conspicuous achievements have been achieved, these methodologies
lack applicability due to their reliance on the massive labeled data, which is invalid in the
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real industrial scenarios [8]. Some researchers tried to tackle this problem by implementing
a transformation between the MPC and the DC to facilitate the diagnosis based on the
MPCs. In [9], the MPCs were labeled by transforming into DCs with a mechanism model
considering many crucial factors. However, the inversed DCs were not closed because
the torque factor was zero at the dead points, resulting in huge discrepancies between the
actual and inversed DCs. Nowadays, new research transformed the DC to MPC to alleviate
the discrepancies at the dead points in [10]. However, the complete DC dataset is still a
problematic prerequisite for some wells with incomplete data.

In order to reduce the dependence on the labeled dataset, this paper tries to propose a
model-based method to generate the MPCs. Although many scholars have been committed
to the process modeling of the SRPS, their purpose is to obtain the polished load without
correlating the uphole portion to simulate the MPC [11–13]. In this respect, this paper is
dedicated to establishing an integrated dynamics mathematical model involving the motor,
the four-bar linkage, the sucker rod, and the pump to generate the MPCs at normal and
five kinds of faulty scenarios.

Even though the labeled MPCs can be obtained from the model-based method, the tra-
ditional intelligent diagnosis strategies trained with such samples possibly fail in classifying
actual MPCs. The distribution discrepancy that arises from unavoidable assumptions and
simplifications in the model limits the successful applications of these strategies. Do-
main adaptation (DA), which is a popular branch of transfer learning, has advantages in
solving the problem of inconsistent feature distribution [14–17]. Traditional DA employs
the Maximum Mean Discrepancy (MMD) term as the discrepancy penalty to extract the
domain-invariant features [18–20]. Inspired by the idea of the generative adversarial net-
work, the domain discriminator was explored to align the distributions in an adversarial
manner [21]. Ref. [22] leveraged a one-dimensional convolutional neural network (1-D
CNN) to bridge the distribution discrepancy by maximizing the discriminator loss and
minimizing the classifier loss. In [23], Wasserstein distance replaced the traditional discrim-
inator to minimize the distribution discrepancy. A strong–weak learning framework was
proposed to solve the imbalanced data and mismatched domain simultaneously based on
the domain adversarial training in [24]. In [25], discriminator and MMD were exploited
together to enhance feature representation. The discriminator network was extended to
partial domain adaptation in [26,27].

The aforementioned discriminator and MMD are dedicated to aligning the marginal
probability distribution. Specifically, inspired by [28], the conditional probability distri-
bution is also increasingly integrated into the domain adversarial training in recent years.
In [29], the adversarial training was utilized to realize marginal fusion, and a variance
matrix was defined to achieve conditional alignments. The joint distribution supplanted the
marginal distribution for conditional distribution alignments in [30]. In [31], a pre-training
network was designed for pseudo-label learning and MMD was applied to align the con-
ditional distribution. Ref. [32] utilized the adversarial network and the joint adaptation
network to alleviate the distribution discrepancy of the label and feature spaces.

Although conditional distribution alignment has made some progress to the DA,
little attention has been paid to the pseudo-label learning of the target domain. The
common pseudo-label methodologies rely on the traditional clustering algorithm, source
domain classifier, and the pre-trained network with source domain data. Limited by
the inaccuracy of the initial phase of the neural network and the huge distribution gap
between the target and source domains, these algorithms will assign extensive inaccurate
pseudo-labels to interfere with the domain alignment. Therefore, in order to achieve more
accurate pseudo-labels to narrow down the distribution discrepancy, a novel method
named mechanism-assisted domain adaptation network (MADAN) is proposed. In the
MADAN, the mechanical properties of the MPCs under different working conditions are
adopted for pseudo-label learning along with the label classifier. Particularly, the classifier
iterates continuously with training to alleviate conditional distribution discrepancy through
a well-defined MMD term. The marginal distribution alignment is implemented with the
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help of the adversarial domain adaptation, and 1-D CNN constructs the feature generator
network to extract the features of the time-series signal.

The main contributions of this paper can be summarized as follows:
1. An integrated dynamics mathematical model is established to generate the MPCs

at normal and five kinds of faulty scenarios. The model calculates “four-bar” linkage
movement, sucker rod vibration, the pump chamber pressure, and the liquid flow rate.
The adjustment strategies of the model and relevant parameters under different working
conditions are also presented.

2. A novel DA method named MADAN is proposed to exploit the knowledge learned
from the generated MPCs to facilitate diagnosing the MPCs collected in practical scenarios.
The mechanism-assisted pseudo-label learning is constructed to realize better conditional
distribution alignment of the collected and generated MPCs under different working
conditions. Furthermore, the domain classifier is designed for the marginal distribution
alignment of the collected and generated MPCs.

3. Experiments demonstrate the superiority of the proposed fault diagnosis methodol-
ogy with the MPCs collected by self-developed portable devices in the practical application
scenario. The model’s validity is verified by analyzing crucial downhole parameters and
comparing the generated and actual MPCs. Furthermore, we experimentally show that
MADAN outperforms five other state-of-the-art methods in terms of diagnostic accuracy
and distribution alignment.

The rest of this article is organized as follows. The integrated dynamics mathematical
model to generate the MPCs under various working conditions is surveyed in Section 2.
Section 3 describes the proposed MADAN method. Section 4 shows the effectiveness
of the proposed method through experimental verification. Finally, Section 5 concludes
this article.

2. Generation of the Motor Power Curves

Driven by the motor, the pump connected with a series of transmissions is in a
reciprocating up-and-down motion to pull the oil from the down-hole to the ground in the
SRPS. As the energy for the whole system, the MPCs involve information about the SRPS
working properties. Homoplastically, the MPCs of the well can be obtained by the inversion
of the individual components simulation. To generate supplementary power waveforms
of different working states for fault diagnosis, a detailed and integrated discussion of the
mathematical model for the SRPS is presented in this section.

2.1. Mathematical Model of the Sucker Rod Pumping System

Figure 1 indicates a typical structure of the SRPS.

Figure 1. Sucker rod pump system.
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Aiming at the MPCs composed by the power vs. time, the mathematical model follows
the order as the red arrows in Figure 1 as time→ crank angle→ polished rod motion�
plunger motion� pump pressure� polished rod load→ crank torque→ power. The
prediction of SRPS behavior involves calculating “four-bar” linkage movement, sucker rod
vibration, down-hole pump simulation of the pump, etc. Of these items, the operation of
the down-hole pump, the polished rod motion, and the vibrations of the rod string are of
the most difficulty but primary importance. In this subsection, the establishment of the
mathematical model centers on the difficulties mentioned.

2.1.1. Polished Rod Motion Simulation

As the crank angular velocity approaches constant speed in practice, the crank angle θ
vs. time is given by

θ(t) = ωt =
2πnt

60
. (1)

From trigonometrical considerations, the calculation for the displacement of the pol-
ished rod s(t) is listed as follows:

s(t) = smax
χmax − χ

χmax − χmin
,

χ1 = arcsin
C sin β

l1
,

χ2 = arcsin
R sin(θ1 + θ(t))

l1
,

β = arccos
A2

2 + C2 − l2
2 − R2 + 2l2R cos(θ1 + θ(t))

2A2C
,

l1 =
√

l2
2 + R2 − 2l2R cos(θ1 + θ(t)),

θ1 = arctan
D

B− G
,

χmax = arccos
l2
2 + A2

2 − (C + R)2

2l2 A2
,

χmin = arccos
l2
2 + A2

2 − (C− R)2

2l2 A2
.

(2)

The polished rod load is obtained as the summation torque acting on the polished
rod of the crank torque, the counterbalance torque arising from the balanced weight and
the net weight of the crankshaft, and counterbalance torque. The crank torque is derived
backward by the relation

Fc = TF(F−Wub)η
µ
b − (WckRck + WcbR) sin θ(t), (3)

where µ = 1 when TF < 0, and µ = −1 when TF = 0. The torque factor as obtained from
mechanics is given by

TF =
A1R
A2

sin β

sin ϕ
. (4)

2.1.2. Rod String Simulation

Considering the rod string is up to thousands of meters long, the elastic deformation
and vibration should not be neglected during the reciprocating up-and-down motion.
Simulation of the rod string involves the calculation of a boundary problem. The boundary
upon the ground is regarded as a compulsive movement, which is determined by the
motion of the polish rod. The boundary of the down-hole is decided by the pump pressure
acting at the plunger and the elastic force of the rod string. Benefiting from the rod string
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acting as a spring-mass-damping system with multiple degrees of freedom, the rod string is
divided into individual parts connected by an equivalent spring, as illustrated in Figure 1.

Combined with buoyancy, gravity, frictional damping of the rod, and tubing, the dy-
namic analysis of the rod string can be deduced as

F = k1(P0 − P1 − l1),
M1P̈1 + b1Ṗ1 + k2(P1 − P2 − l2) + M1g− ρog(P0 − P1)Sr

+ fr(P0 − P1)Clσv = k1(P0 − P1 − l1),
M2P̈2 + b2Ṗ2 + k3(P2 − P3 − l3) + M2g− ρog(P1 − P2)Sr

+ fr(P1 − P2)Clσv = k2(P1 − P2 − l2),
...

Mn−1P̈n−1 + bn−1Ṗn−1 + kn(Pn−1 − Pn − ln) + Mn−1g− ρog(Pn−2
−Pn−1)Sr + fr(Pn−2 − Pn−1)Clσv = kn−1(Pn−2 − Pn−1 − ln−1),
Mn P̈n + bn Ṗn − kn(Pn−1 − Pn − ln) + Mng− ρog(Pn−1 − Pn)Sr

+ fr(Pn−1 − Pn−2)Cltσv = −Fn,

(5)

where Ṗi and P̈i denote the first and second derivatives of Pi regarding time, respectively.
Cl can be caculated as Cl = π(dp + dr).

2.1.3. Down-Hole Pump Simulation

Equal to the force on the bottom of the rod string Fn, the force on the plunge can also
be deduced from the down-hole pump simulation as follows:

Fn(t) = Sp(Pd − Pp(t))− SrPd + fp Ṗn. (6)

It is mainly related to the pressure of the pump. Suffering from various coupled
variables and sophisticated processes existing in the down-hole, the simulation of pressure
remains a severe issue but is the core of the whole model. In order to get around this
impasse, the basic concepts of iterative algorithms are applied in this subsection. The
pressure proportional to the mass per unit volume of free gas can be deduced as follows:

Pp(t) =
M f g(t)ξ

Vp(t)−Vw(t)−Vo(t)
. (7)

The variation of gas, liquid, and oil in the pump can be calculated by flow rate. When
the standing valve is closed, the flow rate is zero. When the standing valve is open, the flow
rate can be calculated as

Q(t) =
C1Ssρl√

σs

√
Pp(t)− Ps

ρl
. (8)

Considering a bit of gas dissolved in the oil, the solubility of the gas is calculated
based on Henry’s Law. On the assumption that the water–oil–gas mass ratio of flows is
constant in one stroke, the specific calculation is organized as follows:

M f g(t) = Mg(t)
ρg(t− 1)Vf g(t− 1)

ρg(t− 1)Vf g(t− 1) + δg(t− 1)Mo(t− 1)
,

Mg(t) = Mg(t− 1) + γgQ(t− 1)4 t,

Mo(t) = Vo(t)ρo = Mo(t− 1) + γoQ(t− 1)4 t,

Mw(t) = Vw(t)ρw = Mw(t− 1) + γwQ(t− 1)4 t,

ρg(t− 1) =
Pp(t− 1)Mmol

C2Td
,

δg(t− 1) = ChPp(t− 1).

(9)
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An iterative equation for estimating the pump pressure Pp is given as

Pp(t)
Pp(t− 1)

=
M f g(t)

M f g(t− 1)
Vp(t− 1)−Vw(t− 1)−Vo(t− 1)

Vp(t)−Vw(t)−Vo(t)
. (10)

2.1.4. Moter and Gearbox Simulation

Considering the energy loss in the gearbox and the motor, the crank toque vs. the
motor power is simplified as

Pm =
Fcnmησ

m
9540

, when P > 0, σ = 1, else σ = −1. (11)

2.1.5. Dynamic Implementation of the Overall Model

As the order of the red arrows in Figure 1, Algorithm 1 outlines the procedure of the
whole generating power method mentioned above combining the standing and traveling
valve switch situations. By the proposed mathematical model, the theoretical MPC can be
obtained based on the mechanical parameters of the specific oil well.

Algorithm 1: Generation of motor power waveforms.
Input: Times of stroke: n, a series of mechanical parameters of the system
Output: Pm(t)
for t = 1 to 60/n do

S(t)← t refer to Equations (1) and (2);
Pn(t), Ṗn(t)← S(t) refer to Equation (5);
if Pp(t− 1) 5 Ps then

Q(t)← Pp(t− 1) refer to Equation (8);
else

Q(t) = 0;
end
if Pp(t− 1) 5 Pd then

M f g(t), Vg(t), Vo(t), Vw(t), Vp(t)← Q(t− 1), Pn(t) refer to Equation (9);
Pp(t)← Pp(t− 1), M f g(t), Vg(t), Vo(t), Vw(t), Vp(t) refer to Equation (10);

else
Pp(t) = Pd;

end
Fn(t)← Pp(t) refer to Equation (6);
F(t)← Fn(t) refer to Equation (5);
Fc(t)← F(t) refer to Equations (3) and (4);
Pm(t)← Fc(t) refer to Equation (11);

end

2.2. Generation for Faulty Working States

Based on the mathematical model of the SRPS, the MPCs of five faulty working states
are analyzed in this subsection. The characteristics forming reasons and representation in
the model will be discussed emphatically.

2.2.1. Traveling Valve Leakage

After repeating the switch operation numerous times, the traveling valve will wear
out so that the oil in the sucker rod leaks into the chamber with the rate concerned to the
Pp(t). In order to simulate this state, the leaked oil is divided into static and dynamic parts.
The pressure and the flow rate are the same as the normal state when the traveling valve
is open. When the traveling valve is closed, the static part that is caused by the pressure
discrepancy between the top and bottom of the plunger can be deduced as
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4Qs(t) =
ρlC3Slt√

σt

√
Pd − Pp(t)

ρl
. (12)

The dynamic part that is caused by the motion of the plunger can be calculated as

4Qd(t) = πSlt Ṗn. (13)

The leaked oil can be obtained from the sum of the static part and the dynamic part.

2.2.2. Insufficient Liquid Supply

After a long extraction period, the reservoir formation pressure usually decreases,
resulting in insufficient fluid supply capacity. In this working state, the submergence
pressure Ps is less than the pressure under the normal working state. There will be less oil
flowing into the pump, and the traveling valve will open in a shorter time. To simulate this
working state, only the submergence pressure Ps needs to be set as a smaller value.

2.2.3. Gas Affected

During the oil production process, the remaining free gas accumulates due to the
sealing performance of the pump. In the upstroke, the remaining free gas will slow down
the reduction of pressure in the pump, which in turn delays the opening of the standing
valve, resulting in a low fluid intake. Analogously, in the downstroke, the remaining free
gas will also delay the opening of the traveling valve because of the deferred increase of
pressure in the pump. In the simulation, the initial mass of the free gas in the pump and
the gas mass ratio of flows are set as higher proportions than the normal working state.

2.2.4. Gas Locking

This working state is the special case of gas affected. When the remaining free gas is
accumulating to a threshold, the pressure Pp(t) is greater than the submergence pressure
Ps so that the valves remain closed without any inflow or outflow all the time. In order to
simulate this state, the pressure is set as Ps ≤ Pp(t) ≤ Pd.

2.2.5. Parting Rod

The rod string may crack suffering from corrosion, mechanical vibration, and friction in
the down-hole after a long period of continuous work. In this working state, the polished rod
load is only related to the rod weight, vibration, and friction above the breakpoint because the
pump departs from the rod string. So, the Pp(t) is equal to 0, and only the department above
the breakpoint needs to be calculated in Equation (5) during the simulation.

3. Domain Adaptation Based on Generated Motor Power Curves

Although the labeled MPCs are supplemented with the mechanism model, the distri-
bution discrepancies between generated and collected MPCs limit the diagnosis accuracy.
A novel domain adaptation diagnostic network combining the mechanism analysis is
proposed in this section to tackle this issue. Considering the load characteristics of the SRPS
in one period, the pseudo-labels are assigned for the collected MPCs preliminarily. Then,
the conditional and marginal probability distribution of the generated and collected MPCs
are well aligned by distilling the domain-invariant features. That implements to acquire
knowledge from the generated MPCs to facilitate the diagnosis of collected MPCs. The
method’s detailed architecture and training process are discussed in the subsequent section.

3.1. Problem Setting

Benefiting from the dynamic mechanism analysis, the MPCs of different working
conditions are generated. However, the data-driven diagnosis methods trained with such
generated curves possibly fail in diagnosing actual curves even though the waves have
the same varying tendency under different conditions. The simplification and idealization
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in the mechanism simulation should be the main reason for the misdiagnosis. Take the
vibration simulation of the sucker rod as an example. The rod is divided into several indi-
vidually connected segments to simulate elastic deformation and vibration. The simulated
MPCs with different quantities of segments and a similar actual MPC are illustrated in
Figure 2.

(a) (b)

Figure 2. The comparison between the actual and generated MPCs with different segments of the rod.
(a) Generated power curves. (b) Actual power curve.

Dividing the rod into different segments changes the vibration analysis of the rod,
which in turn affects the transformation of the DCs to the MPCs. Similar simplified features,
e.g., gearbox vibrations, liquid flow rate, and crankshaft speed, lead to the difference
between the generated and actual curves collectively.

Inspired by the idea of domain adaptation, which can project the data from various
domains into a shared subspace, this section proposes an innovative fault diagnosis ap-
proach. It can leverage the knowledge learned from the generated MPCs with labels to
facilitate diagnosing actual unlabeled MPCs. In order to promote the features between the
generated and actual MPCs to be aligned, a domain classifier is built for marginal distribu-
tion adaptation. What is more, a conditional distribution discrepancy metric is employed
for conditional distribution adaptation. Therefore, the proposed domain adaptive method
not only considers all in-domain features as a whole for feature alignment but also ensures
category features of different domains to be aligned.

3.2. Network Architecture

According to the above-mentioned description, the generated MPCs with labels are
denoted as the source domain Ds = {(χs

i , ys
i )}

ns
i=1 of six categories of working conditions,

and the actual MPCs are denoted as the target domain Dt = {(χt
j)}

nt
j=1 without labels.

Leveraging the knowledge learned from Ds to facilitate diagnosing for Dt, the proposed
framework is illustrated in Figure 3. Overall, the methodology contains a feature generator
network fg with parameters θg, a domain classifier fd with parameters θd, a label classifier
fc with parameters θc, a conditional distribution discrepancy metrics M, and a pseudo-label
learning layer fP. The detailed description of the methodology is discussed as follows:

3.2.1. Pseudo-Label Learning Layer

Different from the marginal distribution, which does not require the category label,
conditional distribution needs the labels to adapt the category-level discrepancy. Unfortu-
nately, the samples in the target domain are unlabeled. Many existing approaches assign
pseudo-labels to these samples based on maximum predictive probability, clustering algo-
rithms, or pre-trained models trained with source domain samples. However, since the
initial pseudo-labels learned by these methods are inaccurate, some errors will be caused
by incorrect labels and accumulate with the strategy training, resulting in negative effects
on fault diagnosis. In this respect, a novel pseudo-label learning method combining the
mechanism analysis in the SRPS and the source domain samples is proposed to tackle
this problem.
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Figure 3. The framework of the proposed approach.

The mechanism analysis of the MPCs under different working conditions is summa-
rized as follows:

1. Normal working condition Y0: The MPCs of the upstroke and the downstroke are
relatively full with similar peaks. 2. Traveling valve leakage Y1: The leakage will delay
the increase of the pressure during the upstroke, resulting in the delayed opening of the
standing valve. Therefore, the power of the upstroke will be less than the normal working
condition. 3. Insufficient liquid supply Y2: The pump chamber can not be fulled in the
upstroke. During the downstroke, the load reduces in the initial stage of the opening of the
traveling valve. The load increases rapidly when the plunger hits the oil interface, resulting
in double peaks in the power curve. The average value of the MPC is also lower than the
normal power. 4. Gas affected Y3: Similar to the condition of insufficient liquid supply,
the pump chamber also can not be filled because of the superabundant gas dissolved in oil,
resulting in the lower average power in the downstroke. The difference is that more gas is
present to act as a buffer to the plunger, so there is no second peak in the downstroke. 5. Gas
locking Y4: The gas in the chamber makes the pressure insufficient to open the standing
and traveling valve, so the oil cannot be adequately discharged. During the downstroke,
the motor power curve will have negative values due to the gravity of the oil in the sucker
rod. 6. Parting rod Y5: The motor load is mainly caused by the crank and the weight of the
rod above the breakpoint. During the upstroke, the energy stored in the crank is more than
the requirement to uplift the remaining rod, resulting in the apparent negative power in
the MPC.

On the basis of the above analysis, the mechanistic pseudo-labels of the source domain
{ȳs

i }
ns
i=1 and the target domain {ȳt

j}
nt
j=1 are obtained as shown in Figure 4, where Pu and Pd

denote the power points of the upstroke and the downstroke in one stroke, respectively.
Nu and Nd denote the numbers of the points in the upstroke and the downstroke. a1 and a2
are set as 0.9 and 1.1.

With the help of mechanism analysis, the accuracy of the initial pseudo-labels is
improved. However, as the training continues, the accuracy of the classifier gradually
outperforms the mechanical analysis. Therefore, we design the pseudo-label learning layer
based on the comparison between the accuracy of the mechanical analysis Pm and the
accuracy of the classifier in the current epoch Pc with the date of the source domain. The
Pm and Pc can be calculated as follows:

Pm =
1

Ns

N

∑
n=1
L(ys

i , ys
i ), (14)



Mathematics 2022, 10, 1224 10 of 22

Pc =
1

Ns

N

∑
n=1
L( fc( fg(χ

s
i , θg), θc), ys

i ), (15)

where L(,) denotes the cross-entropy loss function.

Figure 4. Pseudo-label learning based on the mechanism analysis.

The final pseudo-labels in the target domain ŷj
t can be obtained as follows:

ŷt
j =

{
yt

j, Pm ≥ Pc.
fc( fg(χt

j, θg), θc), Pm < Pc.
(16)

The target domain with the pseudo-labels are defined as D̂t = {(χt
j, ŷt

j)}
nt
j=1.

3.2.2. Feature Generator Network

Inspired by the great nonlinear characterization capabilities of convolutional neural
network (CNN), 1-D CNN specializing in the time-series signal is selected to extract features
from the generated and actual power curves. The feature generator is implemented based
on a 3-layer 1-D CNN associated with a fully connected layer (FC), whose structure is
detailed in Table 1.

Table 1. The structure of the feature generator network.

Layer
Type

Activation
Function

Kernel
Number

Kernel Size
× Stride

Output
Size

Input / / / (1024, 1)
Conv1 Relu 16 64 × 1 (16, 1024, 1)

MaxPooling1 / 16 2 × 2 (16, 512, 1)
Conv2 Relu 32 5 × 1 (32, 512, 1)

MaxPooling2 / 32 2 × 2 (32, 256, 1)
Conv3 Relu 64 5 × 1 (64, 256, 1)

MaxPooling3 / 64 2 × 2 (64, 128, 1)
Flatten / / / (8192, 1)

FC Relu 1024 / (1024, 1)

3.2.3. Label Classifier

The label classifiers aim to recognize the working condition and direct the feature
generator to retain the information of each working condition. As illustrated in Figure 3,
the label classifier consists of one hidden layer with the neurons of 256 and one output
layer with the Softmax as the activation function. The dropout ratio is set as 0.5. For the
classifier of the source domain Ds = {(χs

i , ys
i )}

ns
i=1, the desired objective function can be

defined as
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Lc =
1

Ns
∑

χi ,yi∈Ds

L( fc( fg(χi, θg), θc), yi). (17)

It is noteworthy that the classifier of the target domain is not involved in the back-
propagation. It is only used for pseudo-label learning, and its parameters are kept the same
as the parameters of the source domain label classifier.

3.2.4. Domain Classifier

In order to direct the feature generator to extract the domain-invariant features, a do-
main classifier fd is designed by following the idea of DANN [21]. The fd consists of three
FCs with neurons as 1024-256-1. The output is a binary classifier that outputs 0 for all target
samples and 1 for all source samples. The desired objective function can be defined as

Ld =
1

Ns + Nt
∑

χi ,ẏi∈Ds
⋃
Dt

L( fd( fg(χi, θg), θd), ẏi), (18)

where ẏi denotes the domain label.

3.2.5. Conditional Distribution Discrepancy Metrics

Regarding all the samples in one domain as one class, the marginal distributions can
be well aligned by the domain classifier. However, only adapting the marginal distributions
is insufficient, since the discriminative hyperplane may differ for diverse domain tasks.
The conditional distribution adaptation, which aims to match the discriminative structures
between source and target data, is also indispensable and highly effective. With the
aid of the pseudo-label learning layer, pseudo-labels for target data can be preliminarily
supplied. Defining C as the total number of categories and the category c ∈ {Y0, Y1 · · · , Y5},
the distance index, MMD, can be designed to measure the discrepancy of conditional
distributions Ds and D̂t as

DM =
C

∑
c=1
‖ 1

nc
s

∑
χi∈Ds

fg(χi|yi = c, θg)−
1
nc

t
∑

χj∈D̂t

fg(χj|ŷj = c, θg)‖2
H, (19)

where ‖ · ‖H represents the Reproducing Kernel Hilbert Space.

3.3. Optimization

According to the network losses discussed above, the optimization objective of the
proposed MADAN is summarized as

L = Lc − λ1Ld + λ2DM, (20)

where the hyperparameters λ1 and λ2 indicate the penalty coefficient for different loss
functions. A gradient reversal layer (GRL) [33] is placed before the domain classifier
to receive the gradient of Ld by multiplying a negative factor. The network is updated
employing the adaptive moment estimation optimizer (Adam) with the learning rate τ,
which is set to 0.001. The parameters θg, θc , and θd are updated simultaneously at each
step as 

θg ← θg − τ(
∂Lc

∂θg
− λ1

∂Ld
∂θg

+ λ2
∂DM
∂θg

),

θc ← θc − τ
∂Lc

∂θc
,

θd ← θd − τλ1
∂Ld
∂θd

.

(21)
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With the updates of the parameters, the extracted features are domain-invariant and
discriminative simultaneously. The label classifier not only can predict labels for generated
MPCs but also is available for the collected MPCs.

4. Industrial Experiments

A series of industrial experiments are conducted in this section with the MPCs collected
in SRPS with self-developed equipment to verify the feasibility of the proposed mathematic
model and the diagnosis method in practical application scenarios. The generated MPCs
with the mathematic model are discussed with the mechanical characteristics and compared
with the collected MPCs under different working conditions. Moreover, we compare the
MADAN with some baseline methods in the field of DA to demonstrate the effectiveness
of the improvement in practical applications.

4.1. Data Collection

As illustrated in Figure 5, the portable device developed by the authors’ team in
Northeastern University implements the MPCs acquisition by collecting the three-phase
current and voltage of the motor. The device consists of five core units as follows:

1. Power acquisition unit: realize the motor power calculation with the help of the ATT7022B.
2. Transmission unit: realize remote query and parameter adjustment on mobiles

and computers.
3. Human–machine interaction unit: a touch screen is equipped to facilitate parameter

entry, data query, and data display.
4. Data storage unit: it is used to store the collected and calculated data and parameters.
5. Data processing unit: with the help of the XC7Z020CLG400 chip, it implements the

core calculation, including the trained diagnostic model, device operation, etc.

Figure 5. A self-developed data acquisition and analysis equipment employed in the SRPS.
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After long-term practice, 300 groups of MPCs are collected from seven oil wells with
the same mechanical parameters as shown in Table 2. All simulations are implemented
in the MATLAB and Pytorch framework and conducted on a workstation with a Core
i7-9700K CPU@3.60 GHz and a GTX2080TI GPU with 11-GB memory.

Table 2. The main parameters of the test well.

Parameters Value Parameters Value

Well CYJ14-5-73HB Moter Y250M-6
A1/mm 7000 n/min−1 4
A2/mm 3110 Ps/atm 120
C/mm 5790 Pd/atm 180
B/mm 7210 γg:γw:γo 0.1:0.2:0.2
G/mm 1460 dp/mm 44
D/mm 3110 dr/mm 22
R/mm 1270 Sp/mm2 1520
Wck/kg 5374

∫
li/m 1600

Wcb/kg 5378
∫

Mi/kg 5139.2
Wub/kg 1229 Mmol/g·mol−1 16

4.2. Validation of the Generated Motor Power Curves

According to the working and mechanical parameters listed in Table 2, the analysis
results of six working conditions generated with the model in Section 2 are illustrated in
Figures 6–11. Each working state contains four sub-figures. The first sub-figures express the
variation curves of the crucial variables in the pump containing the chamber volume, oil
and water volume, the pressure, and the flow rate through the standing valve. The second
and third sub-figures illustrate the generated DCs and MPCs under different working
conditions. The fourth sub-figures are typical MPCs selected from the collected samples in
practical scenarios.

(a) (b)

(c) (d)

Figure 6. Normal working state. (a) Pump simulation. (b) Generated DC. (c) Generated MPC. (d)
Actual MPC.
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(a) (b)

(c) (d)

Figure 7. Traveling valve leakage working state. (a) Pump simulation. (b) Generated DC. (c)
Generated MPC. (d) Actual MPC.

(a) (b)

(c) (d)

Figure 8. Insufficient liquid supply working state. (a) Pump simulation. (b) Generated DC. (c) Gener-
ated MPC. (d) Actual MPC.
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(a) (b)

(c) (d)

Figure 9. Gas affected working state. (a) Pump simulation. (b) Generated DC. (c) Generated MPC.
(d) Actual MPC.

(a) (b)

(c) (d)

Figure 10. Gas locking working state. (a) Pump simulation. (b) Generated DC. (c) Generated MPC.
(d) Actual MPC.
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(a) (b)

(c) (d)

Figure 11. Parting rod working state. (a) Pump simulation. (b) Generated DC. (c) Generated MPC.
(d) Actual MPC.

As illustrated in the figures, the variation of essential parameters is consistent with
the settings in Section 2.2. The characteristics embodied in the generated DCs under
the different working conditions conform to the historical experience learned from the
extensive data collected in different practical application scenarios. The generated and
measured power curves have similar trends, and their characteristics are consistent with
the previous mechanical analysis in Section 3.2.1. These results verify the rationality of the
model on the mechanism analysis.

In order to take a more in-depth validity on the quantitative analysis, 50 samples of
the MPCs under each working condition are generated as the training data by adjusting
the downhole parameters to diagnose 300 groups of collected samples, which are testing
data. The diagnostic method employs the mechanical feature extraction combined with the
conditional random field (MCRF), which is mentioned in [6]. The experimental result is
presented in Figure 12, where the diagnostic accuracy achieves 73% without the help of
collected samples at all. This demonstrates the effectiveness of the generated data. However,
the diagnostic accuracy does not meet the industrial requirement. The main reason mainly
includes two aspects. On the one hand, limited by the insufficiency of the mechanism
feature extraction method, some MPCs of critical working conditions are difficult to identify.
On the other hand, the generated samples deviate from the actual samples’ distribution
because of the model’s simplifications and interference in the data acquisition.

Moreover, the collected data are divided into two parts, where 240 groups are ran-
domly selected as the training set, and the remaining 60 groups are the testing set. To
comprehensively investigate the generated data, we set various scenarios with different
amounts of generated samples adding to the training set of the collected data to monitor
the working conditions in the SRPS. Three methods named 1-D CNN, CNN, and MCRF
are selected from three perspectives of time-series, image, and mechanism to conduct
experiments. The diagnostic results are shown in Table 3.

As illustrated in Table 3, the diagnosis accuracy presents an upward trend as the
generated samples are added to the original training set. Machine learning is more capable
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of extracting features than mechanistic feature analysis, and the time-series-based approach
is more applicable to the MPCs than the curves acting as pictures.

Figure 12. The confusion matrices of diagnosis result.

Table 3. Diagnostic results with different amount of generated samples.

Method A B C D E

Collected samples 0 240 240 240 240
Generated samples 300 0 150 300 450

1-D CNN 0.747 0.863 0.907 0.933 0.94
CNN 0.713 0.843 0.883 0.90 0.9133

MCRF 0.733 0.837 0.883 0.893 0.9067

4.3. Diagnosis Based on Domain Adaptation

In this section, the proposed MADAN is employed to minimize the distribution
discrepancy across domains in practical application scenarios. Since the new conditional
metrics and pseudo-label learning strategy are appended to the objective function for the
distribution alignment, the convergence analysis is imperative to illustrate the stability and
transfer ability. As shown in Figure 13a, the discrepancy in diagnostic accuracy between
the source and target domain gradually decreases with the iteration of optimization, which
illustrates the effectiveness of the feature generator network in bridging the distribution
discrepancy. In addition, the accuracy curves converge rapidly and finally approach 1,
which demonstrates the superiority of this method in industrial diagnosis.

(a) (b)

Figure 13. The trend of training accuracy and loss on the MADAN. (a) Accuracy. (b) Loss.

Furthermore, the training loss including classification loss (classifier_loss), domain
classifier error (adversarial_loss), and conditional distribution loss (distance_loss) are
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plotted in Figure 13b, respectively. It can be found that the classification loss is gradually
decreasing with the increasing of training epoch and finally approaches 0. The reciprocal
oscillation of the adversarial loss illustrates that the domain classifier efficiently guides
the feature generator network to explore domain-invariant features. This is because the
feature extraction network keeps improving the information extraction capability under
the requirement of the classifier error reduction, which makes the domain classifier keep
improving the ability to discriminate domain features to inhibit the feature extraction
network from retaining domain-related information. The conditional distribution loss
presents a gradual declining trend. This demonstrates that the conditional distribution
discrepancy is gradually disappearing.

For comparison purposes, several state-of-the-art methods are considered for com-
parisons with the MADAN, including 1-D CNN, DANN [21], DATLN [22], DTN [30], and
MiDAN [24]. In order to make a fair comparison, all the compared methods adopt the
same 1-D CNN architectures to explore features. The details of the compared methods are
presented in Table 4, where MDA denotes the marginal distributions alignment and CDA
denotes the conditional distributions alignment.

Table 4. Detailed description of the compared methods.

Method MDA CDA Pseudo-Labels

1-D CNN / / /
DANN MMD / /
DATLN MMD + Adversail / /

DTN MMD MMD Pre-train network
MiDAN Adversail MMD Pre-train network

MADAN (ours) Adversail MMD Mechanism + Classifier

The diagnostic result is an average of five random tests, where the testing set is
60 groups randomly split from the 300 groups of collected MPCs. To comprehensively show
the capabilities of the proposed method, three evaluation indicators including Accuracy,
F1-score, and MCC are selected to assess the performance of each method. The expressions
of the MCC are defined as follows:

MCC =
TN × TP− FN × FP√

(TF + TP)(FN + TN)(TP + FN)(FP + TN)
. (22)

The results are listed in Table 5.

Table 5. Comparison research under various methodologies.

Method Accuracy (%) F1 (%) MCC (%)

1-D CNN 83.33 83.25 79.9
DANN 91.67 91.38 89.69
DATLN 92.33 92.17 90.58

DTN 95.33 95.34 94.39
MiDAN 97 97.03 96.42

MADAN (ours) 98.33 98.51 98.17

As the results show, the MADAN performs better than other diagnostic methodologies
in all evaluation indicators. Concretely, t-distributed stochastic neighbor embedding (t-
SNE) is employed to demonstrate visual insights into the distribution discrepancy of
features distilled by different methods from the generated and collected MPC. The t-SNE
visualization for the original data and the features after the alignment by the methods
mentioned above are illustrated in Figure 14.

From Table 5 and Figure 14, some results can be clearly obtained. Firstly, in terms
of classification performance, the outlier source samples are much less with the help of
transfer learning. In addition, the MADAN can better cluster the same categories and
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separate different categories than the other methods. Secondly, in terms of the marginal
distributions alignment, the adversarial training is superior to the MMD, where Figure 14c,e
correspond to Figure 14b,d, respectively. Thirdly, in terms of the conditional distributions
alignment, the data in different domains within each category are more evenly distributed,
where Figure 14d–f correspond to Figure 14a–c. Fourthly, in terms of pseudo-label learning,
despite MiDAN having achieved good results, our MADAN performs better in the same
number of iterations due to the higher pseudo-label accuracy resulting from assisted
mechanisms during the initial training. From the analysis and discussion above, it can
be seen that the proposed MADAN can effectively bridge the distribution discrepancy,
resulting in better diagnosis performance in practical application scenarios.

(a) (b) (c) (d)

(e) (f) (g)

Figure 14. T-SNE feature visualization. (a) Source sample. (b) 1-D CNN. (c) DANN. (d) DATLN. (e)
DTN. (f) MiDAN. (g) MADAN (ours).

5. Conclusions

The motor power as an easily collected signal contains information about the working
status of the SRPS. In order to tackle the issue of an insufficiently labeled MPC database due
to the early stage of the electrical parameters research on the SRPS, this paper has proposed
an unsupervised fault diagnosis methodology named MADAN to leverage the generated
MPCs of different working conditions to diagnose the actual MPCs. Firstly, an integrated
dynamics mathematical model has been established to generate the MPCs under different
working conditions. Secondly, a mechanism-assisted pseudo-label learning strategy and a
conditional distribution discrepancy metric have been added to the adversarial domain
adaptation model to bridge the marginal and conditional distribution discrepancy of the
generated and collected MPCs. Finally, a set of actual MPCs collected by self-developed
portable devices has been utilized to verify the feasibility of the proposed methodology.
The experimental results indicated that the generated and the actual MPCs had similar
trends, and the MADAN can effectively utilize the generated and actual unlabeled MPCs
to realize the power fault diagnosis of oil wells.
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Abbreviations
The following abbreviations are used in this manuscript:

bi Damping coefficient of ith rod string
C0C1C2C3 Constant
Ch Henry’s law constant
Cl Perimeter of the rod string and pump
dp Diameter of pump
dr Diameter of sucker rod
F Polished rod load
Fc Crank torque
fi Friction coefficient of ith rod string
fd Friction coefficient of plunger
ki ith rod modulus of elasticity
li Length of ith rod string
Mi Mass of ith rod string
M f g Mass of free gas in pump
Mg Mass of whole gas in pump
Mo Mass of oil in pump
Mmol Molar mass of methane
Mw Mass of water in pump
n Times of stroke
nm Motor speed
Pm Motor power
Pd Discharge pressure of the pump
Pp Load on the plunger
Ps Submergence pressure (Mpa)
Q Flow rate though standing valve
Rck Weight radius of crankshaft
S Displacement of sucker rod node
Sr Are of sucker rod
Slt Leaked area of traveling valve
Ss Passage area of standing valve
St Passage area of traveling valve
Sp Passage area of plunger
Td Absolute temperature
TF Torque factor
Vo Volume of oil in the pump
Vp Volume of the pump
Vw Volume of water in the pump
Wcb Balanced weight of crankshaft
Wck Weight of crankshaft
Wub Counterbalance weight
γg Gas mass ratio of produced fluid
γo Oil mass ratio of produced fluid
γw Water mass ratio of produced fluid
δg Gas solubility
ηb Efficiency of four-bar linkage
ηm Efficiency of motor and reduction gearbox
ξ Gas related constant
ρl Density of produced fluid
ρo Density of oil
ρw Density of water
σv Damping coefficient of standing valve
ω Angular velocity of crankshaft
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