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Abstract: The effective resolution of positron emission tomography (PET) can be significantly de-
graded by patient motion during data acquisition. This is especially true in the thorax due to
respiratory motion. This study concentrates on the improvement of motion correction algorithms
both in terms of image quality and computational cost. In this paper, we present a novel motion-
compensated image reconstruction (MCIR) algorithm based on a parabolic surrogate likelihood
function instead of the loglikelihood function of the expectation maximization (EM) algorithm. The
theoretical advantage of the parabolic surrogate algorithm lies within the fact that its loglikelihood is
upper bounded by the EM loglikelihood, thus it will converge faster than EM. This is of particular
importance in PET motion correction, where reconstructions are very computationally demand-
ing. Relaxation parameters were also introduced to converge closer to the maximum likelihood
(ML) solution and achieve lower noise levels. Image reconstructions with embedded relaxation
parameters actually converged to better solutions than the corresponding ones without relaxation.
Motion-compensated parabolic surrogates were indeed shown to accelerate convergence compared
to EM, without reaching a limit cycle. Nonetheless, with the incorporation of ordered subsets in the
reconstruction setting, the improvement was less evident.

Keywords: separable parabolic surrogates; maximum likelihood; expectation maximization; iterative
reconstruction; motion-compensated image reconstruction

MSC: 92C55; 94A08; 62P10

1. Introduction

In positron emission tomography (PET) image reconstruction, patient motion, particu-
larly due to respiration, frequently causes significant image degradation and blurring [1].
In the course of respiration, air is inhaled and exhaled, resulting in the contraction and
expansion of the patient’s lungs, as well as the movement of other organs in the thoracic
region. Furthermore, respiration leads to a potential loss of contrast in the images, of-
ten accounting for the failure to detect lesions and the degradation of accuracy of image
quantification [2]. Since the amplitude of respiratory motion can be up to 30 mm, respi-
ratory motion may dominate PET images, whereas the spatial resolution of commercial
whole-body PET scanners utilizing silicon photomultipliers is typically 3–4 mm [3].
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To overcome the above limitations, there exist several motion correction techniques [4–7].
These techniques include respiratory-gated PET acquisition protocols [8], especially fo-
cusing on motion blurring, and motion compensation and correction methods prior to
image reconstruction, for the gated data acquired [9,10]. However, the incorporation of mo-
tion within the algorithm itself occurs in the “motion-compensated image reconstruction”
(MCIR) algorithms [11–13]. In this direction, it is quite common to co-register reconstructed
images by employing post-reconstruction registration (PRR), i.e., by splitting the projection
data, depending on the motion phase, into gated data (sinograms). The resulting gated
sinograms are reconstructed separately and the images are registered to a reference phase
and are subsequently averaged [14–17]. MCIR methods include joint estimation of image
and deformation parameters [18], model-based image reconstruction for four-dimensional
PET [19], motion-incorporated reconstructions for gated PET [20], lesion detectability in
respiratory-gated PET/CT (computed tomography) [21], the incorporation of non-rigid
body transformations [22], respiratory motion compensation [23], and expectation maxi-
mization (EM) algorithms [24], proven to form the basis of MCIR.

MCIR is often employed to alleviate motion in several clinical applications. This is
especially true with the recent integration of PET with magnetic resonance imaging (MRI),
where motion is measured jointly with PET and MRI [25]. In this case, MCIR techniques
are utilized for respiratory motion correction [26–28] and for several other types of motion
correction [29,30]. Furthermore, some researchers have focused on PET motion correction
via convolutional neural networks [31] and adversarial networks [32], and several others
on the noise properties of MCIR [33].

A significant drawback involved in EM reconstruction is the associated computational
expense. However, the application of iterative EM algorithms in PET image reconstruction
is prevalent. There exist several EM-based reconstruction techniques, including ordered
subsets EM (OSEM) [34], one-step-late expectation maximization [35], space-alternating
generalized expectation maximization (SAGE) [36], and separable parabolic surrogates
(SPS) [37]. The parabolic surrogate algorithm was shown to converge faster than maximum
likelihood EM (MLEM) and SAGE [37].

In this paper, following the works by Fessler and Erdogan [37] and Dikaios [38],
we investigate the use of motion-compensated image reconstruction, based on an SPS
likelihood function instead of the usual loglikelihood function of the EM algorithm. The
loglikelihood of the proposed SPS algorithm is upper bounded by the EM loglikelihood,
thus it will converge faster. Furthermore, we extended our technique by incorporating the
notion of ordered subsets (OS) and relaxation parameters. The research gap that this article
fills is the improvement of the convergence rate, which is crucial in order to reduce the
computational cost involved in PET image reconstruction.

The current paper is organized as follows: in Section 2, we describe the basics of EM
image reconstruction. In Section 3, we illustrate parabolic surrogates image reconstruction,
whereas in Section 4 we highlight motion-compensated EM image reconstruction. Fur-
thermore, in Section 5 we present our proposed framework, namely motion-compensated
SPS image reconstruction. In Section 6, we present the numerical implementation and the
results of our novel method and in Section 7 we discuss our results. Finally, in Section 8 we
provide our conclusions.

2. Maximum Likelihood Expectation Maximization Image Reconstruction

EM algorithms adopt iterative approaches to compute maximum likelihood (ML)
estimates of unknown parameters (λ), given the measured data (y) [39]. ML estimates
aim to find the parameters for which the measured data are the most likely. However,
missing or unobserved data (x) may be included in the EM scheme. The terms “missing
data” or “unobserved data” imply that there exist sample spaces X and Y, and a mapping
x → y(x) from X to Y. The measured data y consist of a realization from space Y, whereas
the missing data x are observed indirectly through the mapping y = y(x). If we assume
that the conditional probability of the missing data x given λ is P(x|λ), then we are able to
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calculate the conditional probability of the observed data P(y|λ). It is important to note
that there might be more than one realization x ∈ X that will generate P(y|λ).

In EM algorithms, we aim to maximize P(y|λ), which, via the definition of conditional
probability, may be rewritten as:

P(y|λ) = ∑
x

P(y|x, λ)P(x|λ). (1)

As it is quite often in these cases, instead of the likelihood P(y|λ), given in Equation (1),
the loglikelihood function L(y|λ) is employed, namely,

L(y|λ) = ln P(y|λ), (2)

since the loglikelihood is usually more convenient to maximize. The natural logarithm
is monotonically increasing, hence, if λ∗ denotes the estimate that maximizes P(y|λ), it
follows that it will also maximize L(y|λ), i.e.,

λ∗ = arg max
λ

P(y|λ) = arg max
λ
L(y|λ). (3)

In order to converge to the maximum likelihood solution, each updated EM estimate,
denoted by λn, must monotonically increase the loglikelihood function, in the sense that:

L(y|λ) > L(y|λn), ∀ n. (4)

To this end, EM algorithms usually consist of two steps per iteration, namely: (i) the
expectation step (E-step), estimating the missing data with their expected values, given the
current value of λ and y; (ii) the maximization step (M-step), calculating the ML estimates
of the unknown parameters, and subsequently utilizing them in the next E-step.

In the context of PET imaging, the aim is to reconstruct the radioactivity distribution
which is the most likely. Following data acquisition, a PET scanner provides projection
(observed) data, y, of the radioactivity distribution. Then, the EM algorithm is employed in
order to determine a radioactivity distribution λ that maximizes the conditional expectation
Q(y|λn), i.e.,

Q(y|λn) = E(L(x|λ)|y, λn), (5)

as in [37,40,41]. Since the reconstruction is performed in a discrete setting, the projection
data are modeled as geometrically ordered arrays (usually referred to as sinograms), de-
noted by yb, where b represents the bin corresponding to a line of response [42]. In a
similar fashion, the radioactivity distribution function is represented as the radioactivity
concentration λv, in each voxel v [43].

The probability of detecting yb photons according to Poisson statistics is

P(yb|λv) = e−yb
(yb)

yb

yb!
, (6)

where the estimated (mean) projection data, yb is represented by

yb = ∑
v

pbvλv, (7)

where pbv denotes the probability that a photon from image voxel v is actually detected in
the sinogram bin b. Given the observed data yb, the likelihood function of the radioactivity
distribution λv is given by

P(y|λ) = ∏
b

P(yb|λ), (8)
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in the sense of [40,41]. Incorporating the loglikelihood (L) into Equation (8) yields

L(y|λ) = ∑
b

yb ln yb − yb − ln yb!. (9)

In Equation (9), we omit the term ln yb!, as it contributes nothing in the loglikelihood
maximization process, i.e.,

L(y|λ) = ∑
b

yb ln yb − yb. (10)

PET projection data (yb) contain insufficient information regarding the exact location,
along the projection line, the photon annihilation event has occurred, hence they do not
correspond to the complete dataset. To adequately define the EM algorithm [39], we must
estimate a conditional expectation of the complete data (xbv), namely E(xbv|yb, λv), where
xbv denotes the number of photons in voxel v detected in detector b. The complete data
have an expected (mean) value of:

E(xbv) = pbvλv, (11)

whereas the estimated observed projection data is calculated via the sum of the expectations
given in Equation (11), over the voxels (v):

yb = ∑
v
E(xbv). (12)

3. Parabolic Surrogates Image Reconstruction

SPS algorithms [37] are conceptually similar to SAGE algorithms [36], aiming for fast
global convergence. In SAGE, convergence is achieved via a less informative, complete
data set to the likelihood function [36]. The updated likelihood function in SAGE can be
taken into account as a so-called “surrogate function”. In this direction, SPS algorithms
replace the EM likelihood function with a parabolic surrogate function that is guaranteed
to be monotonic even with non-zero background (mb).

Given the measured data yb, the loglikelihood function of the estimated parameters
λv is

L(y|λ) = ∑
b

(
yb ln

(
∑
v

pbvλv + mb

)
−∑

v
pbvλv −mb

)
. (13)

Equation (13) may be rewritten in the following form:

L(y|λ) = ∑
b
Lb(yb|λ), (14)

where
Lb(yb|λ) = yb ln (yb + mb)− (yb + mb), (15)

and the mean projected data, yb, are defined in Equation (7).
The function Lb(yb|λ) satisfies the following five conditions:

Lb(yb|λ) 6 yb ln yb − yb, ∀ yb > 0, (16a)

Lb(yb|λ) increases monotonically in [−∞, yb], (16b)

Lb(yb|λ) decreases monotonically in (yb, ∞), (16c)

Lb(yb|λ) is concave in [0, ∞), (16d)

∂Lb(yb|λ)
∂yb

is convex in [0, ∞). (16e)

Conditions (16) imply, via Equation (14), that the loglikelihood function L(y|λ) is mono-
tonically increasing.
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Initially, the one-dimensional parabolic surrogate functions, denoted by φb(yb|yn
b ), are

calculated as follows:

φb(yb|y
n
b ) = Lb(yb|λ

n) + (yb − yn
b )

∂Lb(yb|λn)

∂yn
b

− 1
2

cb(yn
b )(yb − yn

b )
2, (17)

where cb(yn
b ) represents the curvature, as in [37], i.e.,

cb(yn
b ) =


2
y2

b

(
Lb(yb|λ)− yb ln mb + mb − yb

∂Lb(yb|λ)
∂yb

)
, yb > 0,

−∂2Lb(yb|λ)
∂y2

b
, yb = 0.

(18)

The sum of the one-dimensional parabolic surrogate functions φb(yb|yn
b ) gives the

total parabolic surrogate function, denoted by Φ:

Φ(λ|λn) = ∑
b

φb(yb|y
n
b ). (19)

In the M-step of the EM algorithm, the parabolic surrogate function Φ is maximized:

λn+1 = arg max
λ

Φ(λ|λn). (20)

In Equation (20), in order for the updated λ to monotonically increase the loglikelihood
function L(y|λ), the one-dimensional parabolic surrogate functions must satisfy the fol-
lowing three conditions, namely

φb(yb|y
n
b ) = Lb(yb, λn), (21a)

∂φb(yb|yn
b )

∂yn
b

=
∂Lb(yb|λn)

∂yn
b

, (21b)

φb(yb|y
n
b ) 6 Lb(yb, λ), ∀ yb > 0. (21c)

As shown in Figure 1, Equation (19) and conditions (21) imply that the parabolic sur-
rogate function Φ: (i) is bounded above by the typical loglikelihood function L, and (ii) has
the same value and the same slope with L only when yb = yn

b .

Figure 1. Loglikelihood, Lb(yb|λn), and the parabolic surrogate function, φb(yb|yn
b ).
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4. Motion-Compensated Expectation Maximization Image Reconstruction

Depending on the motion phase (m), in gated sinograms ym, the probability of detect-
ing ym

b events (photons) in projection element b for gate m from a radioactivity distribution
λv is governed by Poisson statistics, as in Equation (6), namely:

P(ym
b |λv) = e−ym

b

(
ym

b
)ym

b

ym
b !

, (22)

where ym
b denotes the estimated (mean) projection data of a projection element b for gate m.

In PRR, the reconstructed image of each gate m, denoted by λm, is deformed by its
corresponding transformation operator, T. Then, an average image of the M deformed and
resampled images is formed. The motion of the radioactivity distribution from its initial
position, i.e., gate 1, to gate m is represented by

λm
v = ∑

v′
d1→m

vv′ λv′ , (23)

where d1→m denotes the elements of the transformation matrix T that transform the image
from respiratory gate 1 to gate m. Therefore, the estimated (mean) projection data for gate
m will be

ym
b = ∑

v
pbv ∑

v′
d1→m

vv′ λv′ , (24)

where pbv is the probability that a photon from image voxel v is detected in sinogram bin b.
For the calculation of the estimated projection data that are consistent with the measured
data, we assume perfect deformation for each gate. We adapt the loglikelihood function
given by Shepp and Vardi [40], and rewrite the motion-gated case as:

L(y|λ) = ∑
m

∑
b
(ym

b ln ym
b − ym

b ). (25)

Using Equation (24), Equation (25) may be written as [19]

L(y|λ) = ∑
m

∑
b

[
ym

b ln

(
∑
v

pbv ∑
v′

d1→m
vv′ λv′

)
−∑

v
pbv ∑

v′
d1→m

vv′ λv′

]
. (26)

For the determination of the E-step of the EM algorithm, we must estimate the condi-
tional expectation of the complete data, xm

bv, denoted by E(xm
bv|y

m
b , λv), as in [39]. Since xm

bv
are independent Poisson variables with mean values pbvλm

v , it follows that

E(xm
bv|y

m
b , λv) = ym

b
pbvλm

v

∑
v

pbvλm
v

= ym
b

pbv ∑
v′

d1→m
vv′ λv′

∑
v

pbvλm
v

. (27)

The conditional expectation, Q(λv|λn
v), where λn

v denotes the value of λv at iteration n of
the EM algorithm, is given by

Q(λv|λn
v) = E(L(x, λ)|y, λn)

= ∑
m

∑
b

(
−pbv ∑

v′
d1→m

vv′ λv′ +E(xm
bv|y

m
b , λn

v) ln

(
pbv ∑

v′
d1→m

vv′ λv′

))
. (28)

Furthermore, we assume that the deformation of the probability matrix can replace
the deformation of the radioactivity distribution, i.e.,

λv ∑
v′

d1→m
vv′ pbv′ = pbv ∑

v′
d1→m

vv′ λv′ . (29)
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Therefore, Equation (28) may be rewritten as

Q(λv|λn
v) = ∑

m
∑
b

(
−λv ∑

v′
dm→1

vv′ pbv′ +E(xm
bv|y

m
b , λn

v) ln

(
λv ∑

v′
dm→1

vv′ pbv′

))
. (30)

For the determination of the M-step of the EM algorithm, we seek the image for which
the conditional expectation is maximized, i.e.,

∂Q(λv|λn
v)

∂λv
= 0, (31)

which, via Equation (30), implies that

∑
m

∑
b

(
−∑

v′
dm→1

vv′ pbv′ +
E
(
xm

bv|y
m
b , λn

v
)

λv

)
= 0. (32)

Therefore, the image update equation will be

λn+1
v =

∑
m

∑
b
E
(
xm

bv|y
m
b , λn

v
)

∑
m

∑
b

∑
v′

dm→1
vv′ pbv′

. (33)

Substituting Equation (29) into the numerator of Equation (27) yields

E(xm
bv|y

m
b , λn

v) = λn
v ym

b

∑
v′

dm→1
vv′ pbv′

∑
v

pbv ∑
v′

d1→m
vv′ pbv′λ

n
v′

. (34)

Further substitution of Equation (34) into Equation (33) implies that the image update
equation will have the following form:

λn+1
v = λn

v


 1

∑
m

∑
v′

dm→1
vv′ ∑

b
pbv′


∑

m
∑
v′

dm→1
vv′ ∑

b

ym
b

∑
v′′

pbv′′ ∑
v′′′

d1→m
v′′v′′′λv′′′


. (35)

The term inside the brackets in the right-hand-side of Equation (35) will be referred
to as the image estimate update factor. This update factor is the product of the sensitivity
correction term and the back-projected ratio. If we consider to include photon attenuation,
in the form of an attenuation factor matrix denoted by Am

b , and ordered subsets, denoted
by Si, then Equation (35) becomes

λn+1
v = λn

v


 1

∑
m

∑
v′

dm→1
vv′ ∑

b∈Si

pbv′Am
b


∑

m
∑
v′

dm→1
vv′ ∑

b∈Si

ym
b

∑
v′′

pbv′′ ∑
v′′′

d1→m
v′′v′′′λv′′′


. (36)

Equation (36) represents the image update equation for MCIR, taking into account
photon attenuation (in the form of an attenuation factor matrix denoted by Am

b , and or-
dered subsets, denoted by Si). This means that the updated image λn+1

v is λn
v multi-

plied by the “update factor”, i.e., the product of the sensitivity correction term and the
back-projected ratio.
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5. Motion-Compensated Separable Parabolic Surrogates Image Reconstruction

MCIR methods, described in the previous section, are usually computationally costly.
In order for an MCIR method to be clinically applicable, the computational cost must
be reduced. Ordered subsets may accelerate the convergence significantly, however, this
occurs at the expense of reaching a limit cycle at early iterations. As mentioned in the intro-
duction, there exist several methods that are able to accelerate the EM process and maintain
convergence to the maximum likelihood solution. One of these methods is SPS, proposed
by Erdogan and Fessler [37]. SPS improves the convergence rate while maintaining the
important monotonic properties of the EM algorithm. In SPS, the loglikelihood function is
replaced by a separable parabolic surrogate.

Given that SPS was proven to converge faster than the SAGE algorithm [36,37], in this
section we introduce two motion-compensated parabolic surrogates reconstruction meth-
ods, namely MC-SPS (motion-compensated SPS) and MC-OSSPS (motion-compensated,
ordered-subsets SPS). In both reconstruction methods, the motion model is embedded
within the parabolic surrogate function.

5.1. MC-SPS: Motion-Compensated Separable Parabolic Surrogates Image Reconstruction

Following the notions of SPS and MCIR, as scrutinized above, we modify the one-
dimensional parabolic surrogate functions φb, given in Equation (17), in order to obtain φm

b
for each gate m, as follows:

φm
b (y

m
b |y

mn

b ) = Lm
b (y

m
b |λ

n) + (ym
b − ymn

b )
∂Lm

b (y
m
b |λn)

∂ymn

b
− 1

2
cm

b (y
mn

b )(ym
b − ymn

b )2, (37)

where cm
b (y

mn

b ) denotes the curvature, initially defined in [37], and modified from Equation (18)
for gate m, namely:

cm
b (y

mn

b ) =


2

(ym
b )

2

(
Lm

b (y
m
b |λ)− ym

b ln mb + mb − ym
b

∂Lm
b (y

m
b |λ)

∂ym
b

)
, ym

b > 0,

−
∂2Lm

b (y
m
b |λ)

∂(ym
b )

2 , yb = 0,
(38)

ym
b denotes the estimated projection data for gate m, i.e.,

ym
b = ∑

v
pbvλm

v , (39)

and Lm
b denotes the component of the loglikelihood function Lm

b corresponding to gate m:

Lm
b (y

m|λ) = ∑
b

ym
b ln ym

b − ym
b . (40)

In order to obtain a surrogate function that is separable in v for all possible λv, we
applied the approach of De Pierro et al. [44]. For convenience, ym

b via Equation (39) may be
rewritten as

ym
b = ∑

v

(
pbv(λ

m
v − λmn

v ) + ymn

b

)
. (41)

Furthermore, we assume that the deformation of the probability matrix can replace the
corresponding deformation of the radioactivity distribution, as in Equation (23), i.e.,

pbvλm
v = pbv ∑

v′
d1→m

vv′ λv′
∼= λv ∑

v′
d1→m

vv′ pbv′ . (42)

Equation (42) implies that
pbvλm

v
∼= pbvλv, (43)



Mathematics 2023, 11, 55 9 of 17

hence, via Equation (43), Equation (41) is rewritten in the following form:

ym
b = ∑

v

pm
bv

pm
b

(
pm

b (λ
m
v − λmn

v ) + ymn

b

)
, (44)

where
pm

b = ∑
v

pm
bv. (45)

However, given that φm
b (y

m
b |y

mn

b ) is concave, hence

φm
b (y

m
b |y

mn

b ) > ∑
v

pm
bv

pm
b

φm
b (pm

b (λ
m
v − λmn

v ) + ymn

b |y
mn

b ), (46)

due to the fact that Equations (44) and (45) define an affine combination, since

∑
v

pm
bv

pm
b

= 1. (47)

Inequality (47) yields a surrogate function Φ̃ that is not only quadratic, but also separable
in v:

Φ̃(λ|λn) = ∑
m

∑
b

∑
v

pm
bv

pm
b

φm
b (pm

b (λ
m
v − λmn

v ) + ymn

b |y
mn

b ). (48)

For the M-step of our SPS algorithm, we must maximize these one-dimensional
parabolas with respect to λv:

∂φ(λ|λn)

∂λv
= ∑

m
∑
b

pm
bv

∂Lm
b (y

m
b |λ

n)

∂ymn

b
+ γn

v (λv − λn
v) = 0, (49)

where γn
v is defined as

γn
v = ∑

m
∑
b

pm
bv pm

b cm
b (y

mn

b ), (50)

and the curvature cm
b (y

mn

b ) may be approximated via the Newton curvature [37,45], namely

cm
b (y

m
b ) =

−
∂2Lm

b (y
m
b |λ)

∂(ym
b )

2 , ym
b > 0,

0, otherwise.
(51)

Condition (49) implies

λn+1
v = λn

v −
1

γn
v

∑
m

∑
b

pm
bv

∂Lm
b (y

m
b |λ

n)

∂ymn

b
. (52)

Under the above assumptions, the approximation provided by the MC-SPS algorithm is not
guaranteed to be monotonic. However, as it will become apparent in the next subsection,
the monotonicity violation will occur anyway, even when ordered subsets are introduced.

5.2. MC-OSSPS: Motion-Compensated Ordered-Subsets Separable Parabolic Surrogates
Image Reconstruction

In order to further accelerate the convergence of MC-SPS, we employed the OS for-
mulation [46], as we did in Equation (36), however, at the expense of global convergence.
The resulting motion-compensated ordered subsets SPS algorithm (MC-OSSPS) is repre-
sented by:

λn+1
v = λn

v −
1

γn
v

∑
m

∑
b∈Si

pm
bv

∂Lm
b (y

m
b |λ

n)

∂ymn

b
, (53)
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where OS are denoted by Si, as in Equation (36).
OS algorithms tend to converge faster than MLEM. However, in order to achieve

acceleration, they employ an approximate gradient computed from a block of the projection
data per iteration. OS-based methods are shown to reach a similar solution as MLEM,
if the subsets are balanced and the degree of the projection subset subdivision is relatively
low [38]. Given that the approximate gradient is not accurate, OS algorithms exhibit limit
cycle behavior, producing periodic solutions. Hence they do not converge to the maximum
likelihood solution, i.e., they violate global convergence. Since the magnitude of the limit
cycle behavior is closely related to the step size, Browne and De Pierro [44] suggested the
use of a relaxation parameter, corresponding to a diminishing step size, and proved that
the new algorithm is indeed globally convergent. To this end, and in order to achieve better
convergence we introduced a diminishing step size per iteration. The resulting, relaxed
motion-compensated OSSPS (R-MC-OSSPS) algorithm is

λn+1
v = λn

v −
an

γn
v

∑
m

∑
b∈Si

pm
bv

∂Lm
b (y

m
b |λ

n)

∂ymn

b
, (54)

where an denotes the relaxation parameter. The diminishing nature of the step size requires
that an tends to zero, but not too rapidly:

lim
n→∞

an = 0 and
∞

∑
n=0

an = ∞. (55)

If
∞
∑

n=0
an < ∞ and the starting point of the OS algorithm is not close enough to the ML

solution, the algorithm will never converge given that

‖λn+1
v − λn

v‖2 = O(an). (56)

The notion of the relaxation parameter within the OS SPS framework was first intro-
duced in [47], where Ahn and Fessler proved that global convergence is ensured when the
following conditions are satisfied, namely,

∞

∑
n=0

an = ∞, (57a)

∞

∑
n=0

a2
n < ∞, (57b)

and
λn

v ∈ Bo, (57c)

where Bo denotes the interior of the bounded set of solutions. The set B is such that B⋂Λ,
where Λ is given by:

Λ = {λv ∈ R+ : L(λv) > 0)}. (58)

In the present work, the preferred relaxation parameters were of the form:

an =
a0

βn + 1
, (59)

with a0, β > 0.

6. Numerical Implementation and Results

The proposed motion-compensated parabolic surrogates method was implemented
on a desktop personal computer with a 2.50 GHz Intel® CoreTM i7-4710HQ CPU processor
and 16 GB RAM operating memory, running Windows 10 Professional Edition. For the nu-
merical implementation of our proposed algorithms, we employed a four-dimensional (4D),
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non-uniform rational B-spline cardiac-torso digital phantom (NCAT) [48]. The transforma-
tion operator for respiratory motion consisted of an affine and a non-rigid transformation
to account for local deformations. For the non-rigid transformation, cubic B-splines were
used because of their ability to model local deformations. The cost function minimized was
mutual information, with the marginal and joint probability distributions determined using
a Parzen window. To penalize local discontinuities in the transformation, a bending energy
regularization term was included in the cost function. The algorithm used to minimize the cost
function was the gradient descent. The optimization started with a sparse grid and moved to
two finer resolutions. The NCAT CT images were registered, with the algorithm above [13] im-
plemented using the ITK library [49] to determine seven deformation fields and their inverses.
The motion gate used as a reference corresponded to the midpoint of the respiratory cycle to
minimize the average motion between the reference gate and the rest of the gates.

Utilizing the NCAT phantom, motion-compensated SPS converged faster than motion-
compensated MLEM; however, when combined with OS, the advantage was lost, namely
the convergence of MC-OSSPS was similar to that of MC-OSEM. In order to ensure conver-
gence of the MC-OSSPS case while avoiding the limit cycle, we investigated the use of a
diminishing step size per iteration (relaxation).

Since SPS algorithms employ additive updates, the choice of the initial estimate
may affect the convergence performance [47]. For the comparison of MC-OSSPS and R-
MC-OSSPS, instead of a uniform initial estimate, we employed a reference gate image
reconstructed using 60 MLEM iterations. Since the reference gate image was produced
using data from a single gate, it was noisy, and subsequently it was smoothed with a 6 mm
full width at half maximum (FWHM) Gaussian.

The motion-compensated SPS algorithms presented above were implemented within
the SPS framework of STIR (Software for Tomographic Image Reconstruction) [50]. All
images were reconstructed from span 3 data with a maximum ring difference of 11 into a
128 × 128 × 35 array, and with a voxel size of 3.125 × 3.125 × 4.25 mm. The approximate
tube-of-response [13] back projector was employed for all algorithms in conjunction with
line-of-response forward projection. Twelve subsets were utilized for all reconstructions
and attenuation factors were applied in the corresponding probability matrix during the
calculation of the sensitivity to correct for photon attenuation. Images with and without
6 mm FWHM Gaussian post-smoothing were produced. Furthermore, the relaxation
parameters involved in Equation (59) for R-MC-OSSPS were chosen with the values of
a0 = 1 and β = 0.1.

For the quality assessment of the images produced and for the examination of the
convergence of the proposed algorithms, loglikelihood, and normalized loglikelihood
functions were applied. Lesion percentage bias and contrast-to-noise ratio (CNR) were also
employed for the evaluation of the algorithms.

6.1. Comparison of Motion-Compensated SPS and EM Algorithms

Figure 2 illustrates the convergence for motion-compensated SPS (MC-SPS) and the
corresponding motion-compensated EM (MC-EM) algorithm, represented by Equation (35),
incorporating photon attenuation. The parabolic surrogate function increased the loglikeli-
hood more rapidly; this fact is in agreement with [37]. MC-OSSPS converged slightly faster
than MC-OSEM, considering the same number of subsets (in this case 12); however, the
acceleration advantage was negligible; see Figure 3. Both algorithms reached a limit cycle
at a relatively low iteration number.
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Figure 2. Loglikelihood vs. iteration number for MC-EM and MC-SPS.
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Figure 3. Loglikelihood vs. iteration number for MC-OSEM and MC-OSSPS. In both cases 12 subsets
were employed.

6.2. Comparison of MC-OSSPS and R-MC-OSSPS

As presented in Figure 3, the MC-OSSPS algorithm reached a limit cycle at a low
iteration number. Figure 4 demonstrates the fact that R-MC-OSSPS converged to a bet-
ter solution than MC-OSSPS; the ML solution (λML) used to calculate the normalized
loglikelihood was found for the MC-EM algorithm after 200 iterations.
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Figure 4. Normalized loglikelihood
L(y|λLM)−L(y|λn)

L(y|λLM)−L(y|λ0)
vs. iteration number for R-MC-OSSPS and

MC-OSSPS. Note that the y-axis is in logarithmic scale.
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Figure 5 shows images produced from the same noisy data set by MC-OSSPS and
R-MC-OSSPS, respectively. The image reconstructed via R-MC-OSSPS has a lower noise
level; however, this advantage is lost following post-smoothing, as in Figure 6. MC-OSSPS
and R-MC-OSSPS were also compared in terms of lesion percentage bias (see Figure 7)
and CNR (see Figure 8). Without post-smoothing, MC-OSSPS had a marginally superior
percentage bias; however, R-MC-OSSPS had higher CNR. These differences were reduced
with post-smoothing.

Figure 5. Transverse, coronal, and sagittal planes for PET images of the NCAT phantom reconstructed
from noisy data with MC-OSSPS (top row) and R-MC-OSSPS (bottom row). Both images used
40 iterations with 12 subsets. Post-smoothing was not applied. The linear greyscale is thresholded at
a standardized uptake value (SUV) equal to 6.

Figure 6. Post-smoothed images (6 mm FWHM Gaussian) of the NCAT phantom, resulting from the
reconstructions in Figure 5.
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Figure 7. Lesion percentage bias for the six lesions for MC-OSSPS and R-MC-OSSPS. Left: without
post-smoothing; right: with 6 mm Gaussian post-smoothing. Solid and hollow bars show the mean
values for noisy data (10 noise realizations) with MC-OSSPS and R-MC-OSSPS, respectively. The error
bars denote the standard deviation of the percentage bias values over the 10 noise realizations.
The lesions are lower liver (LL), upper liver (UL), lower right lung (LRL), upper right lung (URL),
lower left lung (LLL), and upper left lung (ULL).

Figure 8. Lesion contrast-to-noise ratio (CNR) for the six lesions for MC-OSSPS and R-MC-OSSPS.
Left: without post-smoothing; right: with 6 mm Gaussian post-smoothing. Solid and hollow bars
show the mean values for noisy data (10 noise realizations) of MC-OSSPS and R-MC-OSSPS, respec-
tively. The error bars denote the standard deviation of the percentage bias values over the 10 noise
realizations. The lesions are lower liver (LL), upper liver (UL), lower right lung (LRL), upper right
lung (URL), lower left lung (LLL), and upper left lung (ULL).

7. Discussion

Motion-compensated SPS was shown to accelerate convergence compared to motion-
compensated EM, without reaching a limit cycle, as illustrated in Figure 2. Nonethe-
less, with the incorporation of ordered subsets in the reconstruction setting, the motion-
compensated SPS and EM algorithms produced similar convergence rates (Figure 3). Fur-
thermore, both MC-OSEM and MC-OSSPS algorithms depicted in Figure 3 reached a limit
cycle at early iterations.

The introduction of relaxation parameters, i.e., diminishing step size, led to a solution
closer to the ML solution calculated from the MC-EM algorithm, as shown in Figure 4. R-
MC-OSSPS is expected to converge slower than MC-OSSPS due to the relaxation parameters.
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This leads to lower noise levels for the same number of iterations. This fact is clearly
illustrated in Figure 5, explaining the noticeable improvement in CNR (demonstrated
in Figure 8) for images without post-smoothing. The CNR advantage of R-MC-OSSPS
over MC-OSSPS was eliminated with the application of post-smoothing, resulting in CNR
values comparable to the corresponding ones of MC-OSEM. Finally, both MC-OSSPS and
R-MC-OSSPS demonstrated positive percentage bias for some of the lesions, as in Figure 7.
This is probably due to super-resolution, provided that the sampling of the underlying
distribution of multi-gate data is improved, as in [51].

8. Conclusions

Employing SPS likelihood functions instead of the loglikelihood functions usually
adopted in expectation maximization algorithms was proven to be beneficial compared
to the classic MC-EM and MC-OSEM. Our study concentrated on the improvement of
motion correction algorithms, both in terms of image quality and computational cost,
by introducing, for the first time, the separable parabolic surrogate functions framework.
The theoretical basis of our novel SPS-based motion correction algorithm lies within the
fact that its loglikelihood is upper bounded by the standard EM loglikelihood, thus it
will converge faster than EM. This is of particular importance in PET motion correction,
where reconstructions are very computationally demanding. In future studies, we intend to
include the clinical translation of our proposed reconstruction methods, aiming to improve
motion-compensation PET image reconstruction.
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