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Abstract: Monte Carlo Tree Search has proved to be very efficient in the broad domain of Game
AI, though it suffers from high dimensionality in cases of large branching factors. Several pruning
techniques have been proposed to tackle this problem, most of which require explicit domain
knowledge. In this study, an approach using neural networks to determine the number of actions to
be pruned, depending on the iterations run and the total number of possible actions, is proposed.
Multi-armed bandit simulations with the UCB1 formula are employed to generate suitable datasets for
the networks’ training and a specifically designed process is followed to select the best combination
of the number of iterations and actions for pruning. Two pruning Monte Carlo Tree Search variants
are investigated, based on different actions’ expected rewards’ distributions, and they are evaluated
in the collectible card game Hearthstone. The proposed technique improves the performance of
the Monte Carlo Tree Search algorithm in different setups of computational limitations regarding
the available number of tree search iterations and is significantly boosted when combined with
supervised learning trained-state value predicting models.

Keywords: Monte Carlo Tree Search; pruning; neural networks; multi-armed bandit; Upper Confidence
Bound; Hearthstone

MSC: 68T20

1. Introduction

Over the past years, Monte Carlo Tree Search (MCTS) has been the go-to approach
concerning Game AI research, achieving exceptional performance in deterministic board
games and video games, as well as stochastic games (e.g., poker) [1,2]. Several method-
ologies have been integrated to the original version of the algorithm in order to enhance
its different phases (mainly selection and rollout), including reinforcement learning, su-
pervised learning, pruning techniques, and statistical approaches, etc. Growing research
towards this direction established the algorithm as the state of the art and eventually led to
a superhuman performance in many games [3,4].

Despite its great efficiency, MCTS is budget-limited; it is only allowed to run for
a predefined number of iterations or a certain amount of time. Although this is not an
issue concerning its functionality (since the algorithm can stop at any time and return
the current estimation on the actions’ expected value), it certainly affects its performance,
especially in games with large action spaces. While the number of available actions grows,
the tree search is based on an insufficient number of simulations per action, often leading
to incorrect evaluation. As such, the agent’s decisions are highly dependent on the total
number of iterations executed per move.

To address this problem, a pruning technique involving neural networks is intro-
duced in this work. Two networks are combined to firstly define the subset of actions that
could be pruned safely at each timestep of the algorithm and then determine the optimal
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number of iterations to execute before pruning, along with the actions to prune. For the
networks’ training, a synthetic dataset has been generated through a specifically imple-
mented environment simulating the multi-armed bandit problem [5]. The distributions
of the actions’ expected values were also examined and taken under consideration for
the dataset’s creation, resulting in two different variants of the proposed algorithm. Its
effect is evaluated on both the vanilla MCTS version and an already enhanced MCTS-based
agent, in the collectible card game Hearthstone [6]. The experiments highlight the benefits
of the proposed technique, as the pruning networks integrated agents outperform the
non-pruning ones in both cases.

The aforementioned methodology’s contribution is twofold. Firstly, the suggested
algorithm introduces a machine learning-based approach for reducing the action space
during the MCTS selection phase, as opposed to statistical methodologies and handcrafted
pruning. For this purpose, a simulation process is also developed in order to generate
appropriate data for the proposed models’ training. Secondly, this approach is domain in-
dependent as the pruning networks are trained on simulated data rather than data obtained
from a specific game. As a result, there are no constraints concerning the environment, thus
the algorithm is generally applicable to any task suitable for the vanilla MCTS without
need for additional modifications.

The rest of the paper is structured as follows: In Section 2, related approaches con-
cerning pruning methodologies in MCTS are presented. Section 3 explains the Upper
Confidence Bound formula for the multi-armed bandit problem, and Section 4 briefly
describes the game and the framework used for carrying out the experiments. The function-
ality of the MCTS algorithm is illustrated in Section 5, followed by the detailed description
of the proposed technique (Section 6). Section 7 analyzes the effect of the aforementioned
methodology to the agent’s performance, while Section 8 concludes and discusses potential
future work.

2. Related Work

Several pruning approaches have been proposed for the MCTS algorithm, both domain
dependent and domain independent. In Ref. [7], the authors introduced absolute and
relative pruning conditions for the Upper Confidence Bounds applied to Trees (UCT)
algorithm [8]. In the former case, actions are pruned when it becomes impossible to be the
most visited ones, depending on the remaining number of iterations, whereas in the latter
case, an upper bound is calculated for the expected number of visits of each action and
actions which can not reach the current highest number of visits are pruned. Both of these
methods fall into the category of hard pruning, as the actions are no longer examined in
the tree search once they are pruned.

A more flexible approach, which allows pruned moves to be reconsidered after a spe-
cific amount of time or number of iterations, called soft pruning, has also been investigated.
This technique ensures that actions do not get permanently eliminated and decreases the
risk of completely excluding the optimal action from consideration. Under this scope,
progressive unpruning [9] and progressive widening [10] make use of domain-specific
heuristics to evaluate the nodes and prune most of them after a threshold timestep is
reached. Gradually the excluded actions get unpruned and become available as the MCTS
iterations increase. These methods have been tested on the Go board game and improved
MCTS, highlighting the impact of the branching factor in the algorithm’s performance.
In Ref. [11], this approach is further developed and adapted to continuous stochastic en-
vironments. In this case, different states produced by the same action-state pair can be
added to the action space, depending on the number of children nodes and iterations.
Although this modification improves the single progressive widening in specifically de-
signed evaluation environments, the two methods exhibit similar performance on real
world problems.

Domain knowledge has been employed for hard pruning of actions, as well. In
Ref. [12], handcrafted heuristic functions have been considered to decrease the action space
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in the strategic card game Lords of War, achieving superior performance to the vanilla
MCTS agent. In Ref. [13], nodes of obviously detrimental actions have been hard pruned
in a real-time strategy game, resulting in a significant performance increase. In Ref. [14],
several existing pruning techniques have been explored on a turn-based strategy game and
validated the improvement of the MCTS agent as the branching factor is reduced.

Apart from the selection phase of MCTS, pruning has also been used to eliminate
nodes in the playout stage of the algorithm. In Ref. [15], rapid action value estimate (RAVE)
statistics [16] are exploited to prune actions with a win rate lower than a certain threshold in
the playout phase. In this way, the simulations are focused on the most promising actions,
leading to more accurate estimations of the nodes’ expected values. The authors tested
this technique for the game of Havannah and outperformed several improved versions of
the algorithm.

3. Multi-Armed Bandit and Upper Confidence Bounds

The multi-armed bandit (MAB) problem (also known as K-armed bandit) is a decision-
making problem based on the exploration–exploitation dilemma [5]. Namely, it describes
the situation of a gambler trying to maximize their profit by iteratively choosing among
several slot machines (one-armed bandits) with unknown reward distributions. Thus, the
player should make decisions in a way that exploits information acquired from previous
rewards, but it also investigates the more rarely selected options, in order to verify the
highest rewarding bandit.

Formally, the MAB can be defined as a set of K-random variables R = {R1, R2, . . . , Rk}
associated with real distributions D = {D1, D2, . . . , Dk}, where each variable represents
the reward of an action xi ∈ X = {x1, x2, . . . , xk} and each distribution represents the
respective reward distribution. Considering a finite number of turns T and a selection
policy π(t), let xi be the action selected at timestep t and ri ∼ Di the gained reward. The
player’s goal is to minimize the regret (Equation (1))

ρ = T max
xi∈X

E[Ri|xi]−
T

∑
t=1

K

∑
i=1

riJxi = π(t)K (1)

that is, the difference between the total reward gained by following policy π and the total
reward achieved by always selecting the optimal action (i.e., the action with the highest
expected reward). In this setting, the MAB problem can be reduced to a Markov decision
process (MDP) with a state transition function P(s, s′|a) = 0 ∀ s′ ∈ {S− s}, where S is the
set of possible states, since taking an action does not lead to a state change. In this respect,
the expected reward can be viewed as the action’s value Q(xi), with Q(x∗i ) = max

xi∈X
Q(xi)

being the value of the optimal action.
Several strategies have been proposed to solve the multi-armed bandit problem. The

Upper Confidence Bound (UCB) algorithm focuses on optimizing the selection strategy
by balancing the exploration and exploitation of current information [17]. It is based
on the optimistic assumption that the true value of an action is higher than its current
estimation. Particularly, an upper bound is calculated for each action’s value depending
on its current approximation and the respective degree of uncertainty. According to the
Hoeffding’s inequality [18], let X1, X2, . . . , Xn be i.i.d. random variables in the [0, 1] interval
and X = 1

n (X1 + X2 + · · ·+ Xn), then, the probability of the difference between the mean
of the random variables and its expected value being higher than a threshold k is bounded
according to Equation (2):

P(E[X]− X ≥ k) ≤ e−2nk2 ⇒ P(E[X] ≥ X + k) ≤ e−2nk2
(2)
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In the case of the bandit problem, by replacing random variable X with action’s reward
R, we obtain the probability of the action’s true value being higher than the upper bound
(Equation (3))

P(E[R] ≥ R + k) ≤ e−2nk2
(3)

As UCB selection is made optimistically, the upper bound must be as strict as possible,
i.e., it should be greater or equal to the expected value with high probability. Hence, the
probability of Equation (3) should be very small. By setting this probability equal to a very
small positive value a, threshold k can be determined as in Equation (4). As the number
of samples grows, the confidence on the estimated value increases. Therefore, the upper
bound could be decreased proportionally to the total number of current iterations. In UCB1,
the most commonly used variation of the algorithm, a is set to N−4.

e−2nk2
= a⇒ k =

√
− ln a

2n
a=N−4
−−−−−−→ kUCB1 =

√
2 ln N

n
(4)

In general, at each timestep t, the UCB algorithm selects the action with the highest
upper confidence bound, as in Equation (5)

UCB(xi) = Q(xi) + c

√
log N

ni
(5)

where Q(xi) is the current approximation of the value of xi, N is the total number of
selections made until timestep t, ni is the number of times xi has been selected, and c is the
exploration parameter.

In Equation (5) above, the first term is related to exploitation (by taking into consid-
eration the estimated value of each action), while the second term concerns exploration
and indicates the uncertainty of the current estimation. The more times an action has been
evaluated, the smaller should be the the increase of its upper bound, as the confidence
on that value gets higher, and vice versa. Thus, the exploration term decreases as an
action gets selected and consequently the upper bound of the action’s value tends closer
to its estimation, as the number of timesteps grows. Finally, c controls the weight of the
exploration term and, in the case of UCB1, it is set to

√
2.

4. Hearthstone

Hearthstone [6] is an online, two-player, collectible card game (CCG). Each player
selects a hero and drafts a deck of 30 cards (with at least 15 different ones), choosing among
the hero class’s cards and a set of neutral cards that can be included in any deck. The cards
fall into three broad categories; minions, spells, and weapons. Minions have attack and
health points, meaning they are able to attack other minions as well as the opponent’s hero.
They can also have special abilities, such as being able to attack immediately after being
summoned (which is normally not possible), attack twice a turn, etc. Spell cards can affect
the board in many ways, but they are most commonly used to damage opponents or to
boost friendly minions’ stats. Spells may target a specific entity (minion or hero) or cause a
general effect in the game. Finally, weapons grant heroes attack points, making them able
to attack a specific number of times in the same way as minions. The goal of the game is
to eliminate the opponent hero’s health points, either by attacking them (with minions or
weapons), or by casting spells on them.

The game is turn-based and each card has a cost value (mana) in order to be played.
Both players draw five cards from their decks at the start of the game (the one who plays
second draws one more, plus a special bonus card in order to equalize their winning
chances) and one more at the start of their turn. Each player has a specific amount of
available mana to use on every turn, with no limitation in the number of actions per turn
(as long as they are permitted by the rules of the game). Based on that, there is no time limit
per action, though there is a total time budget for every turn, independent of the number of
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executed actions. However, as the moves are selected sequentially, for the purposes of this
research, each action has a predefined computational budget, as described in Section 7, in
order to evaluate the performance of the different algorithms equally.

Concerning the game strategies, there are three main approaches that determine the
building of the decks.

1. Aggro. In this approach players attempt to fill the board with minions as early as
possible and finish the game before the opponent is able to defend. Thus, the decks
consist mainly of low-cost cards, which can be played in the first turns (when the
available amount of mana is small). This strategy, however, may lead to a great
disadvantage if the opponent survives the first turns, as there are no cards suitable for
late-game in an aggro deck;

2. Control. A slowly progressing strategy, aiming to prevent the opponent from early
development, mainly with removal spells and then gaining control of the board with
powerful, high-value minions in the late-game. Control decks entail the risk of being
outplayed in the first stage of the game, as they rely on high-cost cards, which are
not playable in the early turns, but are very dominant when the player endures the
initial pressure;

3. Midrange. A more flexible type of deck, aiming to control the game in the early turns
and win during the mid-game. It usually contains strong low-cost minions and spells
in order to trade efficiently and gain advantage from the start of the game. Most cards
are of medium cost, meaning this kind of deck struggles in the late game against
decks with high-value minions.

In theory, each of the above deck archetypes has an advantage over one of the other
two and a disadvantage against the other. Specifically, aggro decks are considered to
have more winning chances against midrange in most cases, midrange against control,
and control against aggro. As this relationship introduces bias to the evaluation of the
game-playing agents, in the current work, three different decks have been selected (one for
each archetype), and all experiments are carried out through games where both players use
the same deck.

The proposed agents were implemented and evaluated in Metastone [19], an open-
source Hearthstone simulator in Java. Metastone provides a simple environment designed
to serve as a developing tool for deck building and AI testing in Hearthstone by simulating
the game’s rules and logic. The machine learning models described in Section 6 have
been developed in the Python programming language and communicate with the agent
through a REST interface. More implementation details are available on the method’s code
repository [20].

5. Monte Carlo Tree Search

MCTS is a search algorithm that solves decision problems by representing the data
structures as a tree [21]. In the particular field of Game AI, actions are mapped to the game
tree’s edges and the possible states to the nodes. The goal of the algorithm is to select the
best action (i.e., one of the root node’s children), while the game tree may be expanded up
to leaf nodes, depending on the available sources. Since the game tree does not need to be
expanded symmetrically, a key concept of the algorithm is the early emphasis on the most
promising moves, developing the tree structure accordingly. Game tree creation and action
selection may be broken down to four main stages:

1. Selection. One of the possible actions (children of the current node) is selected
according to a specific policy. This step is repeated until a non-fully explored node
(i.e., a node where not all of its children have been visited at least once) is reached;

2. Expansion. When a non-fully explored node is encountered, an action that has not
been visited previously is selected (usually at random) and the corresponding node is
added to the tree;

3. Rollout. A full game is simulated from the newly expanded node following a simula-
tion policy (in the vanilla version, random moves are executed) until a terminal state;
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4. Back-propagation. The results of the simulation are back-propagated from the ex-
panded node to the root, updating the statistics of all the traversed nodes.

The above steps are executed repeatedly, starting from the root node, for a fixed num-
ber of iterations or a certain amount of time. There are several approaches for determining
the best action after the process is completed, with the most common being selecting the
most visited action. Other approaches also include selecting the move with the highest
score or an optimal combination of score and visits.

UCT is the most widely used variation of MCTS, employing the UCB formula de-
scribed above to guide the selection phase, based on the current statistics of the tree
nodes [8]. In this case, node selection is treated as a multi-armed bandit problem and the
win rate of each action, calculated by the Monte Carlo simulations, serves as the reward.
As already discussed, UCB initially boosts exploration and focuses on exploitation while
the number of iterations increases, resulting in the asymmetric game tree.

6. Proposed MCTS Enhancements
6.1. Pruning Networks

A key concept of this work is to prune actions that seem to be suboptimal from the
game tree as early as possible and reduce the action space. Specifically, the goal is, after a
certain amount of iterations, to be able to focus the search on the most promising moves,
without risking excluding the optimal one from the search space. In our approach, neural
networks have been applied to the MCTS algorithm in order to determine the number of
actions that should be pruned, as well as the number of iterations to run before pruning.

For this purpose, two different neural networks are employed. The first one (Safety
Network) is used to predict the maximum number of actions that can be safely pruned (i.e.,
the largest set of low estimated-value actions that does not contain the optimal one), given
the number of executed iterations and the total number of actions. As expected, the allowed
remaining action space decreases while the number of iterations run gets higher, since
the increase in performed simulations leads to a more precise evaluation of each action.
Consequently, there is a trade-off between the actions’ sets to be pruned and the remaining
number of iterations, as the more time that is used until pruning, the less iterations are
available for search among the remaining actions. In order to overcome this issue, a second
network (Probability Network) is trained to predict the probability of selecting the optimal
action, depending on the action space and the remaining iterations. Hence, in the first step,
the minimum remaining action space is calculated for all possible numbers of iterations
using the Safety Network and then the optimal pair of iterations to run and actions to prune
is determined as the one with the highest probability of finding the best action, according
to the Probability Network. Each time the selected number of iterations is reached, the
determined subset of actions is pruned from the search tree and the process is repeated
until the total iterations are carried out (Figure 1).

Repeat until total_iterations

Run MCTS until optimal iterations

iterations vector

action space size
K vector Probability

Network

remaining iterations vector

optimal  
iterations - K PruneSafety

Network

Figure 1. Proposed pruning process for MCTS (pruned nodes are marked as black).
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The pruning procedure is described analytically in Algorithm 1. Initially, the minimum
number of actions needed to continue the search process (denoted as Ki) is predicted by
the Safety Network for each value i of available iterations, given the current action space
size (lines 4–5). As in the start of the tree search, there is no information on the actions’
values (they have not been evaluated yet), the Safety Network is applied after a threshold
of iterations is reached. Since the action space size in the tested environment is smaller
than 50 in the vast majority of moves, the threshold value has been set to 100, so that all
actions’ expected rewards are estimated to an extent at the time of prediction, resulting
in i ∈ [current_iterations + 100, total_iterations]. Subsequently, the Probability Network is
used to predict for each number of iterations the probability of the optimal action being
selected by MCTS, considering pruning is performed at that point (lines 6–9). The optimal
iterations–action space pair is defined according to the produced probabilities (lines 10–11)
and MCTS is executed for the specified iterations or until the total iterations are completed
(lines 12–16). When the selected Iteropt is reached, the lower value estimated actions are
pruned and the tree search is resumed on the top Ki actions (lines 17–18). The algorithm is
continued iteratively until the computational budget is consumed.

Algorithm 1: MCTS with Pruning Networks.

1 Function MCTS():
2 while total_iterations > 0 do
3 probs← []
4 for i in iterations do
5 Ki ← Sa f ety_Network.predict(action_space, i)

6 for i in iterations do
7 remaining_iterations← total_iterations− i
8 probi ← Probability_Network.predict(Ki, remaining_iterations)
9 probs.append(probi)

10 Kopt ← argmaxK probs
11 Iteropt ← argmaxiter probs
12 for i in min (Iteropt, total_iterations) do
13 Select()
14 Expand()
15 Rollout()
16 BackPropagate()

17 {actions_to_prune} ← {total_actions} − {Kopt}
18 {action_space}.remove({actions_to_prune})
19 total_iterations← total_iterations− Iteropt

20 return best_action

Concerning the pruning networks’ architectures, they are both feed-forward neural
networks with three hidden layers. The hidden layers’ sizes are 200, 300, and 100 for the
Safety Network and 300, 500, and 200 for the Probability Network, while the activation
function used is the Rectified Linear Unit. Both networks were trained using the Adam
optimizer [22] for minimizing the mean squared error loss (the task of the Safety Network
was treated as a regression problem as well, with the predicted value being rounded to the
closest integer).

6.2. Datasets’ Creation

An issue concerning the creation of the datasets for training the networks is that there
are no labels (i.e., there is no knowledge of the optimal action, even after a game is finished),
as the expected value of the actions is unknown. The evaluation of the agents’ performances
is based on their win rates, which are not informative of the individual actions’ effects on
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the outcome of the game. Hence, a MAB model has been used to create a suitable dataset
for the specific task.

Specifically, a simulation environment has been designed to implement the UCB
formula (which is essentially the selection phase of the MCTS) on the MAB problem.
Different simulations have been performed for action space sizes in the [3, 50] range in
order to create a complete dataset. The range bounds are set accordingly, as there is no
point in pruning in case there are less than three actions available, and the total number of
actions per move in Hearthstone rarely exceeds 50. For each action, the reward gained at
each timestep is sampled from a Bernoulli distribution. In this case, each action’s expected
reward is represented by the Bernoulli parameter p. This way, the optimal action is known
a priori and can be used as ground-truth for the networks’ training.

In the first dataset, each sample should contain the action space size and the number
of iterations run (inputs to Safety Network), while the respective label should indicate
the optimal (minimum) subset of actions containing the action with the highest expected
reward. Several values of iterations were combined with each value of possible actions to
form the required samples. The numbers of iterations were sampled from the [100, 1500]
range, since a lower bound is needed for the algorithm to adequately evaluate all actions
(as explained in Section 6.1), while the total number of iterations is usually restricted (in
the current work, a maximum of 1000 iterations is considered). Each combination of action
space and number of iterations was simulated 1000 times and the UCB formula was used
to select the best action. Finally, the minimum number of actions (as sorted by the UCB
visits) that contained the best action (i.e., the action with the highest probability p) in
every simulation was calculated for each combination. Following this process, the final
dataset consists of 4704 tuples (98 per number of total actions) of iterations and total actions
(serving as features) and the respective sizes of action space after pruning (labels).

Regarding the Probability Network’s training, a dataset consisting of tuples of the
remaining iterations and action space sizes (input), along with the respective probabilities
of selecting the optimal action (labels), is required. Similarly to the process described
above, different pairs of available iterations and actions were formed and the probability of
selecting the best action was determined for each case over a set of 1000 simulations.

Initially, the Bernoulli parameter p was drawn from the uniform distribution, meaning
that any value in the [0, 1] range was considered equally probable to represent an action’s
expected reward. In order to investigate whether the knowledge of the specific distribution
can lead to more suitable pruning networks, an estimation of the actions’ expected reward
distributions was calculated by samples obtained from MCTS self-playing games, specifi-
cally for Hearthstone (Figure 2). Afterwards, a second pair of datasets was generated using
a bimodal distribution, matching the ones shown below to select the parameter p for each
action. Then, the steps described above were repeated to train a pair of pruning networks
on the new, bimodal distribution-based datasets. The performance of both approaches is
presented in Section 7.

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
Actions' expected reward

0

1

2

3

4

5

D
en

si
ty

hunter deck
warlock deck
shaman deck

Figure 2. Actions’ expected rewards estimated distributions in Hearthstone.
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6.3. Supervised Learning

The concept of combining supervised learning with MCTS has been established as
a promising variation of the algorithm since the dominant performance of the AlphaGo
agent against human players [23]. In this approach, random rollouts are replaced by (or
combined with) value networks, trained to predict the outcome of the game based on a
game state. This technique tends to reduce the variance introduced by random simulations
by utilizing domain knowledge, leading to more accurate estimations. In the specific area
of CCG, and Hearthstone particularly, predictive models of the game states have also been
employed in order to enhance the MCTS simulation phase [24].

As the current work is based on the authors’ previous study [25], the model used for
the states’ evaluation is an XGBoost classifier [26] trained on a specifically designed dataset
for this task. In particular, simple MCTS agents were employed in self-playing games, in
order to create a dataset of game states (feature vectors) and winners (labels). A separate
model has been trained for each deck archetype (using the respective subset of the data), as
well as a general model trained on the data of all games. As the performance of the agents
proved to be very similar, all the experiments presented in the remainder of this paper refer
to agents enhanced with the general classifier.

Concerning the game state in Hearthstone, it is characterized by quite a large set
of attributes. Furthermore, the length of the feature vector varies depending on several
aspects, such as the number of cards in players’ hands, the number of summoned minions
on the board, etc. Therefore, a fixed subset of the features was selected in order to facilitate
the model’s training. Specifically, as shown in Table 1, a subset of 45 features was adopted
after experimentation to capture the most important information of the state, regarding the
board and the players’ attributes.

Table 1. Features selected for state representation in Hearthstone.

Type Feature #

General Information
active player 1
first player 1
turn 1

Players’ attributes

hero health points 2
hero attack points 2
# of cards in hand 2
# of active secrets 2
# of spells in hand for active player 1
remaining mana for active player 1

Board

# of minions 2
total mana cost of minions 2
total attack points of minions 2
total health points of minions 2
# of minions able to attack 2
total attack points of minions able to attack 2
# of minions with taunt (special attribute) 2
one hot encoded hero’s class 2 × 9

The model’s prediction is combined with a random rollout z(s) executed at the simu-
lation phase and the value being back-propagated to the traversed tree nodes results from
Equation (6). Both predictions and random rollouts take values in {0, 1}, while parameter
λ may be continuous in the [0, 1] range, controlling each one’s contribution to the final
score. In the current setup, λ is set to 0.8 after experimentation, though its exact value did
not seem to significantly affect the agents’ behaviors.

combined_score(s) = λxgbpred(s) + (1− λ)z(s) (6)
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As the game states in the beginning of a game are quite trivial and not very informative
about the possible outcome, an early simulation technique is used in the first turns of the
game. Specifically, a threshold turn is defined (after experimentation), and for all turns
prior to threshold, the simulation phase consists of two stages; at first, random actions
are executed until threshold is reached and then the score of the new state is predicted
and back-propagated, as described above. For game states beyond the threshold turn, the
simulation occurs as normal from the current tree node [25].

Additionally, in order to adapt to the action space size during the rollout phase, new
states are evaluated in a stochastic way. It is demonstrated that random rollouts may
have a negative impact on the final prediction when the number of possible actions is
relatively small. To balance this, the score of the nodes in the simulation phase is calculated,
depending on the number of actions, as follows:

f inal_score(s) =

{
xgbpred(s), if u ≥ β ∗ action_space
combined_score(s), otherwise

(7)

where U ∼ U[0, 1] is a random variable and β determines the action space size up to which
the classifier’s prediction may be used alone. In the tested environment, it was found
that a threshold of 10 available actions leads to the desired functionality of the algorithm,
and thus β was set to 0.1. This technique results in evaluations being determined in a
high degree by the model’s predictions in the case of small action spaces, improving the
agent’s performance.

7. Results

In the present work, the MCTS agent enhanced solely with pruning networks (re-
ferred to as MCTS-PN from now on); the one enhanced with the modifications described
in Section 6.3 (MCTS-xgboost) and the one combining all adjustments (MCTS-xgboostPN)
are evaluated. The latter two are tested against a simple version of the MCTS algorithm
and a heuristic-driven minimax approach called Game State Value (GSV), which is the
strongest algorithm provided by the Metastone framework. Additionally, these approaches
are tested against each other. The MCTS-PN variant is tested only against the simple MCTS,
as the absence of an evaluation function prevents it from being competitive against the
other agents. Despite that, its performance is studied as well, since it is more efficient in
terms of computational cost during play and it is completely domain-independent.

In the current implementation, the REST API used for the models’ communication
with the framework adds a significant delay on the running time, making it difficult to
precisely determine the actual computational time and compare the different approaches
in terms of time cost. In general, the model used for the states’ evaluation is used more
frequently than the pruning networks, making the respective variants more time consuming.
However, since all models used during the execution of the algorithm are trained offline,
the difference in the execution time of the simple MCTS and the suggested enhancements
should not be prohibitive.

Tables 2–4 illustrate the performance of the proposed agents against MCTS, GSV,
and MCTS-xgboost, respectively. Explicitly, each table presents the win rates of the tested
approaches against a specific opponent over a set of 300 games. The experiments are carried
out on three different decks corresponding to the main archetypes explained in Section 4.
Particularly, the hunter, warlock, and shaman decks used by professional players in the 2014
Hearthstone World Championship [27] are selected for the aggro, control, and midrange
strategies. Additionally, in order to examine the effect of the total iterations available for
the tree search, each matchup has been carried out for 300, 500, and 1000 iterations. All
games are played with the same deck type and number of iterations for both players in
order to achieve unbiased results.

As shown in Table 2, the MCTS-PN variant’s behavior differs depending on the datasets
used to train the pruning networks. The agent using the uniform-based networks seems
to gain greater advantage as the number of allowed iterations increases, in contrast with
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the bimodal-based MCTS-PN, which performs better for the low iterations’ budget. Overall,
MCTS-PN(uniform) surpasses simple MCTS in all cases (though its performance is better in
the case of 1000 iterations) whereas MCTS-PN(bimodal) achieves higher win rates for 300
and 500 iterations, but is outperformed in the case of 1000.

Concerning the MCTS-xgboost variants, the classifier integration boosts significantly
the agents’ performances. The number of iterations plays a significant role in the pruning
networks’ effects in this case as well. MCTS-xgboostwithout pruning achieves slightly better
results in case of 500 iterations for the hunter and shaman decks and overall outperforms
the bimodal-based pruning variant in cases of 300 and 500 available iterations. However,
at least one of the pruning variants secures better results than MCTS-xgboost in seven out
of nine individual setups, while MCTS-xgboostPN(uniform) reaches the highest win rates
against MCTS over all different deck types and number of iterations examined. Even though
the combination of supervised learning and pruning networks leads to higher improvement
over the no-pruning MCTS-gxboost for 1000 iterations (+4.45%), the performance of all
XGBoost-based agents individually decreases in relation to the total number of iterations.
This is most probably ascribed to a higher improvement rate of the vanilla MCTS as the
number of iterations increases, since the proposed—enhanced with supervised learning
models—agents are able to achieve high performance, even for a low computational budget.

Table 2. Win rate per number of iterations against MCTS (the highest win rate per deck type and
number of iterations is indicated in bold).

Iterations
Deck Type

300 500 1000

MCTS-PN (uniform) 52.67 52.0 55.33

hunter
MCTS-PN (bimodal) 54.0 50.0 48.67
MCTS-xgboost 71.33 68.5 61.67
MCTS-xgboostPN (uniform) 76.0 68.33 70.33
MCTS-xgboostPN (bimodal) 68.67 67.67 64.0

MCTS-PN (uniform) 49.67 51.67 54.0

warlock
MCTS-PN (bimodal) 47.67 56.33 48.0
MCTS-xgboost 75.0 75.5 72.33
MCTS-xgboostPN (uniform) 78.33 80.67 74.0
MCTS-xgboostPN (bimodal) 75.67 78.67 75.67

MCTS-PN (uniform) 51.67 55.67 54.0

shaman
MCTS-PN (bimodal) 54.33 49.33 50.0
MCTS-xgboost 74.33 75.5 68.33
MCTS-xgboostPN (uniform) 73.67 74.0 71.33
MCTS-xgboostPN (bimodal) 75.67 72.0 70.0

MCTS-PN (uniform) 51.33 53.11 54.43

overall
MCTS-PN (bimodal) 52.0 51.89 48.89
MCTS-xgboost 73.55 73.17 67.44
MCTS-xgboostPN (uniform) 76.0 74.33 71.89
MCTS-xgboostPN (bimodal) 73.33 72.78 69.89

Subsequently, the approaches with the integrated classifier are evaluated against the
GSV algorithm. Table 3 shows the corresponding win rates. It is clear that each deck type
has a different degree of difficulty, which could not be captured in the experiments against
MCTS. Particularly, the hunter deck appears to be the easiest to handle, with all three agents
being able to outperform GSV. The shaman deck, on the other hand, seems to be the most
complex one, with the best variant achieving a 26.67% win rate. Additionally, the format of
each deck in conjunction with the number of available iterations seems to significantly affect
the different algorithms, making it more difficult to draw specific conclusions. However,
similarly to the tests against MCTS, MCTS-xgboost achieves marginally higher overall win
rates against GSV in the case of 500 iterations than the pruning variants, while being
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outperformed in the other two categories. The bimodal-based variant is superior in the
low-iterations setups and MCTS-xgboostPN(uniform) is the best approach when a greater
amount of computational resources is available. Regarding each variant individually, there
is a clear boosting in performance as more iterations are used, verifying that the decrease
in win rates against simple MCTS was caused by the great improvement of the latter.

Table 3. Win rate per number of iterations against GSV (the highest win rate per deck type and
number of iterations is indicated in bold).

Iterations
Deck Type

300 500 1000

MCTS-xgboost 46.67 50.5 56.0
hunterMCTS-xgboostPN (uniform) 44.33 55.67 55.67

MCTS-xgboostPN (bimodal) 51.0 52.33 55.67

MCTS-xgboost 32.67 43.0 46.0
warlockMCTS-xgboostPN (uniform) 37.67 40.67 49.0

MCTS-xgboostPN (bimodal) 34.67 41.33 49.33

MCTS-xgboost 17.33 25.0 24.0
shamanMCTS-xgboostPN (uniform) 15.33 21.67 26.67

MCTS-xgboostPN (bimodal) 17.0 20.67 25.67

MCTS-xgboost 32.22 39.5 42.0
overallMCTS-xgboostPN (uniform) 32.44 39.34 43.78

MCTS-xgboostPN (bimodal) 34.22 38.11 43.56

Finally, the two pruning variants enhanced with the XGBoost model are evaluated
against the no-pruning MCTS-xgboost, with the results presented in Table 4. Even though
MCTS-xgboost achieved higher win rates than the uniform-based pruning variant in some
cases against MCTS and GSV (mainly in the 500 iterations case), MCTS-xgboostPN(uniform)
outperforms it in all cases (with an exception of a draw) when tested against each other.
The reason for this could be that different playing algorithms have specific advantages
or weakness against others, similarly to the different deck types that follow the rock-
scissors-paper pattern. The bimodal-based pruning agent is less consistent, achieving both
the higher (57.0% in case of warlock deck and 500 iterations) and the lowest (43.67%
in case of shaman deck and 300 iterations) win rates against MCTS-xgboost. Overall
MCTS-xgboostPN(uniform) is the best approach in all three iterations’ setups against
MCTS-xgboost, while MCTS-xgboostPN(bimodal) outperforms it only in the 500 itera-
tions setup.

In general, the bimodal-based networks lead to more aggressive pruning, as the
datasets used for the training consist of actions with more easily separable expected re-
wards. On the other hand, data generated based on the uniform distribution consist of
more similar (in terms of expected reward) actions, leading to more preservative pruning
networks. This phenomenon is confirmed by the distribution of actions’ visits on each case.
Specifically, the distributions followed in MCTS-xgboost, MCTS-xgboostPN(uniform), and
MCTS-xgboostPN(bimodal) for 300, 500, and 1000 available iterations are depicted in
Figures 3–5, respectively. These graphs relate to the shaman deck for the case of 20 avail-
able actions; however, they are indicative of the majority of cases concerning the different
deck types and action spaces. As expected, in the pruning agents, the worst actions (as
determined by the algorithms) are less visited than in MCTS-xgboost, leading to a greater
percentage of visits appointed to the most promising actions. Between the two pruning ap-
proaches, the distribution’s peak is higher in the MCTS-xgboostPN(bimodal) case, meaning
a larger set of actions is pruned and the search is focused on the best actions faster than in
MCTS-xgboost(uniform). This behavior involves the risk of pruning the best action(s) in
the early stages of the process, but could lead to more specialized and effective searches
when actions are evaluated correctly in the first visits. This is the main reason for the



Mathematics 2022, 10, 1509 13 of 16

bimodal-based variant’s inconsistency, as opposed to the uniform-based one, which is more
stable, achieving the highest overall win rates among the compared variants in seven out
of the nine total configurations.

Table 4. Win rate per number of iterations against MCTS-xgboost (the highest win rate per deck type
and number of iterations is indicated in bold).

Iterations
Deck Type

300 500 1000

MCTS-xgboostPN (uniform) 53.0 54.67 52.33 hunterMCTS-xgboostPN (bimodal) 54.67 45.33 44.0

MCTS-xgboostPN (uniform) 54.0 52.67 54.33 warlockMCTS-xgboostPN (bimodal) 51.0 57.0 47.0

MCTS-xgboostPN (uniform) 51.67 50.0 53.67 shamanMCTS-xgboostPN (bimodal) 43.67 53.67 48.33

MCTS-xgboostPN (uniform) 52.89 52.45 53.44 overallMCTS-xgboostPN (bimodal) 49.78 52.0 46.44
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Figure 3. Actions’ visits distributions with and without pruning networks (300 iterations).
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Figure 4. Actions’ visits distributions with and without pruning networks (500 iterations).
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Figure 5. Actions’ visits distributions with and without pruning networks (1000 iterations).

8. Conclusions

In this work, a methodology for limiting the action space during the execution of
the MCTS algorithm by employing neural networks has been proposed. Concretely, two
different neural networks are combined to predict the optimal number of iterations to
execute and the number of actions to prune at that point, in an iterative manner. Addi-
tionally, the pruning networks’ effects on the MCTS agents’ performances are evaluated in
conjunction with the integration of models predicting the game states’ values. Different
variants of the suggested algorithm were implemented and tested on the Hearthstone
CCG. The conducted experiments highlight a consistent improvement over the no-pruning
variants of the algorithm in different configurations, in terms of available computational
resources, and demonstrate the influence of the branching factor in MCTS performance,
especially in relation to the total number of tree search iterations.

Regarding the training of the pruning networks, a specially designed environment
has been used to simulate the UCB algorithm on the MAB problem, in order to generate
informative datasets for the pruning task. Depending on the distribution of actions’ ex-
pected rewards, which was employed during the UCB simulations, two different variants
of the proposed algorithm have been implemented, leading to quite different conclusions.
Specifically, agents integrated with pruning networks based on uniformly distributed
actions’ values were very stable, exceeding baseline performance in most cases. On the
other hand, the bimodal distribution-based ones exhibited more fluctuations in their perfor-
mance, which is most probably attributed to the faster pruning produced by these networks.
In this respect, it would be of particular interest to test the implemented algorithms in
environments with different reward schemes, as well as to train pruning networks on data
based on different distributions in order to verify the above-stated results and investigate
the extent to which the algorithm is affected by the true actions’ values’ distributions.

Furthermore, soft pruning could be considered so as to not completely exclude actions
that may have been falsely evaluated after a small number of visits. As observed in the
experimental process, this scenario is highly probable, especially in the case of the bimodal-
based pruning networks. Since the proposed method involves iterative pruning, actions’
unpruning in different stages (determined by the networks) of the tree search could be
considered to reduce the risk of quickly eliminating highly rewarding actions. In this
context, a promising approach would be the unpruning of moves in a probabilistic manner,
as well as the use of a separate model to indicate the actions to unprune in addition to the
existing pruning networks.

Finally, as Hearthstone is a game of imperfect information, several assumptions have
to be made concerning hidden information necessary for the algorithm’s functionality
(e.g., opponent’s cards). The game’s internal stochasticity additionally impacts the flow
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of transitions between game states to a notable degree and consequently complicates the
algorithms’ evaluation. Under this scope, the proposed pruning technique could be also
tested in perfect-information, deterministic games, such as chess or Go to confirm its
influence on the agent’s performance, as it has no specific requirements and can be applied
to any type of game. Nevertheless, the results achieved despite the introduced randomness
of Hearthstone are quite encouraging regarding the algorithm’s capability of generalization.
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