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Abstract: This paper studies the number of small limit cycles produced around an elementary center
for Hamiltonian differential systems with the elliptic Hamiltonian function H = 1

2 y2 + 1
2 x2 − 2

3 x3 +
a
4 x4(a 6= 0) under two types of polynomial perturbations of degree m, respectively. It is proved
that the Hamiltonian system perturbed in Liénard systems can have at least [ 3m−1

4 ] small limit
cycles near the center, where m ≤ 101, and that the related near-Hamiltonian system with general
polynomial perturbations can have at least m+ [m+1

2 ]− 2 small-amplitude limit cycles, where m ≤ 16.
Furthermore, in any of the cases, the bounds for limit cycles can be reached by studying the isolated
zeros of the corresponding first order Melnikov functions and with the help of Maple programs. Here,
[·] represents the integer function.

Keywords: Liénard system; near-Hamiltonian system; Hopf bifurcation; elementary center
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1. Introduction and Statement of the Main Results

The famous Hilbert’s 16th problem is one of the 23 problems posed by the German
mathematician David Hilbert [1] in 1900. The second part of Hilbert’s 16th problem is
finding the maximum number of limit cycles in a planar polynomial vector field of degree
m and investigating their relative positions. Up to now, this problem also remains unsolved,
even for m = 2. In 1977, Arnold [2] proposed a weaker version on Hilbert’s 16th Problem
and that can be stated as follows: Consider a polynomial 1-form ω := Q(x, y)dx− P(x, y)dy
with real polynomials P(x, y) and Q(x, y) of degree m in x and y. Then, the problem is
finding the maximum number of isolated zeroes of Abelian integrals

∫
Γh

ω, where Γh’s
are the compact level curves of polynomials with a given degree. The so-called Poincaré–
Pontrjagin theorem shows that the number of isolated zeros of the Abelian integrals is
a lower bound of the maximum number of limit cycles of a near-Hamiltonian system of
the form

ẋ = Hy(x, y) + εP(x, y), ẏ = −Hx + εQ(x, y), (1)

where the Hamiltonian H(x, y) is a real polynomial of degree n+ 1. The first order Melnikov
function (the Abelian integrals) relevant to the perturbed system (1) is

M(h) =
∫

Γh

Q(x, y)dx− P(x, y)dy, (2)

where Γh is a real oval H(x, y) = h. Though finding the number of zeros of the Abelian
integrals is a weaker problem of the Hilbert’s 16th problem, it is still difficult; see [3].
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Smale proposed another restricted version of the Hilbert’s 16th problem, which is to
study the maximum number of limit cycles in polynomial Liénard system

ẋ = y, ẏ = −g(x)− y f (x) (3)

with g(x) = x and their relative positions, which is called Smale’s 13th problem [4]. For
the classical Liénard system, Lins et al. [5] showed it has [m

2 ] limit cycles locally and
conjectured that the number is possibly the maximum number for the global case. Later,
De Maesschalck and Dumortier [6] proved it has at least [m

2 ] + 1 limit cycles for m ≥ 5 by a
geometric singular perturbation theory.

Smale’s 13th problem was also extended to the generalized Liénard system; see [7–12]
and the references therein. Most of those cases study the maximum number of small
amplitude limit cycles bifurcating from a center or a focus. Llibre et al. [13] exhibited that
the generalized Liénard system (3) can have at least [m+n−1

2 ] small amplitude limit cycles
by averaging theory of first, second, and third order. For the system (3) with a quadratic
polynomial g(x), the authors in [14,15] proved that the Hopf cyclicity is [ 2m+1

3 ]. For the
system (3) with a cubic polynomial g(x), Christopher and Lynch [14] showed that the Hopf
cyclicity is 2[ 3(m+2)

8 ] for 1 < m ≤ 50 using Lyapunov quantities being the coefficients of the
monomials (x2 + y2)i in the total derivative of the Lyapunov function along trajectories
associated with system (3).

The origin is an elementary center for a Hamiltonian system ẋ = Hy(x, y), ẏ = −Hx(x, y) if

the origin is a singularity and the eigenvalues of the matrix ∂(Hy ,−Hx)

∂(x,y) (0, 0) are pure imaginary.
Gavrilov and Iliev [8] studied the limit cycles of polynomial near-Hamiltonian sys-

tems (1) with the Hamiltonian

H =
1
2

y2 +
1
2

x2 − 2
3

x3 +
a
4

x4, a 6= 0,
8
9

, (4)

which have four topological structures: a < 0 saddle-loop, 0 < a < 1 eight loop, a = 1
cuspidal loop, and a > 1 global center. Tian et al. [11] considered the generalized Liénard
system (3) where g(x) = Hx(x, y) satisfy (4) with a = 8

9 , and proved that the Hopf cyclicity
at the origin is [ 3m+2

4 ] using involution.
The paper is concerned about the Hamiltonian system with the Hamiltonian (4) having

four topological structures, and finds a lower bound for the maximum number of limit
cycles appearing from a center under perturbations using a different method. Consider a
generalized Liénard system of the form

ẋ = y, ẏ = −g(x) + εy f (x), (5)

where f (x) and g(x) are polynomials of degree m and 3, respectively. Our first result is
the following.

Theorem 1. When a = −1, 1
2 , 1 or 2, there exist Liénard differential systems of the form (5) with

g(x) = x(1− 2x + ax2), which have [ 3m+2
4 ] small amplitude limit cycles bifurcating from the

origin with m = deg( f ) ≤ 100.

Here, we study a weakened version (5) of the generalized Liénard system (3). The
number of limit cycles from a center that we obtain is the same as the Hopf cyclicity in [11]
with a = 8

9 , and is attainable in each case of four topological structures of the unperturbed
Hamiltonian system. In addition, Wei et al. [12] investigated the Liénard system (5) via the
first order Melnikov function, whose the unperturbed system has the Hamiltonian one

H(x, y) =
1
2

y2 − 1
2

x2 +
1
4

x4, (6)
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including two elementary centers and a double homoclinic loop, and which can have
3[m−2

5 ] + 1 + mod(mod(m − 2, 5), 2) limit cycles inside a single homoclinic loop, with
[m−2

5 ] + mod(mod(m− 2, 5), 4) small limit cycles near the elementary center inside the
loop. The sign mod(a, b) stands for the remainder of a divided by b. It is easy to see that
the number of limit cycles from the center is better than that of [12].

Get back to the weakened Hilbert’s 16th problem, and look at Newtonian mechan-
ical problems restricting the Hamiltonian to the form H(x, y) = y2 + Fn+1(x). For the
Hamiltonian H(x, y) = y2 + x4 − x2 − λx having two elementary centers and a double
loop to a hyperbolic saddle, Petrov [16] in 1990 proved that the number of zeros of ellip-
tic integrals (2) corresponding to the near-Hamiltonian system (1) in a single loop is not
more than m + [m−3

2 ], and system (1) exists such that the integrals have at least m + [m−3
2 ]

zeros. Zhao and Zhang [17] in 1999 provided an upper bound 7m + 5 of the number
of isolated zeros of Abelian integrals associated with the system (1) whose Hamiltonian
H(x, y) = y2 + Fn+1(x) of degree 4 has at least one center. Liu [18] in 2003 affirmed in the
case of the Hamiltonian H(x, y) = y2 + x4 − x2 − λx that the total number of zeros of the
integrals over two periodic annuli inside an eight-loop does not exceed 4[m+1

2 ]− 1, and
that the number in the periodic annulus outside the eight-loop does not exceed 4[m+1

2 ] + 1.
Tian and Han [19] exhibited that system (1) with the Hamiltonian (6) can have [ 7m−6

3 ] limit
cycles obtained by studying the isolated zeros of Abelian integrals for m = 3, 5, 7, 9, being
comprised of m− 1 limit cycles inside each of a single loop and [m

3 ] limit cycles outside
the double loop. In this paper, we continue to study limit cycles for the cubic Hamiltonian
system under m degree polynomial perturbations via zeros of the Abelian integrals. Our
second result is the following.

Theorem 2. When a = −1, 1
2 , 1 or 2, near-Hamiltonian systems of the form (1) exist with the

Hamiltonian (4) which have m + [m−3
2 ] small amplitude limit cycles surrounding the origin with

m ≤ 16.

We note that the number of limit cycles is gained by the isolated zeros of the Abelian
integrals in accordance with that of [16]. These limit cycles are located within a homoclinic
loop in [16], but in this paper only near an elementary center for each case of four topological
structures of the unperturbed Hamiltonian system.

The number of limit cycles in each of the above two theorems is realizable by calcu-
lations with the help of Maple programs in Section 3. These programs are theoretically
efficient for all m’s. Thus, we conjecture that conclusions in Theorems 1 and 2 hold for
all m’s.

In addition, the Maple programs are operational for all a, and one can obtain the lower
bound of the number of limit cycles for the near-Hamiltonian system (1) or the generalized
Liénard system (5) with the Hamiltonian (4) provided a.

To study small limit cycles produced around an elementary center under small per-
turbations, one can use Melnikov functions [20–22], focus values [23,24], or the averaging
method [25,26]. In order to prove Theorem 1, we shall study the Melnikov function for
system (5) and present another algorithm to compute the coefficients of its corresponding
asymptotic expansion, which will be shown in Theorem 2.

This paper is organized as follows: Section 2 shows some preliminary work to prove
our main results. In Section 3, we will prove Theorems 1 and 2. And the section will
provide two Maple programs used to compute the rank of Jacobian matrices.

2. Preliminaries

Consider an analytic near-Hamiltonian system of the form:{
ẋ = Hy(x, y) + εP0(x, y, δ),
ẏ = −Hx(x, y) + εQ0(x, y, δ),

(7)
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where H, P0, Q0 ∈ Cω(R2), ε ≥ 0 is a small perturbation parameter and δ ∈ D ⊂ Rm

is a vector valued parameter with D a compact subset. Suppose that the unperturbed
system (7)|ε=0 has an elementary center C enclosed by a period annulus U. Set hc := H(C),
and I := {h = H(x, y) : (x, y) ∈ U}.

It is well known that the first order Melnikov function M(h, δ) near an elementary
center for the system (7) is analytic at the end point hc, see [27,28]. One can have the
following lemma.

Lemma 1. For the analytic near-Hamiltonian system (7) whose unperturbed system has an elemen-
tary center, the first order Melnikov function near the center has the expansion

M(h, δ) = ∑
j≥0

C0
j (δ)(h− hc)

j+1, h ∈ U(hc, τ) ∩ I, (8)

where 0 < τ � 1, U(hc, τ) stands for a neighborhood of hc, and

C0
0 =

2π

β

(
∂P0

∂x
+

∂Q0

∂y

)∣∣∣∣
(C,δ),
ε=0

with the eigenvalues ±iβ(β > 0) of the center.

Han et al. [21] in 2009 established an algorithm to compute higher order coefficients
C0

j in the first order Melnikov function by developing a Maple program. Later, Tian and
Han [19] and Wei and Zhang [29] characterized definitely all coefficients with the help of a
homoclinic loop. The characteristics still keep in the case of an elementary center without
other conditions.

For the analytic near-Hamiltonian system (7) with analytic perturbations Pi and Qi,
i ∈ N, instead of P0 and Q0, one has a new near-Hamiltonian system{

ẋ = Hy(x, y) + εPi(x, y, δ),
ẏ = −Hx(x, y) + εQi(x, y, δ).

It follows from Lemma 1 that the first order Melnikov function near the center C has
the expansion of the form

Mi(h, δ) = ∑
j≥0

Ci
j(δ)(h− hc)

j+1, h ∈ U(hc, τ) ∩ I, (9)

with Ci
0 = 2π

β

(
∂Pi
∂x + ∂Qi

∂y

)∣∣∣
(C,δ),ε=0

.

Set

Mi
l :=

{
δ ∈ D| Ci

j(δ) = 0, j = 0, 1, · · · , l
}

.

The feature of the coefficients is stated as follows.

Lemma 2. For the analytic near-Hamiltonian system (7), whose unperturbed system has an elemen-
tary center, assume that there exist analytic functions Pi(x, y, δ) and Qi(x, y, δ) for i = 1, 2, · · · , r,
such that, for δ ∈ ∆i−1

0 , the following equality holds:(
∂Pi−1

∂x
+

∂Qi−1

∂y

)
(x, y, δ) =

∂H(x, y)
∂x

Pi(x, y, δ) +
∂H(x, y)

∂y
Qi(x, y, δ), (10)
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in a neighborhood of the center. Then, the coefficients of the first order Melnikov functions (8) of
system (7) satisfy

C0
i

∣∣∣
M0

i−1

=
1

(i + 1)!
Ci

0,

where Ci
0’s are given in (9).

In [19], (10) was introduced to study the coefficients in the corresponding expansions
of the first order Melnikov functions for bifurcations of limit cycles around an elementary
center and a homoclinic loop. This idea was extended to the investigation of limit cycles
near a homoclinic loop with a nilpotent singularity in [29] and near a heteroclinic loop
in [30], respectively. In Lemma 2, we only focus on finding small-amplitude limit cycles
near a center. The next lemma can be found in [27] or Corollary 2.4.1 in [31].

Lemma 3. For the analytic near-Hamiltonian system (7) whose unperturbed system has an elemen-
tary center, supposing that a positive integer n and δ0 ∈ D ⊂ Rs with D bounded and s ≥ n exist,
such that

C0
i (δ0) = 0, i = 0, · · · , n− 1, C0

n(δ0) 6= 0, and det
∂(C0

0 , C0
1 , C0

2 , · · · , C0
n−1)

∂(δ1, · · · , δn)
(δ0) 6= 0,

where δ = (δ1, δ2, · · · , δs); then, for any ε0 > 0 and any neighborhood V of the elementary center,
system (7) in V has precisely n limit cycles for some (ε, δ) satisfying 0 < ε < ε0 and |δ− δ0| < ε0.

Hopf bifurcation by the feature in Lemma 2 follows immediately. Set

Ci := C0
0 , for i = 0, and Ci := C0

i |∆0
i−1

, for i > 0. (11)

Theorem 3. Let the assumptions in Lemma 2 hold. If δ0 ∈ Rs exists, and a positive integer n
such that

Ci(δ0) = 0, i = 0, · · · , n− 1, Cn(δ0) 6= 0, and rank
∂(C0, C1, C2, · · · , Cn−1)

∂(δ1, · · · , δs)
(δ0) = n,

then system (7) has exactly n limit cycles near an elementary center for some (ε, δ) near (0, δ0).

Proof. To study isolated zeros of the first order Melnikov function (Abelian integrals) (2),
we display the relations between Ci and C0

i , of the coefficients in the Melnikov function.
It follows from (11) that C0

0 = C0, and consequently for i ≥ 1

C0
i = C0

i

∣∣∣
∆0

i−1,

+ O
(
|C0

0 , C0
1 , · · · , C0

i−1|
)
= Ci + O

(
|C0

0 , C0
1 , · · · , C0

i−1|
)

.

By induction, one obtains that O
(
|C0

0 , C0
1 , · · · , C0

i−1|
)
= O(|C0, C1, · · · , Ci−1|) for each

i ≥ 1. Namely,

C0
i = Ci + O(|C0, C1, · · · , Ci−1|),

satisfying the conditions in Lemma 3. We finish the proof.

We note that the number of limit cycles in Theorem 3 is obtained from the perspective
of theoretical analysis. The theorem can be applied to the Liénard system (5) or the
near-Hamiltonian system (1) with a specific unperturbed Hamiltonian system having an
elementary center. However, it is difficult to show definite expressions for the perturbations
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such that systems (5) or (1) have a certain number of limit cycles, since we can take
C0, C1, · · · , Cn−1 as free parameters such that

|Cj| � |Cj+1| � 1 and Cj · Cj+1 < 0, j = 0, 1, · · · , n− 2.

In addition, then

|C0
j | � |C

0
j+1| � 1 and C0

j · C
0
j+1 < 0, j = 0, 1, · · · , n− 2,

hold theoretically. However, in practice, it is not easy to guarantee the relation |C0
j | � |C

0
j+1|

due to the term O
(
|C0, C1, · · · , Cj−1|

)
.

To simplify calculations for some specific systems, we show the following corollary further.

Corollary 1. Let the assumptions in Lemma 2 hold. If there exists a positive integer n such that

rank
∂(C0, C1, C2, · · · , Cn)

∂(δ1, · · · , δs)
= n + 1,

where δ = (δ1, δ2, · · · , δs) ∈ Rs, then system (7) has n limit cycles near the elementary center for
some (ε, δ).

3. Proofs of Theorems 1 and 2

The Hamiltonian (4) with a 6= 0 of the unperturbed system (5)|ε=0 or (1)|ε=0 consists
of an elementary center at the origin.

Proof of Theorem 1. Consider the Liénard differential system (5) with a polynomial
fm = ∑m

i=0 bixi. By Lemma 1, one has

C0 = 2πb0. (12)

Using Taylor expansion at x = 0 yields

1
1− 2x + ax2 =

∞

∑
j=0

xj(2− ax)j =
∞

∑
l=0

xlSl , (13)

where Sl =
l

∑
j=[ l+1

2 ]

j!(−a)l−j ·22j−l

(l−j)!(2j−l)! .

Since P0 = 0 and Q0 = fm(x)y. In the light of the condition ∆0
0 in Theorem 2, being

fm(0) = 0, the equality (10) holds by taking

P1 =
fm(x)|∆0

0

x(1− 2x + ax2)
and Q1 = 0,

which gives

P1 =
∞

∑
l=0

b1
l xl

in a neighborhood of zero, where

b1
l =

{
∑l

j=0 bj+1Sl−j, for 0 ≤ l ≤ m− 1,

∑m−1
j=0 bj+1Sl−j, for l ≥ m,

with Sl given in (13).
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Set

Pi−1 :=
∞

∑
l=0

bi−1
l xl and Qi−1 := 0

for i ≥ 2 in a neighborhood of zero. It follows from the condition ∆i−1
0 and the equality

(10) that

Pi =
∞

∑
l=0

bi
l x

l and Qi = 0

in a neighborhood of zero, where

bi
l =

l

∑
j=0

(j + 2)bi−1
j+2Sl−j

for all l’s.
By induction, one has for 1 ≤ i ≤ [m

2 ]

bi
1 =

i−1

∏
j=1

AjBi(b1, b2, · · · , b2i)
T , (14)

and, for i > [m
2 ]

bi
1 =

i−1

∏
j=1

AjBi(b1, b2, · · · , bm)
T , (15)

where A1 = (2S1, 3S0), Aj’s are the (2j− 1)× (2j) matrices

Aj =


2S2 3S1 4S0 0 · · · 0
2S3 3S2 4S1 5S0 · · · 0
2S4 3S3 4S2 5S1 · · · 0

...
...

...
. . .

...
2S2j−1 3S2j−2 4S2j−3 5S2j−4 · · · (2j + 1)S0

,

for 2 ≤ j ≤ i− 1, and B1 = (S1, S0), Bi’s are the (2i− 2)× (2i) matrices

Bi =


S2 S1 S0 0 · · · 0
S3 S2 S1 S0 · · · 0
S4 S3 S2 S1 · · · 0
...

...
...

. . .
...

S2i−1 S2i−2 S2i−3 S2i−4 · · · S0

,

for 2 ≤ i ≤ [m
2 ], and Bi’s are the (2i− 2)×m matrices

Bi =



S2 S1 S0 0 · · · 0
S3 S2 S1 S0 · · · 0
S4 S3 S2 S1 · · · 0
...

...
...

. . .
...

Sm−1 Sm−2 Sm−3 Sm−4 · · · S0
Sm Sm−1 Sm−2 Sm−3 · · · S1
...

...
...

. . .
...

S2i−1 S2i−2 S2i−3 S2i−4 · · · S2i−m


,
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for i > [m
2 ] with Sl given by (13). Noting that the expression ∏i−1

j=1 Aj in (14) or (15)
represents an identity matrix for i = 1.

According to Lemma 2 and the expressions (9) and (11), one obtains

Ci =
2π

(i + 1)!
bi

1.

Substituting (14) and (15) into the last expression, one obtains

Ci =
2π

(i + 1)!

i−1

∏
j=1

AjBi(b1, b2, · · · , b2i)
T , (16)

for 1 ≤ i ≤ [m
2 ], and

Ci =
2π

(i + 1)!

i−1

∏
j=1

AjBi(b1, b2, · · · , bm)
T , (17)

for i > [m
2 ].

On the basis of (12), (16), and (17), it is easy to see that the Jacobian matrix

∂(C0, C1)

∂(b0, b1, · · · , bm)
=

(
2π 0
0 2π

)
,

is of full rank for m = 1, and we show via the Maple program (see Algorithm 1) that the
Jacobian matrices

∂
(

C0, C1, · · · , C[ 3m+2
4 ]

)
∂(b0, b1, · · · , bm)

, (18)

for 2 ≤ m ≤ 100, are of full rank, if a = −1, 1
2 , 1, or 2.

By the arguments on the rank of the Jacobian matrix of the coefficients in the expansion
of the first order Melnikov function with respect to the coefficients b = (b0, b1, . . . , bm) of
fm, one achieves that the Cj’s satisfy the conditions of Corollary 1 or Theorem 3 with
n = [ 3m+2

4 ]. Consequently, the Liénard differential system (5) has [ 3m+2
4 ] limit cycles for

suitable choices of its coefficients.
It completes the proof of the theorem.

Proof of Theorem 2. Consider the near-Hamiltonian system (1) with the Hamiltonian (4).
For simplicity, set

F0(x, y) :=
∂P0

∂x
+

∂Q0

∂y
=

m−1

∑
i+j=0

dijxiyj.

By Lemma 1, we have
C0 = 2πd00. (19)

The condition ∆0
0 in Lemma 2 indicates F0(0, 0) = d00 = 0. Under the condition ∆0

0,
the equality (10) with i = 1 holds by taking

P1 =
F0(x, y)|d00=0

x(1− 2x + ax2)
and Q1 =

1
y
(F0(x, y)− F0(x, 0)),
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that are in a neighborhood of zero

P1(x, y) =
∞

∑
i=0

a1
i xi and Q1(x, y) =

m−2

∑
i+j=0

b1
ijx

iyj,

where b1
ij = di,j+1, and

a1
i =


i

∑
k=0

dk+1,0Si−k, 0 ≤ i ≤ m− 2,

m−2
∑

k=0
dk+1,0Si−k, l ≥ m− 1.

In a neighborhood of zero, let

Pl−1 :=
∞

∑
i=0

al−1
i xi and Ql−1 :=

m−2l+2

∑
i+j=0

bl−1
ij xiyj

for l ≥ 2. It follows that

Fl−1 :=
∂Pl−1

∂x
+

∂Ql−1
∂y

=
m−2l+1

∑
i+j=0

dl−1
ij xiyj +

∞

∑
i=m−2l+2

dl−1
i0 xi,

where

dl−1
ij =


(i + 1)al−1

i+1 + (j + 1)bl−1
i,j+1, j = 0, 0 ≤ i ≤ m− 2l + 1,

(i + 1)al−1
i+1, j = 0, i ≥ m− 2l + 2,

(j + 1)bl−1
i,j+1, j ≥ 1, 1 ≤ i + j ≤ m− 2l + 1.

As is stated above, under the condition ∆l−1
0 , the equality (10) holds by ordering in a

neighborhood of x = 0

Pl =
∞

∑
i=0

al
i x

i, and Ql =
m−2l

∑
i+j=0

bl
ijx

iyj,

where

al
i =

i

∑
k=0

dl−1
k+1,0Si−k and bl

ij = dl−1
i,j+1,

with Si−k given by (13).
By induction, one has

d1
00 =

{
d10S1, m = 2,
B1(d10, d20)

T + d02, m ≥ 3,
(20)
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and for 2 ≤ l ≤ m + [m+1
2 ]− 2,

dl
00 =

l−1

∑
i=1

(2i− 1)!!
l−i

∏
j=1

Aj(d1,2i, d2,2i, · · · , d2l−2i,2i)
T + (2l − 1)!!d0,2l (21)

+


l

∏
j=1

Aj(d10, d20, · · · , d2l,0)
T , 2l ≤ m− 1,

l−1
∏
j=1

AjBl(d10, d20, · · · , dm−1,0)
T , 2l ≥ m,

where A1 = B1 = (S1, S0), Aj’s are the (2j− 1)× (2j) matrices

Aj =


2S2 2S1 2S0 0 · · · 0
3S3 3S2 3S1 3S0 · · · 0

...
...

...
. . .

...
(2j− 1)S2j−1 (2j− 1)S2j−2 (2j− 1)S2j−3 (2j− 1)S2j−4 · · · (2j− 1)S0

,

for 2 ≤ j ≤ l, and Bl’s are the (2l − 2)× (m− 1) matrices

Bl =



2S2 2S1 2S0 0 · · · 0
3S3 3S2 3S1 3S0 · · · 0

...
...

...
. . .

...
(m− 2)Sm−2 (m− 2)Sm−3 (m− 2)Sm−4 (m− 2)Sm−5 · · · (m− 2)S0
(m− 1)Sm−1 (m− 1)Sm−2 (m− 1)Sm−3 (m− 1)Sm−4 · · · (m− 1)S1

...
...

...
. . .

...
(2l − 1)S2l−1 (2l − 1)S2l−2 (2l − 1)S2l−3 (2l − 1)S2l−4 · · · (2l − 1)S2l−m+1


,

and dij = 0 if i + j ≥ m.
According to Lemma 2 and the expressions (9) and (11), one has for l = 1, 2, · · · , m +

[m+1
2 ]− 2,

Cl =
2π

(l + 1)!
dl

00. (22)

According to the Formulas (19)–(22), we find that Ci’s depend solely on the parameters
di,2j in the divergence of the perturbations P0 and Q0. Let Em := {di,2j : i + 2j ≤ m− 1}
with [m+1

2 ][m+2
2 ] elements. It follows from (19) and (20)–(22) that the Jacobian matrix

∂(C0, C1)

∂(d00, d10)
=

(
2π 0
0 2π

)
,

is of full rank for m = 2. By using the Maple program (see Algorithm 2), we have that the
Jacobian matrices

∂
(

C0, C1, · · · , Cm+[ m+1
2 ]−2

)
∂Em

, (23)

are of full rank for 3 ≤ m ≤ 16, if a = −1, 1
2 , 1, or 2.

Combing Corollary 1 or Theorem 3 and the rank of the Jacobian matrices, one achieves
that the near-Hamiltonian system (5) has m + [m+1

2 ]− 2 limit cycles for suitable choices of
the parameters.

It completes the proof of the theorem.

We note that, in the previous discussions, for any m ≥ 2, theoretically, it is possible to
obtain the rank of the Jacobian matrices with a specific a via Algorithms 1 and 2, only if a
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computer has a sufficiently strong CPU and the memory ensuring its running for enough
time. If we choose m = 100, then Algorithm 1 takes 3955 s to run. However, Algorithm 2
runs only to m = 16 due to the limitation of the memory of our computer (16 GB).

Algorithm 1 The rank of the Jacobian matrices (18)

restart: with(LinearAlgebra):
num := proc (a, m)
local S, F, A, F1, B, BMy, M, c, i;

S := proc (n)
local i, sum;

sum := 0;
for i from trunc (1/2 ∗ n + 1/2) to n do

sum := sum + (i)!∗((n− i)! ∗ (2i− n)!)−1 ∗ (−a)n−i ∗ 22i−n

od;
sum

end proc;
F := proc (i, j)→ (j + 1) ∗ S (i + 2 - j);
A := proc (j)
local AM;

if j = 0 then
AM := Matrix (1, 1, 1)

else
if j = 1 then

AM := Matrix ([4, 3])
else

AM := Matrix (2 ∗ j -2, 2 ∗ j, F)
end if;

end if;
AM

end proc;
F1 := proc (i, j)→ S (i + 2 - j);
B := proc (i)
local BM;

if i = 1 then
BM := Matrix ([2, 1])

else
if i≤ trunc (1/2 ∗m) then

BM := Matrix (2 ∗ i -2, 2 ∗ i, F1)
else

BM := Matrix (2 ∗ i -2, m, F1)
end if;

end if;
BM

end proc;
BMy := proc (i)
local AM, j;

AM := Matrix (1, 1, 1);
for j from 0 to i -1 do

AM := MatrixMatrixMultiply(AM, A (j))
od;

MatrixMatrixMultiply (AM, B (i))
end proc;
M := proc (i)

if i≤trunc (1/2 ∗m) then
< <0>|< BMy(i) >|< Matrix(1, m-2 ∗ i,0)> >

else
< <0>|< BMy(i) > >

end if;
end proc;
c := < <1>| Matrix (1, m, 0)>;
for i to trunc (3/4 ∗m + 1/2) do

c := < c, M (i)>
od;

Rank (c)
end proc;
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Algorithm 2 The rank of the Jacobian matrices (23)

restart: with(LinearAlgebra):
rank := proc (a,m)
local k, PQ, l, i, divPQ, C, diPQ, cof, G, G1, E, e, ser;

k := trunc (1/2 ∗m + 1/2) ∗ trunc (1/2 ∗m + 1);
PQ := 0;
for l from 0 to m -1 do

for i from 0 to l do
PQ := PQ + c[i, l-i] ∗ xi ∗ yl−i

end do;
end do;
divPQ[0] := PQ;
C[0] := subs ([x = 0, y = 0], divPQ[0]);
ser := proc (l)

convert (series (1/(1-2 ∗ x + a ∗ x2), x = 0, l), polynom)
end proc;
diPQ := proc (l, F)
local P, Q;

P := sort (collect ((subs (y = 0, F)-subs ([x = 0, y = 0], F)) ∗ x−1 ∗ ser (2 ∗ k-2 ∗ l + 2), x));
Q := sort (expand (simplify ((F-subs (y = 0, F)) ∗ y−1)), [x, y]);
sort (diff (P, x) + diff (Q, y), [x, y])

end proc;
for i to k do

divPQ[i] := diPQ (i, divPQ[i -1]);
C[i] := (factorial (i + 1))−1 ∗ subs ([x = 0, y = 0], divPQ[i])

end do;
cof := proc (i)
local f, l, j;

f := 0;
for l from 0 to i -1 do

for j from 0 to trunc (1/2 ∗ l) do
f := f + c[l-2 ∗ j, 2 ∗ j] ∗ xl−2∗j ∗ y2∗j

end do;
end do;
coeffs (f, [x, y])

end proc;
G := 0;
for i from 0 to m + trunc (1/2 ∗ (m -1)) -1 do

G := G + C[i] ∗ xi

end do;
G1 := coeffs (G, x);
E, e := GenerateMatrix (G1, [cof (m)]);
Rank (E)

end proc;

4. Conclusions

Tian and Han [19] provided a new idea in 2017, which obtains the expressions of the
high order coefficients in the asymptotic expansion of the first order Melnikov function
(Abelian integrals) near a homoclinic loop under some additional conditions, to obtain more
limit cycles near a (double) homoclinic loop. The new idea is to introduce an elementary
center. Wei et al. [12] in 2021 further developed their results based on their good idea,
and obtained more limit cycles in an (m + 1)th degree generalized Liénard differential
system with the Hamiltonian one of degree 4. Inspired by the new idea, we apply it to Hopf
bifurcation near an elementary center in this paper, aiming at finding more limit cycles of
specific systems with perturbations of degree large m.

This work is to find small-amplitude limit cycles generated from an elementary center
of Hamiltonian systems with the 4-degree Hamiltonian H = 1

2 y2 + 1
2 x2− 2

3 x3 + a
4 x4(a 6= 0),

which have four phase portraits, under two types of polynomial perturbations of degree m.
The lower bounds of the maximum number of limit cycles are given by Theorems 1 and 2.
Obviously, the same number of limit cycles, in the perturbed systems with given m, always
appears near an elementary center regardless of phase portraits of the unperturbed Hamil-
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tonian system. To obtain the lower bounds, two Maple Programs are showed in Section 3,
and make the lower bounds come true via the first order Melnikov function.
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