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Abstract: Stute presented the so-called conditional U-statistics generalizing the Nadaraya–Watson es-
timates of the regression function. Stute demonstrated their pointwise consistency and the asymptotic
normality. In this paper, we extend the results to a more abstract setting. We develop an asymptotic
theory of conditional U-statistics for locally stationary random fields {Xs,An : s in Rn} observed at
irregularly spaced locations in Rn = [0, An]d as a subset of Rd. We employ a stochastic sampling
scheme that may create irregularly spaced sampling sites in a flexible manner and includes both pure
and mixed increasing domain frameworks. We specifically examine the rate of the strong uniform
convergence and the weak convergence of conditional U-processes when the explicative variable
is functional. We examine the weak convergence where the class of functions is either bounded or
unbounded and satisfies specific moment conditions. These results are achieved under somewhat
general structural conditions pertaining to the classes of functions and the underlying models. The
theoretical results developed in this paper are (or will be) essential building blocks for several future
breakthroughs in functional data analysis.

Keywords: conditional U-statistics; locally stationary random field; functional data; empirical pro-
cesses; conditional U-processes; VC-class of functions; kernel-type estimators; regression; irregularly
spaced data
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1. Introduction

The regression problem has been studied by statisticians and probability theorists for
many years, resulting in a vast array of approaches. Various themes have been covered,
such as modeling, estimate method applications, tests, and other related topics. In addition
to the parametric framework, in which one must estimate a finite number of parameters
based on an a priori specified model structure, the non-parametric framework is devoted to
data that lack a priori structural information. As inherent disadvantages, non-parametric
processes are susceptible to estimation biases and reductions in convergence rates compared
to parametric methods. Kernel non-parametric function estimation techniques have long
been of great interest; for good references to research literature and statistical applications
in this area, see [1–6] and the references therein. Even though they are widely used, they
are just one of several possible approaches to building reliable function estimators. Despite
their popularity, methods such as nearest neighbor, spline, neural network, and wavelet
analysis are examples of these approaches. These techniques have been utilized on a
vast range of different types of data. In this article, our focus will be narrowed to the
development of consistent kernel-type estimators for the conditional U-statistics in the
context of spatial data. Spatial data are typically generated in numerous research fields,
such as econometrics, epidemiology, environmental science, image analysis, oceanography,
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meteorology, geostatistics, etc. These data are typically collected in various fields and
treated statistically on measurement sites. Consult [7–10] as well as the references contained
in these works to find reliable sources of references to the research literature in this area
and discover some statistical applications. In the context of non-parametric estimation
for spatial data, the existing papers are mostly concerned with estimating probability
density and regression functions. Hence, we will cite some important references [11–
15] and the references in which they are included. By considering the conditional U-
processes, we give a more generic and abstract context based on this research. With
many possible applications, the idea of U-statistics (introduced in a landmark work by
[16]) and U-processes have attracted a great deal of interest over the past few decades.
U-processes are effective for resolving intricate statistical issues: density estimation, non-
parametric regression tests, and goodness-of-fit tests are among the examples. Specifically,
U-processes emerge in statistics in a variety of contexts, such as the terms of higher order
in von Mises expansions. In particular, U-statistics assist in the analysis of estimators
and function estimators, with varying degrees of smoothness. For example, Ref. [17]
aimed to analyze the product limit estimator for shortened data, so he employs almost
sure uniform bounds for P-canonical U-processes. In addition, Ref. [18] introduced two
novel normality tests based on U-processes. Likewise, new tests for normality that use
as test statistics weighted L1-distances between the standard normal density and local
U-statistics based on standardized data were introduced by [19–21]. In addition, Ref.
[22] challenged the estimate of the mean of multivariate functions under the assumption
of possibly heavy-tailed distributions and presented the median-of-means based on U-
statistics. The applications of U-processes in various statistical applications may also
include tests for functions’ qualitative features in non-parametric statistics (c.f. [23–25]),
cross-validation for density estimation [26], and establishing the limiting distributions
of M-estimators (see, e.g., Refs. [27–29]). Historically, Ref. [27] furnishes the necessary
and sufficient criteria for the law of large numbers and the sufficient conditions for the
central limit theorem for U-processes, equipped by [16,30,31], who provided (amongst
others) the first asymptotic results for the case that the underlying random variables are
independent and identically distributed. However, under weak dependency assumptions,
asymptotic outcomes are illustrated in [32–34] or just lately in [35] and in a more general
setting in [36–41]. The applicability of U-statistics in estimation and machine learning
applications is comprehensive. We refer to the U-statistics with random kernels of divergent
orders to [40,42–45]. Infinite-order U-statistics are helpful tools for creating simultaneous
prediction intervals. These constructed intervals are important to quantify ensemble
methods’ uncertainty such as subbagging and random forests. For additional information
on the topic, c.f [46]. The MeanNN method estimation for differential entropy, which was
first described by [47], is a remarkable instance of the U-statistic. A novel test statistic
for goodness-of-fit tests was proposed by [48] using U-statistics. Using U-statistics, the
conference [49] proposed a measure to quantify the level of clustering quality exhibited by a
partition. The interested reader may refer to [50–52] for outstanding resources of references
on the U-statistics. The book of [29] provides a profound and in-depth view of the notion
of U-processes.

In this work, our primary focus is on the scenario, including spatial–functional data.
We give an excerpt from [53]: “Functional data analysis (FDA) is a branch of statistics concerned
with the analysis of infinite-dimensional variables such as curves, sets, and images. It has undergone
phenomenal growth over the past 20 years, stimulated in part by major advances in data collection
technology that have brought about the “Big Data" revolution. Often perceived as a somewhat
arcane area of research at the turn of the century, FDA is now one of the most active and relevant
fields of investigation in data science." The reader is directed to the works of reference [54,55]
for an overview of this subject area. These references include fundamental approaches to
functional data analysis and a wide range of case studies from diverse disciplines, such
as criminology, economics, archaeology, and neurophysiology. It is important to note that
the extension of probability theory to random variables taking values in normed vector



Mathematics 2023, 11, 16 3 of 69

spaces (for example, Banach and Hilbert spaces), including extensions of certain classical
asymptotic limit theorems, predates the recent literature on functional data; the reader is
referred to the book [56] for more information on this topic. Considering density and mode
estimates for data with values in a normed vector space is the focus of the work presented
by [57]. The problem of the curse of dimensionality, which occurs when functional data
have too many dimensions, is discussed in this study, along with potential solutions to
the issue. According to [55], non-parametric models were deemed useful in regression
estimation. We could also refer to [58–60].

Modern empirical process theory has recently been applied to processing functional
data. Ref. [61] provided the consistency rates of several conditional models, such as
the regression function, the conditional cumulative distribution, the conditional density,
and others, uniformly over a subset of the explanatory variable. Ref. [62] extended
[63]’s UIB consistency to the ergodic setting. Ref. [64] considered the problem of local
linear estimation of the regression function when the regressor is functional and showed
strong convergence, with specified rates, uniformly in bandwidth parameters. Ref. [65]
examined the k-nearest neighbors (kNN) estimate of the non-parametric regression model
for strong mixing functional time series data and determined the uniform, almost complete
convergence rate of the kNN estimator under some mild conditions. Ref. [66] treated the
ergodic data and offered a variety of results related to the limiting distribution for the
conditional mode in the functional setting; for recent references, c.f [38,67–72].

Ref. [73] raised a class of estimators for r(m)(ϕ, t), known as conditional U-statistics,
attempted to generalize the Nadaraya–Watson regression function estimations. Fore-
most, we present Stute’s estimators. Consider the regular sequence of random elements
{(Xi, Yi), i ∈ N∗} with Xi ∈ Rd and Yi ∈ Y some polish space and N∗ = N\{0}. Let
ϕ : Y m → R be a measurable function. In this study, the estimation of the conditional
expectation, or regression function, is our primary concern:

r(m)(ϕ, t) = E(ϕ(Y1, . . . , Ym) | (X1, . . . , Xm) = t), for t ∈ Rdm, (1)

whenever it exists, i.e.,
E(|ϕ(Y1, . . . , Ym)|) < ∞.

We now introduce a kernel function K : Rd → R with support contained in [−B, B]d, B > 0,
satisfying:

sup
x∈Rd
|K(x)| =: κ < ∞ and

∫
K(x)dx = 1. (2)

Hence, the class of estimators for r(m)(ϕ, t), given by [73], is defined, for each t ∈ Rdm,
as follows:

r̂(m)
n (ϕ, t; hn) =

∑
i∈Im

n

ϕ(Yi1 , . . . , Yim)K
(

t1 − Xi1
hn

)
. . . K

(
tm − Xim

hn

)

∑
i∈Im

n

K
(

t1 − Xi1
hn

)
. . . K

(
tm − Xim

hn

) , (3)

where
Im
n =

{
i = (i1, . . . , im) : 1 ≤ ij ≤ n and ij 6= ir if j 6= r

}
,

denotes the set of all m-tuples of different integers ij between 1 and n and {hn := hn}n≥1 is
a sequence of positive constants that converge to zero with rate nhm

n → ∞.
For m = 1, the r(m)(ϕ, t) becomes

r(1)(ϕ, t) = E(ϕ(Y)|X = t)

and the estimate of Stute will be transformed to the Nadaraya–Watson estimator of
r(1)(ϕ, t).
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Behind, Ref. [74] aimed to estimate the rate of uniform convergence in t of r̂(m)
n (ϕ, t; hn)

to r(m)(ϕ, t). Meanwhile, the study of [75] developed the limit distributions of r̂(m)
n (ϕ, t; hn),

by discussing and contrasting the findings of Stute. Correspondingly, under appropriate
mixing conditions, Ref. [76] spread the results of [73] to weakly dependent data and em-
ployed their findings to validate the Bayes risk consistency of the relevant discrimination
rules. Ref. [77] suggested symmetrized nearest neighbor conditional U-statistics as alter-
natives to conventional kernel estimators. Ref. [78] took into consideration the functional
conditional U-statistic and established the finite-dimensional asymptotic normality. Never-
theless, the non-parametric estimate of the conditional U-statistics in the functional data
framework had not received significant attention, despite the subject’s relevance. Some
recent developments are discussed in references [79,80], in which the authors examine the
challenges associated with maintaining a uniform bandwidth in a general framework. The
test of independence in the functional framework was based on the Kendall statistics, which
may be thought of as examples of the U-statistics; for instance, see [81]. The extension
of the investigation described above to conditional empirical U-processes is theoretically
attractive, practically helpful, and technically challenging.

The primary objective of this study is to examine a general framework and the weak
convergence’s characterization of the regular sequence of random spatial functions based
on conditional U-processes. This inquiry is simple, as it is difficult to hold the asymp-
totic equicontinuity under minimal conditions in this general setting, which constitutes a
fundamentally unresolved open subject in the literature. We intend to fill this gap in the
literature by merging the findings of [37,82,83] with techniques handling the functional
data given in [84–87]. However, as demonstrated in the following section, the challenge
requires much more than “just” merging concepts from the current outcomes. In fact,
complex mathematical derivations are necessary to deal with the typical functional data
in our context. This requires the successful application of large-sample theoretical tools,
which have been established for empirical processes, where we used the results of the work
of [37,82,83].

The structure of the present article is as follows. Section 2 introduces the functional
framework and the definitions requested in our work. The assumptions used in our
asymptotic analysis go along with a brief discussion. Section 3 gives the uniform rates
of the strong convergence. Section 4 includes the paper’s main results concerning the
uniform weak convergence for the conditional U-processes. In Section 5, we provide some
potential applications. In Section 6, we consider the conditional U-statistics in the right
censored data framework. In Section 7, we present how to select the bandwidth through the
cross-validation procedures. Some concluding remarks and possible future developments
are relegated to Section 8. All proofs are gathered in Section 9 to prevent interrupting the
presentation flow. Finally, some relevant technical results are given in Appendix A.

2. The Functional Framework
2.1. Notation

For any set A ⊂ Rd, |A| represents the Lebesgue measure of A and [[A]] denotes
the number of elements in A. For any positive sequence an, bn, we write an . bn if a
constant C > 0 independent of n exists such that an ≤ Cbn for all n, an ∼ bn if an . bn

and bn . an, and an � bn si an/bn → 0 as n → ∞. We use the notation d→ to indicate

convergence in the distribution. We write X d
= Y if the random variables X and Y have

the same distribution. PS will denote the joint probability distribution of the sequence
of independent and identically distributed (i.i.d.) random vectors {S0,j}j≥1, and P.|S is
the conditional probability distribution for {S0,j}j≥1. Let E.|S represent the conditional
expectation and Var.|S represent the variance for {S0,j}j≥1.
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2.2. Generality on the Model

In this investigation, we examine the following model:

ϕ(Ysi1
,An , . . . , Ysim ,An)

= r(m)

(
ϕ, Xsi1

,An , . . . , Xsim ,An ,
si1
An

, . . . ,
sim
An

)
+

m

∏
j=1

σ

( sij

An
, x
)

εij

= r(m)

(
ϕ, Xsi1

,An , . . . , Xsim ,An ,
si1
An

, . . . ,
sim
An

)
+

m

∏
j=1

εsij
,An , sij ∈ Rn, j = 1, . . . , m, (4)

where E[εs,An |Xs,An ] = 0 and Rn = [0, An]d ⊂ Rd denotes a sampling region with An → ∞
as n → ∞. Here, Ysj ,An and Xs,An denote random functions in H and Y . We consider

{Xs,An : s ∈ Rn} as a locally stationary random function field on Rn ⊂ Rd (d ≥ 2). As
suggested by [88], locally stationary processes are nonstationary time series in which the
parameters of the time series can change over time. Locally in time, they can be modeled
by a stationary time series, which makes it possible to use asymptotic theories to estimate
the parameters of models that depend on time. Time series analyses mostly look at locally
stationary models in a parametric framework with coefficients that change over time.

2.3. Local Stationarity

A random function field {Xsj ,An : s ∈ Rn} (An → ∞ as n → ∞) is considered to be
locally stationary if it exhibits behavior that is approximately stationary in the local space.
To guaranteed that it is locally stationary around each rescaled space point u, a process
{Xs,An} can be approximated by a stationary random function field {Xu(s) : s ∈ Rd}
stochastically; for instance, see [89]. The following is one possible way to define this idea.

Definition 1. The H -valued stochastic process {Xs,An : s ∈ Rn} denotes locally stationary if for
each rescaled time point u ∈ [0, 1]d, there exists an associated H -valued process {Xu(s) : s ∈ Rd}
with the following properties:

(i) {Xu(s) : s ∈ Rd} denotes strictly stationary.
(ii) It holds that

d(Xs,An , Xu(s)) ≤
(∥∥∥∥ s

An
− u

∥∥∥∥
2
+

1
Ad

n

)
Us,An(u) a.s., (5)

where {Us,An(u)} denotes a process of positive variables satisfying E[(Us,An(u))
ρ] < C for

some ρ > 0, C < ∞; C is independent of u, s, and An. ‖.‖2 is arbitrary norms of Rd.

The concept of local stationarity for real-valued time series was first presented by [88],
and Definition 1 is a natural extension of that idea.

In addition, the definition we offer is the same as that of [90] (Definition 2.1) when H
is the Hilbert space L2

R([0, 1]) of all real-valued functions that are square integrable with
respect to the Lebesgue measure on the unit interval [0, 1] with the L2-norm given by

‖ f ‖2 =
√
〈 f , f 〉, 〈 f , g〉 =

∫ 1

0
f (t)g(t)dt,

where f , g ∈ L2
R([0, 1]). In addition to this, the authors provide necessary conditions so

that an L2
R([0, 1])-valued stochastic process {Xt,T} satisfies (5) with d( f , g) = ‖ f − g‖2 and

ρ = 2.

2.4. Sampling Design

We are going to look at the stochastic sampling strategy in order to accommodate the
data that are irregularly spaced. First, define Rn as the sampling region. Let {An}n≥1 be
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a sequence of positive numbers such that An → ∞ as n → ∞. We consider the sampling
region as follows:

Rn = [0, An]
d. (6)

We will discuss the (random) sample designs we will use. Let fS(s0) be a continuous,
everywhere positive probability density function on R0 = [0, 1]d, and let {S0,j}j≥1 be a
sequence of i.i.d. random vectors with probability density fS(s0) such that {S0,j}j≥1 and
{Xs,A : s ∈ Rn} share a common probability space (Ω, F , P) and are independent. The
realizations s0,1, . . . , s0,n of random vectors S0,1, . . . , S0,n by the following relation:

sj = Ans0,j, j = 1, . . . , n.

gives the sampling sites s1, . . . , sn
Herein, we assume that nA−d

n → ∞ as n→ ∞.

Remark 1. In practice, An can be derived by taking the sampling region’s diameter. We can extend
the applicability of the assumption (6) to Rn to a broader range of situations, i.e.,

Rn =
d

∏
j=1

[0, Aj,n],

where Aj,n are sequences of positive constants with Aj,n → ∞ as n→ ∞. To avoid more challenging
outcomes, we assumed (6). For additional discussion, please refer to [85,87,91–93] and ([94],
Chapter 12).

2.5. Mixing Condition

The sequence Z1, Z2, is said to be β-mixing or absolute regular, refer to [95,96], if:

β(k) := E sup
l>1

{∣∣∣P(A|σl
1

)
− P(A)

∣∣∣ : A ∈ σ∞
l+k

}
−→ 0 as k→ ∞.

Notably, Ref. [97] produced a comprehensive description of stationary Gaussian processes
matching the last condition. Now, we define β-mixing coefficients for a random function
field X̃. Let σX̃(T) = σ({X̃(s) : s ∈ T}) be the σ-field generated by variables {X̃(s) : s ∈
T}, T ⊂ Rd. For subsets T1 and T2 of Rd, let

β̄(T1, T2) = sup
1
2

J

∑
j=1

K

∑
k=1
|P(Aj ∩ Bk)− P(Aj)P(Bk)|,

where the supremum is taken over all pairs of (finite) partitions {A1, . . . , AJ} and {B1, . . . , BK}
of Rd such that Aj ∈ σX̃(T1) and Bk ∈ σX̃(T2). Furthermore, let

d(T1, T2) = inf{|x− y| : x ∈ T1, y ∈ T2},

where |x| = ∑d
j=1 |xj| for x ∈ Rd, and let R(b) be the collection of all finite disjoint unions

of cubes in Rd with a volume total not exceeding b. Subsequently, the β-mixing coefficients
for the random field X̃ can be defined as

β(a; b) = sup{β̄(T1, T2) : d(T1, T2) ≥ a, T1, T2 ∈ R(b)}. (7)

We assume that a non-increasing function β1 with lima→∞ β1(a) = 0 and a non-decreasing
function g1 exist such that the β-mixing coefficient β(a; b) satisfies the following inequality:

β(a; b) ≤ β1(a)g1(b), a > 0, b > 0, (8)



Mathematics 2023, 11, 16 7 of 69

where g1 may be unbounded for d ≥ 2.

Remark 2 (Some remarks about mixing conditions). The size of index sets T1 and T2 in the
definition of β(a; b) must be restricted. Let us explain this point. If the β-mixing coefficients of a
random field X are defined similarly to the β-mixing coefficients for the time series as follows: Let
O1 and O2 be half-planes with boundaries L1 and L2, respectively. For each real number a > 0,
define

β(a) = sup
{

β̄(O1, O2) : d(O1, O2) ≥ a
}

,

where sup is taken over all pairs of parallel lines L1 and L2 such that d(L1, L2) ≥ a. Subsequently,
([98] Theorem 1) shows that if

{
X(s) : s ∈ R2} is a strictly stationary mixing random field, and

a > 0 is a real number. Then, β(a) = 1 or 0. This means that if a random field X is β-mixing
((lima→∞ β(a) = 0)), then for η, a positive constant and for some a > η, the random field X is
“m-dependent”, i.e., β(a) = 0. However, this is highly restricted in practice. In order to loosen these
results and make them more flexible for practical purposes, it will be necessary to restrict the size
of T1 and T2 and adopt Definition 7 for the β-mixing. We refer to [85,87,99–101] for additional
information on mixing coefficients for random fields.

Ref. [93] writes the form of mixing condition given in Equation (8) for the α-mixing
condition and it was considered also in the works of [102,103]. We have considered the
β-mixing case, and it is well known that the β-mixing implies the α-mixing. In general, in
the expression (8) β1 is a function defined in a way that it could be dependent on n as the
random field Xs,An depends on n, yet, g does not, just for the simplicity sake, despite that
the general cases where g changes with n are not difficult. We note that the random field
Ys,An(or ϕ(Ys,An)) does not necessarily satisfy the mixing condition (8), since the mixing
condition is assumed for Xs,An , but with the regression form represented by the model
in (4), Ys,An(or ϕ(Ys,An)) may have a flexible dependence structure.

2.6. Generality on the Model

Let {Xs,An , Ys,An : s ∈ Rn} be random variables where Ys,An is in Y and Xs,An takes
values in some semi-metric space H with a semi-metric d(·, ·) (a semi-metric (sometimes
called pseudo-metric) d(·, ·) is a metric which allows d(x1, x2) = 0 for some x1 6= x2)
defining a topology to measure the proximity between two elements of H and which
is dissociated from the definition of X in order to prevent concerns with measurability.
This study aims to establish the weak convergence of the conditional U-process using the
following U-statistic.

r̂(m)
n (x, u; hn) := r̂(m)

n (ϕ, x, u; hn)

=

∑
i∈Im

n

ϕ(Ysi1
,An , . . . , Ysim ,An

)
m

∏
j=1

K

(
uj − sij /An

hn

)
K2

d(xj, Xsij
,An)

hn


∑

i∈Im
n

m

∏
j=1

K

(
uj − sij /An

hn

)
K2

d(xj, Xsij
,An)

hn



=

∑
i∈Im

n

ϕ(Ysi1
,An , . . . , Ysim ,An

)
m

∏
j=1

 d

∏
`=1

K1

uj,` −
sij,`
An

hn

K2

d(xj, Xsij
,An)

hn


∑

i∈Im
n

m

∏
j=1

 d

∏
`=1

K1

uj,` −
sij,`
An

hn

K2

d(xj, Xsij
,An)

hn


, (9)

where

Im
n :=

{
i = (i1, . . . , im) : 1 ≤ ij ≤ n and ir 6= ij if r 6= j

}
,
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K(u) =
d

∏
`=1

K1(u`), (10)

and ϕ : Y m −→ R is a symmetric, measurable function that belongs to some class of func-
tions Fm, and {hn}n∈N∗ is a sequence of positive real numbers satisfying hn → 0 as n→ ∞.
In order to examine the weak convergence of the conditional empirical process and the
conditional U-process under functional data, we must introduce new notations, let

Fm = {ϕ : Y m → R},

be a point-wise measurable class of real-valued symmetric measurable functions on Y m

with a measurable envelope function:

F(y) ≥ sup
ϕ∈Fm

|ϕ(y)|, for y ∈ Y m. (11)

For a kernel function K(·), we define the point-wise measurable class of functions, for
1 ≤ m ≤ n

K m :=

{
(x1, . . . , xm) 7→

m

∏
i=1

K
(

d(xi, ·)
hn

)
, 0 < hn < 1 and (x1, . . . , xm) ∈H m

}
.

We use the notation

ψ(·, ·) ∈ FmK m := {ϕ1(·)ϕ2(·) : ϕ1 ∈ Fm, ϕ2(·) ∈ K m},

and
ψ(·, ·) ∈ F1K

1 := FK =
{

ϕ1(·)ϕ2(·) : ϕ1 ∈ F1, ϕ2(·) ∈ K 1
}

.

2.6.1. Small Ball Probability

In the absence of a universal reference measure, such as the Lebesgue measure, the
density function of the functional variable does not exist, which is one of the technical
challenges in infinite-dimensional spaces. To circumvent this obstacle, we employ the
concept of “small-ball probability”. The function φx(·) precisely controls the concentration
of the probability measure of the functional variable on a small ball, which is defined, for a
fixed x ∈H for all r > 0, by:

P(X ∈ B(x, r)) =: φx(r) > 0, (12)

where the space H is equipped with the semi-metric d(., .), and:

B(x, r) = {z ∈H : d(z, x) 6 r}

is a ball in H with the center x and radius r.

2.6.2. VC-Type Classes of Functions

The asymptotic analysis of functional data is related to concentration properties
expressed in terms of the small-ball probability concept. When considering a process
indexed by a class of functions, one must also account for other topological concepts,
including metric entropy and VC-subgraph classes (“VC” for Vapnik and Červonenkis).

Definition 2. Let SE denote a subset of a semi-metric space E and Nε a positive integer, a finite
set of points {e1, . . . , eNε} ⊂ E is called, for a given ε > 0, a ε-net of SE if:

SE ⊆ ∪Nε
j=1B(ej, ε).
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If Nε(SE ) denotes the cardinality of the smallest ε-net (the minimal number of open balls of
radius ε) in E , needed to cover SH , then we call Kolmogorov’s entropy (metric entropy) of the set
SE the quantity

ψSE
(ε) := log Nε(SE ).

From its name, one can deduce that Kolmogorov invented this idea of metric entropy
(cf. Ref. [104]), which was then explored for different metric spaces. This concept was
utilized by [105] to provide necessary conditions for the continuity of Gaussian processes.
It served as the foundation for remarkable expansions of Donsker’s theorem on the weak
convergence of empirical processes. BH and SH represent two subsets of the space H
with Kolmogorov’s entropy (for the radius ε) ψBH

(ε) and ψSH
(ε), respectively, then the

Kolmogorov entropy for the subset BH ×SH of the semi-metric space H 2 by:

ψBH ×SH
(ε) = ψBH

(ε) + ψSH
(ε).

Hence, mψSH
(ε) is the Kolmogorov entropy of the subset S m

H of the semi-metric space
H m. We specify by d the semi-metric on H ; then, this semi-metric defined on H m by:

dH m(x, y) :=
1
m

d(x1, y1) + . . . +
1
m

d(xm, ym)

for
x = (x1, . . . , xm), y = (y1, . . . , ym) ∈H m.

In this type of study, the semi-metric plays a crucial role. The reader can discover helpful
discussions on how to select the semi-metric in [55] (see Chapter 3 and Chapter 13). We
must additionally consider another topological term: namely, VC-subgraph classes (“VC”
for Vapnik and Červonenkis).

Definition 3. We call a class of subsets C on a set C a VC-class if there exists a polynomial P(·)
such that, for every set of Nε points in C, the class C picks out at most P(Nε) distinct subsets.

Definition 4. A class of functions F is called a VC-subgraph class if the graphs of the functions
in F form a VC-class of sets, i.e., if we define the subgraph of a real-valued function f on S as the
following subset G f on ×R:

G f = {(s, t) : 0 ≤ t ≤ f (s) or f (s) ≤ t ≤ 0}

the class {G f : f ∈ F} is a VC-class of sets on S×R. Informally, VC-class functions are identified
by their polynomial covering number (the minimal number of required functions to make a covering
on the entire class of functions).

A VC-class of functions F with envelope function F have the following entropy
property, for a given 1 6 q < ∞, there are constants a and b such as:

N(ε, F , ‖.‖Lq(Q)) ≤ a

(
(QFq)1/q

ε

)b

(13)

for any ε > 0 and each probability measure such that QFq < ∞. For instance, the following
references ([26], Lemma 22), ([106], §4.7), ([107], Theorem 2.6.7), ([108], §9.1) provide a
number of sufficient conditions under which (13) holds; refer to ([109], §3.2) for further
discussions.

2.7. Conditions and Comments

Assumption 1. (Model and distribution assumptions)
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(M1) The H -valued stochastic process {Xs,An : s ∈ Rn} is locally stationary. Hence, for each time
point u ∈ [0, 1]d, a strictly stationary process {Xu(s) : s ∈ Rd} exists such that for ‖.‖ an
arbitrary norm on Rd,

d(Xs,An , Xu(s)) ≤
(∥∥∥∥ s

An
− u

∥∥∥∥
2
+

1
Ad

n

)
Us,An(u) a.s., (14)

with E[(Us,An(u))
ρ] < C for some ρ ≥ 1 and C < ∞ that is independent of u, s and An.

(M2) For i = 1, . . . , m, let B(xi, h) = {y ∈H : d(xi, y) ≤ h} be a ball centered at xi ∈H with
radius h, and let cd < Cd be positive constants. For all u ∈ [0, 1]d,

φx(hn) := P(Xu(s1) ∈ B(x1, hn), . . . , Xu(sm) ∈ B(xm, hn)) = Fu(hn, x1, . . . , xm)

satisfies:

0 < cdφ(h) f1(x) ≤ φx(h) ≤ Cdφ(h) f1(x), (15)

where φ(h)→ 0 as h→ ∞, and f1(x) is a non-negative functional in x ∈H m. Moreover,
there exist constants Cφ > 0 and ε0 > 0 such that for any 0 < ε < ε0,∫ ε

0
φ(u)du > Cφεφ(ε). (16)

(M3) Let Xs,An = (Xsm ,An , . . . , Xs1,An) and Xv,An = (Xv1,An , . . . , Xvm ,An) and B(x, h) =

∏m
i=1 B(xi, h). Assume

sup
s,x,An

sup
s 6=v

P((Xs,An ,Xv,An) ∈ B(x, h)× B(x, h)) ≤ ψ(h) f2(x),

where ψ(h)→ 0 as h→ 0, and f2(x) is a non-negative functional in x ∈H m. We assume
that the ratio ψ(h)/φ2(h) is bounded.

(M4) σ : [0, 1]×H m → R is bounded by some constant Cσ < ∞ from above and by some constant
cσ > 0 from below, that is, 0 < cσ ≤ σ(u, x) ≤ Cσ < ∞ for all u and x.

(M5) σ(., .) is Lipschitz continuous with respect to u.
(M6) supu∈[0,1]m supz:d(x,z)≤h|σ(u, x)− σ(u, z)| = o(1) as h→ 0.

(M7) r(m)(u, x) is Lipschitz, and it satisfies

sup
u∈[0,1]

|r(m)(u1, x)− r(m)(u2, z)| ≤ cm
(
dH m(x, z)α + ‖u1 − u2‖α

)
(17)

for some cm > 0 and α > 0 and the semi-metric dH m(x, z) is defined on H m by:

dH m(x, z) :=
1
m

d(x1, z1) + . . . +
1
m

d(xm, zm)

for x = (x1, . . . , xm), z = (z1, . . . , zm) ∈ H m, and it is twice continuously partially
differentiable with first derivatives

∂ui r
(m)(u, x) =

∂

∂ui
r(m)(u, x),

and second derivatives

∂2
uiuj

r(m)(u, x) =
∂2

∂ui∂uj
r(m)(u, x).

Assumption 2. (Kernel assumptions)
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(KB1) The kernel K2(·) is non-negative, bounded by κ̃, and has support in [0, 1] such that
0 < K2(0) and K2(1) = 0. Moreover, K′2(v) = dK2(v)/dv exists on [0, 1] and satisfies
C′1 ≤ K′2(v) ≤ C′2 for two real constants −∞ < C′1 < C′2 < 0.

(KB2) The kernel K : Rd → [0, ∞) is bounded and has compact support [−C, C]d. Moreover,∫
[−C,C]d

K(x)dx = 1,
∫
[−C,C]d

xαK(x)dx = 0, for any α ∈ Zd with |α| = 1,

and |K(u)− K(v)| ≤ C‖u− v‖.
(KB3) The bandwidth h converges to zero at least at a polynomial rate; that is, there exists a small

ξ1 > 0 such that h ≤ Cn−ξ1 for some constant 0 < C < ∞.

Assumption 3. (Sampling design assumptions)

(S1) For any α ∈ Nd with |α| = 1, 2, ∂α fS(s) exists and is continuous on (0, 1)d.
(S2) C0 ≤ nA−d

n ≤ C1nη1 for some C0, C1 > 0 and small η1 ∈ (0, 1).

Assumption 4. (Block decomposition assumptions)

(B1) Let {A1,n}n≥1 and {A2,n}n≥1 be two sequences of positive numbers such that A1,n, A2,n →
∞, A2,n = o(A1,n), and A1,n = o(An), or A1,n

An
+

A2,n
A1,n
≤ C−1

0 n−η → 0 for some C0 >

0 and η > 0.
(B2) We have limn→∞ nA−d

n = κ ∈ (0, ∞] with An ≥ nκ̄ for some κ̄ > 0.
(B3) We have

(
1

nhmdφ(h)

)1/3(A1,n
An

)2d/3(A2,n
A1,n

)2/3
g1/3

1

(
Ad

1,n

) An/A1,n

∑
k=1

kd−1β1/3
1 (kA1,n + A2,n)→ 0.

(B4) We have limn→∞ Ad
n A−d

1,n β
(

A2,n; Ad
n

)
= 0.

Assumption 5. (Regularity conditions) Let αn =
√

log n/nhmdφ(h). As n→ ∞,

(R1) h−(md)φ(h)−1αmd
n Ad

n A−d
1,n β(A2,n; Ad

n)→ 0 and Ad
1,n A−d

n nhmdφ(h)(log n)→ 0,
(R2) n1/2h(md)/2φ(h)1/2/Ad

1,nn1/ζ ≥ C0nη for some 0 < C0 < ∞ and η > 0 and ζ > 2.

(R3) Adp
n φ(h)→ ∞, where p is defined in the sequel.

Assumption 6. (E1) For Wsi ,An = ∏m
j=1 εsij

,An , it holds that supx∈H m E|Ws,An |ζ ≤ C and

sup
x∈H m

E
[
|Ws,An |

ζ | Xi,n = x
]
≤ C

for ζ > 2 and C < ∞.
(E2) The β-mixing coefficients of the array {Xs,An , Ws,An} satisfy β(a; b) ≤ β1(a)g1(b) with

β1(a)→ 0 as a→ ∞.

Assumption 7. (Class of functions assumptions)
The classes of functions K m and Fm are such that:

(C1) The class of functions Fm is bounded, and its envelope function satisfies for some 0 < M < ∞:

F(y) ≤ M, y ∈ Y m.

(C2) The class of functions Fm is unbounded and its envelope function satisfies for some p > 2:

θp := sup
t∈S m

H

E(Fp(Y) | x = x) < ∞.
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(C3) The metric entropy of the class FmK m satisfies, for some 2 < p < ∞:∫ ∞

0
(log N(u, FmK m, L1(Pm)))

1
2 du < ∞,∫ ∞

0
(log N(u, FmK m, L2(Pm))))

1
2 du < ∞,∫ ∞

0
(log N(u, FmK m, Lp(Pm)))

1
2 du < ∞.

Comments

When it comes to functional data, traditional statistical methods are entirely ineffective.
In our non-parametric functional regression model, we took on the complex theoretical
challenge of establishing functional central limit theorems for the conditional U-process
under functional absolute regular data and in the context of a two-fold situation. This
was accomplished by adopting a two-fold framework. Despite this, the imposed assump-
tions coincide with some properties of the infinite-dimensional space. These properties
include the topological structure on H m, the probability distribution of X, and the mea-
surability concept for the classes Fm and K m; consequently, a discussion regarding the
aforementioned assumptions is necessary. The majority of these assumptions were mo-
tivated by [37,55,57,84–86,110]. Assumption 1 is the beginning of a formalization of the
property of Xi to be locally stationary, and we continue by placing certain restrictions on
the distribution behavior of the variables. This allows us to formalize the property in a
more precise manner. The condition (M1) refers to the idea of a locally stationary time
series, and various random fields can fulfill this requirement. Ref. [85] gave us some
examples, and particularly, he proved that this condition is satisfied for locally stationary
versions of Lévy-driven moving average random fields. Condition (M2) has been adopted
by [84], who in turn was inspired by [57] in his non-parametric density estimation under
functional observations. Ref. [84] clarifies that if H m = Rm, then the condition overlaps
with the fundamental axioms of probability calculus; furthermore, if H m is an infinitely
dimensional Hilbert space, then φ(hn) can drop toward 0 by an exponential speed as
n→ ∞. Equation (15) controls the behavior of the small ball probability around zero and
is the quite usual condition on the small ball probability. This approximately shows that
the small ball probability can be written approximately as the product of two independent
functions φm(·) and f1(·); for instance, for m = 1, refer to [111] for the diffusion process,
Ref. [112] for a Gaussian measure, Ref. [113] for a general Gaussian process and [84]
employed these assumptions for strongly mixing processes. For example, the function φ(·)
can be expressed as φ(ε) = εδ exp(−C/εa) with δ ≥ 0 and a ≥ 0, and it corresponds to
the Ornstein–Uhlenbeck and general diffusion processes (for such processes, a = 2 and
δ = 0) and the fractal processes (for such processes, δ > 0 and a = 0). We refer to the paper
of [114] for other examples. Conditions (M4), (M5), (M6) and Assumption 2 represent the
regularity conditions, and they are the umbrella that covers the limiting theorems of such
a process. Due to the sampling design strategy employed in Section 2.4, a non-uniform
density is possible across the sampling region, by which the number of sampling sites is
enabled to increase at different rates with respect to the region’s volume O(Ad

n). This sam-
pling design allows the pure increasing domain case

(
limn→∞ nA−d

n = κ ∈ (0, ∞)
)

and the

mixed increasing domain case ( limn→∞ nA−d
n = ∞

)
. Assumption 3 is assumed to address

this sampling design and the infill sampling criteria in the stochastic design case, which can
also be seen in [94,115]. In addition to the non-uniform possibility of the sampling density,
an approach for irregularly spaced sampling sites based on a homogeneous Poisson point
process was discussed in ([10], Chapter 8), where the sampling sites must have a uniform
distribution over the sampling region. This makes the sampling design used in this work
more flexible than the homogeneous Poisson point process and more useful for practical
applications. Condition (B1) in Assumption 4 is related to the Blocking technique used
to decompose the sampling region Rn into big and small blocks. The sequences {A1,n}
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and {A2,n} are related to the large-block–small-block argument, respectively, which is com-
monly used in proving CLTs for sums of mixing random variables; see [94]. Precisely, A1,n
corresponds to the side length of large blocks, while A2,n corresponds to the side length of
small blocks. Furthermore, Assumptions 6 help for deriving the weak convergence of the
conditional U-statistic ψ̂ defined in Section 3. Condition (C1) says that we are dealing with
bounded functions, but we are also interested in establishing the functional central limit
theorem for conditional U-processes indexed by an unbounded class of functions; therefore,
this condition will be replaced by (C2). Each of these generic assumptions is sufficiently
weak in connection to the many objects described in our preliminary results. They discuss
and utilize the four key axes of this work, which are the topological structure of the func-
tional variables, the probability measure in this functional space, the idea of measurability
on the class of functions, and the uniformity governed by the entropy characteristics.

Remark 3. Note that Assumption (C2) in 7 might be substituted by more general hypotheses upon
moments of Y as in [109]. That is

(C4)′ We denote by {M (x) : x ≥ 0} a non-negative continuous function, increasing on [0, ∞),
and such that, for some s > 2, ultimately as x ↑ ∞,

x−sM (x) ↓; x−1M (x) ↑ . (18)

For each t ≥M (0), we define M inv(t) ≥ 0 by M (M inv(t)) = t. Assuming further that:

E(M (| F(Y) |)) < ∞.

The following choices of M (·) are of particular interest:

(i) M (x) = xp for some p > 2;
(ii) M (x) = exp(sx) for some s > 0.

3. Uniform Convergence Rates for Kernel Estimators

Before expressing the asymptotic behavior of our estimator represented in (9), we will
generalize the study to a U-statistic estimator defined by:

ψ̂(u, x) =
(n−m)!

n!hmdφm(h) ∑
i∈Im

n

m

∏
j=1

{
K

(
uj − sij /An

hn

)
K2

(
d(xj, Xsij ,An )

hn

)}
Wsi ,An , (19)

where Wsi ,An is an array of one-dimensional random variables. In this study, we use the
results with Wsi ,An = 1 and Wsi ,An = ∏m

j=1 εsij
,An .

3.1. Hoeffding’s Decomposition

Note ψ̂(u, x) is a standard U-statistic with a kernel depending on n. We define

ξ j :=
1
hd K

(
uj − sij /An

hn

)
,

H(Z1, . . . , Zm) :=
m

∏
j=1

1
φ(h)

K2

d(xj, Xsij
,An)

hn

Wsi ,An ,

thus, the U-statistic in (19) can be viewed as a weighted U-statistic of degree m:

ψ̂(u, x) =
(n−m)!

n! ∑
i∈Im

n

ξi1 . . . ξim H(Zi1 , . . . , Zim). (20)

We can write Hoeffding’s decomposition in this case. If we will not assume symmetry for
Wsi ,An or H, we must define:
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• The expectation of H(Zi1 , . . . , Zim):

θ(i) := EH(Zi1 , . . . , Zim) =
∫

Wsi ,An

m

∏
j=1

1
φ(h)

K2

d(xj, νsij
,An)

hn

dPi(zi). (21)

• For all ` ∈ {1, . . . , m} the position of the argument, construct the function π` such
that:

π`(z; z1, . . . , zm−1) := (z1, . . . , z`−1, z, z`, . . . , zm−1).

• Define:

H(`)(z; z1, . . . , zm−1) := H{π`(z; z1, . . . , zm−1)}
θ(`)(i; i1, i2, . . . , im−1) := θ{π`(i; i1, i2, . . . , im−1)}.

Hence, the first order expansion of H(·) will be seen as:

H̃(`)(z) := E
(

H(`)(z, Z1, . . . , Zm−1)
)

=
∫

Ws(1,...,`−1,i,`,...,m−1),An

m−1

∏
j=1
j 6=i

1
φ(h)

K2

(
d(xj, νsj ,An)

h

)
× 1

φ(h)
K2

(
d(xi, νsi ,An)

h

)

×P(dν1, . . . , dν`−1, dν`, . . . , dνm−1) (22)

:=
1

φ(h)
K2

(
d(xi, Xsi ,An)

h

)
Wsi ,An ×

∫
Ws(1,...,`−1,`,...,m−1),An

m−1

∏
j=1
j 6=i

1
φ(h)

K2

(
d(xj, νsj ,An)

h

)

×P(dν1, . . . , dν`−1, dν`, . . . , dνm−1),

with P as the underlying probability measure, and define

f (`)i,i1,...,im−1
:=

m

∑
`=1

ξi1 . . . ξi`−1
ξiξi` . . . ξim−1

(
H̃(`)(z)− θ(`)(i; i1, . . . , im−1)

)
. (23)

Then, the first-order projection can be defined as:

Ĥ1,i(u, x) :=
(n−m)!
(n− 1)! ∑

Im−1
n−1 (−i)

f (`)i,i1,...,im−1
, (24)

where

Im−1
n−1 (−i) :=

{
1 ≤ i1 < . . . < im−1 ≤ n and ij 6= i for all j ∈ {1, . . . , m− 1}

}
.

For the remainder terms, we denote by i\i` := (i1, . . . , il−1, il+1, . . . , im) and for ` ∈
{1, . . . , m}, let

H2,i(z) := H(z)−
m

∑
l=1

H̃(`)
i\i`

(z`) + (m− 1)θ(i), (25)

where
H̃(`)

i\i`
(z`) = E(H(Z1, . . . , Z`−1, z, Z`+1Zm−1)),

defined in (22), this projection derives us to the following remainder term:

ψ̂2(u, x) :=
(n−m)!
(n)! ∑

i∈Im
n

ξi1 . . . ξim H2,i(z). (26)



Mathematics 2023, 11, 16 15 of 69

Finally, using Equations (24) and (26), and under conditions that:

E
(

Ĥ1,i(u, X)
)

= 0, (27)

E(H2,i(Z | Zk)) = 0 a.s., (28)

we obtain the [16] decomposition:

ψ̂(u, x)−E
(
ψ̂(u, x)

)
=

1
n

n

∑
i=1

Ĥ1,i(u, x) + ψ̂2,i(u, x)

:= ψ̂1(u, x) + ψ̂2(u, x).

3.2. Strong Uniform Convergence Rate

We start by giving the following general result concerning the rate of convergence of
the U-process presented in (19).

Proposition 1. Let FmK m be a measurable VC-subgraph class of functions satisfying Assumption 7
and assume that Assumptions 2, 3, and Condition (B1) in Assumptions 4–6 are also satisfied. Then,
the following result holds

sup
FmK m

sup
x∈H m

sup
u∈[0,1]m

∣∣ψ̂(u, x)−E[ψ̂(u, x)]
∣∣ = OP.|S

(√
log n

nhmdφm(h)

)
PS − a.s.

Next, the uniform rate of convergence of the estimator (9) of the mean function r(m) in
the model (4) will be given, using the results of the last proposition.

Theorem 1. Let FmK m be a measurable VC-subgraph class of functions satisfying Assumption 7.
Let Ih = [C1h, 1− C1h]dm and let Sc be a compact subset of H m. Suppose that

inf
u∈[0,1]d

f (u) > 0.

Then, under Assumptions 1–3, Condition (B1) in Assumptions 4–6 (with Wsi ,An = 1 and εsi ,An ),
the following result holds for PS almost surely:

sup
FmK m

sup
x∈Sc

sup
u∈Ih

∣∣∣r̂(m)
n (x, u; hn)− r(m)(x, u; hn)

∣∣∣
= OP.|S

(√
log n/nhmdφm(h) + h2∧α +

1

Adp
n φ(h)

)
,

where p = min{1, ρ}, and ρ > 0 given in Definition 1 .

It is worth to note here that the approximation of the functional time series Xs,An by a
functional stationary random field Xu(s) provides the error term A−dp

n φ−1(h).

4. Weak Convergence for Kernel Estimators

In this section, we are interested in studying the weak convergence of the conditional
U-process, defined by Equation (9), under absolute regular observations. The following
theorem represents the main result in this work concerning the weak convergence of the
functional locally stationary random field estimator. Let us define, for ϕ1, ϕ2 ∈ Fm

σ(ϕ1, ϕ2) = E.|S(
√

nhmdφm(h)(r̂(m)
n (ϕ1, x, u; hn)− r(m)(ϕ1, x, u)

×
√

nhmdφm(h)(r̂(m)
n (ϕ2, x, u; hn)− r(m)(ϕ2, x, u)). (29)
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Theorem 2. Let FmK m be a measurable VC-subgraph class of functions satisfying Assumption 7.
Suppose that fS(u) > 0 and εsij

,An = σ
(

sij /An, x
)

εij , where σ(., .) is continuous and {εi}n
i=1

is a sequence of i.i.d. random variables with mean zero and variance 1. Moreover, suppose
nhm(d+1)+4 → c0 for a constant c0. If all assumptions assumed in Theorem 1 hold in addition of
Conditions (B2), (B3) and (B4), then the following result holds for PS almost surely:√

nhmdφm(h)
[
r̂(m)

n (ϕ, x, u; h)− r(m)(ϕ, x, u)− Bu,x

]
converges to a Gaussian process Gn over FmK m, whose simple paths are bounded and informally
continuous with respect to ‖.‖2-norm with co-variance function given by (29) and where the bias
term Bu,x = OP.|S(h

2∧α).

Remark 4. Set Ad
n = O

(
n1−η̄1

)
for some η̄1 ∈ [0, 1), A1,n = O

(
A

γA1
n

)
, A2,n = O

(
A

γA2
n

)
with

0 < γA2 < γA1 < 1/3 and p = min{1, ρ} = 1. Assume that we can take a sufficiently large
ζ > 2 such that 2

ζ < (1− η̄1)
(
1− 3γA1

)
. Then, Assumption 4 is satisfied for d ≥ 1.

Remark 5. It is simple to modify the proofs of our results to demonstrate that they still hold when
the entropy condition is replaced by the bracketing condition:∫ ∞

0
(log N[ ](u, FK , Lp(Pm)))

1
2 du < ∞

Refer to p. 270 of [116] for the definition of N[ ](u, FK , Lp(Pm)).

Remark 6. There are basically no restrictions on the choice of the kernel function in our setup apart
from satisfying some mild conditions. The selection of the bandwidth, however, is more problematic.
It is worth noticing that the choice of the bandwidth is crucial to obtain a good rate of consistency;
for example, it has a big influence on the size of the estimate’s bias. In general, we are interested in
the selection of bandwidth that produces an estimator which has a good balance between the bias
and the variance of the considered estimators. It is then more appropriate to consider the bandwidth
varying according to the criteria applied and to the available data and location which cannot be
achieved by using the classical methods. The interested reader may refer to [117] for more details
and discussion on the subject. It would be of interest to establish uniform-in-bandwidth central
limit theorems in our setting; i.e., we will let h > 0 vary in such a way that h′n ≤ h ≤ h′′n , where
{h′n}n≥1 and {h′′n}n≥1 are two sequences of positive constants such that 0 < h′n ≤ h′′n < ∞ and,
for either choice of hn = h′n or hn = h′′n , fulfills our conditions. It will be of interest to show that

sup
h′n≤h≤h′′n

√
nhmdφm(h)

[
r̂(m)

n (ϕ, x, u; h)− r(m)(ϕ, x, u)− Bu,x

]
converges to a Gaussian process Gn over FmK m.

5. Applications
5.1. Metric Learning

Metric learning tries to adapt the metric to the data and has garnered significant
interest in recent years; for an overview of metric learning and its applications, see [118,119].
This is prompted by applications ranging from computer vision to bioinformatics-based
information retrieval. As an example of the utility of this notion, we give the metric learning
issue for supervised classification as described in [119]. Let us consider dependent copies
(Xs1,An , Y1), . . . , (Xsn ,An , Yn) of a H ×Y valued random couple (X, Y), where H is some
feature space and Y = {1, . . . , C}, with C ≥ 2 say, a finite set of labels. Let D be a set of
distance measures D : H ×H → R+. The intuitive objective of metric learning in this
context is to identify a measure under which points with the same label are close together
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and those with different labels are far apart. The standard way to define the risk of a metric
D is as follows:

R(D) = E
[
φ
((

1− D
(
X, X′

)
·
(
2 1
{

Y = Y′
}
− 1
))]

, (30)

where φ(u) is a convex loss function upper bounding the indicator function 1{u ≥ 0}: for
instance, the hinge loss φ(u) = max(0, 1− u). To estimate R(D), we consider the natural
empirical estimator

Rn(D) =
2

n(n− 1) ∑
1≤i<j≤n

K
(

ui − si/An

hn

)
K
(uj − sj/An

hn

)
×φ
((

D
(

Xsi ,An , Xsj ,An

)
− 1
)
·
(
2π
{

Yi = Yj
}
− 1
))

, (31)

which is one sample U-statistic of degree two with kernel given by:

ϕD
(
(x, y),

(
x′, y′

))
= φ

((
D
(
x, x′

)
− 1
)
·
(
2 1
{

y = y′
}
− 1
))

.

The convergence to (30) of a minimizer of (31), in the non-spatial setting, has been studied
in the frameworks of algorithmic stability [120], algorithmic robustness [121] and based on
the theory of U-processes under appropriate regularization [122].

5.2. Multipartite Ranking

Let us recall the problem from [119]. Let X ∈H be a random vector of attributes/features
and the (temporarily hidden) ordinal labels Y ∈ {1, . . . , K} assigned to it. The goal of mul-
tipartite ranking, which uses a training set of labeled examples, is to put the attributes
or features in the same order as the labels. Many different fields use this statistical learn-
ing problem (e.g., medicine, finance, search engines, e-commerce). Rankings are usually
defined by a scoring function, s : H → R, which moves the natural order on the real
line to the feature space. The ROC manifold, or its usual summary, the VUS criterion
(VUS stands for Volume Under the ROC Surface), is the gold standard for evaluating
the ranking performance of s(x); see [123] and the references therein. The best scoring
functions, according to [124], are those that are best for all bipartite subproblems. More
specifically, they are increasing transformations of the likelihood ratio dFk+1/dFk, where
Fk is the class-conditional distribution for the kth class. When the set of optimal scoring
functions is not empty, the authors showed that it is the same as the set of functions that
maximizes the amount of space under the ROC surface

VUS(s) = P{s(Xs1) < . . . < s(XsK ) | Y1 = 1, . . . , YK = K}.

Given K independent samples
(

X(k)
s1,Ank

, . . . , X(k)
snk ,Ank

)
with distribution Fk(dx) for k =

1, . . . , K, the empirical counterpart of the VUS can be written in the following way:

V̂US(s)

=
1

∏K
k=1 nk

n1

∑
i1=1

. . .
nK

∑
ik=1

K

∏
j=1

K

(
uj − sij /An

hn

)
1
{

s
(

X(1)
si1

,An1

)
< . . . < s

(
siK , A(K)

nK

)}
. (32)

The empirical VUS (32) is a K-sample U-statistic of degree (1, . . . , K) with kernel given by:

ϕs(x1, . . . , xK) = 1{s(x1) < . . . < s(xK)}.
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5.3. Set Indexed Conditional U-Statistics

We aim to study the links between X and Y by estimating functional operators asso-
ciated with the conditional distribution of Y given X, such as the regression operator, for
C1 × . . .× Ck := C̃ in a class of sets C m,

G(m)(C1× . . .×Cm | t, u) = E
(

m

∏
i=1

1{Yi ∈ Ci} | (X1, . . . , Xk) = (t1, . . . , tm) = t

)
for t ∈ Sc,

where u = (u1, . . . , ud). We define metric entropy with the inclusion of the class of sets C .
For each ε > 0, the covering number is defined as:

N (ε, C ,G(1)(· | x)) = inf{n ∈ N : ∃C1, . . . , Cn ∈ C such that ∀C ∈ C ∃ 1 ≤ i, j ≤ n

with Ci ⊂ C ⊂ Cj and G(1)(Cj \ Ci | x) < ε},

the quantity log(N (ε, C ,G(1)(· | x))) is called metric entropy with inclusion of C with
respect to the conditional distribution G(1)(· | x). The quantity log N (ε, C ,G(1)(· | x))
is called metric entropy with inclusion of C with respect to G(· | x). Estimates for such
covering numbers are known for many classes (see, e.g., [125]). We will often assume below
that either log N (ε, C ,G(1)(· | x)) or N (ε, C ,G(1)(· | x)) behave like powers of ε−1: we
say that the condition (Rγ) holds if

log N (ε, C ,G(1)(· | x)) ≤ Hγ(ε), for all ε > 0, (33)

where

Hγ(ε) =

{
log(Aε) if γ = 0,
Aε−γ if γ > 0,

for some constants A, r > 0. As in [126], it is worth noticing that the condition (33), γ = 0,
holds for intervals, rectangles, balls, ellipsoids, and for classes which are constructed from
the above by performing set operations union, intersection and complement finitely many
times. The classes of convex sets in Rd (d ≥ 2) fulfill the condition (33), γ = (d− 1)/2. This
and other classes of sets satisfying (33) with γ > 0 can be found in [125]. As a particular
case of (9), we estimate G(m)(C1 × . . .× Cm | t)

Ĝ(m)
n (C̃, t, u) =

∑
i∈Im

n

m

∏
j=1

1{Ysij
,An ∈ Cj}

 d

∏
`=1

K1

uj,` −
sij,`
An

hn

K2

d(xj, Xsij
,An)

hn


∑

i∈Im
n

m

∏
j=1

 d

∏
`=1

K1

uj,` −
sij,`
An

hn

K2

d(xj, Xsij
,An)

hn


. (34)

One can apply Theorem 1 to infer that, in probabbility,

sup
C̃∈C m

sup
t∈Sc ,u∈Ih

∣∣∣Ĝ(m)
n (C̃, t)−G(m)(C̃ | t)

∣∣∣ −→ 0. (35)

Remark 7. Another point of view is to consider the following situation, for a compact J ⊂ Rdm,

G(m)(y1, . . . , yk | t, u) = E
(

m

∏
i=1

1{Yi ≤ yi} | (X1, . . . , Xm) = t

)
for t ∈ Sc, (y1, . . . , ym) ∈ J.
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Let L(·) be a distribution in Rd and hn is a sequence of positive real numbers. One can estimate
G(m)(y1, . . . , ym | t, u) = G(m)(y | t, u) by

Ĝ(m)
n (y, t, u) := =

∑
i∈Im

n

m

∏
j=1

L

(Ysij
,An − tj

hn

) d

∏
`=1

K1

uj,` −
sij,`
An

hn

K2

d(xj, Xsij
,An)

hn


∑

i∈Im
n

m

∏
j=1

 d

∏
`=1

K1

uj,` −
sij,`
An

hn

K2

d(xj, Xsij
,An)

hn


.

One can use Theorem 1 to infer that, in probability,

sup
t∈Sc ,u∈Ih

sup
y∈J

∣∣∣Ĝ(m)
n (y, t, u)−G(m)(y | t, u)

∣∣∣ −→ 0. (36)

5.4. Discrimination

Now, we apply the results on the problem of discrimination described in Section 3
of [127], refer to also to [128]. We will use similar notations and settings. Let ϕ(·) be any
function taking at most finitely many values, say 1, . . . , M. The sets

Aj = {(y1, . . . , yk) : ϕ(y1, . . . , yk) = j}, 1 ≤ j ≤ M

then yield a partition of the feature space. Predicting the value of ϕ(y1, . . . , yk) is tan-
tamount to predicting the set in the partition to which (Y1, . . . , Yk) belongs. For any
discrimination rule g(·), we have

P(g(X1, . . . , Xm) = ϕ(Y1, . . . , Ym)) ≤
M

∑
j=1

∫
{x:g(t)=j}

max mj(t)dP(t),

where
mj(t) = P(ϕ(Y1, . . . , Ym) = j | X1, . . . , Xm = t), t ∈ Sc.

The above inequality becomes equality if

g0(t) = arg max
1≤j≤M

mj(t).

The function g0(·) is called the Bayes rule, and the pertaining probability of error

L∗ = 1− P(g0(X1, . . . , Xm) = ϕ(Y1, . . . , Ym)) = 1−E
{

max
1≤j≤M

mj(t)
}

is called the Bayes risk. Each of the above unknown functions mj(·) values can be con-
sistently estimated by one of the methods discussed in the preceding sections. Let, for
1 ≤ j ≤ M,

mj
n(x, u) =

∑
i∈Im

n

1{ϕ(Ysi1
,An , . . . , Ysim ,An

) = j}
m

∏
j=1

 d

∏
`=1

K1

uj,` −
sij,`
An

hn

K2

d(xj, Xsij
,An)

hn


∑

i∈Im
n

m

∏
j=1

 d

∏
`=1

K1

uj,` −
sij,`
An

hn

K2

d(xj, Xsij
,An)

hn


.

Set
g0,n(t) = arg max

1≤j≤M
mj

n(t).
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Let us introduce
L∗n = P(g0,n(X1, . . . , Xm) 6= ϕ(Y1, . . . , Ym)).

Then, one can show that the discrimination rule g0,n(·) is asymptotically Bayes’ risk consis-
tent

L∗n → L∗.

This follows from the obvious relation

|L∗ − L∗n| ≤ 2E
[

max
1≤j≤M

∣∣∣mj
n(X, u)−mj(X)

∣∣∣].

6. Extension to the Censored Case

Consider a triple (Y, C, X) of random variables defined in R×R×H . Here, Y is the
variable of interest, C is a censoring variable and X is a concomitant variable. Throughout,
we will use [129] notation and we work with a sample {(Yi, Ci, Xsi ,An} of identically dis-
tributed replication of (Y, C, X), n ≥ 1. Actually, in the right censorship model, the pairs
(Yi, Ci), 1 ≤ i ≤ n, are not directly observed, and the corresponding information is given
by Zi := min{Yi, Ci} and δi := 1{Yi ≤ Ci}, 1 ≤ i ≤ n. Accordingly, the observed sample is

Dn = {(Zi, δi, Xsi ,An), i = 1, . . . , n}.

Survival data in clinical trials or failure time data in reliability studies, for example,
are often subject to such censoring. More specifically, many statistical experiments result in
incomplete samples, even under well-controlled conditions. For example, clinical data for
surviving most types of disease are usually censored by other competing risks to life which
result in death. In the sequel, we impose the following assumptions upon the distribution
of (X, Y). For −∞ < t < ∞, set

FY(t) = P(Y ≤ t), G(t) = P(C ≤ t), and H(t) = P(Z ≤ t),

the right-continuous distribution functions of Y, C and Z respectively. For any right-
continuous distribution function L defined on R, denote by

TL = sup{t ∈ R : L(t) < 1}

the upper point of the corresponding distribution. Now, consider a point-wise measurable
class F of real measurable functions defined on R, and assume that F is of VC-type. We
recall the regression function of ψ(Y) evaluated at X = x, for ψ ∈ F and x ∈H , given by

r(1)(ψ, x) = E(ψ(Y) | X = x),

when Y is right-censored. To estimate r(1)(ψ, ·), we make use of the Inverse Probability of
Censoring Weighted (I.P.C.W.) estimators have recently gained popularity in the censored
data literature (see [130–132]). The key idea of I.P.C.W. estimators is as follows. Introduce
the real-valued function Φψ(·, ·) defined on R2 by

Φψ(y, c) =
1{y ≤ c}ψ(y ∧ c)

1− G(y ∧ c)
. (37)

Assuming the function G(·) to be known, first note that Φψ(Yi, Ci) = δiψ(Zi)/(1− G(Zi))
is observed for every 1 ≤ i ≤ n. Moreover, under the Assumption (I ) below,

(I ) C and (Y, X) are independent.

We have

r(1)(Φψ, x) := E(Φψ(Y, C) | X = x)
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= E
{

1{Y ≤ C}ψ(Z)
1− G(Z)

| X = x
}

= E
{

ψ(Y)
1− G(Y)

E(1{Y ≤ C} | X, Y) | X = x
}

(38)

= r(1)(ψ, x).

Therefore, any estimate of r(1)(Φψ, ·), which can be built on fully observed data, turns out to
be an estimate for r(1)(ψ, ·) too. Thanks to this property, most statistical procedures known
to provide estimates of the regression function in the uncensored case can be naturally
extended to the censored case. For instance, kernel-type estimates are particularly easy to
construct. Set, for x ∈H , h ≥ ln, 1 ≤ i ≤ n,

ω
(1)
n,K1,2,hn ,i(x, u) :=

d

∏
`=1

K1

(
u` −

sj,`
An

hn

)
K2

(
d(x, Xsj ,An)

hn

)
n

∑
j=1

d

∏
`=1

K1

(
u` −

sj,`
An

hn

)
K2

(
d(x, Xsj ,An)

hn

) . (39)

In view of (37)–(39), whenever G(·) is known, a kernel estimator of r(1)(ψ, ·) is given by

r̆(1)n (ψ, x, u; hn) =
n

∑
i=1

ω
(1)
n,K1,2,hn ,i(x, u)

δiψ(Zi)

1− G(Zi)
. (40)

The distribution function G(·) is generally unknown and has to be estimated. We will
denote by G∗n(·) the Kaplan–Meier estimator of the function G(·) [133]. Namely, adopting
the conventions

∏
∅

= 1

and 00 = 1 and setting

Nn(u) =
n

∑
i=1

1{Zi ≥ u},

we have

G∗n(u) = 1− ∏
i:Zi≤u

{
Nn(Zi)− 1

Nn(Zi)

}(1−δi)

, for u ∈ R.

Given this notation, we will investigate the following estimator of r(1)(ψ, ·)

r̆(1)∗n (ψ, x, u; hn) =
n

∑
i=1

ω
(1)
n,K1,2,hn ,i(x, u)

δiψ(Zi)

1− G∗n(Zi)
, (41)

refer to [129,130]. Adopting the convention 0/0 = 0, this quantity is well defined, since
G∗n(Zi) = 1 if and only if Zi = Z(n) and δ(n) = 0, where Z(k) is the kth-ordered statistic
associated with the sample (Z1, . . . , Zn) for k = 1, . . . , n and δ(k) is the δj corresponding to
Zk = Zj. When the variable of interest is right-censored, the functional of the (conditional)
law can generally not be estimated on the complete support (see [132]). To obtain our
results, we will work under the following assumptions.

(A.1) F = {ψ := ψ11{(−∞, τ)m}, ψ1 ∈ F1}, where τ < TH and F1 is a point-wise
measurable class of real measurable functions defined on R and of type VC.

(A.2) The class of functions F has a measurable and uniformly bounded envelope function
Υ with,

Υ(y1, . . . , yk) ≥ sup
ψ∈F
|ψ(y1, . . . , yk)|, yi ≤ TH .
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We now have all the ingredients to state the result corresponding to the censored case. By
combining the results of Proposition 9.6 and Lemma 9.7 of [134], Theorem 1, we have, in
probability,

sup
x,u

∣∣∣r̆(1)∗n (ψ, x, u; hn)− Ê(r̆(1)∗n (ψ, x, u; hn))
∣∣∣→ 0. (42)

A right-censored version of an unconditional U-statistic with a kernel of degree m ≥ 1
is introduced by the principle of a mean preserving reweighting scheme in [135]. Ref. [136]
has proved almost sure convergence of multi-sample U-statistics under random censorship
and provided application by considering the consistency of a new class of tests designed for
testing equality in distribution. To overcome potential biases arising from right-censoring of
the outcomes and the presence of confounding covariates, Ref. [137] proposed adjustments
to the classical U-statistics. Ref. [138] proposed a different way in the estimation procedure
of the U-statistic by using a substitution estimator of the conditional kernel given the
observed data. To our best knowledge, the problem of the estimation of the conditional
U-statistics was opened up to the present, and it gives our main motivation to the study of
this section. A natural extension of the function defined in (37) is given by

Φψ(y1, . . . , ym, c1, . . . , cm) =
∏m

i=1{1{yi ≤ ci}ψ(y1 ∧ c1, . . . , ym ∧ cm)

∏m
i=1{1− G(yi ∧ ci)}

.

From this, we have an analogous relation to (38) given by

E(Φψ(Y1, . . . , Ym, C1, . . . , Cm) | (X1, . . . , Xm) = t)

= E
(

∏m
i=1{1{Yi ≤ Ci}ψ(Y1 ∧ C1, . . . , Yk ∧ Cm)

∏m
i=1{1− G(Yi ∧ Ci)}

| (X1, . . . , Xm) = t
)

= E
(

ψ(Y1, . . . , Ym)

∏m
i=1{1− G(Yi)}

E
(

m

∏
i=1
{1{Yi ≤ Ci} | (Y1, X1), . . . (Ym, Xm)

)
| (X1, . . . , Xm) = t

)
= E(ψ(Y1, . . . , Ym) | (X1, . . . , Xm) = t) = mψ(t).

An analogue estimator to (9) in the censored case is given by

r̆(m)
n (ψ, t, u; hn) = ∑

(i1,...,im)∈I(m,n)

δi1 . . . δim ψ(Zi1 , . . . , Zim)

(1− G(Zi1) . . . (1− G(Zik ))
ω
(m)
n,K1,2,hn ,i(t, u), (43)

where, for i = (i1, . . . , ik) ∈ I(k, n),

ω
(k)
n,K1,2,hn ,i(x, u)

m

∏
j=1

 d

∏
`=1

K1

uj,` −
sij,`
An

hn

K2

d(xj, Xsij
,An)

hn


∑

i∈Im
n

m

∏
j=1

 d

∏
`=1

K1

uj,` −
sij,`
An

hn

K2

d(xj, Xsij
,An)

hn


. (44)

The estimator that we will investigate is given by

r̆(m)∗
n (ψ, t, u; hn) = ∑

(i1,...,ik)∈I(m,n)

δi1 . . . δik ψ(Zi1 , . . . , Zim)

(1− G∗n(Zi1) . . . (1− G∗n(Zim))
ω
(k)
n,K1,2,hn ,i(t, u). (45)

Corollary 1. Under the assumptions (A.1)–(A.2) and the conditions of Theorem 1, we have

sup
x∈H m

sup
u∈Ih ,x∈Sc

∣∣∣r̆(m)∗
n (ψ, t, u; hn)−Er̆(m)∗

n (ψ, t, u; hn)
∣∣∣
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= OP.|S

(√
log n/nhmdφm(h) +

1

Adp
n φ(h)

)
,

In the last corollary, we use the law of iterated logarithm for G∗n(·) established in [139]
ensuring that

sup
t≤τ
|G∗n − G(t)| = O

(√
log log n

n

)
almost surely as n→ ∞. (46)

At this point, we may refer to [69,134,140].

7. The Bandwidth Selection Criterion

Many methods have been established and developed to construct, in asymptotically
optimal ways, bandwidth selection rules for non-parametric kernel estimators especially
for the Nadaraya–Watson regression estimator we quote among them [141–143]. This
parameter has to be selected suitably, either in the standard finite dimensional case, or in
the infinite dimensional framework for ensuring good practical performances. However,
according to our knowledge, such studies do not presently exist for treating a such general
functional conditional U-statistic. Nevertheless, an extension of the leave-one-out cross-
validation procedure allows us to define, for any fixed j = (j1, . . . , jm) ∈ Im

n :

r̂(m)
n,j (x, u; hn)

=

∑
i∈Im

n (j)
ϕ(Ysi1

,An , . . . , Ysim ,An
)

m

∏
j=1

 d

∏
`=1

K1

uj,` −
sij,`
An

hn

K2

d(xj, Xsij
,An)

hn


∑

i∈Im
n

m

∏
j=1

 d

∏
`=1

K1

uj,` −
sij,`
An

hn

K2

d(xj, Xsij
,An)

hn


, (47)

where
Im
n (j) := {i ∈ Im

n and i 6= j} = Im
n \{j}.

The Equation (47) represents the leave-one-out-
(
Xj, Yj

)
estimator of the functional regres-

sion and also could be considered as a predictor of ϕ(Ysj1
,An , . . . , Ysjm ,An

) := ϕ(Yj). In order
to minimize the quadratic loss function, we introduce the following criterion: we have for
some (known) non-negative weight function W (·):

CV(ϕ, hn) :=
(n−m)!

n! ∑
j∈Im

n

(
ϕ
(
Yj
)
− r̂(m)

n,j (Xj, u; hn)
)2

W̃
(
Xj
)
, (48)

where Xj = (Xsj1
,An , . . . , Xsjm ,An

). Following the ideas developed by [143], a natural way for

choosing the bandwidth is to minimize the precedent criterion, so let us choose ĥn ∈ [an, bn]
minimizing among h ∈ [an, bn]:

CV(ϕ, hn).

The main interest of our results is the possibility to derive the asymptotic properties of
our estimate even if the bandwidth parameter is a random variable, as in the last equation.
Following [144] where the bandwidths are locally chosen by a data-driven method based
on the minimization of a functional version of a cross-validated criterion, one can replace
(48) by

CV(ϕ, hn) :=
(n−m)!

n! ∑
j∈Im

n

(
ϕ
(
Yj
)
− r̂(m)

n,j (Xj, u; hn)
)2

Ŵ
(
Xj, x

)
, (49)
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where

Ŵ (s, t) :=
m

∏
i=1

Ŵ(si, ti).

In practice, one takes for i ∈ Im
n the uniform global weights W̃ (Xi) = 1, and the local

weights

Ŵ(Xi, t) =
{

1 if d(Xi, t) ≤ h,
0 otherwise.

For the sake of brevity, we have just considered the most popular method: that is, the
cross-validated selected bandwidth. This may be extended to any other bandwidth selector
such as the bandwidth based on Bayesian ideas [145].

Remark 8. For notational convenience, we have chosen the same bandwidth sequence for each
margin. This assumption can be dropped easily if one wants to use the vector bandwidths (see,
in particular, Chapter 12 of [6]). With obvious changes of notation, our results and their proofs
remain true when hn is replaced by a vector bandwidth hn = (h(1)n , . . . , h(d)n ), where min h(i)n >

0. In this situation, we set hn = ∏d
i=1 h(i)n , and for any vector v = (v1, . . . , vd), we replace

v/hn by (v1/h(1)n , . . . , v1/h(d)n ). For ease of presentation, we chose to use real-valued bandwidths
throughout.

Remark 9. We mention that a different bandwidth criterion suggested by [1] is the rule of thumb.
Strictly speaking, since the cross-validated bandwidth is random, the asymptotic theory can only
be justified with this random bandwidth via a specific stochastic equicontinuity argument. Cross-
validation is employed by [146] to examine the equality of two unconditional and conditional
functions in the context of mixed categorical and continuous data. However, this approach, which
is optimal for estimation, loses its optimality when applied to non-parametric kernel testing. For
testing a parametric model for conditional mean function against a non-parametric alternative,
Ref. [147] proposed an adaptive-rate-optimal rule. Ref. [148] present the other method for selecting
a proper bandwidth. Ref. [148] propose, utilizing the Edgeworth expansion of the asymptotic
distribution of the test, to select the bandwidth such that the power function of the test is maximized
while the size function is controlled. Future investigation will focus on the aforementioned three
approaches.

8. Concluding Remarks

In this paper, we considered the kernel type estimator for conditional U-statistics,
including a particular case, the Nadaraya–Watson estimator, in a functional setting with
random fields. To obtain our results, we ought to make assumptions requiring some
regularity on the conditional U-statistics and conditional moments, some decay rates on
the probability of the variables belonging to shrinking open balls, and suitable decreasing
rates on the mixing coefficients. Mainly, the conditional moment assumption enables the
consideration of unbounded classes of functions. The proof of the weak convergence
respects a typical technique: finite dimensional convergence and equicontinuity of the
conditional U-processes.

Both results, the uniform rate of convergence and the weak convergence, are grounded
on a general blocking technique adjusted for irregularly spaced sampling sites, where we
need to pay attention to the effect of the non-equidistant sampling sites. We intricately
reduce the work to the independent setting to address this issue. Indeed, as there is no
practical guidance for introducing order to spatial points as opposed to time series, not
asymptotically but exactly independent blocks of observations have been constructed by
([149], Corollary 2.7) (Lemma A4) and then results of independent data could be applied
directly to the independent blocks. Here, Ref. [149] declares that the uniform convergence
result requires the β-mixing condition to connect the original sequence with the sequence
of the independent blocks, and this connection still holds under the φ-mixing condition but
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is not necessary under the α-mixing conditions. Therefore, we use the β-mixing sequence
as we aim to derive the weak convergence for processes indexed by classes of functions.

Ref. [85] in his work gives us a possible extension of the sampling region inspired
by [93]. This extension can be explained as follows. It is feasible to generalize the definition
of the sample region Rn to include non-standard forms. For instance, we may use the
sample region concept [93] as follows: First, let Rn be the sampling region. Define R∗0 as
an open connected subset of (−2, 2]d containing [−1, 1]d and R0 as a Borel set such that
R∗0 ⊂ R0 ⊂ R̄∗0 , and where for any set S ⊂ Rd, S̄ signifies its closure. Let {An}n≥1 be a
sequence of positive numbers such that An → ∞ as n → ∞ and define Rn = AnR0 as a
sampling region. In addition, for any sequence of positive numbers {an}n≥1 with an → 0 as

n→ ∞, let O
(

a−d+1
n

)
, as n→ ∞, be the number of cubes of the form an

(
i + [0, 1)d

)
, i ∈ Zd

with their lower left corner ani on the lattice anZd that intersects both R0 and Rc
0 (see

Condition B in [93], Chapter 12, Section 12.2) (This condition is the prototype R0 boundary’s
condition; it must always be assumed on the region Rn to prevent pathological situations,
and it is satisfied by the majority of areas of practical significance. This condition is satisfied
in the plane (d = 2), for instance, if the boundary ∂R0 of R0 is defined by a simple rectifiable
curve of limited length. When sample sites are defined on the integer grid Zd, this condition
means that the effect of data points toward the boundary of Rn is small compared to the
overall number of data points). In addition, define f as a continuous, everywhere positive
probability density function on R0, and let {S0,i}i≥1 be a sequence of i.i.d. random vectors
with density f . Assume that {S0,i}i≥1 and Xs,An are independent. Replacing our setting in
Section 2.4 with this new one, our results still hold, and it will be possible to show uniform
convergence and weak convergence under the same assumptions and identical proofs.
For future investigation, it will be interesting to relax the mixing conditions to the weak
dependence (or the ergodicity framework). This generalization is nontrivial, since we need
some maximal moment inequalities in our asymptotic results that are not available in this
setting. Another interesting direction is to consider the incomplete data setting (missing
at random, censored in different schemes) for locally spatial–functional data. A natural
question is how to adapt our results to the wavelet-based estimators, the delta sequence
estimators, the kNN estimators, and the local linear estimators.

9. Mathematical Developments

The proofs for our results are covered in this section. The following continues to use
the notations that were previously presented.

To avoid the repetition of the Blocking technique and the notation used, we will devote
the following subsection to introducing all notations needed for this decomposition.

9.1. Preliminaries

This treatment requires an extension of the Blocking techniques of Bernstein to the
spacial process, refer to [85]. Let us introduce some notations related to this technique.
Recall that {A1,n} and {A2.n} are sequences of positive numbers such that

A1,n/An + A2,n/A1,n → 0 as n→ ∞.

Let
A3,n = A1,n + A2,n.

We consider a partition of Rd by hypercubes of the form Γn(`; 0) =
(
`+ (0, 1]d

)
A3,n,

` = (`1, . . . , `d)
′ ∈ Zd and divide Γn(`; 0) into 2d hypercubes as follows:

Γn(`; ε) =
d

∏
j=1

Ij
(
εj
)
, ε = (ε1, . . . , εd)

′ ∈ {1, 2}d, (50)
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where for j = 1, . . . , d,

Ij
(
εj
)
=

{ (
`j A3,n, `j A3,n + A1,n

]
if εj = 1,(

`j A3,n + A1,n,
(
`j + 1

)
A3,n

]
if εj = 2.

(51)

We note that
|Γn(`; ε)| = Aq(ε)

1,n Ad−q(ε)
2,n (52)

for any ` ∈ Zd and ε ∈ {1, 2}d, where

q(ε) =
[{

1 ≤ j ≤ d : εj = 1
}]

.

Let ε0 = (1, . . . , 1)′. The partitions Γn(`; ε0) correspond to “large blocks” and the
partitions Γ(`; ε) for ε 6= ε0 correspond to “small blocks”.

Let
L1,n =

{
` ∈ Zd : Γn(`, 0) ⊂ Rn

}
be the index set of all hypercubes Γn(`, 0) that are contained in Rn, and let

L2,n =
{
` ∈ Zd : Γn(`, 0) ∩ Rn 6= 0, Γn(`, 0) ∩ Rc

n 6= ∅
}

denote the boundary hypercubes index set. Define Ln = L1,n ∪ L2,n.

9.2. Proof of Proposition 1

As we mentioned, our statistic is a weighted U-statistic that can be decomposed into a
sum of U-statistics using the Hoeffding decomposition. We will treat this decomposition
detailed in Section 3.1 to achieve the desired results. In the mentioned section, we have
seen that

ψ̂(u, x)−E
(
ψ̂(u, x)

)
= ψ̂1(u, x) + ψ̂2(u, x),

where the linear term ψ̂1(u, x) and the remainder term ψ̂2(u, x) are well defined in (24)
and (26), respectively. We aim to prove that the linear term leads the rate of convergence
of this statistic while the remaining one converges to zero almost surely as n → ∞. We

will deal with the first term in the decomposition. For B = [0, 1], αn =
√

log n/nhmdφm(h)

and τn = ρnn1/ζ , where ζ is a positive constant given in Assumption 6 part (i), with
ρn = (log n)ζ0 for some ζ0 > 0. Define

H̃(`)
1 (z) := H̃(`)(z) 1{∣∣∣Wsi ,An

∣∣∣≤τn

}, (53)

H̃2(z) := H̃(`)(z) 1{∣∣∣Wsi ,An

∣∣∣>τn

}, (54)

and

ψ̂
(1)
1 (u, x)− θ(i) =

1
n

n

∑
i=1

(n−m)!
(n− 1)! ∑

Im−1
n−1 (−i)

m

∑
`=1

ξi1 . . . ξi`−1
ξiξi` . . . ξim−1 H̃(`)

1 (z),

ψ̂
(2)
1 (u, x)− θ(i) =

1
n

n

∑
i=1

(n−m)!
(n− 1)! ∑

Im−1
n−1 (−i)

m

∑
`=1

ξi1 . . . ξi`−1
ξiξi` . . . ξim−1 H̃(`)

2 (z).

Clearly, we have

ψ̂1(u, x)−Eψ̂1(u, x)

=
[
ψ̂
(1)
1 (u, x)−Eψ̂

(1)
1 (u, x)

]
+
[
ψ̂
(2)
1 (u, x)−Eψ̂

(2)
1 (u, x)

]
. (55)
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To begin, it is plain to see that

P·|S

(
sup

FmK m
sup

x∈H m
sup
u∈Bm

∣∣∣ψ̂(2)
1 (u, x)− θ(i)

∣∣∣ > αn

)

= P·|S

(
sup

FmK m
sup

x∈H m
sup
u∈Bm

∣∣∣ψ̂(2)
1 (u, x)− θ(i)

∣∣∣ > αn

)
⋂{

sup
FmK m

sup
x∈H m

n⋃
i=1

∣∣Wsi ,An

∣∣ > τn

}⋃{
sup

FmK m
sup

x∈H m

{
n⋃

i=1

∣∣Wsi ,An

∣∣ > τn

}c}

≤ P·|S

{
sup

FmK m
sup

x∈H m
sup
u∈Bm

∣∣∣ψ̂(2)
1 (u, x, ϕ)− θ(i)

∣∣∣ > αn

⋂{
sup

FmK m
sup

x∈H m
sup
u∈Bm

n⋃
i=1

∣∣Wsi ,An

∣∣ > τn

}}

+P·|S

{
sup

FmK m
sup

x∈H m
sup
u∈Bm

∣∣∣ψ̂(1)
2 (u, x, ϕ)− θ(i)

∣∣∣ > αn

⋂{{
sup

FmK m
sup

x∈H m
sup
u∈Bm

n⋃
i=1

∣∣Wsi ,An

∣∣ > τn

}c }}

≤ P·|S

(
sup

FmK m
sup

x∈H m
sup
u∈Bm

∣∣Wsi ,An

∣∣ > τn for some i = 1, . . . , n

)
+ P·|S(∅)

≤ τ
−ζ
n

n

∑
i=1

E·|S

[
sup

FmK m
sup

x∈H m
sup
u∈Bm

∣∣Wsi ,An

∣∣ζ] ≤ nτ
−ζ
n = ρ

−ζ
n → 0.

We infer that

E·|S
[∣∣∣ψ̂(2)

1 (u, x)
∣∣∣] ≤ 1

n

n

∑
i=1

(n−m)!
(n− 1)! ∑

Im−1
n−1 (−i)

m

∑
`=1

ξi1 . . . ξi`−1
ξiξi` . . . ξim−1 E·|S

(∣∣∣H̃(`)
2 (z)

∣∣∣),

where

E·|S
(∣∣∣H̃(`)

2 (z)
∣∣∣)

= E·|S


∣∣∣∣∣∣∣∣

1
φ(h)

K2

(
d(xi, Xsi ,An)

h

)
Wsi ,An ×

∫
Ws(1,...,`−1,`,...,m−1),An

m−1

∏
j=1
j 6=i

1
φ(h)

K2

(
d(xj, νsj ,An)

h

)
P(dν1, . . . , dν`−1, dν`, . . . , dνm−1)

∣∣∣∣∣
]

≤ E·|S

[∣∣∣∣∣ 1
φ(h)

(
K2

(
d
(
xi, Xsi ,An

)
h

)
+ K2

(
d(xi, Xui (si))

h

)
−K2

(
d(xi, Xui (si))

h

))
Wsi ,An 1{∣∣∣Wsi ,An

∣∣∣>τn

}∣∣∣∣]
≤ τ

−(ζ−1)
n
φ(h)

E·|S

[∣∣∣∣∣K2

(
d
(

xi, Xsi ,An

)
h

)
− K2

(
d(xi, Xui (si))

h

)∣∣∣∣∣∣∣Wsi ,An

∣∣ζ (56)

+

∣∣∣∣K2

(
d(xi, Xui (si))

h

)∣∣∣∣∣∣Wsi ,An

∣∣ζ]
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≤ τ
−(ζ−1)
n
φ(h)

E·|S
[

h−1∣∣d(xi, Xsi ,An

)
− d(xi, Xui (si))

∣∣∣∣Wsi ,An

∣∣ζ]
+E·|S

[∣∣∣∣K2

(
d(xi, Xui (si))

h

)∣∣∣∣∣∣Wsi ,An

∣∣ζ]
.

τ
−(ζ−1)
n
φ(h)

×
[

1
nh

+ φ(h)
]

.
τ
−(ζ−1)
n

nhφ(h)
+ τ

−(ζ−1)
n .

Hence, we have

E·|S
[∣∣∣ψ̂(2)

1 (u, x)
∣∣∣] . 1

n

n

∑
i=1

(n−m)!
(n− 1)! ∑

Im−1
n−1 (−i)

m

∑
`=1

ξi1 . . . ξi`−1
ξiξi` . . . ξim−1

[
τ
−(ζ−1)
n

]

. τ
−(ζ−1)
n

1
nm ∑

i∈Im
n

m

∏
j=1

1
hd K

(
uj − sij /An

hn

)

=
C

τ
(ζ−1)
n

(
fS(u) + O

(√
log n
nhmd + h2

))
(Using Lemma A1)

≤ C

τ
(ζ−1)
n

= Cρ
−(ζ−1)
n n−(ζ−1)/ζ ≤ Cαn PS − a.s.

As a result, we obtain that

sup
FmK m

sup
x∈H m

sup
u∈Bm

∣∣∣ψ̂(2)
1 (u, x)− E·|Sψ̂

(2)
1 (u, x)

∣∣∣ = OP·|S(αn). (57)

Second, let us treat

sup
FmK m

sup
x∈H m

sup
u∈Bm

∣∣∣ψ̂(1)
1 (u, x, ϕ)−Eψ̂

(1)
1 (u, x, ϕ)

∣∣∣.
Recall the large blocks and small blocks and the notation given in Section 9.1, and define

Ss,An(u, x) :=
(n−m)!
(n− 1)! ∑

Im−1
n−1 (−i)

m

∑
`=1

ξi1 . . . ξi`−1
ξiξi` . . . ξim−1 H̃(`)

1 (z),

Sn(`; ε) = ∑
i:si∈Γn(`;ε)∩Rn

Ss,An(u, x) =
(

S(1)
n (`; ε), . . . , S(p)

n (`; ε)
)′

.

Then, we have

Sn =
(

S(1)
n , . . . , S(m)

n

)′
=

n

∑
i=1

Ss,An(u, x)

= ∑
`∈Ln

Sn(`; ε0) + ∑
ε 6=ε0

∑
`∈L1,n

Sn(`; ε)︸ ︷︷ ︸
=:S2,n(ε)

+ ∑
ε 6=ε0

∑
`∈L2,n

Sn(`; ε)︸ ︷︷ ︸
=:S3,n(ε)

(58)

=: S1,n + ∑
ε 6=ε0

S2,n(ε) + ∑
ε 6=ε0

S3,n(ε).

In order to achieve our result, we will pass by the following two steps.
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Step 1 (Reduction to independence). Recall

Sn(`; ε) = ∑
i:si∈Γn(`;ε)∩Rn

Ss,An(u, x).

For each ε ∈ {1, 2}d, let
{

S̆n(`; ε) : ` ∈ Ln
}

be a sequence of independent random variables
in R under P·|S such that

S̆n(`; ε)
d
= Sn(`; ε), under P.|S, ` ∈ Ln.

Define
S̆1,n = ∑

`∈Ln

S̆n(`; ε0) =
(

S̆(1)
1,n , . . . , S̆(m)

1,n

)′
and for ε 6= ε0, define

S̆2,n(ε) = ∑
`∈L1,n

S̆n(`; ε)

and
S̆3,n(ε) = ∑

`∈L2,n

S̆n(`; ε).

We start by confirming the following results:

sup
t>0

∣∣∣P·|S(S1,n > t)− P·|S
(
S̆1,n > t

)∣∣∣ ≤ C
(

An

A1,n

)d
β
(

A2,n; Ad
n

)
, (59)

sup
t>0

∣∣∣P·|S(‖S2,n(ε)‖∞ > t
)
− P·|S

(∥∥S̆2,n(ε)
∥∥

∞ > t
)∣∣∣ ≤ C

(
An

A1,n

)d
β
(

A2,n; Ad
n

)
, (60)

sup
t>0

∣∣∣P·|S(‖S3,n(ε)‖∞ > t
)
− P·|S

(∥∥S̆3,n(ε)
∥∥

∞ > t
)∣∣∣ ≤ C

(
An

A1,n

)d
β
(

A2,n; Ad
n

)
. (61)

Keep in mind that
JLnK = O

(
(An/A3,n)

d
)
. (An/A1,n)

d.

For ε ∈ {1, 2}d and `1, `2 ∈ Ln with `1 6= `2, let

J1(ε) =
{

1 ≤ i1 ≤ n : si1 ∈ Γn(`1; ε)
}

, J2(ε) =
{

1 ≤ i2 ≤ n : si2 ∈ Γn(`2; ε)
}

.

For any sik =
(
s1,ik , . . . , sd,ik

)
, k = 1, 2 in such a way that i1 ∈ J1(ε) and i2 ∈ J2(ε), we

obtain max1≤u≤d | su,i1− su,i2 |≥ A2,n using the definition of Γ(`; ε). This gives∣∣si1 − si2

∣∣ ≥ A2,n.

For any ε ∈ {1, 2}d, let Sn(`1; ε), . . . , Sn

(
`[Ln ]; ε

)
be an arrangement of {Sn(`; ε) : ` ∈ Ln}.

Let P(a)
.|S be the marginal distribution of Sn(`a; ε) and let P(a:b)

·|S be the joint distribution of
{Sn(`k; ε) : a ≤ k ≤ b}. The β-mixing property of X gives that for 1 ≤ k ≤ JLnK− 1,∥∥∥P·|S − P(1:k)

·|S × P(k+1:[Ln ])
·|S

∥∥∥
TV
. β

(
A2,n; Ad

n

)
.

The inequality is independent of the arrangement of {Sn(`; ε) : ` ∈ Ln}. Therefore, the
Assumption A2 in Lemma A4 is fulfilled for {Sn(`; ε) : ` ∈ Ln} with τ ∼ β

(
A2,n; Ad

n

)
and m . (An/A1,n)

d. Combining the boundary condition on Rn and Lemma A4, we
get (59)–(61).
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Remark 10. Since

J
{

ε ∈ {1, 2}d : ε 6= ε0

}
K = 2d − 1, JL1,nK ∼ (An/A3,n)

d ∼ (An/A1,n)
d

and
JL2,nK ∼ (An/A3,n)

d−1 ∼ (An/A1,n)
d−1 � JL1,nK,

Lemma A5 and Equation (52) give for sufficiently large n the summands numbers of S2,n and
S3,n are at most

O
(

Ad−1
1,n A2,nnA−d

n (An/A1,n)
d
)
= O

(
A2,n

A1,n
n
)

and

O
(

Ad−1
1,n A2,nnA−d

n (An/A1,n)
d−1
)
= O

(
A2,n

An
n
)

,

respectively.

Step 2. Recall that we aim to treat

sup
FmK m

sup
x∈H m

sup
u∈Bm

∣∣∣ψ̂(1)
1 (u, x, ϕ)− E·|Sψ̂

(1)
1 (u, x, ϕ)

∣∣∣.
To achieve the intended result, we will cover the region Bm = [0, 1]dm by

N(u)⋃
k1,...,km=1

m

∏
j=1

B(ukj
, r),

for some radius r. Hence, for each u = (u1, . . . , um) ∈ [0, 1]dm, there exists l(u) =
(l(u1), . . . , l(um)), where ∀1 ≤ i ≤ m, 1 ≤ l(ui) ≤ N(u) in such a way that

u ∈
m

∏
i=1

B(ul(ui)
, r) and |ui − ul(ui)

| ≤ r, for 1 ≤ i ≤ m,

then for each u ∈ [0, 1]dm, the closest center will be ul(u), and the ball with the closest
center will be defined by

B(u, l(u), r) :=
m

∏
j=1

B(ukj
, r).

In the same way, H m should be covered by

N(x)⋃
k1,...,km=1

m

∏
j=1

B(xkj
, r),

for some radius r. Hence, for each x = (x1, . . . , xm) ∈ H m, there exists l(x) = (l(x1), . . . ,
l(xm)), where ∀1 ≤ i ≤ m, 1 ≤ l(xi) ≤ N(x) in such a way that

x ∈
m

∏
i=1

B(ul(xi)
, r) and d(xi, xl(ui)

) ≤ r, for 1 ≤ i ≤ m,

then for each x ∈H m, the closest center will be xl(x), and the ball with the closest center
will be defined by

B(x, l(x), r) :=
m

∏
i=1

B(xl(xi)
, r).

We define:
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K∗(ω, v) ≥ C0

m

∏
j=1

d

∏
`=1

1(|ωj,` |≤2C1)

m

∏
j=1

K2(vk) for (ω, v) ∈ R2.

We can show that for (u, x) ∈ Bj,n and n large enough,∣∣∣∣K(u− s/An

hn

)
K2

(
d(xi, Xsi ,An)

h

)
− K

(
un − s/An

hn

)
K2

(
d(xn,i, Xsi ,An)

h

)∣∣∣∣
≤ αnK∗

(
un − s/An, d(xn,i, Xsi ,An)

hn

)
.

Then, for

ψ̂
(1)
1 (u, x) =

1
n

n

∑
i=1

ξi
1

φ(h)
K2

(
d(xi, Xsi ,An)

h

)
Wsi ,An 1{∣∣∣Wsi ,An

∣∣∣≤τn

}
× (n−m)!

(n− 1)! ∑
Im−1
n−1 (−i)

m

∑
`=1

ξi1 . . . ξi`−1
ξi` . . . ξim−1

×
∫

Ws(1,...,`−1,`,...,m−1),An

m−1

∏
j=1
j 6=i

1
φ(h)

K2

(
d(xj, νsj ,An)

h

)
P(dν1, . . . , dν`−1, dν`, . . . , dνm−1).

Let us define

ψ
(1)
1 (u, x) =

1
nhdφ(h)

n

∑
i=1

K∗
(

un − si/An, d(xn,i, Xsi ,An)

hn

)
Wsi ,An 1{∣∣∣Wsi ,An

∣∣∣≤τn

}
× (n−m)!

(n− 1)! ∑
Im−1
n−1 (−i)

m

∑
`=1

ξi1 . . . ξi`−1
ξi` . . . ξim−1 (62)

×
∫

Ws(1,...,`−1,`,...,m−1),An

m−1

∏
j=1
j 6=i

1
φ(h)

K2

(
d(xj, νsj ,An)

h

)
P(dν1, . . . , dν`−1, dν`, . . . , dνm−1)

:=
1

nhdφ(h)

n

∑
i=1

S′s,An
(u, x).

We mention that
E·|S
[∣∣∣ψ̄(1)

1 (u, x, ϕ)
∣∣∣] ≤ M < ∞,

for some M large enough. Let NFmK m Nm
(x)N(u) denote the covering number related,

respectively, to the class of functions FmK m, the balls that cover [0, 1]m and the balls that
cover H m. Then, we obtain

sup
FmK m

sup
x∈H m

sup
u∈B

∣∣∣ψ̂(1)
1 (u, x, ϕ)− E·|S

[
ψ̂
(1)
1 (u, x, ϕ)

]∣∣∣
≤ NFmK m Nm

(x)Nm
(u) max

1≤i1<...<im≤m
sup

B(xi(x),r)
max

1≤i1<...<im≤m
sup

B(ui(u),r)

∣∣∣ψ̂(1)
1 (u, x, ϕ)− E·|S

[
ψ̂
(1)
1 (u, x, ϕ)

]∣∣∣
≤ NFmK m Nm

(x)Nm
(u) max

1≤i1<...<im≤m
sup

B(xi(x),r)
max

1≤i1<...<im≤m
sup

B(ui(u),r)

∣∣∣ψ̂(1)
1 (un, x)− E·|S

[
ψ̂
(1)
1 (un, x)

]∣∣∣
+NFmK m Nm

(x)Nm
(u) max

1≤i1<...<im≤m
sup

B(xi(x),r)
max

1≤i1<...<im≤m
sup

B(ui(u),r)
αn

(∣∣∣ψ̄(1)
1 (un, x)

∣∣∣+ E·|S
[∣∣∣ψ̄(1)

1 (un, x)
∣∣∣])

≤ NFmK m Nm
(x)Nm

(u) max
1≤i1<...<im≤m

sup
B(xi(x),r)

max
1≤i1<...<im≤m

sup
B(ui(u),r)

∣∣∣ψ̂(1)
1 (un, x)− E·|S

[
ψ̂
(1)
1 (un, x)

]∣∣∣
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+NFmK m Nm
(x)Nm

(u) max
1≤i1<...<im≤m

sup
B(xi(x),r)

max
1≤i1<...<im≤m

sup
B(ui(u),r)

∣∣∣ψ̄(1)
1 (un, x)− E·|S

[
ψ̄
(1)
1 (un, x)

]∣∣∣
+2MF(y)αn

≤ NFmK m Nm
(x)Nm

(u) max
1≤i1<...<im≤m

sup
B(xi(x),r)

max
1≤i1<...<im≤m

sup
B(ui(u),r)

∣∣∣∣∣ ∑
`∈Ln

Sn(`; ε0)

∣∣∣∣∣ (63)

+NFmK m Nm
(x)Nm

(u) max
1≤i1<...<im≤m

sup
B(xi(x),r)

max
1≤i1<...<im≤m

sup
B(ui(u),r)

∣∣∣∣∣∣ ∑
ε 6=ε0

∑
`∈L1,n

Sn(`; ε)

∣∣∣∣∣∣
+NFmK m Nm

(x)Nm
(u) max

1≤i1<...<im≤m
sup

B(xi(x),r)
max

1≤i1<...<im≤m
sup

B(ui(u),r)

∣∣∣∣∣∣ ∑
ε 6=ε0

∑
`∈L2,n

Sn(`; ε)

∣∣∣∣∣∣
+NFmK m Nm

(x)Nm
(u) max

1≤i1<...<im≤m
sup

B(xi(x),r)
max

1≤i1<...<im≤m
sup

B(ui(u),r)

∣∣∣∣∣ ∑
`∈Ln

S′n(`; ε0)

∣∣∣∣∣
+NFmK m Nm

(x)Nm
(u) max

1≤i1<...<im≤m
sup

B(xi(x),r)
max

1≤i1<...<im≤m
sup

B(ui(u),r)

∣∣∣∣∣∣ ∑
ε 6=ε0

∑
`∈L1,n

S′n(`; ε)

∣∣∣∣∣∣
+NFmK m Nm

(x)Nm
(u) max

1≤i1<...<im≤m
sup

B(xi(x),r)
max

1≤i1<...<im≤m
sup

B(ui(u),r)

∣∣∣∣∣∣ ∑
ε 6=ε0

∑
`∈L2,n

S′n(`; ε)

∣∣∣∣∣∣+ 2MF(y)αn.

Even more, for each ε ∈ {1, 2}d, let
{

S̆′n(`; ε) : ` ∈ Ln
}

denote a sequence of independent
random vectors in Rm under P·|S such that

S̆′n(`; ε)
d
= S′n(`; ε), under P.|S, ` ∈ Ln.

Show that

P·|S

NFmK m Nm
(x)Nm

(u) max
1≤i1<...<im≤m

sup
B(xi(x),r)

max
1≤i1<...<im≤m

sup
B(ui(u),r)

∣∣∣ψ̂(1)
1 (u, x)− E·|S

[
ψ̂
(1)
1 (u, x)

]∣∣∣ > 2md+1Man

 (64)

≤ NFmK m Nm
(x)Nm

(u) max
1≤i1<...<im≤m

sup
B(xi(x),r)

max
1≤i1<...<im≤m

sup
B(ui(u),r)

P·|S

(
sup

(u,x)∈Bk

∣∣∣ψ̂1(u, x)− E·|S
[
ψ̂1(u, x)

]∣∣∣ > 2md+1Man

)

≤ ∑
ε∈{1,2}d

Q̂n(ε) + ∑
ε∈{1,2}d

Q̄n(ε) + 2md+1NFmK m Nm
(x)Nm

(u)

(
An

A1,n

)d
β
(

A2,n; Ad
n

)
, (65)

where

Q̂n(ε0) = NFmK m Nm
(x)Nm

(u) max
1≤i1<...<im≤m

sup
B(xi(x),r)

max
1≤i1<...<im≤m

sup
B(ui(u),r)

P·|S

(∣∣∣∣∣ ∑
`∈Ln

S̆n(`; ε0)

∣∣∣∣∣ > Mannmhmdφ(h)

)
,

Q̄n(ε0) = NFmK m Nm
(x)Nm

(u) max
1≤i1<...<im≤m

sup
B(xi(x),r)
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max
1≤i1<...<im≤m

sup
B(ui(u),r)

P·|S

(∣∣∣∣∣ ∑
`∈Ln

S̆′n(`; ε0)

∣∣∣∣∣ > Mannmhmdφ(h)

)
,

and for ε 6= ε0

Q̂n(ε) = NFmK m Nm
(x)Nm

(u) max
1≤i1<...<im≤m

sup
B(xi(x),r)

max
1≤i1<...<im≤m

sup
B(ui(u),r)

P·|S

(∣∣∣∣∣ ∑
`∈Ln

S̆n(`; ε)

∣∣∣∣∣ > Mannmhmdφ(h)

)
,

Q̄n(ε) = NFmK m Nm
(x)Nm

(u) max
1≤i1<...<im≤m

sup
B(xi(x),r)

max
1≤i1<...<im≤m

sup
B(ui(u),r)

P·|S

(∣∣∣∣∣ ∑
`∈Ln

S̆′n(`; ε)

∣∣∣∣∣ > Mannmhmdφ(h)

)
.

Due to the similarity between the two cases, ε 6= ε0 and ε = ε0, we are going to treat Q̂n
only for ε 6= ε0. An application of Lemma A5, with the fact that S̆n(`; ε) are zero-mean
random variables, shows us that:

P·|S

(∣∣∣∣∣ ∑
`∈Ln

S̆n(`; ε)

∣∣∣∣∣ > Mannhmdφ(h)

)
≤ 2P·|S

(
∑
`∈Ln

S̆n(`; ε) > Mannhmdφ(h)

)

and ∣∣S̆n(`; ε)
∣∣ ≤ CAd−1

1,n A2,n(log n)τn, PS − a.s. (from Lemma A5)

E·|S
[(

S̆n(`; ε)
)2
]
≤ Chmdφ(h)Ad−1

1,n A2,n(log n), PS − a.s. (By Lemma A6) (66)

Using Bernstein’s inequality represented in Lemma A7, we have

P·|S

(
∑
`∈Ln

S̆n(`; ε) > Mannhmdφ(h)

)

≤ exp

−
1
2
×Mnhmdφ(h) log n(

An

A1,n

)d
Ad−1

1,n A2,nhmdφ(h)(log n) +
1
3
×M1/2n1/2hmd/2φ(h)1/2(log n)1/2 Ad−1

1,n A2,nτn

.

Observe that

nhmd log n(
An

A1,n

)d
Ad−1

1,n A2,nhmd(log n)

= nA−d
n

(
A1,n

A2,n

)
&

A1,n

A2,n
& nη , (67)

nhmdφ(h) log n
n1/2hmd/2φ(h)1/2(log n)1/2 Ad−1

1,n A2,nτn
=

n1/2hmd/2φ(h)1/2(log n)1/2

Amd
1,n

(
A2,n

A1,n

)
ρnn1/ζ

≥ C0nη/2. (68)

Taking M > 0 to be sufficiently large, and for N ≤ Ch−mdφ(h)α−m
n , this shows the desired

result.
We must move on to the nonlinear part of the Hoeffding decomposition. Accordingly,

the goal is to prove that:
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P·|S

[
sup

FmK m
sup

x∈H m
sup
u∈Bm

∣∣ψ̂2(u, x)
∣∣ > λ

]
→ 0 as n→ ∞. (69)

In the following, we will give a lemma that can be viewed as a technical result in the
proof of our proposition, and it helps us to achieve our goal in Expression (69). The proof
of this lemma used the Blocking technique defined before but for the U-statistic, making
the block treatment more complicated.

Lemma 1. Let FmK m be a uniformly bounded class of measurable canonical functions, m ≥ 2.
Assume that there are finite constants a and b in such a way that the FmK m covering number
fulfills:

N(ε, FmK m, ‖ · ‖L2(Q)) ≤ aε−b, (70)

for all ε > 0 and all probability measures Q. If the mixing coefficients β of the local stationary
sequence {Zi = (Xsi ,An , Wsi ,An)i∈N? satisfy Condition (E2) in Assumption 6, then, for some r > 1,
we have:

sup
FmK m

sup
x∈H m

sup
u∈Bm

P
[

hmd/2φm/2(h)n−m+1/2 ∑
i∈Im

n

ξi1 . . . ξim H(Zi1 , . . . , Zim)

]
→ 0. (71)

Remark 11. As mentioned before, Wsi ,An will be equal to 1 or εsi ,An = σ
(

si
An

, Xsi ,An

)
εsi . In the

proof of the previous lemma, Wsi ,An will be equal εi,n = σ
(

i
n , Xi,n

)
εi, and we will use the notation

W(u)
si ,An

to indicate σ(u, x)εi.

�

9.2.1. Proof of Lemma 1

This lemma’s proof is based on the blocking technique employed by [82], and it is
called Bernstein’s method, referred to [150], in which we are enabled to apply the symmetriza-
tion and the many other techniques available for the i.i.d random variables. We will extend
this technique to the spacial processes in the U-statistics setting, in the same line as in [93].
In addition to the notation in Section 9.1, define

Ln := L1,n ∪ L2,n,

∆1 = {`2 : min
1≤i≤d

|`1i − `2i| ≤ 1}

∆2 = {`2 : min
1≤i≤d

|`1i − `2i| ≥ 2}

With the notation introduced above, it is easy to show that, for m = 2,

1
h2dφ2(h) ∑

i∈I2
n

2

∏
j=1

K

(
uj − sij /An

hn

)
K2

d(xj, Xsij
,An)

hn

Wsi ,An

=
1

h2dφ2(h) ∑
`1 6=`2∈Ln

∑
i1 :si1

∈Γn(`1;ε0)∩Rn

∑
i2 :si2∈Γn(`2;ε0)∩Rn

×
2

∏
j=1

K

(
uj − sij /An

hn

)
K2

d(xj, Xsij
,An)

hn

Wsi ,An

+
1

h2dφ2(h) ∑
`1∈Ln

∑
i1 :si1

∈Γn(`1;ε0)∩Rn

∑
i2 :si2∈Γn(`1;ε0)∩Rn

i1 6=i2
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×
2

∏
j=1

K

(
uj − sij /An

hn

)
K2

d(xj, Xsij
,An)

hn

Wsi ,An

+2
1

h2dφ2(h) ∑
`1∈Ln

∑
i1 :si1

∈Γn(`1;ε0)∩Rn

∑
∆2

∑
`2∈L1,n∪L2,n

ε 6=ε0

∑
i2 :si2∈Γn(`2;ε)∩Rn

×
2

∏
j=1

K

(
uj − sij /An

hn

)
K2

d(xj, Xsij
,An)

hn

Wsi ,An

+2
1

h2dφ2(h) ∑
`1∈Ln

∑
i1 :si1

∈Γn(`1;ε0)∩Rn

∑
∆1

∑
`2∈L1,n∪L2,n

ε 6=ε0

∑
i2 :si2∈Γn(`2;ε)∩Rn

(72)

×
2

∏
j=1

K

(
uj − sij /An

hn

)
K2

d(xj, Xsij
,An)

hn

Wsi ,An

+
1

h2dφ2(h) ∑
`1 6=`2∈L1,n∪L2,n

ε 6=ε0

∑
i1 :si1

∈Γn(`1;ε)∩Rn

∑
i2 :si2∈Γn(`2;ε)∩Rn

×
2

∏
j=1

K

(
uj − sij /An

hn

)
K2

d(xj, Xsij
,An)

hn

Wsi ,An

+
1

h2dφ2(h) ∑
`1∈L1,n∪L2,n

ε 6=ε0

∑
i1<i2 : si1

,si2∈Γn(`1;ε)∩Rn

×
2

∏
j=1

K

(
uj − sij /An

hn

)
K2

d(xj, Xsij
,An)

hn

Wsi ,An

:= I + II + III + IV + V + VI.

(I): The Same Type of Blocks but Not the Same Block

Let {ηi}i∈N∗ be a sequence of independent blocks. An application of Lemma A4 shows
that:

P

 sup
FmK m

sup
x∈H m

sup
u∈Bm

∣∣∣∣∣∣n−3/2 1
h2dφ2(h) ∑

`1 6=`2∈Ln

∑
i1 :si1

∈Γn(`1;ε0)∩Rn

∑
i2 :si2∈Γn(`2;ε0)∩Rn

×
2

∏
j=1

K

(
uj − sij /An

hn

)
K2

d(xj, Xsij
,An)

hn

Wsi ,An

∣∣∣∣∣∣ > δ


≤ P

(
sup

FmK m
sup

x∈H m
sup
u∈Bm

∣∣∣∣∣∣ 1
n3/2h2dφ2(h) ∑

`1 6=`2∈Ln

∑
i1 :si1

∈Γn(`1;ε0)∩Rn

∑
i2 :si2∈Γn(`2;ε0)∩Rn

2

∏
j=1

K

(
uj − sij /An

hn

) 2

∏
j=1

K2

d(xj, Xsij
,An)

hn

− 2

∏
j=1

K2

d
(

xi, Xuj(sij)
)

h

Wsi ,An

∣∣∣∣∣∣ > δ

)

+ P
(

sup
FmK m

sup
x∈H m

sup
u∈Bm

∣∣∣∣∣∣ 1
n3/2h2dφ2(h) ∑

`1 6=`2∈Ln

∑
i1 :si1

∈Γn(`1;ε0)∩Rn

∑
i2 :si2∈Γn(`2;ε0)∩Rn

2

∏
j=1

K

(
uj − sij /An

hn

)
2

∏
j=1

K2

d
(

xi, Xuj(sij)
)

h

[Wsi ,An −W(u)
si ,An

]∣∣∣∣∣∣ > δ

)
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+ P
(

sup
FmK m

sup
x∈H m

sup
u∈Bm

∣∣∣∣∣∣ 1
n3/2h2dφ2(h) ∑

`1 6=`2∈Ln

∑
i1 :si1

∈Γn(`1;ε0)∩Rn

∑
i2 :si2∈Γn(`2;ε0)∩Rn

2

∏
j=1

K

(
uj − sij /An

hn

)
2

∏
j=1

K2

d
(

xi, Xuj(sij)
)

h

W(u)
si ,An

∣∣∣∣∣∣ > δ

)

≤ P
(

sup
FmK m

sup
x∈H m

sup
u∈Bm

∣∣∣∣∣∣ 1
n3/2h2dφ2(h) ∑

`1 6=`2∈Ln

∑
i1 :si1

∈Γn(`1;ε0)∩Rn

∑
i2 :si2∈Γn(`2;ε0)∩Rn

2

∏
j=1

K

(
uj − sij /An

hn

)
2

∏
j=1

K2

(
d(xj, ηij

h

)
W(u)

si ,An

∣∣∣∣∣ > δ

)

+C
(

An

A1,n

)d
β
(

A2,n; Ad
n

)
+ oP(1) + oP(1),

Because:

E.|S

∣∣∣∣∣∣ 1
n3/2h2dφ2(h) ∑

`1 6=`2∈Ln

∑
i1 :si1

∈Γn(`1;ε0)∩Rn

∑
i2 :si2∈Γn(`2;ε0)∩Rn

2

∏
j=1

K

(
uj − sij /An

hn

)
 2

∏
j=1

K2

d(xj, Xsij
,An)

hn

− 2

∏
j=1

K2

d
(

xj, Xuj(sij)
)

h

Wsi ,An

∣∣∣∣∣∣
=

1
n3/2h2dφ2(h) ∑

`1 6=`2∈Ln

∑
i1 :si1

∈Γn(`1;ε0)∩Rn

∑
i2 :si2∈Γn(`2;ε0)∩Rn

2

∏
j=1

K

(
uj − sij /An

hn

)

E.|S

∣∣∣∣∣∣
 2

∏
j=1

K2

d(xj, Xsij
,An)

hn

− 2

∏
j=1

K2

d
(

xj, Xuj(sij)
)

h

Wsi ,An

∣∣∣∣∣∣
=

1
n3/2h2dφ2(h) ∑

`1 6=`2∈Ln

∑
i1 :si1

∈Γn(`1;ε0)∩Rn

∑
i2 :si2∈Γn(`2;ε0)∩Rn

2

∏
j=1

K

(
uj − sij /An

hn

)

E.|S

∣∣∣∣∣∣
 2

∏
j=1

K2

d(xj, Xsij
,An)

hn

− 2

∏
j=1

K2

d
(

xj, Xuj(sij)
)

h

 m

∏
j=1

εsij
,An

∣∣∣∣∣∣
=

1
n3/2h2dφ2(h) ∑

`1 6=`2∈Ln

∑
i1 :si1

∈Γn(`1;ε0)∩Rn

∑
i2 :si2∈Γn(`2;ε0)∩Rn

2

∏
j=1

K

(
uj − sij /An

hn

)

E.|S

∣∣∣∣∣∣
 2

∏
j=1

K2

d(xj, Xsij
,An)

hn

− 2

∏
j=1

K2

d
(

xj, Xuj(sij)
)

h

 m

∏
j=1

σ

( sij

An
, Xsij

,An

)
εsij

∣∣∣∣∣∣
=

1
n3/2h2dφ2(h) ∑

`1 6=`2∈Ln

∑
i1 :si1

∈Γn(`1;ε0)∩Rn

∑
i2 :si2∈Γn(`2;ε0)∩Rn

2

∏
j=1

K

(
uj − sij /An

hn

)
m

∏
j=1

E.|S

(
εsij

)
(73)

E.|S

∣∣∣∣∣∣
 2

∏
j=1

K2

d(xj, Xsij
,An)

hn

− 2

∏
j=1

K2

d
(

xj, Xuj(sij)
)

h


[

m

∏
j=1

σ

( sij

An
, Xsij

,An

)
−

m

∏
j=1

σ
(
uj, xj

)
+

m

∏
j=1

σ
(
uj, xj

)]∣∣∣∣∣
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≤ 1
n3/2h2dφ2(h) ∑

`1 6=`2∈Ln

∑
i1 :si1

∈Γn(`1;ε0)∩Rn

∑
i2 :si2∈Γn(`2;ε0)∩Rn

2

∏
j=1

K

(
uj − sij /An

hn

)
m

∏
j=1

E.|S

(
εsij

)

E.|S

C
m

∑
j=1

∣∣∣∣∣∣∣∣∣∣
K2

d(xj, Xsij
,An)

hn

− K2


d

(
xj, X sij

An

(sij)

)
h


∣∣∣∣∣∣∣∣∣∣

p
m

∏
j=1

[
σ
(
uj, xj

)
+ oP(1)

]

(Using a telescoping argument, and the boundedness of K2 for p = min(ρ, 1) and C < ∞)

.
1

n3/2h2dφ2(h) ∑
`1 6=`2∈Ln

∑
i1 :si1

∈Γn(`1;ε0)∩Rn

∑
i2 :si2∈Γn(`2;ε0)∩Rn

2

∏
j=1

K

(
uj − sij /An

hn

)
m

∏
j=1

E.|S

(
εsij

)

E.|S

[
φm−1(h)

∣∣∣∣ C
Ad

n
Usij

,An

( sij

An

)∣∣∣∣p
]

m

∏
j=1

[
σ
(
uj, xj

)
+ oP(1)

]
∼ oP(1),

and

E.|S

∣∣∣∣∣∣ 1
n3/2h2dφ2(h) ∑

`1 6=`2∈Ln

∑
i1 :si1

∈Γn(`1;ε0)∩Rn

∑
i2 :si2∈Γn(`2;ε0)∩Rn

2

∏
j=1

K

(
uj − sij /An

hn

)

2

∏
j=1

K2

d
(

xi, Xuj(sij)
)

h

[Wsi ,An −W(u)
si ,An

]∣∣∣∣∣∣
=

1
n3/2h2dφ2(h) ∑

`1 6=`2∈Ln

∑
i1 :si1

∈Γn(`1;ε0)∩Rn

∑
i2 :si2∈Γn(`2;ε0)∩Rn

2

∏
j=1

K

(
uj − sij /An

hn

)
m

∏
j=1

E.|S

(
εsij

)

E.|S

∣∣∣∣∣∣
2

∏
j=1

K2

d
(

xi, Xuj(sij)
)

h

[ m

∏
j=1

σ

( sij

An
, Xsij

,An

)
−

m

∏
j=1

σ
(
uj, xj

)]∣∣∣∣∣∣
.

1
n3/2h2dφ2(h) ∑

`1 6=`2∈Ln

∑
i1 :si1

∈Γn(`1;ε0)∩Rn

∑
i2 :si2∈Γn(`2;ε0)∩Rn

2

∏
j=1

K

(
uj − sij /An

hn

)
m

∏
j=1

E.|S

(
εsij

)
(74)

×(oP(1))
∫ h

0

m

∏
k=1

K2

(yk
h

)
dFik/n(yk, xk)

.
1

n3/2h2dφ2(h) ∑
`1 6=`2∈Ln

∑
i1 :si1

∈Γn(`1;ε0)∩Rn

∑
i2 :si2∈Γn(`2;ε0)∩Rn

2

∏
j=1

K

(
uj − sij /An

hn

)
m

∏
j=1

E.|S

(
εsij

)
×(oP(1))(φ2(h))

∼ oP(1).

Under the assumptions of the lemma, we have β(a; b) ≤ β1(a)g1(b) with β1(a)→ 0
as a → ∞ and n → ∞, so the term to consider is the first summand. For the second part
of the inequality, we will use the work of [27] in the non-fixed kernels settings, precisely,
we will define fi1,...,im = ∏m

k=1 ξik × H and Fi1,...,im , respectively, as a collection of kernels
and the class of functions related to this kernel; then, we will use ([29], Theorem 3.1.1 and
Remarks 3.5.4 part 2) for decoupling and randomization. As we mentioned above, we will
suppose that m = 2. Then, we can see that

E.|S

∥∥∥∥∥∥ 1
n3/2h2dφ2(h) ∑

`1 6=`2∈Ln

∑
i1 :si1

∈Γn(`1;ε0)∩Rn

∑
i2 :si2∈Γn(`2;ε0)∩Rn

2

∏
j=1

K

(
uj − sij /An

hn

)
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2

∏
j=1

K2

(
d(xj, ηij

h

)
W(u)

i,ϕ,n

∥∥∥∥∥
F2K 2

= E.|S

∥∥∥∥∥∥ 1
n3/2h2dφ2(h) ∑

`1 6=`2∈Ln

∑
i1 :si1

∈Γn(`1;ε0)∩Rn

∑
i2 :si2∈Γn(`2;ε0)∩Rn

fi1,i2(u, η)

∥∥∥∥∥∥
Fi1,i2

(75)

≤ c2E.|S

∥∥∥∥∥∥ 1
n3/2h2dφ2(h) ∑

`1 6=`2∈Ln

εpεq ∑
i1 :si1

∈Γn(`1;ε0)∩Rn

∑
i2 :si2∈Γn(`2;ε0)∩Rn

fi1,i2(u, η)

∥∥∥∥∥∥
Fi1,i2

≤ c2E.|S

∫ D
(U1)
nh

0
N
(

t, Fi1,i2 , d̃(1)nh,2

)
dt, (By Lemma A9 and Proposition A1.)

where D(U1)
nh is the diameter of Fi1,i2according to the distance d̃(1)nh,2, respectively, which is

defined as

D(U1)
nh :=

∥∥∥∥∥∥Eε

∣∣∣∣∣∣ 1
n3/2h2dφ2(h) ∑

`1 6=`2∈Ln

εpεq ∑
i1 :si1

∈Γn(`1;ε0)∩Rn

∑
i2 :si2∈Γn(`2;ε0)∩Rn

fi1,i2(u, η)

∣∣∣∣∣∣
∥∥∥∥∥∥

Fi1,i2

=

∥∥∥∥∥∥Eε

∣∣∣∣∣∣ 1
n3/2h2dφ2(h) ∑

`1 6=`2∈Ln

εpεq ∑
i1 :si1

∈Γn(`1;ε0)∩Rn

∑
i2 :si2∈Γn(`2;ε0)∩Rn

2

∏
j=1

K

(
uj − sij /An

hn

)
2

∏
j=1

K2

(
d(xj, ηij

h

)
W(u)

si ,An

∣∣∣∣∣
∥∥∥∥∥

F2K 2

,

and:

d̃(1)nh,2

(
ξ1.K2,1W ′(u) , ξ2.K2,2W ′′(u)

)
:= Eε

∣∣∣∣∣∣ 1
n3/2hdφ2(h) ∑

`1 6=`2∈Ln

εpεq ∑
i1 :si1

∈Γn(`1;ε0)∩Rn

∑
i2 :si2∈Γn(`2;ε0)∩Rn

[
ξ1i1 ξ1i2

2

∏
k=1

K1,2

(
d(xk, ηik )

h

)
W ′(u)si ,An

− ξ2i1 ξ2i2

2

∏
k=1

K2,2

(
d(xk, ηik )

h

)
W ′′(u)si ,An

]∣∣∣∣∣∣∣.
Let consider another semi-norm d̃(2)nh,2:

d̃(2)nh,2

(
ξ1.K2,1W ′(u) , ξ2.K2,2W ′′(u)

)
=

1
nhdφ2(h)

[
∑

`1 6=`2∈Ln

(
ξ1i1 ξ1i2

2

∏
k=1

K1,2

(
d(xk, ηik )

h

)
W ′(u)si ,An

− ξ2i1 ξ2i2

2

∏
k=1

K2,2

(
d(xk, ηik )

h

)
W ′′(u)si ,An

)2


1/2

.

One can see that

d̃(1)nh,2

(
ξ1.K2,1W ′(u) , ξ2.K2,2W ′′(u)

)
6 A1,nn−1/2hdφ(h)d̃(2)nh,2

(
ξ1.K2,1W ′(u) , ξ2.K2,2W ′′(u)

)
.

We readily infer that
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E.|S

∥∥∥∥∥∥ 1
n3/2h2dφ2(h) ∑

`1 6=`2∈Ln

∑
i1 :si1

∈Γn(`1;ε0)∩Rn

∑
i2 :si2∈Γn(`2;ε0)∩Rn

2

∏
j=1

K

(
uj − sij /An

hn

)
2

∏
j=1

K2

(
d(xj, ηij

h

)
W(u)

i,ϕ,n

∥∥∥∥∥
F2K 2

(76)

6 c2E.|S

∫ D
(U1)
nh

0
N
(

tA−d
1,nn1/2, Fi,j, d̃(2)nh,2

)
dt

6 c2 Ad
1,nn−1/2P

{
D(U1)

nh A−d
1,nn1/2 > λn

}
+ cm Ad

1,nn−1/2
∫ λn

0
log t−1dt,

where λn → 0. We have (∫ λn

0
log t−1dt

)
(

λn log λ−1
n

) → 0,

where λn must be chosen in such a way that the following relation will be achieved

Ad
1,nλnn−1/2 log λ−1

n → 0. (77)

By utilizing the triangle inequality in conjunction with Hoeffding’s trick, we are easily able
to derive that

Ad
1,nn−1/2P

{
D(U1)

nh > λn Ad
1,nn−1/2

}
6 λ−2

n A−d
1,nn−5/2hφ−1(h)E.|S

∥∥∥∥∥∥ ∑
`1 6=`2∈Ln

 ∑
i1 :si1

∈Γn(`1;ε0)∩Rn

∑
i2 :si2∈Γn(`2;ε0)∩Rn

ξi1 ξi2 K2

(
d(x1, ηi1)

h

)

K2

(
d(x2, η′i2)

h

)
W(u)

si ,An

]2
∥∥∥∥∥∥

F2K 2

(78)

6 c2[[Ln]]λ
−2
n A−d

1,nn−5/2hφ−1(h)E.|S

∥∥∥∥∥∥ ∑
`1∈Ln

 ∑
i1,i2 :si1

,si2∈Γn(`1;ε0)∩Rn

ξi1 ξi2 K2

(
d(x1, ηi1)

h

)

K2

(
d(x2, η′i2)

h

)
W(u)

si ,An

]2
∥∥∥∥∥∥

F2K 2

,

where
{

η′i
}

i∈N∗ are independent copies of (ηi)i∈N∗ . By imposing

λ−2
n Ad−r

1,n n−1/2 → 0, (79)

we readily infer that∥∥∥∥∥∥∥[[Ln]]λ
−2
n A−d

1,nn−5/2hφ−1(h)E.|S ∑
`1∈Ln

 ∑
i1,i2 :si1

,si2∈Γn(`1;ε0)∩Rn

ξi1 ξi2

2

∏
k=1

K2

(
d(xk, ηik )

h

)
W(u)

si ,An

2
∥∥∥∥∥∥∥

F2K 2

6 O
(

λ−2
n Ad−r

1,n n−1/2
)

.

A symmetrization of the last inequality in (78) succeeded by an application of the
Proposition A1 in the Appendix A gives
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[[Ln]]λ
−2
n A−d

1,nn−5/2hφ−1(h)E.|S

∥∥∥∥∥∥ ∑
`1∈Ln

 ∑
i1,i2 :si1

,si2∈Γn(`1;ε0)∩Rn

εpξi1 ξi2 K2

(
d(x1, ηi1)

h

)

K2

(
d(x2, η′i2)

h

)
W(u)

si ,An

]2
∥∥∥∥∥∥

F2K 2

(80)

6 c2E.|S

(∫ D(U2)
nh

0

(
log N(u, Fi,j, d̃′nh,2)

)1/2
)

,

where

D(U2)
nh =

∥∥∥∥∥Eε

∣∣∣∣∣[[Ln]]λ
−2
n A−d

1,nn−5/2φ−1(h)

∑
`1∈Ln

 ∑
i1,i2 :si1

,si2∈Γn(`1;ε0)∩Rn

ξi1 ξi2 K2

(
d(x1, ηi1)

h

)
K2

(
d(x2, η′i2)

h

)
W(u)

si ,An

2
∣∣∣∣∣∣∣
∥∥∥∥∥∥∥

F2K 2

.

and for ξ1.K2,1W ′ , ξ2.K2,2W ′′ ∈ Fij:

d̃′nh,2

(
ξ1.K2,1W ′(u) , ξ2.K2,2W ′′(u)

)
:= Eε

∣∣∣∣∣∣[[Ln]]λ
−2
n A−d

1,nn−5/2φ−1(h) ∑
`1∈Ln

εp

 ∑
i1,i2 :si1

,si2∈Γn(`1;ε0)∩Rn

ξ1i1 ξ1i2 K2,1

(
d(x1, ηi1)

h

)

K2,1

(
d(x2, η′i2)

h

)
W ′(u)si ,An

)2

−

 ∑
i1,i2∈H(U)

p

ξ2iξ2jK2,2

(
d(x1, ηi1)

h

)
K2,2

(
d(x2, η′i2)

h

)
W ′′(u)si ,An


2
∣∣∣∣∣∣∣.

By the fact that:

Eε

∣∣∣∣∣∣[[Ln]]λ
−2
n A−d

1,nn−5/2φ−1(h) ∑
`1∈Ln

εp

 ∑
i1,i2 :si1

,si2∈Γn(`1;ε0)∩Rn

ξi1 ξi2 K2

(
d(x1, ηi1)

h

)

K2

(
d(x2, η′i2)

h

)
W(u)

si ,An

)2
∣∣∣∣∣∣

6 A3d/2
1,n λ−2

n n−1

[[Ln]]
−1 A−2d

1,n φ−2(hn) ∑
`1∈Ln

∑
i1,i2 :si1

,si2∈Γn(`1;ε0)∩Rn

(
ξi1 ξi2 K2

(
d(xi, ηi1)

h

)

K2

(
d(x2, η′j)

h

)
W(u)

si ,An

)4
1/2

,

so:
Ad3/2

1,n λ−2
n n−1 → 0, (81)

we have the convergence of (80) to zero. Recall that

JLnK = O
(
(An/A3,n)

d
)
. (An/A1,n)

d.



Mathematics 2023, 11, 16 41 of 69

(II): The Same Block

P

 sup
FmK m

sup
x∈H m

sup
u∈Bm

∣∣∣∣∣∣∣∣∣
1

h2dφ2(h) ∑
`1∈Ln

∑
i1 :si1

∈Γn(`1;ε0)∩Rn

∑
i2 :si2∈Γn(`1;ε0)∩Rn

i1 6=i2

×
2

∏
j=1

K

(
uj − sij /An

hn

)
K2

d(xj, Xsij
,An)

hn

Wsi ,An

∣∣∣∣∣∣ > δ



≤ P
(

sup
FmK m

sup
x∈H m

sup
u∈Bm

∣∣∣∣∣∣∣∣∣
1

n3/2h2dφ2(h) ∑
`1∈Ln

∑
i1 :si1

∈Γn(`1;ε0)∩Rn

∑
i2 :si2∈Γn(`1;ε0)∩Rn

i1 6=i2

2

∏
j=1

K

(
uj − sij /An

hn

) 2

∏
j=1

K2

d(xj, Xsij
,An)

hn

− 2

∏
j=1

K2

d
(

xi, Xuj(sij)
)

h

Wsi ,An

∣∣∣∣∣∣ > δ

)

+P
(

sup
FmK m

sup
x∈H m

sup
u∈Bm

∣∣∣∣∣∣∣∣∣
1

n3/2h2dφ2(h) ∑
`1∈Ln

∑
i1 :si1

∈Γn(`1;ε0)∩Rn

∑
i2 :si2∈Γn(`1;ε0)∩Rn

i1 6=i2

2

∏
j=1

K

(
uj − sij /An

hn

)
2

∏
j=1

K2

d
(

xi, Xuj(sij)
)

h

[Wsi ,An −W(u)
si ,An

]∣∣∣∣∣∣ > δ

)

+P
(

sup
FmK m

sup
x∈H m

sup
u∈Bm

∣∣∣∣∣∣∣∣∣
1

n3/2h2dφ2(h) ∑
`1∈Ln

∑
i1 :si1

∈Γn(`1;ε0)∩Rn

∑
i2 :si2∈Γn(`1;ε0)∩Rn

i1 6=i2

2

∏
j=1

K

(
uj − sij /An

hn

)
2

∏
j=1

K2

d
(

xi, Xuj(sij)
)

h

W(u)
si ,An

∣∣∣∣∣∣ > δ

)

≤ P
(

sup
FmK m

sup
x∈H m

sup
u∈Bm

∣∣∣∣∣∣∣∣∣
1

n3/2h2dφ2(h) ∑
`1∈Ln

∑
i1 :si1

∈Γn(`1;ε0)∩Rn

∑
i2 :si2∈Γn(`1;ε0)∩Rn

i1 6=i2
2

∏
j=1

K

(
uj − sij /An

hn

)
2

∏
j=1

K2

(
d(xj, ηij

h

)
W(u)

si ,An

∣∣∣∣∣ > δ

)

+C
(

An

A1,n

)d
β
(

A2,n; Ad
n

)
+ oP(1) + oP(1),

In the same manner as I, we can show that the first and the second term in the previous
inequality is of order oP(1). So, as the preceding proof, it suffices to prove that

E.|S


∥∥∥∥∥∥∥∥∥

1
n3/2h2dφ2(h) ∑

`1∈Ln

∑
i1 :si1

∈Γn(`1;ε0)∩Rn

∑
i2 :si2∈Γn(`1;ε0)∩Rn

i1 6=i2

2

∏
j=1

K

(
uj − sij /An

hn

)
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2

∏
j=1

K2

(
d(xj, ηij

h

)
W(u)

si ,An

∥∥∥∥∥
F2K 2

→ 0.

Notice that we treat uniformly bounded classes functions in which we obtain uniformly in
Bm ×F2K

2

E.|S

 ∑
i1 :si1

∈Γn(`1;ε0)∩Rn

∑
i2 :si2∈Γn(`1;ε0)∩Rn

i1 6=i2

2

∏
j=1

K

(
uj − sij /An

hn

)
2

∏
j=1

K2

(
d(xj, ηij

h

)
W(u)

si ,An

 = O(an).

This implies that we have to prove that, for u ∈ Bm

EE.|S


∥∥∥∥∥∥∥

1
n3/2h2dφ2(h) ∑

`1∈Ln

∑
i1 :si1

∈Γn(`1;ε0)∩Rn

∑
i1 6=i2i2 :si2∈Γn(`1;ε0)∩Rn[

2

∏
j=1

K

(
uj − sij /An

hn

)
2

∏
j=1

K2

(
d(xj, ηij

h

)
W(u)

si ,An
(82)

− E.|S

(
2

∏
j=1

K

(
uj − sij /An

hn

)
2

∏
j=1

K2

(
d(xj, ηij

h

)
W(u)

si ,An

)]∥∥∥∥∥
F2K 2

→ 0.

As for empirical processes, to prove (82), it is enough to symmetrize and show that

E.|S

∥∥∥∥∥∥∥∥∥
1

n3/2h2dφ2(h) ∑
`1∈Ln

∑
i1 :si1

∈Γn(`1;ε0)∩Rn

∑
i2 :si2∈Γn(`1;ε0)∩Rn

i1 6=i2

εp

2

∏
j=1

K

(
uj − sij /An

hn

)

2

∏
j=1

K2

(
d(xj, ηij

h

)
W(u)

si ,An

∥∥∥∥∥
F2K 2

→ 0.

Similarly to how in (75), we have

E.|S

∥∥∥∥∥∥∥∥∥
1

n3/2hd+1φ(h) ∑
`1∈Ln

∑
i1 :si1

∈Γn(`1;ε0)∩Rn

∑
i2 :si2∈Γn(`1;ε0)∩Rn

i1 6=i2

εp

2

∏
j=1

K

(
uj − sij /An

hn

)

2

∏
j=1

K2

(
d(xj, ηij

h

)
W(u)

si ,An

∥∥∥∥∥
F2K 2

6 E
(∫ D

(U3)
nh

0

(
log N

(
u, Fi1,i2 , d̃(3)nh,2

))1/2
du

)
,

where

D(U3)
nh =

∥∥∥∥∥∥∥∥∥Eε

∣∣∣∣∣∣∣∣∣
1

n3/2hdφ(h) ∑
`1∈Ln

εp ∑
i1 :si1

∈Γn(`1;ε0)∩Rn

∑
i2 :si2∈Γn(`1;ε0)∩Rn

i1 6=i2

2

∏
j=1

K

(
uj − sij /An

hn

)
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2

∏
j=1

K2

(
d(xj, ηij

h

)
W(u)

si ,An

∣∣∣∣∣
∥∥∥∥∥

F2K 2

, (83)

and the semi-metric d̃(3)nh,2 is defined by

d̃(3)nh,2

(
ξ1.K2,1W ′(u) , ξ2.K2,2W ′′(u)

)

= Eε

∣∣∣∣∣∣∣∣∣
1

n3/2hdφ(h) ∑
`1∈Ln

εp ∑
i1 :si1

∈Γn(`1;ε0)∩Rn

∑
i2 :si2∈Γn(`1;ε0)∩Rn

i1 6=i2

(
ξ1iξ1jK2,1

(
d(x1, ηi1)

h

)

K2,1

(
d(x2, ηi2)

h

)
W ′(u)si ,An

− ξ2iξ2jK2,2

(
d(x1, ηi1)

h

)
K2,2

(
d(x2, ηi2)

h

)
W ′′(u)si ,An

)∣∣∣∣.
Since we are considering uniformly bounded classes of functions, we obtain

Eε

∣∣∣∣∣∣∣∣∣n
−3/2hφ−1(hn) ∑

`1∈Ln

εp ∑
i1 :si1

∈Γn(`1;ε0)∩Rn

∑
i2 :si2∈Γn(`1;ε0)∩Rn

i1 6=i2

ξi1 ξi2 K2

(
d(x1, ηi1)

h

)

K2

(
d(x2, ηi2)

h

)
W(u)

si ,An

∣∣∣∣
6 A3d/2

1,n n−1hφ−1(hn)

 1
[[Ln]]A2

1,n
∑

`1∈Ln

∑
i1 :si1

∈Γn(`1;ε0)∩Rn

∑
i2 :si2∈Γn(`1;ε0)∩Rn

i1 6=i2

(
ξi1 ξi2 K2

(
d(x1, ηi1)

h

)

K2

(
d(x2, ηi2)

h

)
W(u)

si ,An

)2
]1/2

6 O
(

A3d/2
1,n n−1φ−1(hn)

)
.

Since A3d/2
1,n n−1φ−1(h)→ 0, D(U3)

nh → 0, we obtain II→ 0 as n→ ∞.

(III): Different Types of Blocks

Avoiding the repetition, we can directly see that:

P

 sup
FmK m

sup
x∈H m

sup
u∈Bm

∣∣∣∣∣∣∣∣∣
1

h2dφ2(h) ∑
`1∈Ln

∑
i1 :si1

∈Γn(`1;ε0)∩Rn

∑
∆2

∑
`2∈L1,n∪L2,n

ε 6=ε0

∑
i2 :si2∈Γn(`2;ε)∩Rn

2

∏
j=1

K

(
uj − sij /An

hn

)
K2

d(xj, Xsij
,An)

hn

Wsi ,An

∣∣∣∣∣∣ > δ



≤ P

 sup
FmK m

sup
x∈H m

sup
u∈Bm

∣∣∣∣∣∣∣∣∣
1

n3/2h2dφ2(h) ∑
`1∈Ln

∑
i1 :si1

∈Γn(`1;ε0)∩Rn

∑
∆2

∑
`2∈L1,n∪L2,n

ε 6=ε0

(84)

∑
i2 :si2∈Γn(`2;ε)∩Rn

2

∏
j=1

K

(
uj − sij /An

hn

)
2

∏
j=1

K2

(
d(xj, ηij

h

)
W(u)

si ,An

∣∣∣∣∣ > δ

)
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+C
(

An

A1,n

)d
β
(

A2,n; Ad
n

)
+ oP(1) + oP(1).

For p = 1 and p = νn:

E.|S

∥∥∥∥∥∥∥∥∥
1

n3/2h2dφ2(h) ∑
i1 :si1

∈Γn(`1;ε0)∩Rn

∑
∆2

∑
`2∈L1,n∪L2,n

ε 6=ε0

∑
i2 :si2∈Γn(`2;ε)∩Rn

2

∏
j=1

K

(
uj − sij /An

hn

)
2

∏
j=1

K2

(
d(xj, ηij

h

)
W(u)

si ,An

∥∥∥∥∥
F2K 2

= E.|S

∥∥∥∥∥∥∥∥∥
1

n3/2h2dφ2(h) ∑
i1 :si1

∈Γn(`1;ε0)∩Rn

∑
`2 : min

1≤i≤d
`2i=3

∑
`2∈L1,n∪L2,n

ε 6=ε0

∑
i2 :si2∈Γn(`2;ε)∩Rn

2

∏
j=1

K

(
uj − sij /An

hn

)
2

∏
j=1

K2

(
d(xj, ηij

h

)
W(u)

si ,An

∥∥∥∥∥
F2K 2

.

For 2 6 p 6 υn − 1, we obtain:

E.|S

∥∥∥∥∥∥∥∥∥
1

n3/2h2dφ2(h) ∑
i1 :si1

∈Γn(`1;ε0)∩Rn

∑
∆2

∑
`2∈L1,n∪L2,n

ε 6=ε0

∑
i2 :si2∈Γn(`2;ε)∩Rn

2

∏
j=1

K

(
uj − sij /An

hn

)
2

∏
j=1

K2

(
d(xj, ηij

h

)
W(u)

si ,An

∥∥∥∥∥
F2K 2

= E.|S

∥∥∥∥∥∥∥∥∥
1

n3/2h2dφ2(h) ∑
i1 :si1

∈Γn(`1;ε0)∩Rn

∑
`2 : min

1≤i≤d
`2i=4

∑
`2∈L1,n∪L2,n

ε 6=ε0

∑
i2 :si2∈Γn(`2;ε)∩Rn

2

∏
j=1

K

(
uj − sij /An

hn

)
2

∏
j=1

K2

(
d(xj, ηij

h

)
W(u)

si ,An

∥∥∥∥∥
F2K 2

6 E.|S

∥∥∥∥∥∥∥∥∥
1

n3/2h2dφ2(h) ∑
i1 :si1

∈Γn(`1;ε0)∩Rn

∑
`2 : min

1≤i≤d
`2i=3

∑
`2∈L1,n∪L2,n

ε 6=ε0

∑
i2 :si2∈Γn(`2;ε)∩Rn

2

∏
j=1

K

(
uj − sij /An

hn

)
2

∏
j=1

K2

(
d(xj, ηij

h

)
W(u)

si ,An

∥∥∥∥∥
F2K 2

,

therefore, it suffices to show that:

E.|S

∥∥∥∥∥∥∥∥∥
1

n3/2h2dφ2(h) ∑
i1 :si1

∈Γn(`1;ε0)∩Rn

∑
`2 : min

1≤i≤d
`2i=3

∑
`2∈L1,n∪L2,n

ε 6=ε0

∑
i2 :si2∈Γn(`2;ε)∩Rn

(85)

2

∏
j=1

K

(
uj − sij /An

hn

)
2

∏
j=1

K2

(
d(xj, ηij

h

)
W(u)

si ,An

∥∥∥∥∥
F2K 2

.
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By similar arguments as in [82], the usual symmetrization is applied and:

E.|S

∥∥∥∥∥∥∥∥∥
JLnK

n3/2h2dφ2(h) ∑
i1 :si1

∈Γn(`1;ε0)∩Rn

∑
`2 : min

1≤i≤d
`2i=3

∑
`2∈L1,n∪L2,n

ε 6=ε0

∑
i2 :si2∈Γn(`2;ε)∩Rn

2

∏
j=1

K

(
uj − sij /An

hn

)
2

∏
j=1

K2

(
d(xj, ηij

h

)
W(u)

si ,An

∥∥∥∥∥
F2K 2

6 2E.|S

∥∥∥∥∥∥∥∥∥
JLnK

n3/2h2dφ2(h) ∑
i1 :si1

∈Γn(`1;ε0)∩Rn

∑
`2 : min

1≤i≤d
`2i=3

∑
`2∈L1,n∪L2,n

ε 6=ε0

∑
i2 :si2∈Γn(`2;ε)∩Rn

εq

2

∏
j=1

K

(
uj − sij /An

hn

)
2

∏
j=1

K2

(
d(xj, ηij

h

)
W(u)

si ,An

∥∥∥∥∥
F2K 2

= 2E.|S


∥∥∥∥∥∥∥∥∥

JLnK
n3/2h2dφ2(h) ∑

i1 :si1
∈Γn(`1;ε0)∩Rn

∑
`2 : min

1≤i≤d
`2i=3

∑
`2∈L1,n∪L2,n

ε 6=ε0

∑
i2 :si2∈Γn(`2;ε)∩Rn

εq (86)

2

∏
j=1

K

(
uj − sij /An

hn

)
2

∏
j=1

K2

(
d(xj, ηij

h

)
W(u)

si ,An

∥∥∥∥∥
F2K 2

1{
D
(U4)
nh 6γn

}


+2E.|S


∥∥∥∥∥∥∥∥∥

JLnK
n3/2h2dφ2(h) ∑

i1 :si1
∈Γn(`1;ε0)∩Rn

∑
`2 : min

1≤i≤d
`2i=3

∑
`2∈L1,n∪L2,n

ε 6=ε0

∑
`2∈L1,n∪L2,n

ε 6=ε0

∑
i2 :si2∈Γn(`2;ε)∩Rn

εq

2

∏
j=1

K

(
uj − sij /An

hn

)
2

∏
j=1

K2

(
d(xj, ηij

h

)
W(u)

si ,An

∥∥∥∥∥
F2K 2

1{
D
(U4)
nh >γn

}


= 2III1 + 2III2,

where

D(U4)
nh

=

∥∥∥∥∥∥∥∥∥∥
JLnK

n3/2h2dφ2(h)

 ∑
`2 : min

1≤i≤d
`2i=3

ε 6=ε0

∑
`2∈L1,n∪L2,n

ε 6=ε0

 ∑
i2 :si2∈Γn(`2;ε)∩Rn

∑
i1 :si1

∈Γn(`1;ε0)∩Rn

(87)

2

∏
j=1

K

(
uj − sij /An

hn

)
2

∏
j=1

K2

(
d(xj, ηij

h

)
W(u)

si ,An

)2
1/2

∥∥∥∥∥∥∥
F2K 2

.

In a similar way as in (75), we infer that

III1 6 c2

∫ γn

0

(
log N

(
t, Fi1,i2 , d̃(4)nh,2

))1/2
dt, (88)

where

d̃(4)nh,2

(
ξ1.K2,1W ′(u) , ξ2.K2,2W ′′(u)

)
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:= Eε

∣∣∣∣∣∣∣∣∣JLnKn−3/2hφ−1(hn) ∑
i1 :si1

∈Γn(`1;ε0)∩Rn

∑
`2 : min

1≤i≤d
`2i=3

∑
`2∈L1,n∪L2,n

ε 6=ε0

∑
i2 :si2∈Γn(`2;ε)∩Rn

εq
[
ξ1i1 ξ1i2 K2,1

(
d(x1, ηi1)

h

)
K2,1

(
d(x2, ηi2)

h

)
W ′(u)si ,An

− ξ2i1 ξ2i2 K2,2

(
d(x1, ηi1)

h

)
K2,2

(
d(x2, ηi2)

h

)
W ′′(u)si ,An

]∣∣∣∣.
Since we have

Eε

∣∣∣∣∣∣∣∣∣JLnKn3/2h2dφ2(h) ∑
i1 :si1

∈Γn(`1;ε0)∩Rn

∑
`2 : min

1≤i≤d
`2i=3

∑
`2∈L1,n∪L2,n

ε 6=ε0

∑
i2 :si2∈Γn(`2;ε)∩Rn

εqξi1 ξi2

K2

(
d(x1, ηi1)

h

)
K2

(
d(x2, ηi2)

h

)
W(u)

si ,An

∣∣∣∣
6 A−d/2

1,n Ad
2,nh−d+1φ(h)

 1
Ad

1,n Ad
2,nJLnKhd−1φ4(hn)

∑
i1 :si1

∈Γn(`1;ε0)∩Rn

∑
`2 : min

1≤i≤d
`2i=3

∑
`2∈L1,n∪L2,n

ε 6=ε0

∑
i2 :si2∈Γn(`2;ε)∩Rn

[
ξi1 ξi2 K2

(
d(x1, ηi1)

h

)
K2

(
d(x2, ηi2)

h

)
W(u)

si ,An

]2


1/2

,

and considering the semi-metric

d̃(5)nh,2

(
ξ1.K2,1W ′(u) , ξ2.K2,2W ′′(u)

)

:=

 1
Ad

1,n Ad
2,nJLnKhd−1φ4(hn)

∑
i1 :si1

∈Γn(`1;ε0)∩Rn

∑
`2 : min

1≤i≤d
`2i=3

∑
`2∈L1,n∪L2,n

ε 6=ε0

∑
i2 :si2∈Γn(`2;ε)∩Rn

[
ξ1i1 ξ1i2

K2,1

(
d(x1, ηi1)

h

)
K2,1

(
d(x2, ηi2)

h

)
W ′(u)si ,An

− ξ2i1 ξ2i2 K2,2

(
d(x1, ηi1)

h

)
K2,2

(
d(x2, ηi2)

h

)
W ′′(u)si ,An

]2
)1/2

.

We demonstrate that the statement in (88) is bounded as follows

JLnK1/2 Ad
2,nn−1/2h2φ(h)

∫ JLnK−1/2 A−d
2,nn1/2h2dγn

0

(
log N

(
t, Fi1,i2 , d̃(5)nh,2

))1/2
dt,

by choosing γn = n−α for some α > (17r − 26)/60r, we obtain the convergence of the
preceding quantity to zero. In order to bound the second term on the right-hand side of
(86), we can mention that

III2 = E


∥∥∥∥∥∥∥∥∥JLnKn−3/2hφ−2(h) ∑

i1 :si1
∈Γn(`1;ε0)∩Rn

∑
`2 : min

1≤i≤d
`2i=3

∑
`2∈L1,n∪L2,n

ε 6=ε0

∑
i2 :si2∈Γn(`2;ε)∩Rn

εq
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2

∏
j=1

K

(
uj − sij /An

hn

)
2

∏
j=1

K2

(
d(xj, ηij)

h

)
W(u)

si ,An

∥∥∥∥∥
F2K 2

1{
D
(U4)
nh >γn

}
 (89)

6 A−1
1,n A2,nn1/2hdφ−1(h)P


∥∥∥∥∥∥∥∥∥JLnK2n−3h2φ−2(hn) ∑

`2 : min
1≤i≤d

`2i=3
∑

`2∈L1,n∪L2,n
ε 6=ε0

 ∑
i2 :si2∈Γn(`2;ε)∩Rn

∑
i1 :si1

∈Γn(`1;ε0)∩Rn

2

∏
j=1

K

(
uj − sij /An

hn

)
2

∏
j=1

K2

(
d(xj, ηij)

h

)
W(u)

si ,An

2
∥∥∥∥∥∥∥

F2K 2

> γ2
n

.

We are going to use the square root method on the last expression conditionally on
Γn(`1; ε0) ∩ Rn. We denote by Eε 6=ε0 the expectation with respect to σ

{
ηi2 , ε 6= ε0

}
and

we will suppose that any class of functions Fm is unbounded and its envelope function
satisfies for some p > 2:

θp := sup
x∈S m

H

E(Fp(Y)|X = x) < ∞, (90)

for 2r/(r− 1) < s < ∞ (in the notation in of [151] [Lemma 5.2]).

Mn = JLnK1/2Eε 6=ε0

 ∑
i2 :si2∈Γn(`2;ε)∩Rn

∑
i1 :si1

∈Γn(`1;ε0)∩Rn

2

∏
j=1

K

(
uj − sij /An

hn

)
2

∏
j=1

K2

(
d(xj, ηij)

h

)
W(u)

si ,An

)2

,

where

x = γ2
n A5d/2

1,n n1/2hmd/2φ−m/2(h), ρ = λ = 2−4γn A5d/4
1,n n1/4hmd/4φ−m/4(h),

and
m = exp

(
γ2

nnh2dφ−2(hn)A−2d
2,n

)
.

However, since we need t > 8Mn, and m→ ∞, by similar arguments as in ([82], p. 69), we
reach the convergence of (88) and (89) to zero.

(IV): Blocks of Different Types

The target here is to prove that:

P

 sup
FmK m

sup
x∈H m

sup
u∈Bm

∣∣∣∣∣∣∣∣∣
1

h2dφ2(h) ∑
`1∈Ln

∑
i1 :si1

∈Γn(`1;ε0)∩Rn

∑
∆1

∑
`2∈L1,n∪L2,n

ε 6=ε0

∑
i2 :si2∈Γn(`2;ε)∩Rn

×
2

∏
j=1

K

(
uj − sij /An

hn

)
K2

d(xj, Xsij
,An)

hn

Wsi ,An

∣∣∣∣∣∣ > δ

→ 0.

We have
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∥∥∥∥∥∥∥∥∥n−3/2 1
h2dφ2(h) ∑

`1∈Ln

∑
i1 :si1

∈Γn(`1;ε0)∩Rn

∑
∆1

∑
`2∈L1,n∪L2,n

ε 6=ε0

∑
i2 :si2∈Γn(`2;ε)∩Rn

×
2

∏
j=1

K

(
uj − sij /An

hn

)
K2

d(xj, Xsij
,An)

hn

Wsi ,An

∥∥∥∥∥∥
F2K 2

6 c2JLnKAd
1,n Ad

2,nn−3/2h−dφ−1(h)→ 0.

Hence, the proof of the lemma is complete.
The final step in the proof of Proposition 1 lies in the use of Lemma 1 to prove that the

nonlinear term converges to zero. �

9.2.2. Proof of Theorem 1

We have

r̂(m)
n (ϕ, x, u; hn)− r(m)(ϕ, x, u)

=
1

r̃1(ϕ, x, u)

(
ĝ1(u, x) + ĝ2(u, x)− r(m)(ϕ, x, u)r̃1(ϕ, x, u)

)
,

where

r̃1(ϕ, u, x) =
(n−m)!

n!hmdφm(h) ∑
i∈Im

n

m

∏
j=1

K

(
uj − sij /An

hn

)
K2

d(xj, Xsij
,An)

hn

,

ĝ1(u, x) =
(n−m)!

n!hmdφm(h) ∑
i∈Im

n

m

∏
j=1

K

(
uj − sij /An

hn

)
K2

d(xj, Xsij
,An)

hn

 m

∏
j=1

εsij
,An ,

ĝ2(u, x) =
(n−m)!

n!hmdφm(h) ∑
i∈Im

n

m

∏
j=1

K

(
uj − sij /An

hn

)
K2

d(xj, Xsij
,An)

hn


×r(m)

(
ϕ, Xsi1

,An , . . . , Xsim ,An ,
si1
An

, . . . ,
sim
An

)
.

The proof of this theorem is involved and divided into the following four steps, where
in each one, we aim to show that

Step 1.

sup
FmK m

sup
x∈H m

sup
u∈Bm

|ĝ1(u, x)| = OP

(√
log n/nhmdφm(h)

)
.

Step 2.

sup
FmK m

sup
x∈H m

sup
u∈Bm

|ĝ2(u, x)− r(m)(ϕ, u, x)r̃1(ϕ, u, x; hn)

−E.|S(ĝ2(u, x)− r(m)(ϕ, u, x)r̃1(ϕ, u, x; hn))| = OP

(√
log n/nhmdφm(h)

)
.

Step 3. Let κ2 =
∫
R x2K(x)dx.

sup
FmK m

sup
x∈H m

sup
u∈Bm

∣∣∣E.|S

(
ĝ2(u, x)− r(m)(ϕ, u, x)r̃1(ϕ, u, x; hn)

)∣∣∣
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= O

(
1

Adp
n φ(h)

)
+ o
(

h2
)

, PS − a.s.

Step 4.

sup
FmK m

sup
x∈H m

sup
u∈Bm

∣∣∣r̃1(ϕ, u, x)− E.|S(r̃1(ϕ, u, x))
∣∣∣ = oP.|S(1).

It is clear that Step 1 follows directly from Proposition 1 for Wsi ,An = ∏m
j=1 εsij

,An . The

second one (Step 2) holds also if we replace Wsi ,An with ĝ2(u, x)− r(m)(ϕ, u, x)r̃1(ϕ, u, x; hn)
then applying Proposition 1.

We will pass now to Step 4. Observe that
for Wsi ,An ≡ 1, the previous mentioned proposition proved that

sup
FmK m

sup
x∈H m

sup
u∈Bm

∣∣∣r̃1(ϕ, u, x)− E.|S(r̃1(ϕ, u, x))
∣∣∣ = oP.|S(1).

Step 3. will be treated in what follows:
Let K0 : [0, 1]→ R be a Lipschitz continuous function compactly support on [−qC1, qC1]

for some q > 1 and such that K0(x) = 1, ∀x ∈ [−C1, C1]. Show that

E.|S

[
ĝ2(u, x)− r(m)(ϕ, u, x)r̃1(ϕ, u, x; hn))

]
=

4

∑
i=1

Qi(u, x), (91)

where Qi can be defined as follows

Qi(u, x) =
(n−m)!

n!hmdφm(h) ∑
i∈Im

n

{
m

∏
j=1

K

(
uj − sij /An

hn

)}
qi(u, x), (92)

such that

q1(u, x) = E.|S

 m

∏
j=1

K0

d(xj, Xsij
,An)

hn

 m

∏
j=1

K2

d(xj, Xsij
,An)

hn



−
m

∏
j=1

K2


d

(
xi, X sij

An

(sij)

)
h


×

{
r(m)

(
ϕ,

si

An
, Xsi ,An

)
− r(m)(ϕ, u, x)

},

q2(u, x) = E.|S


m

∏
j=1

K0

d(xj, Xsij
,An)

hn

K2


d

(
xi, X sij

An

(sij)

)
h


{

r(m)

(
ϕ,

si

An
, Xsi ,An

)
− r(m)

(
ϕ,

si

An
, Xsi/An(si)

)}]
,

q3(u, x) = E.|S




m

∏
j=1

K0

d(xj, Xsij
,An)

hn

− m

∏
j=1

K0


d

(
xi, X sij

An

(sij)

)
h
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m

∏
j=1

K2


d

(
xi, X sij

An

(sij)

)
h

×
{

r(m)

(
ϕ,

si

An
, Xsi/An(si)

)
− r(m)(ϕ, u, x)

},

q4(u, x) = E.|S


m

∏
j=1

K2


d

(
xi, X sij

An

(sij)

)
h


{

r(m)

(
ϕ,

si

An
, Xsi/An(si)

)
− r(m)(ϕ, u, x)

}.

Observe that

Q1(u, x) .
(n−m)!

n!hmdφm(h) ∑
i∈Im

n

 m

∏
j=1

K

(
uj − sij /An

hn

)
E.|S

 m

∏
j=1

K0

d(xj, Xsij
,An)

hn


∣∣∣∣∣∣∣∣∣∣

m

∏
j=1

K2

d(xj, Xsij
,An)

hn

− m

∏
j=1

K2


d

(
xi, X sij

An

(sij)

)
h


∣∣∣∣∣∣∣∣∣∣

×
∣∣∣∣r(m)

(
ϕ,

si

An
, Xsi ,An

)
− r(m)(ϕ, u, x)

∣∣∣∣]},

using the properties of r(m)(u, x) allows us to show that

m

∏
j=1

K0

d(xj, Xsij
,An)

hn

∣∣∣∣r(m)

(
ϕ,

si

An
, Xsi ,An

)
− r(m)(ϕ, u, x)

∣∣∣∣ ≤ Chm

Q1(u, x) ≤ (n−m)!
n!hmdφm(h) ∑

i∈Im
n

{
m

∏
j=1

K

(
uj − sij /An

hn

)}
E.|S[Chm

×C
m

∑
j=1

∣∣∣∣∣∣∣∣∣∣
K2

d(xj, Xsij
,An)

hn

− K2


d

(
xi, X sij

An

(sij)

)
h


∣∣∣∣∣∣∣∣∣∣

p(Using the telescoping

argument, and the boundness of K2 for p = min(ρ, 1) and C < ∞)

≤ (n−m)!
n!hmdφm(h) ∑

i∈Im
n

{
m

∏
j=1

K

(
uj − sij /An

hn

)}
E.|S

[
Chm

m

∑
j=1

∣∣∣∣ C
Ad

nh
Usij

,An

( sij

An

)∣∣∣∣p
]

≤ C

Apd
n φm(h)hp−m

uniformly in u.

In a similar way, and for

E


m

∏
j=1

K2


d

(
xi, X sij

An

(sij)

)
h


 ≤ Cφm−1(h),
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and since r(m)(·) is Lipschitz and d

(
Xsij

,An , X sij
An

(
sj
))
≤ C

Ad
n

Usij
,An

( sij
An

)
and the variable

Usij
,An

( sij
An

)
has a finite p-th moment, we can see that

Q2(u, x) =
(n−m)!

n!hmdφm(h) ∑
i∈Im

n

m

∏
j=1

K

(
uj − sij /An

hn

)

E.|S

[
m

∏
j=1

K0

d(xj, Xsij
,An)

hn

K2


d

(
xi, X sij

An

(sij)

)
h


 (93)

{
r(m)

(
ϕ,

si

An
, Xsi ,An

)
− r(m)

(
ϕ,

si

An
, Xsi/An(si)

)}]

≤ (n−m)!
n!hmdφm(h) ∑

i∈Im
n

{
m

∏
j=1

K

(
uj − sij /An

hn

)}
E.|S

[
φm−1(h)

∣∣∣∣ C
Ad

n
Usij

,An

( sij

An

)∣∣∣∣p
]

≤ C

Apd
n φ(h)

,

and
sup

FmK m
sup

x∈H m
sup
u∈Im

h

Q3(u, x) .
1

Apd
n φm(h)hp−m

. (94)

For the last term, we have

Q4(u, x) =
(n−m)!

n!hmdφm(h) ∑
i∈Im

n

m

∏
j=1

K

(
uj − sij /An

hn

)

E.|S


m

∏
j=1

K2


d

(
xi, X sij

An

(sij)

)
h


{

r(m)

(
ϕ,

si

An
, Xsi/An(si)

)
− r(m)(ϕ, u, x)

}.

Using Lemma A1 and inequality (17) and under Assumption 1, it follows that

|Q4(u, x)| ≤ (n−m)!
n!hmdφm(h) ∑

i∈Im
n

m

∏
j=1

K

(
uj − sij /An

hn

)

E.|S


m

∏
j=1

K2


d

(
xi, X sij

An

(sij)

)
h


∣∣∣∣r(m)

(
ϕ,

si

An
, Xsi/An(si)

)
− r(m)(ϕ, u, x)

∣∣∣∣


.
(n−m)!

n!hmdφm(h) ∑
i∈Im

n

m

∏
j=1

K

(
uj − sij /An

hn

)
(95)

E.|S


m

∏
j=1

K2


d

(
xi, X sij

An

(sij)

)
h


∣∣∣∣ dH m

(
Xsi/An(si), x

)
+ ‖u− si

An
‖
∣∣∣∣α




Mathematics 2023, 11, 16 52 of 69

.
(n−m)!

n!hmdφm(h) ∑
i∈Im

n

∣∣∣∣∣ m

∏
j=1

K

(
uj − sij /An

hn

)

−
∫ 1

0
. . .
∫ 1

0

1
hm

m

∏
j=1

K
(
(uj − vj)

h

)
dvj

∣∣∣∣∣E.|S


∣∣∣∣∣∣∣∣∣∣

m

∏
j=1

K2


d

(
xi, X sij

An

(sij)

)
h


∣∣∣∣∣∣∣∣∣∣
× hα


+

(n−m)!
n!hmdφm(h) ∑

i∈Im
n

∫ 1

0
. . .
∫ 1

0

1
hmd

m

∏
j=1

K
(uj − vj

h

)
dvj × E.|S

[
φm−1(h) hα

]
. OP.|S

(
h2∧α

)
.

Adding the obtained results of Qi, 1 ≤ i ≤ 4, Step 3 yields the rate of convergence of
the estimator. �

9.2.3. Proof of Theorem 2

Recall that

r̂(m)
n (ϕ, x, u; hn) =

∑
i∈Im

n

ϕ(Ysi1
,An , . . . , Ysim ,An

)
m

∏
j=1

K

(
uj − sij /An

hn

)
K2

d(xj, Xsij
,An)

hn


∑

i∈Im
n

m

∏
j=1

K

(
uj − sij /An

hn

)
K2

d(xj, Xsij
,An)

hn


.

For x ∈H m, y ∈ Y m, define

Gϕ,i(x, y) :=

m

∏
j=1

K2

d(xj, Xsij
,An)

hn

ϕ(Ysi1
,An , . . . , Ysim ,An

)

E
m

∏
j=1

K2

d(xj, Xsij
,An)

hn


;

G :=
{

Gϕ,i(·, ·) ϕ ∈ Fm, i = (i1, . . . , im)
}

;

G (k) :=
{

πk,mGϕ,i(·, ·), ϕ ∈ Fm,
}

;

Un(ϕ) = U(m)
n (Gϕ,i) :=

(n−m)!
n! ∑

i∈Im
n

m

∏
j=1

ξij Gϕ,i(Xi, Yi);

and the U-empirical process is defined to be

µn(ϕ) :=
√

nhmφ(h){Un(ϕ)−E(Un(ϕ))}.

Then

r̃(m)
n (ϕ, x, u; hn) =

Un(ϕ)

Un(1)
.

In order to establish the weak convergence of our estimator, it must be established first
for µn(ϕ). We have mentioned before that we deal with unbounded classes of functions;
that is why we should truncate the function Gϕ,i(x, y), indeed, for λn = n1/p, with p > 0,
we have:

Gϕ,i(x, y) = Gϕ,i(x, y) 1{F(y)≤λn} + Gϕ,i(x, y) 1{F(y)>λn}
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:= G(T)
ϕ,i (x, y) + G(R)

ϕ,i (x, y).

We can write the U-statistic as follows:

µn(ϕ) =
√

nhmφ(h)
{
U(m)

n

(
G(T)

ϕ,i

)
−E

(
U(m)

n

(
G(T)

ϕ,i

))}
+
√

nhmφ(h)
{
U(m)

n

(
G(R)

ϕ,i

)
−E

(
U(m)

n

(
G(R)

ϕ,i

))}
(96)

:=
√

nhmφ(h)
{
U(T)

n (ϕ, i)−E
(
U(T)

n (ϕ)
)}

+
√

nhmφ(h)
{
U(R)

n (ϕ)−E
(
U(R)

n (ϕ)
)}

:=µ
(T)
n (ϕ) + µ

(R)
n (ϕ).

The first term is the truncated part and the second is the remaining one. We have to prove
that:

1. µ
(T)
n (ϕ) converges to a Gaussian process.

2. The remainder part does not matter much, in the sense that∥∥∥∥√nhmφ(h)
{
U(R)

n (ϕ)−E
(
U(R)

n (ϕ)
)}∥∥∥∥

FmK m

P−→ 0.

For the first point, we will use the decomposition of Hoeffding, which would be the
same as the previous decomposition in Section 3.1 except that we replace Wi,n by ϕ(Yi,n)

U(T)
n (ϕ)−E

(
U(T)

n (ϕ)
)

:= U1,n(ϕ) +U2,n(ϕ),

where

U1,n(ϕ) :=
1
n

n

∑
i=1

Ĥ1,i(u, x, ϕ), (97)

U2,n(ϕ) :=
(n−m)!
(n)! ∑

i∈Im
n

ξi1 . . . ξim H2,i(z). (98)

The convergence of U2,n(ϕ) to zero in probability follows from Lemma 1. Hence, it is
enough to show that U1,n(ϕ) converges weakly to a Gaussian process called G(ϕ). In order
to achieve our goal, we will go through finite-dimensional convergence and equicontinuity.

The finite-dimensional convergence simply asserts that every finite set of functions
f1, . . . , fq in L2, for Ũ the centered form of U:(√

nhmφ(h)Ũ1,n( f1), . . . ,
√

nhmφ(h)Ũ1,n( fq)

)
(99)

converges to the corresponding finite-dimensional distributions of the process G(ϕ). It is
sufficient to show that for every fixed collection (a1, . . . , aq) ∈ Rq, we have

q

∑
j=1

ajŨ1,n( f j)→ N
(

0, v2
)

,

where

v2 =
q

∑
j=1

a2
j Var

(
Ũ1,n( f j)

)
+ ∑

s 6=r
asarCov

(
Ũ1,n( fs), Ũ1,n( fr)

)
. (100)
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Take

h(·) =
q

∑
j=1

aj f j(·).

By linearity of h(·), we have to see that

Ũ1,n(h, i)→ G(h).

Let

N = E
m

∏
j=1

K2

d(xj, Xsij
,An)

hn

.

We have:

Ũ1,n(hn)

= N−1 × 1
n

n

∑
i=1

(n−m)!
(n− 1)! ∑

Im−1
n−1 (−i)

m

∑
`=1

ξi1 . . . ξi`−1
ξiξi` . . . ξim−1

1
φ(h)

K2

(
d(xi, Xsi ,An)

hn

)

×
∫

h(y1, . . . , y`−1, Yi, y`, . . . , ym−1)
m−1

∏
j=1
j 6=i

1
φ(h)

K2

d(xj, Xsij
,An)

hn


P(d(ν1, y1), . . . , d(ν`−1, y`−1), d(ν`, y`), . . . , d(νm−1, ym−1)),

:= N−1 1
n

n

∑
i=1

ξi
1

φ(h)
K2

(
d(xi, Xsi ,An)

hn

)
h̃(Yi).

The next step requires an extension of the Blocking techniques of Bernstein to the spacial
process where all notions are defined in Section 9.1.

Recall that Ln = L1,n ∪ L2,n and define:

Zs,An(u, x) := ξi
1

φ(h)
K2

(
d(xi, Xsi ,An)

hn

)
h̃(Yi), (101)

and
Zn(`; ε) = ∑

i:si∈Γn(`;ε)∩Rn

Zs,An(u, x) =
(
Z(1)

n (`; ε), . . . ,Z(p)
n (`; ε)

)′
. (102)

Then, we have

Ũ1,n(hn) =
n

∑
i=1

Zs,An(u, x)

= ∑
`∈Ln

Zn(`; ε0) + ∑
ε 6=ε0

∑
`∈L1,n

Zn(`; ε)︸ ︷︷ ︸
=:Z2,n(ε)

+ ∑
ε 6=ε0

∑
`∈L2,n

Zn(`; ε)︸ ︷︷ ︸
=:Z3,n(ε)

(103)

=: Z1,n + ∑
ε 6=ε0

Z2,n(ε) + ∑
ε 6=ε0

Z3,n(ε).

Lemma A8 proves that Z2,n and Z3,n, for ε 6= ε0, are asymptotically negligible. Treating
now the variance of Z1,n is clear; first, mixing conditions are used to replace large blocks
with independent random variables, and then Lyapunov’s condition for the central limit
theorem is applied to the sum of independent random variables. Similary to the proof of
Proposition 1 using Lemma A4, as in Equation (59), observe that

sup
t>0

∣∣∣P·|S(Z1,n > t)− P·|S
(
Z̆1,n > t

)∣∣∣ ≤ C
(

An

A1,n

)d
β
(

A2,n; Ad
n

)
, (104)
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where
{
Z̆n(`; ε) : ` ∈ Ln

}
denotes a sequence of independent random vectors in Rp under

P·|S such that

Z̆n(`; ε)
d
= Zn(`; ε), under P|S, ` ∈ Ln.

Applying Lyapunov’s condition for the central limit theorem for the sum of independent
random variables, the remaining condition of finite-dimensional convergence must be
established.

We end up with the asymptotic equicontinuity. We have to prove that:

lim
δ→0

lim
n→∞

P
{√

nhmφ(h)
∥∥Ũ1,n(hn, i)

∥∥
FK (δ,‖.‖p)

> ε

}
= 0, (105)

where

FK (δ, ‖.‖p) :=
{
Ũ′1,n(hn)− Ũ′′1,n(hn) :∥∥Ũ′1,n(hn)− Ũ′′1,n(hn)

∥∥ < δ, Ũ′1,n(hn), Ũ′′1,n(hn) ∈ FK
}

, (106)

for

Ũ′1,n(hn) = N−1 1
n

n

∑
i=1

ξi
1

φ(h)
K2,1

(
d(xi, Xsi ,An)

hn

)
h̃1(Yi)−E

(
U′1,n(hn)

)
Ũ′′1,n(hn) = N−1 1

n

n

∑
i=1

ξi
1

φ(h)
K2,2

(
d(xi, Xsi ,An)

hn

)
h̃2(Yi)−E

(
U′′1,n(hn)

)
(107)

At this point, we will adapt the chaining technique found in [82] and use it for the
conditional setting with the locally stationary process in [152] but for random fields, as in
Lemma 1.

Using the same strategy also as in Lemma 1 to pass from the sequence of locally
stationary random variables to the stationary one and find that, for ζi = (ηi, ςi), the
independent blocks sequences:

P


∥∥∥∥∥(nφ(h))−1/2hm/2N−1

n

∑
i=1

(
ξiK2

(
d(xi, Xi)

h

)
h̃(Yi)−E(U1,n(hn))

)∥∥∥∥∥
FK (b,‖·‖p)

> ε


≤ 2P


∥∥∥∥∥∥(nφ(h))−1/2hm/2N−1 ∑

`∈Ln

∑
i:si∈Γn(`;ε0)∩Rn

(
ξiK2

(
d(xi, ηi)

h

)
h̃(ςi) (108)

−E(U1,n(hn))


∥∥∥∥∥∥∥

FK (b,‖·‖p)

> ε′

+ C
(

An

A1,n

)d
β
(

A2,n; Ad
n

)
+ oP(1).

Taking advantage of the condition (E2) in Assumption 6, we obtain β
(

A2,n; Ad
n

)
−→ 0 as

n→ 0; then, it is simply a matter of placing the first phrase in the right-hand sight of (109).
Due to the fact that the blocks are independent, we symmetricize using a sequence {εj}j∈N∗
of i.i.d. Rademacher variables, i.e., r.v’s with

P(εj = 1) = P(εj = −1) = 1/2.
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It is important to notice that the sequence {εj}j∈N∗ is independent of the sequence
{ξ i = (ςi, ζi)}i∈N∗ ; therefore, it remains to establish, for all ε > 0 and δ→ 0,

lim
δ→0

lim
n→∞

P


∥∥∥∥∥∥(nφ(h))−1/2hm/2N−1 ∑

`∈Ln

∑
i:si∈Γn(`;ε0)∩Rn

(
ξiK2

(
d(xi, ηi)

h

)
h̃(ςi)

−E(U1,n(hn, i))


∥∥∥∥∥∥∥

FK (b,‖·‖p)

> ε

 < δ. (109)

Define the semi-norm:

d̃nφ,2 :=

(nφ(h))−1/2hm/2N−1 ∑
`∈Ln

∑
i:si∈Γn(`;ε0)∩Rn

∣∣∣∣(ξiK2,1

(
d(xi, ηi)

h

)
h̃1(ςi)

−E
(
U′1,n(hn, i)

))
−
(

ξiK2,2

(
d(xi, ηi)

h

)
h̃2(ςi)−E

(
U′′1,n(hn, i)

))∣∣∣∣2
)1/2

(110)

and the covering number defined for any class of functions E by:

Ñnφ,2(u, E ) := Nnφ,2(u, E , d̃nφ,2).

Because of the latter, we are able to bound (109) (more details are in [83]). In the same
way, as in [83] and before in [82], as a result of the independence between the blocks and
Assumption 7 (C3), and by applying ([151], Lemma 5.2), the equicontinuity is achieved,
and then the weak convergence is achieved, too.

Now, we need to show that:

P
{∥∥∥µ

(R)
n (ϕ, t)

∥∥∥
FmK m

> λ

}
→ 0 as n→ ∞.

For clarity purposes, we restrict ourselves to m = 2. Using the same notation as in Lemma 1,
we have the following decomposition:

µ
(R)
n (ϕ, i) =

√
nhm+dφ(hn)

{
U(R)

n (ϕ, i)−E
(
U(R)

n (ϕ, i)
)}

=

√
nhm+dφ(hn)

n(n− 1)

n

∑
i1 6=i2

ξi1 ξi2

{
G(R)

ϕ,t
((
(Xi1 , Xi2), (Yi1 , Yi2)

))
−E
[

G(R)
ϕ,i
(
(Xi1 , Xi2), (Yi1 , Yi2)

)]}
6

1√
nhm+dφ(hn)

∑
`1 6=`2∈Ln

∑
i1 :si1

∈Γn(`1;ε0)∩Rn

∑
i2 :si2∈Γn(`2;ε0)∩Rn

φ(hn)ξi1 ξi2

{
G(R)

ϕ,i
((

Xi, Xj), (Yi, Yj
))
−E

[
G(R)

ϕ,i
(
(Xi1 , Xi2), (Yi1 , Yi2)

)]}
+

1√
nhm+dφ(hn)

∑
`1∈Ln

∑
i1 :si1

∈Γn(`1;ε0)∩Rn

∑
i2 :si2∈Γn(`1;ε0)∩Rn

i1 6=i2

φ(hn)ξi1 ξi2

{
G(R)

ϕ,i
((

Xi, Xj), (Yi, Yj
))
−E

[
G(R)

ϕ,i
(
(Xi1 , Xi2), (Yi1 , Yi2)

)]}
+2

1√
nhm+dφ(hn)

∑
`1∈Ln

∑
i1 :si1

∈Γn(`1;ε0)∩Rn

∑
∆2

∑
`2∈L1,n∪L2,n

ε 6=ε0

∑
i2 :si2∈Γn(`2;ε)∩Rn
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φ(hn)ξi1 ξi2

{
G(R)

ϕ,i
((

Xi, Xj), (Yi, Yj
))
−E

[
G(R)

ϕ,i
(
(Xi1 , Xi2), (Yi1 , Yi2)

)]}
+2

1√
nhm+dφ(hn)

∑
`1∈Ln

∑
i1 :si1

∈Γn(`1;ε0)∩Rn

∑
∆1

∑
`2∈L1,n∪L2,n

ε 6=ε0

∑
i2 :si2∈Γn(`2;ε)∩Rn

φ(hn)ξi1 ξi2

{
G(R)

ϕ,t
((

Xi, Xj), (Yi, Yj
))
−E
[

G(R)
ϕ,t
(
(Xi1 , Xi2), (Yi1 , Yi2)

)]}
+

1√
nhm+dφ(hn)

∑
`1 6=`2∈L1,n∪L2,n

ε 6=ε0

∑
i1 :si1

∈Γn(`1;ε)∩Rn

∑
i2 :si2∈Γn(`2;ε)∩Rn

φ(hn)ξi1 ξi2

{
G(R)

ϕ,t
((

Xi, Xj), (Yi, Yj
))
−E

[
G(R)

ϕ,t
(
(Xi1 , Xi2), (Yi1 , Yi2)

)]}
+

1√
nhm+dφ(hn)

∑
`1∈L1,n∪L2,n

ε 6=ε0

∑
i1<i2 : si1

,si2∈Γn(`1;ε)∩Rn

φ(hn)ξi1 ξi2

{
G(R)

ϕ,t
((

Xi, Xj), (Yi, Yj
))
−E

[
G(R)

ϕ,t
(
(Xi1 , Xi2), (Yi1 , Yi2)

)]}
=: I′ + II′ + III′ + IV′ + V′ + VI′.

We shall employ blocking arguments and evaluate the terms that result. We begin by
examining the first I′. We obtain

P


∥∥∥∥∥∥ 1√

nφ(hn)
∑

`1 6=`2∈Ln

∑
i1 :si1

∈Γn(`1;ε0)∩Rn

∑
i2 :si2∈Γn(`2;ε0)∩Rn

φ(hn)ξi1 ξi2

{
G(R)

ϕ,i
((

Xi1 , Xi2), (Yi1 , Yi2
))

−E
[

G(R)
ϕ,t
(
(Xi1 , Xi2), (Yi1 , Yi2)

)]}∥∥∥
F2K 2

> δ

}

6 P


∥∥∥∥∥∥ 1√

nφ(hn)
∑

`1 6=`2∈Ln

∑
i1 :si1

∈Γn(`1;ε0)∩Rn

∑
i2 :si2∈Γn(`2;ε0)∩Rn

φ(hn)ξi1 ξi2

{
G(R)

ϕ,i
((

ςi1 , ςi2), (ζi1 , ζi2
))
−E
[

G(R)
ϕ,i
(
(ςi1 , ςi2), (ζi1 , ζi2)

)]}∥∥∥
F2K 2

> δ

}
+C
(

An

A1,n

)d
β
(

A2,n; Ad
n

)
.

Recall that for all ϕ ∈ Fm, and:

x ∈H 2, y ∈ Y 2 : 1{d(x,Xi,n)6h}F(y) > ϕ(y)K2

(
d(xi, Xsi ,An)

hn

)
.

Hence, by the symmetry of F(·):

∥∥∥∥∥∥ 1√
nφ(hn)

∑
`1 6=`2∈Ln

∑
i1 :si1

∈Γn(`1;ε0)∩Rn

∑
i2 :si2∈Γn(`2;ε0)∩Rn

φ(hn)ξi1 ξi2

{
G(R)

ϕ,i
((

ςi1 , ςi2), (ζi1 , ζi2
))

−E
[

G(R)
ϕ,t
(
(ςi1 , ςi2), (ζi1 , ζi2)

)]}∥∥∥
F2K 2

.

∣∣∣∣∣∣ 1√
nφ(hn)

∑
`1 6=`2∈Ln

∑
i1 :si1

∈Γn(`1;ε0)∩Rn

∑
i2 :si2∈Γn(`2;ε0)∩Rn

φ(hn)ξi1 ξi2

{
F(ζi, ζ j) 1{F>λn} (111)
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−E
[

F(ζi, ζ j) 1{F>λn}

]}∣∣∣∣∣∣∣.
We are going to use Chebyshev’s inequality, Hoeffding’s trick and inequality, respectively,
to obtain:

P


∣∣∣∣∣∣ 1√

nφ(h) ∑
`1 6=`2∈Ln

∑
i1 :si1

∈Γn(`1;ε0)∩Rn

∑
i2 :si2∈Γn(`2;ε0)∩Rn

φ(hn)ξi1 ξi2

{
F(ζi, ζ j) 1{F>λn}

−E
[

F(ζi, ζ j) 1{F>λn}

]}∣∣∣∣∣∣∣ > δ


. δ−2n−1φ−1(h)Var

 ∑
`1 6=`2∈Ln

∑
i1 :si1

∈Γn(`1;ε0)∩Rn

∑
i2 :si2∈Γn(`2;ε0)∩Rn

φ(hn)ξi1 ξi2 F(ζi, ζ j) 1{F>λn}

 (112)

. c2JLnKδ−2n−1φ−1(h)Var

 ∑
i1 :si1

∈Γn(`1;ε0)∩Rn

∑
i2 :si2∈Γn(`2;ε0)∩Rn

φ(hn)ξi1 ξi2 F(ζi, ζ ′j) 1{F>λn}


. 2c2JLnKδ−2n−2φ−1(h) ∑

i1 :si1
∈Γn(`1;ε0)∩Rn

∑
i2 :si2∈Γn(`2;ε0)∩Rn

φ(hn)ξi1 ξi2E
[
(F(ζ1, ζ2))

2 1{F>λn}

]
.

Under Assumption 7 (iii), we have for each λ > 0:

c2JLnKδ−2n−2φ−1(hn) ∑
i1 :si1

∈Γn(`1;ε0)∩Rn

∑
i2 :si2∈Γn(`2;ε0)∩Rn

φ(hn)ξi1 ξi2E
[
(F(ζ1, ζ2))

2 1{F>λn}

]
= c2JLnKδ−2n−2φ−1(hn) ∑

i1 :si1
∈Γn(`1;ε0)∩Rn

∑
i2 :si2∈Γn(`2;ε0)∩Rn

φ(hn)ξi1 ξi2

×
∫ ∞

0
P
{
(F(ζ1, ζ2))

2 1{F>λn} > t
}

dt

= c2JLnKδ−2n−2φ−1(hn) ∑
i1 :si1

∈Γn(`1;ε0)∩Rn

∑
i2 :si2∈Γn(`2;ε0)∩Rn

φ(hn)ξi1 ξi2

∫ λn

0
P{F > λn}dt

+c2JLnKδ−2n−2φ−1(hn) ∑
i1 :si1

∈Γn(`1;ε0)∩Rn

∑
i2 :si2∈Γn(`2;ε0)∩Rn

φ(hn)ξi1 ξi2

∫ ∞

λn
P
{
(F)2 > t

}
dt,

converging to 0 as n→ ∞. Terms II′, V′ and VI′ will be handled the same way as the last
term was. The terms II′, VI′ do not follow the same line because the variables {ζi, ζ j}ε=ε0(

or {ζi, ζ j}ε 6=ε0 for VI′
)

belong to the same blocks. Term IV′ can be deduced from the

study of Terms I′ and III′ . Considering the term III′, we have

P


∥∥∥∥∥∥∥∥∥

1√
nφ(hn)

∑
`1∈Ln

∑
i1 :si1

∈Γn(`1;ε0)∩Rn

∑
∆2

∑
`2∈L1,n∪L2,n

ε 6=ε0

∑
i2 :si2∈Γn(`2;ε)∩Rn

φ(hn)ξi1 ξi2

{
G(R)

ϕ,i
((

Xi, Xj), (Yi, Yj
))
−E
[

G(R)
ϕ,i
(
(Xi1 , Xi2), (Yi1 , Yi2)

)]}∥∥∥∥∥∥∥
F2K 2

> δ





Mathematics 2023, 11, 16 59 of 69

6 P


∥∥∥∥∥∥∥∥∥

1√
nφ(hn)

∑
`1∈Ln

∑
i1 :si1

∈Γn(`1;ε0)∩Rn

∑
∆2

∑
`2∈L1,n∪L2,n

ε 6=ε0

∑
i2 :si2∈Γn(`2;ε)∩Rn

φ(hn)ξi1 ξi2 (113)

{
G(R)

ϕ,i
((

ςi1 , ςi2), (ζi1 , ζi2
))
−E

[
G(R)

ϕ,i
(
(ςi1 , ςi2), (ζi1 , ζi2)

)]}∥∥∥∥∥∥∥
F2K 2

> δ


+

JLnKAd
1,n Ad

2,nβ
(

A2,n; Ad
n

)
√

nφ(hn)
.

We have also

P


∥∥∥∥∥∥∥∥∥

1√
nφ(hn)

∑
`1∈Ln

∑
i1 :si1

∈Γn(`1;ε0)∩Rn

∑
∆2

∑
`2∈L1,n∪L2,n

ε 6=ε0

∑
i2 :si2∈Γn(`2;ε)∩Rn

φ(hn)ξi1 ξi2

{
G(R)

ϕ,i
((

ςi1 , ςi2), (ζi1 , ζi2
))
−E
[

G(R)
ϕ,i
(
(ςi1 , ςi2), (ζi1 , ζi2)

)]}∥∥∥∥∥∥∥
F2K 2

> δ


6 P


∥∥∥∥∥∥∥∥∥

1√
nφ(hn)

∑
`1∈Ln

∑
i1 :si1

∈Γn(`1;ε0)∩Rn

∑
∆2

∑
`2∈L1,n∪L2,n

ε 6=ε0

∑
i2 :si2∈Γn(`2;ε)∩Rn

φ(hn)ξi1 ξi2

{
G(R)

ϕ,i
((

ςi1 , ςi2), (ζi1 , ζi2
))
−E
[

G(R)
ϕ,i
(
(ςi1 , ςi2), (ζi1 , ζi2)

)]}∥∥∥∥∥∥∥
F2K 2

> δ

.

Since (111) is still true, the problem can be reduced to

P


∣∣∣∣∣∣∣∣∣

1√
nφ(hn)

∑
`1∈Ln

∑
i1 :si1

∈Γn(`1;ε0)∩Rn

∑
∆2

∑
`2∈L1,n∪L2,n

ε 6=ε0

∑
i2 :si2∈Γn(`2;ε)∩Rn

φ(hn)ξi1 ξi2

{
F(ζi, ζ j) 1{F>λn} −E

[
F(ζi, ζ j) 1{F>λn}

]}∣∣∣∣∣∣∣ > δ


. δ−2n−1φ(hn)Var

 ∑
`1∈Ln

∑
i1 :si1

∈Γn(`1;ε0)∩Rn

∑
∆2

∑
`2∈L1,n∪L2,n

ε 6=ε0

∑
i2 :si2∈Γn(`2;ε)∩Rn

φ(hn)ξi1 ξi2

× F(ζi, ζ j) 1{F>λn}

,

the identical technique is followed as in (112). The remainder has just been demonstrated to
be asymptotically negligible. Finally, with r̂(m)(ϕ, x, u)→ E(Un(ϕ, i)), and for (Un(1, i))→

P
1, the weak convergence of our estimator is accomplished. �
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Appendix A

This appendix contains supplementary information that is an essential part of provid-
ing a more comprehensive understanding of the paper.

Assumption A1.

(KD1) (KB2) in Assumption 2 holds.

(KD2) For any α ∈ Zd where |α| = 1, 2, ∂α fS(s) exists and is continuous on (0, 1)d.

Define

f̂S(u) =
1

nhd

n

∑
j=1

K̄h
(
u− S0,j

)
.

Lemma A1 ([153], Theorem 2). Under Assumption A1 and h→ 0 such that nhd/(log n)→ ∞
as n→ ∞, we have that

sup
u∈[0,1]d

∣∣∣ f̂S(u)− fS(u)
∣∣∣ = O

(√
log n
nhd + h2

)
PS − a.s.

Lemma A2. Let Ih = [C1h, 1− C1h]. Suppose that kernel K1 satisfies Assumption A1 part(i).
Then for q = 0, 1, 2 and m > 1:

sup
u∈Ih

∣∣∣∣∣ 1
nmhmd ∑

i∈Im
n

m

∏
j=1

K

(
uj − S0,ij

hn

)(
uj − S0,ij

h

)q

−
∫
Rmd

1
hmd

m

∏
j=1

{
K
(uj −ωj

hn

)(uj −ωj

h

)q}
fS(ωj)

m

∏
j=1

dωj

∣∣∣∣∣ = O

(√
log n
nhdm

)
PS − a.s.

Lemma A3. Suppose that kernel K satisfies Assumption A1. Let g : [0, 1]md ×H m → R,
(u, x) 7→ g(u, x) be a function continuously partially differentiable with respect to uj. For k = 1, 2,
we have

sup
u∈Ih

∣∣∣∣∣ 1
nmhmd ∑

i∈Im
n

m

∏
j=1

K
(uj − S0,j

hn

)k

g
(
S0,j, xj

)
−

m

∏
j=1

κk fS(uj)g(uj, xj)

∣∣∣∣∣
= O

(√
log n
nhmd

)
+ o(h), PS − a.s. (A1)

where
κk =

∫
Rd

Kk
(x)dx.
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For any probability measure Q on a product measure space (Ω1 ×Ω2, Σ1 × Σ2), we
may define the β-mixing coefficients as follows:

Definition A1 ([149], Definition 2.5). Let Q1 and Q2 be the marginal probability measures of Q
on (Ω1, Σ1) and (Ω2, Σ2), respectively. We set

β(Σ1, Σ2, Q) = P sup{|Q(B | Σ1)−Q2(B)| : B ∈ Σ2}.

The following lemma holds true for every finite n and is essential for the generation of
independent blocks for β-mixing sequences.

Lemma A4 ([149], Corollary 2.7). Let m ∈ N and let Q denote a probability measure on a product
space (∏m

i=1 Ωi, ∏m
i=1 Σi) with the associated marginal measures Qi on (Ωi, Σi). Assume that h is

a bounded measurable function on the product probability space in such a way that |h| ≤ Mh < ∞.
For 1 ≤ a ≤ b ≤ m, let Qb

a be the marginal measure on
(

∏b
i=a Ωi, ∏b

i=a Σi

)
. For a given τ > 0,

suppose that, for all 1 ≤ k ≤ m− 1,∥∥∥Q−Qk
1 ×Qm

k+1

∥∥∥
TV
≤ 2τ (A2)

where Qk
1 ×Qm

k+1 is the product measure and ‖ · ‖TV is the total variation. Then

|Qh− Ph| ≤ 2Mh(m− 1)τ,

where P = ∏m
i=1 Qi, Qh =

∫
hdQ and Ph =

∫
hdP.

Lemma A5. Let
In =

{
i ∈ Zd :

(
i + (0, 1]d

)
∩ Rn 6= ∅

}
.

Then, we have

PS

(
n

∑
j=1

1
{

AnS0,j ∈
(

i + (0, 1]d
)
∩ Rn

}
> 2

(
log n + nA−d

n

)
for some i ∈ In, i.o.

)
= 0

and

PS

(
n

∑
j=1

1
{

AnS0,j ∈ Γn(`; ε)
}
> CAq(ε)

1,n Ad−q(ε)
2,n nA−d

n for some ` ∈ L1,n, i.o.

)
= 0

for any ε ∈ {1, 2}d, where “i.o.” stands for infinitly often.

Proof. See the proof in ([93], Lemma A.1) for each statement.

Remark A1. Lemma A5 implies that each Γn(`; ε) contains at most CAq(ε)
1,n Ad−q(ε)

2,n nA−d
n samples

PS-almost surely.

Lemma A6. Under Assumptions 2 and 3, Condition (B1) in 4–6 and A1, we have:

E.|S

[(
Sn(`; ε)

)2
]
≤ CAd−1

1,n A2,n(nA−d
n + log n)hmdφ(h).

Appendix A.1. Proof of Lemma A6

We have

E.|S

[(
Sn(`; ε)

)2
]
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= ∑
i:si∈Γn(`;ε)∩Rn

E.|S

[
S2

s,An(u, x)
]
+ ∑

i 6=j:si ,sj∈Γn(`;ε)∩Rn

E.|S

[
Ssi ,An(u, x)Ssj ,An(u, x)

]
where

∑
i:si∈Γn(`;ε)∩Rn

E.|S

[
S2

s,An(u, x)
]

≤ (n− 1)−2m ∑
Im−1
n−1 (−i)

m

∑
`=1

ξ2
i1 . . . ξ2

i`−1
ξ2

i ξ2
i` . . . ξ2

im−1

∫ Ws(1,...,`−1,`,...,m−1),An

m−1

∏
j=1
j 6=i

1
φ(h)

K2

(
d(xj, νsj ,An)

h

)
P(dν1, . . . , dν`−1, dν`, . . . , dνm−1)

)2

{
E·|S

(
1

φ2(h)
K2

2

(
d(xi, Xsi ,An)

h

)
W2

si ,An

)
(A3)

+

[
E·|S

(
1

φ2(h)
K2

(
d(xi, Xsi ,An)

h

)
Wsi ,An

)]2
}

≤ Cφ2(h)(n− 1)−2m ∑
Im−1
n−1 (−i)

m

∑
`=1

ξ2
i1 . . . ξ2

i`−1
ξ2

i ξ2
i` . . . ξ2

im−1
PS − a.s.

Likewise, we can see that

E.|S

[
Ssi ,An(u, x)Ssj ,An(u, x)

]
≤ Cφ2(h)(n− 1)−2m ∑

Im−1
n−1 (−i)

m

∑
`=1

ξ2
i1 . . . ξ2

i`−1
ξ2

i ξ2
i` . . . ξ2

im−1
PS − a.s. (A4)

Applying Lemma A5 and Lemma A1 to find that

∑
i:si∈Γn(`;ε)∩Rn

K̄2
h

(
u−

sj

An

)
× (n− 1)−2m ∑

Im−1
n−1 (−i)

m

∑
`=1

ξ2
i1 . . . ξ2

i`−1
ξ2

i` . . . ξ2
im−1

≤ C ∑
i:si∈Γn(`;ε)∩Rn

K̄h

(
u− si

An

)
× (n− 1)−2m ∑

Im−1
n−1 (−i)

m

∑
`=1

ξi1 . . . ξi`−1
ξi` . . . ξim−1

≤ ChmdJ{i : si ∈ Γn(`; ε) ∩ Rn}K

≤ Chmd Ad−1
1,n A2,n

(
nA−d + log n

)
, PS − a.s.,

and

∑
i 6=j:si ,sj∈Γn(`,ε)∩Rn

K̄h

(
u− si

An

)
K̄h

(
u−

sj

An

)

×(n− 1)−m( ∑
Im−1
n−1 (−i)

m

∑
`=1

ξi1 . . . ξi`−1
ξi` . . . ξim−1 ∑

Im−1
n−1 (−j)

m

∑
`=1

ξ j1 . . . ξ j`−1
ξ j` . . . ξ jm−1)

≤

 ∑
j:sj∈Γn(`;ε)∩Rn

K̄h

(
u−

sj

An

)
(n− 1)−m ∑

Im−1
n−1 (−j)

m

∑
`=1

ξ j1 . . . ξ j`−1
ξ j` . . . ξ jm−1

2

≤ Ch2mdJ
{

j : sj ∈ Γn(`; ε) ∩ Rn
}
K2
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≤ Ch2md A2(d−1)
1,n A2

2,n

(
nA−d + log n

)2
, PS − a.s.

Since

Ad−1
1,n A2,n

(
nA−d

n + log n
)

hmdφ(h) ≤ Ad
1,n

(
nA−d

n + log n
)

hmdφ(h) = o(1),

we have

E·|S
[(

Sn(`; ε)
)2
]
≤ C

{
Ad−1

1,n A2,n

(
nA−d

n + log n
)

hmdφ(h)

+A2(d−1)
1,n A2

2,n

(
n2 A−2d

n + log2 n
)

h2(d)φ2(h)
}

≤ CAd−1
1,n A2,n

(
nA−d

n + log n
)

hmdφ(h), PS − a.s.

Lemma A7 (Bernstein’s inequality). Let X1, . . . , Xn be zero-mean independent random variables.
Assume that

max
1≤i≤n

|Xi| ≤ M < ∞, a.s.

For all t > 0, we have

P
(

n

∑
i=1

Xi ≥ t

)
≤ exp

−
t2

2
n

∑
i=1

E
[

X2
i

]
+

Mt
3


Lemma A8. Under Assumptions 2–4 and 6, we have

1
nhmdφm(h)

Var·|S

 ∑
`∈L1,n

Zn(`; ε)

 = o(1), PS − a.s. (A5)

1
nhmdφm(h)

Var·|S

 ∑
`∈L2,n

Zn(`; ε)

 = o(1), PS − a.s. (A6)

�

Appendix A.2. Proof of Lemma A8

We have

1
nhmdφ(h)

Var·|S

 ∑
`∈L1,n

Zn(`; ε)

 =
1

nhmdφ(h) ∑
`∈L1,n

E·|S
[
(Zn(`; ε))2

]
+

1
nhmdφ(h) ∑

`1 6=`2∈L1,n

E·|S[Zn(`1; ε)Zn(`2; ε)] (A7)

:= I1 + I2.

Using Lemma A6 and Assumption 4, it is easy to see that

I1 ≤ C
1

nhmdφ(h)

(
An

A1,n

)d
Ad−1

1,n A2,n(nA−d
n + log n)hmdφ(h)

≤ C
A2,n

A1,n
(log n) = o(1). (A8)
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For I2, using [Theorem 1.1] from [154], we have:

E·|S[Zn(`1; ε)Zn(`2; ε)]

≤ E·|S
[
|Zn(`1; ε)|3

]1/3
E·|S
[
|Zn(`2; ε)|3

]1/3
β1/3(d(`1, `2)A2,n, Amd

1,n)

≤ E·|S
[
|Zn(`1; ε)|3

]1/3
E·|S
[
|Zn(`2; ε)|3

]1/3
β1/3

1 (d(`1, `2)A2,n)g1/3
1 (Amd

1,n).

The first inequality holds using Equation (8), and for d(`1, `2) = max
1≤j≤d

|`j
1 − `

j
2|. Using the

same strategy as Lemma A6, we have

E·|S
[
|Zn(`1; ε)|3

]
≤ CAd−1

1,n A2,n(nA−d
n + log n)hmd,

and
E·|S
[
|Zn(`2; ε)|3

]
≤ CAd−1

1,n A2,n(nA−d
n + log n)hmd.

Note that for `1, `2 ∈ L1n, Γ(`1; ε0) and Γ(`2; ε0) in Rn are separated by the
(
`1−

)
distance

d(Γ(`1; ε0), Γ(`2; ε0)) ≥ ([(|`1 − `2| − d)+A3n] + A2n).

I2 ≤ C

(
Ad−1

1,n A2,n

(
nA−d

n + log n
)

hp+d
)2/3

nhd+p

× ∑
`1,`2∈L1,n ,`1 6=`2

β1/3
1/3((|`1 − `2| − d)+A3,n + A2,n)g1/3

1

(
Ad

1,n

)
(A9)

≤ C


(

1
nhd+p

)1/3(A1,n

An

)2d/3(A2,n

A1,n

)2/3
+

A(d−1)/3
1,n A1/3

2,n (log n)1/3

nh(d+p)/3
}

×g1/3
1

(
Ad

1,n

){
β1/3

1 (A2,n) +
An/A1,n

∑
k=1

kd−1β1/3
1 (kA3,n + A2,n)

}
= o(1)

The last inequality follows using Assumption 4 and for

|`1 − `2| =
d

∑
j=1
|`1,j − `2,j|.

Equation (A6) could be treated similarly to (A5).

Remark A2. In order to prove that the summation over the small block is asymptotically negligible,
we can use the method of [87] where they used to pass from the dependence structure of variables to
the independence as a first step; then, they proved the convergence of second-order expectation to
zero using a maximal inequality. This method avoids the treatment of covariance, and it is based on
the use of maximal inequality.

Proposition A1 ([27], Proposition 3.6). Let {Xi : i ∈ n} be a process satisfying, for m > 1:

(
E
∥∥Xi − Xj

∥∥p
)1/p

6
(

p− 1
q− 1

)m/2(
E
∥∥Xi − Xj

∥∥q
)1/q

, 1 < q < p < ∞,

and the semi-metric:
ρ(j, i) =

(
E
∥∥Xi − Xj

∥∥2
)1/2

.
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There exists a constant K = K(m) such that:

E sup
i,j∈n

∥∥Xi − Xj
∥∥ 6 K

∫ D

0
[log N(ε, n, ρ)]m/2dε,

where D is the ρ-diameter of n.

Lemma A9 ([155]). Let X1, . . . , Xn be a sequence of independent random elements taking values
in a Banach space (B, ‖.‖) with EXi = 0 for all i. Let {εi} be a sequence of independent Bernoulli
r.v values independent of {Xi}. Then, for any convex increasing function Φ,

EΦ

(
1
2

∥∥∥∥∥ n

∑
i=1

Xiεi

∥∥∥∥∥
)
≤ EΦ

(∥∥∥∥∥ n

∑
i=1

Xi

∥∥∥∥∥
)
≤ EΦ

(
2

∥∥∥∥∥ n

∑
i=1

Xiεi

∥∥∥∥∥
)

.

�
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