
Citation: Long, W.; Hou, T.; Wei, X.;

Yan, S.; Zhai, P.; Zhang, L. A Survey

on Population-Based Deep

Reinforcement Learning. Mathematics

2023, 11, 2234. https://doi.org/

10.3390/math11102234

Academic Editors: Jian Dong and

Marjan Mernik

Received: 31 March 2023

Revised: 7 May 2023

Accepted: 8 May 2023

Published: 10 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Review

A Survey on Population-Based Deep Reinforcement Learning
Weifan Long 1 , Taixian Hou 1, Xiaoyi Wei 1, Shichao Yan 1, Peng Zhai 1,2,3,* and Lihua Zhang 1,4,5,*

1 Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
2 Ji Hua Laboratory, Foshan 528251, China
3 Engineering Research Center of AI and Robotics, Ministry of Education, Shanghai 200433, China
4 Institute of Meta-Medical, Fudan University, Shanghai 200433, China
5 Jilin Provincial Key Laboratory of Intelligence Science and Engineering, Changchun 130013, China
* Correspondence: pzhai@fudan.edu.cn (P.Z.); lihuazhang@fudan.edu.cn (L.Z.)

Abstract: Many real-world applications can be described as large-scale games of imperfect infor-
mation, which require extensive prior domain knowledge, especially in competitive or human–AI
cooperation settings. Population-based training methods have become a popular solution to learn
robust policies without any prior knowledge, which can generalize to policies of other players or
humans. In this survey, we shed light on population-based deep reinforcement learning (PB-DRL)
algorithms, their applications, and general frameworks. We introduce several independent subject
areas, including naive self-play, fictitious self-play, population-play, evolution-based training meth-
ods, and the policy-space response oracle family. These methods provide a variety of approaches to
solving multi-agent problems and are useful in designing robust multi-agent reinforcement learn-
ing algorithms that can handle complex real-life situations. Finally, we discuss challenges and hot
topics in PB-DRL algorithms. We hope that this brief survey can provide guidance and insights for
researchers interested in PB-DRL algorithms.

Keywords: reinforcement learning; multi-agent reinforcement learning; self play; population play

MSC: 68T42

1. Introduction

Reinforcement learning (RL) [1] is a highly active research field in the machine learn-
ing community with decades of development. However, traditional RL methods have
limited performance when it comes to complex, high-dimensional input spaces. Deep
reinforcement learning (DRL) [2] addresses this issue by using deep neural networks as
function approximators, allowing agents to use unstructured data for decision-making.
DRL has shown impressive performance on a range of tasks, including game playing,
robotics, and autonomous driving. There are many impressive research works from differ-
ent fields which were achieved through DRL, such as gaming (AlphaGo [3], AlphaZero [4],
AlphaStar [5]), nuclear energy (fusion control [6]), and mathematics (AlphaTensor [7]).
While DRL has become increasingly popular due to its effectiveness and generality, there
are many real-world applications that require multiple agents’ cooperation or competition.
A multi-agent system is usually employed to research problems that are difficult or impos-
sible for a single agent. Multi-agent reinforcement learning (MARL) is one of the effective
approaches to multi-agent system problems [8]; it has been used to address problems in
a variety of domains, including robotics, distributed control, telecommunications, and
economics [9]. However, many real-world applications can be described as large-scale
games of imperfect information, which require a lot of prior domain knowledge to compute
a Nash equilibrium, especially in a competitive environment. This can be a major challenge
for traditional MARL methods. Population-based reinforcement learning (PB-DRL) has
emerged as a popular solution, allowing for the training of robust policies without any
prior domain knowledge that can generalize to all policies of other players.

Mathematics 2023, 11, 2234. https://doi.org/10.3390/math11102234 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11102234
https://doi.org/10.3390/math11102234
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-2519-6970
https://orcid.org/0000-0002-1374-7969
https://orcid.org/0000-0003-0467-4347
https://doi.org/10.3390/math11102234
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11102234?type=check_update&version=1

Mathematics 2023, 11, 2234 2 of 17

Population-based approaches take advantage of the high parallelism and large search
space typically found in optimization problems. This method has demonstrated remarkable
performance in MARL, resulting in exceptional performance in games such as Pluribus [10]
and OpenAI Five [11] without any expert experience. Czarnecki et al. [12] conducted
research on the importance of population-based training techniques for large-scale multi-
agent environments, which can include both virtual and real-world scenarios. According
to their study, population-based methods offer several benefits for training robust policies
in such environments, including diversity of strategies, scalability, and adaptability to
changing conditions. The population diversity in PB-DRL allows for a more robust policy
because it can handle a wider range of situations and scenarios. This can be particularly im-
portant in real-world applications where there may be plenty of variability and uncertainty.
By using a population-based approach, the policy can be trained to be more robust and
adaptable to different situations, which is crucial for success in real-world applications.

In contrast to prior surveys, the motivation of our survey lies instead in recent PB-DRL
algorithms and applications specifically, which helps to achieve surprisingly outstanding
performance. Accordingly, we also introduce general frameworks of PB-DRL. In this sur-
vey, we give an account of PB-DRL approaches and associated methods. We start with
reviewing selected ideas from game theory and multi-agent reinforcement learning. Then,
we move on to present several recent promising approaches, applications, and frameworks
of PB-DRL. Here, we first give the idea of milestones and briefly describe others in each
kind of PB-DRL; applications for how to use the corresponding methods will then be
introduced. Finally, we finish by discussing challenges and hot topics of PB-DRL. Given the
extensive literature from the MARL community and adjacent fields, we acknowledge that
our survey is not exhaustive and may not cover all prior work. Specifically, in this survey,
our focus is on PB-DRL algorithms including multi-agent reinforcement learning by using
self-play-related technology, evolution-based training methods for reinforcement learning,
and general frameworks. We conducted a comprehensive literature search following the
guidelines for Systematic Literature Reviews (SLRs) [13] to conduct a comprehensive litera-
ture search on PB-DRL. We searched four databases that are widely used and recognized
in the field of software engineering: Google Scholar, IEEE Xplore, ACM Digital Library,
and DataBase Systems and Logic Programming. We used advanced search options to limit
the results to peer-reviewed articles published in English from 2018 to 2023, as this survey
is focused more on recent works and we used snowballing method to cover previous
milestones. We used the following search string: (“population-based” AND “reinforce-
ment learning”) OR (“evolution algorithm” AND “reinforcement learning”) OR (“self-play”
AND “reinforcement learning”). The initial search yielded 200 papers from Google Scholar
(capturing the first 20 pages of search results), 127 papers from IEEE Xplore, 381 papers
from ACM Digital Library, and 80 papers from DataBase Systems and Logic Programming,
resulting in a total of 788 papers before screening. We screened the titles and abstracts
of these papers based on their relevance to our survey topic, which is PB-DRL methods
and applications. We used the following inclusion criteria: (1) the paper must focus on
PB-DRL or a related concept (e.g., evolutionary algorithm, self-play); (2) the paper must
report novel approaches, significant results, or comparative evaluations related to PB-DRL.
To ensure the high quality of the references, we also screened based on the publisher;
famous conferences and journals such as Nature, Science, NeuralPS, ICML, and ICLR were
included. After screening, we included nearly 30 papers for further analysis and excluded
others for various reasons such as being out of scope, being duplicates, or being of low
quality. We then used snowballing to complement our database search and ensure that we
did not miss any relevant studies, i.e., we checked the references of the included papers
to identify any additional relevant studies. Our aim is to provide an overview of recent
developments in PB-DRL, and we hope that it can garner more attention and be applied in
various industries.

Mathematics 2023, 11, 2234 3 of 17

2. Background

Population-based deep reinforcement learning is an approach that addresses the
limitations of traditional reinforcement learning algorithms. PB-DRL algorithms maintain a
population of agents that explore the environment in parallel and learn from each other to
improve their collective performance. This approach has shown significant improvements
in terms of sample efficiency and generalization in various applications. In this section, we
start with necessary knowledge which may help to understand PB-DRL algorithms.

2.1. Game Theory

Game theory and MARL are closely related fields, as game theory provides a theoreti-
cal framework for analyzing and understanding strategic interactions between multiple
agents, while MARL provides a practical approach for agents to learn optimal strategies
through experience. Research in this survey usually considers a normal-form game or
extensive-form game. A normal-form game refers to a game where players make deci-
sions simultaneously without knowing the decisions made by other players, whereas an
extensive-form game refers to a game where players make decisions sequentially and can
observe the decisions made by other players before making their own decisions.

Normal-form games represent the game by way of a matrix, represented by a tuple
(π, U, n), where n is the number of players, π = (π1, . . . , πn) is a collection of strategies
for all players, and U : π → Rn is a payoff table mapping each joint policy to a scalar utility
for each player. Each player aims to maximize their own payoff. Assume that πi is a mixed
strategy of player i and π−i refers to the joint mixed strategies except πi. Ui(πi, π−i) is the
expected payoff of player i. Then, Nash equilibrium can be defined.

Definition 1 (Nash equilibrium). A mixed strategy profile π∗ = (π∗1 , . . . , π∗n) is a Nash
equilibrium if for all player i:

max
π′i

Ui(π
′
i , π−i) = Ui(π

∗
i , π−i)

Intuitively, in a Nash equilibrium, no player has an incentive to change their current
strategy unilaterally because doing so would result in no benefits or even negative returns.
Therefore, the strategy profile remains stable. π∗i is the best response (BR) of agent i.

In extensive-form games, players make decisions sequentially, with each player’s
action influencing the subsequent decisions of other players. These games generalize
the normal-form game formalism for sequential decision-making scenarios. Every finite
extensive-form game has an equivalent normal-form game [14], and an approximation of
Nash equilibrium called ε-Nash equilibrium or approximate Nash equilibrium is typically
considered. The corresponding BR is referred to as the ε-best response.

Definition 2 (ε-Nash equilibrium). A mixed strategy profile π∗ = (π∗1 , . . . , π∗n) is a ε-Nash
equilibrium if for all player i:

Ui(π
∗
i , π−i) ≥ Ui(π

′
i , π−i)− ε, f or any policy π′i o f player i

In the context of game theory, a real-life game can be incredibly complex, making it
impractical to explicitly list out all the possible strategies. As a result, researchers often
construct an “empirical game” that is smaller in size but still captures the essential features
of the full game. This empirical game is built by discovering strategies and using meta-
reasoning techniques to navigate the strategy space. In the general framework of PB-DRL
algorithms, this empirical game is also known as the “meta-game.” It starts with a single
policy and grows by adding policies that approximate the best responses to the meta-
strategy of the other players. In other words, the meta-game is a simplified version of the
real game that captures its essential features, allowing PB-DRL algorithms to learn effective
strategies in a computationally efficient manner.

Mathematics 2023, 11, 2234 4 of 17

2.2. Multi-Agent Reinforcement Learning

Reinforcement learning is a learning approach that aims to find the optimal way
of mapping situations to actions to maximize a numerical reward signal [1]. It is often
formalized as a Markov Decision Process (MDP) that addresses sequential decision-making
problems in environments with discrete time-steps. Deep reinforcement learning combines
RL with deep neural networks, resulting in improved performance compared to RL without
neural networks. DRL can handle larger state spaces, enabling it to process larger input
matrices such as images, and it can learn more complex policies with fewer hand-specified
features to represent state information [15,16]. Some well-known DRL algorithms used in
various applications include DQN [17], TD3 [18], and PPO [19].

Multi-agent reinforcement learning refers to sequential decision-making with multiple
agents, which poses additional challenges due to the fact that taking action can influence the
rewards of other agents. MARL tasks are commonly divided into cooperative (the agents
work together to reach a common goal, like Overcooked), competitive (each agent has its
own reward function and acts selfishly to maximize only its own expected cumulative
reward, like Go), and mixed settings (each agent has an arbitrary but agent-unique reward
function, like football). PB-DRL has shown good performance in applications with these
settings [4,20,21].

MARL algorithms can be classified into six different learning paradigms, as outlined by
Yang et al. [22]: (1) independent learners with shared policy, (2) independent learners with
independent policies, (3) independent learning with shared policy within a group, (4) one
central controller controlling all agents, (5) centralized training with decentralized execution
(CTDE), and (6) decentralized training with networked agents. Types with independent
learners (type 1-3) use independent reinforcement learning, where each agent treats the
experience of other agents as part of its (non-stationary) environments [23,24]. This makes
it a suitable approach for problems with a large number of agents or a high-dimensional
action space. However, it may result in overfitting to the other agents during training and
insufficient generalization during execution [25]. The fourth type of the learning paradigm
can be seen as a single-agent RL method, which has a problem in large-scale strategy space.
Type 5, CTDE, is a popular approach where agents can exchange information with others
during training and act independently during execution [26,27]. This allows for efficient
training but may suffer from communication overhead during execution. Decentralized
training with networked agents, type 6, involves each agent learning its own policy based
on local observations and communication with its neighbors in a networked structure [28].
This can improve scalability and adaptability but may require significant communication
among agents.

PB-DRL algorithms belong to the CTDE paradigm and maintain a large, diverse
population to train a robust policy that can generalize to non-communication situations. In
PB-DRL, a population of agents explores the environment in parallel, allowing them to learn
from each other to improve their collective performance. This approach has been shown
to be more sample-efficient and to generalize better in various applications, including
cooperative, competitive, and mixed settings, which makes it a promising technique for
addressing the challenges in multi-agent reinforcement learning.

3. Population-Based Deep Reinforcement Learning

In recent years, PB-DRL has emerged as a promising research direction in the field of
DRL. The key idea behind PB-DRL is to employ multiple agents or learners that interact with
their environment in parallel and exchange information to improve their performance. This
approach has shown great potential in achieving superior results compared to traditional
single-agent methods. In this survey paper, we focus on several popular population-based
methods, including naive self-play, fictitious self-play, population play, evolutionary-based
methods, and the general framework. We will discuss the basic concepts, advantages, and
limitations of each method to provide a comprehensive overview of the current state of the

Mathematics 2023, 11, 2234 5 of 17

art in this field. For a brief overview of a selected subset of methods for PB-DRL, see also
Table 1.

Table 1. A selected subset of research areas and recent algorithms or frameworks for PB-DRL.

Category Algorithm Advantages Disadvantages Descriptions

Naive Self-Play Naive SP [29] Simplicity, Effectiveness Overfitting, Instability Playing against a mirrored copy of the agent

Fictitious Self-Play

Fictitious play
[30] Flexibility Exploration requirement Players choose the best response to a uniform mix-

ture of all previous policies at each iteration

FSP [31] Robust and efficient
learning

Exploration requirement,
Sensitive initialization Extending FP to extensive-form games

NFSP [32]
Handling complex

environments, High
scalability

Instability,
Hyperparameter tuning

Combining FSP with neural network
function approximation

ED [33] Efficient, No requirement
of average strategies

Exploration requirement,
Scalability issues

Directly optimizes policies against worst-
case opponents

δ-Uniform FSP
[34] Simplicity Limited Exploration Learning a policy that can beat older versions of

itself sampled uniformly at random
Prioritized FSP

[5] Simplicity Limited Exploration Sampling the policies of opponents by their ex-
pected win rate

Population-Play

PP [35] Exploration, Diversity Inefficiency Training a population of agents, all of whom inter-
act with each other

FCP [20] Zero-shot collaboration Inefficiency, Prone to
researcher biases

Using PP to train a diversity policy pool of partners
which is used to train a robust agent in coopera-
tive setting

Hidden-Utility
Self-Play [36] Modeling human bias Inefficiency, Domain

knowledge requirement

Following the FCP framework and uses a hidden
reward function to model human bias to human–AI
cooperation problem

Evolution-based
Method

PBT [37] Efficient search, Dynamic
hyperparameter tuning

Resource-intensive,
Complex implementation

Online evolutionary process that adapts internal
rewards and hyperparameters

MERL [38] No requirement for
reward sharping

Computationally
expensive

Split-level training platform without requiring
domain-specific reward shaping

CERL [39] Efficient sampling Resource-intensive Using a collective replay buffer to share all informa-
tion across the population

DERL [40] Diverse solution Computationally
expensive

Decoupling the processes of learning and evolution
in a distributed asynchronous manner

General
Framework

PSRO [25] Robust learning,
Zero-sum convergence

Low scalability,
Computationally

expensive

Using DRL to compute best responses to a dis-
tribution over policies and empirical game-
theoretic analysis to compute new meta-
strategy distributions

PSROrN [41] Open-ended learning,
Non-transitive cycle

Low scalability,
Computationally

expensive

A framework based on PSRO but defines and uses
the effective diversity to encourage diverse skills

Diverse PSRO
[42]

Open-ended learning,
Low exploitability

Low scalability,
Computationally

expensive

Introducing a new diversity measure based on a
geometric interpretation of games modelled by a
determinantal point process to improve diversity

Pipeline PSRO
[43]

Scalability, High
efficiency Approximation errors

Maintaining a hierarchical pipeline of reinforce-
ment learning workers to improve the efficiency
of PSRO

α-PSRO [44] General-sum
many-player game

Resource-intensive,
Solver dependence

Using an α-Rank method as the meta-solver which
is a critical component of PSRO

3.1. Naive Self-Play

Self-play (SP) is an open-ended learning training scheme that trains by playing against
a mirrored copy of itself without any supervision in various stochastic environments.
Compared with expert opponents, SP has shown more amazing performance in many
complex problems. The simplest and most effective SP method is naive self-play, first
proposed in [29]. As shown in Figure 1, the opponent (mirrored agent) uses the same policy
network, i.e., the opponent downloads the latest policy network while the agent updates
its policy network. Denote π as a policy being trained, πzoo as a policy zoo, π′ as the policy

Mathematics 2023, 11, 2234 6 of 17

set of the opponents, Ω as the policy sampling distribution, and G as the gating function
for πzoo [45]. The policy sampling distribution Ω is

Ω(π′|πzoo, π) =

{
1, ∀π′ ∈ πzoo : π′ = π

0. Otherwise
(1)

Since the policy zoo πzoo only keeps the latest version of policy π, it always clears the old
policies πzoo and inserts π, πzoo = π.

Figure 1. Overview of naive self-play.

A variety of works have followed this method since naive self-play is simple and
effective. TD-Gammon [46] features naive SP to learn a policy by using TD(λ) algorithm. At
that time, this work outperforms supervised learning with expert experience. AlphaGo [3]
defeated the world champion of Go in 2017; it uses a combination of supervised learning
on expert datasets and SP technology. SP is used to update the policy and to generate more
data. SP-based applications have been developed rapidly in both academia and industry.
One year after AlphaGo, AlphaZero [47] gained prominence. In contrast to AlphaGo,
AlphaZero does not require domain-specific human knowledge but achieves outstanding
performance. Instead, it learns the game policy by playing against itself, using only the
game rules.

Naive SP is also a solution for handling many-to-many environments, as demonstrated
by JueWu [48] which uses this approach for two players controlling five heroes in Honor
of Kings during lineup and random lineup stages. Another study applied naive SP to
an open-ended environment (hide-and-seek [49]), showing that it can lead to emergent
auto-curricula with many distinct and compounding phase shifts in agent strategy.

Despite its effectiveness, naive SP may not be sufficient to learn a robust policy due to
the lack of diversity in opponent policies. Fictitious self-play is a solution to this problem,
where the agent plays against a mixture of its previous policies and fictional policies that
are generated by sampling from a distribution over policies learned during training.

3.2. Fictitious Self-Play

Fictitious play, introduced by Brown [30], is a popular method for learning Nash
equilibrium in normal-form games. The premise is that players repeatedly play a game
and choose the best response to a uniform mixture of all previous policies at each iteration.
As shown in Figure 2, fictitious self-play (FSP) [31] is a machine learning framework that
implements generalized weakened fictitious play in behavioral strategies in a sample-
based fashion. It can avoid cycles by playing against all previous policies. FSP iteratively
samples episodes of the game from SP. These episodes constitute datasets that are used by
reinforcement learning to compute approximate best responses and by supervised learning
to compute perturbed models of average strategies.

Mathematics 2023, 11, 2234 7 of 17

Figure 2. Overview of fictitious self-play.

Neural fictitious self-play (NFSP) [32] combines FSP with neural network function
approximation. NFSP keeps two kinds of memories. One, denoted as MRL, was used
for storing experience of game transitions, while the other,MSL, stored the best response
behavior. Each agent computed an approximate best response β fromMRL and updated
its average policy Π by supervised learning fromMSL. In principle, each agent could learn
the best response by playing against the average policies of other agents. However, the
agent cannot get its best response policy β, which is needed to train its average policy Π,
and its average policy Π is needed for the best response training of other agents. NFSP
uses the approximation of anticipatory dynamics of continuous-time dynamic fictitious
play [50], in which players choose the best response to the short-term predicted average
policy of their opponents, Π−i

t + η d
dt Πt, where η is the anticipatory parameter. NFSP

assumes βt+1 −Πt ≈ d
dt Πt as a discrete-time approximation. During play, all agents mixed

their actions according to σ = Π + η(β−Π). By using this approach, each agent could
learn an approximate best response with predicted average policies of its opponents. In
other words, the policy sampling distribution of all agents Ω is

Ω(π) =

{
β, with probability η

Π. with probability 1− η
(2)

MRL uses a circular buffer to store transition in every step, but MSL only inserts transition
while agent follows the best response policy β.

The Exploitability Descent (ED) algorithm [33] is a PB-DRL method that directly
optimizes policies against worst-case opponents without the need to compute average
policies. In contrast to NFSP algorithm, which requires a large reservoir buffer to compute
an approximate equilibrium, ED focuses on decreasing the “exploitability” of each player,
which refers to how much a player could gain by switching to a best response. The
algorithm has two steps for each player on each iteration. The first step is identical to
the FP algorithm, where the best response to the policy of each player is computed. The
second step performs gradient ascent on the policy to increase the utility of each player
against the respective best responder, aiming to decrease the exploitability of each player.
In a tabular setting with Q-values and L2 projection, the policy gradient ascent update is
defined by equation

θt
S = P`2(θ

t−1
S + αt〈∇θS πt−1

θ (S), Qb(S)〉)
= P`2(θ

t−1
S + αtQb(S)),

(3)

where Qb(S) is the expected return at state S with joint policy set b, P`2 is the L2 projection,
∇θS πt−1

θ (S) is an identity matrix, and α is the step size. In other words, the ED algorithm
directly optimizes policies against worst-case opponents, making it a promising approach
for addressing games with complex strategy spaces.

Mathematics 2023, 11, 2234 8 of 17

A related approach from another perspective is δ−Uni f orm FSP [34], which learns a
policy that can beat older versions of itself sampled uniformly at random. The authors use
a percentage threshold δ ∈ [0, 1] to select the old policies that are eligible for sampling from
the policy zoo πzoo, i.e., the opponent strategy π′ is sampled from

Ω(π′|πzoo, π) = Uni f orm(δ|πzoo|, |πzoo|) (4)

Significantly, the algorithm is the same as naive SP while δ = 1. After every episode, the
training policy is always inserted into the policy zoo πzoo. Thus, πzoo is updated with
πzoo = πzoo ∪ π.

While AlphaStar does use FSP as one of its learning algorithms, Prioritized FSP is
actually a modification proposed by the AlphaStar team in their subsequent paper [5]. The
authors argue that many games are wasted against players that are defeated in almost 100%
of games while using regular FSP and propose Prioritized FSP which samples policies by
their expected win rate. Policies that are expected to win with higher probability against
the current agent have higher priority and are sampled more frequently. The opponent
sampling distribution Ω can be written as

Ω(π′|πzoo, π) =
f (P(π beats π′))

∑Π∈πzoo f (P(π betas Π))
(5)

where f is a weighting function, e.g., f (x) = (1− x)p. The policy zoo named league in the
paper is complex; we will introduce the update method latter.

OpenAI Five also employs a similar method, as described in [11]. The method consists
of training with a naive self-play approach for 80% of the games and using past sampling
policies for the remaining 20%. Similar to the Prioritized FSP method, OpenAI Five uses
a dynamic sampling system that relies on a dynamically generated quality score q. This
system samples opponent agents according to a softmax distribution, where the probability
of choosing an opponent p is proportional to eq. If OpenAI Five wins the game, q is updated
with a learning rate constant η as follows:

q = q− η

Np
(6)

where N is the size of policy zoo. At every 10 iterations, the policy of the current agent will
be added to the policy zoo with an initial quality score equal to the maximum quality score
in the zoo.

While self-play can bring remarkable performance improvements to reinforcement
learning, it performs poorly in non-transitive games because it always plays against itself.
Specifically, the opponent’s policy only samples from one policy, which means the training
agent only learns from a single type of opponent. This approach works well in situations
where a higher-ranked player can always beat a lower-ranked player. Population-based
training methods bring more robust policies.

3.3. Population-Play

Another population-based method for multi-agent systems is population-play (PP), which
builds upon the concept of SP to involve multiple players and their past generations [5,35], as
shown in Figure 3. With PP, a group of agents is developed and trained to compete not
only with each other but also with agents from prior generations.

Mathematics 2023, 11, 2234 9 of 17

Figure 3. Overview of (naive) population-play.

To train an exceptional agent, AlphaStar [5] maintains three types of opponent pools:
Main Agents, League Exploiters, and Main Exploiters. Main Agents are trained with a
combination of 35% SP and 50% PFSP against all past players in the league, and the agent
plays an additional 15% of matches against opponents who had previously been beaten
but are now unbeatable, as well as past opponents who had previously exploited the
weaknesses of the agent. League Exploiters are used to find a policy that league agents
cannot defeat. They are trained using PFSP against agents in the league and added to the
league if they defeat all agents in the league with a winning rate of more than 70%. Main
Exploiters play against Main Agents to identify their weaknesses. If the current probability
of winning is less than 20%, Main Exploiters employ PFSP against players created by Main
Agents. Otherwise, Main Exploiters play directly against the current Main Agents.

For the Win (FTW) [35] is a training method designed for the game of Capture the
Flag, which involves training a diverse population of different agents by having them
learn from playing with each other. The training process involves sampling agents from
the population to play as teammates and opponents, which is done using a stochastic
matchmaking scheme that biases co-players to be of similar skill to the player. This ensures
that a diverse set of teammates and opponents participate in training, and helps to promote
robustness in the learned policies. A population-based training method is implemented to
enhance the performance of weaker players and improve the overall ability of all players.

PP can accommodate a wide range of agents, making it also suitable for deployment
in cooperative settings. However, Siu et al. [51] observed that in such scenarios, human
players tended to favor rule-based agents over RL-based ones. This finding highlights
the need to take into account human perceptions of AI when designing and developing
systems intended for real-world adoption.

To address this issue, fictitious co-play (FCP) [20] aims to produce robust partners that
can assist humans with different styles and skill levels without relying on human-generated
data (i.e., zero-shot coordination with humans). FCP is a two-stage approach. In the first
stage, N partner agents are trained independently in self-play to create a diverse pool
of partners. In the second stage, FCP trains a best-response agent against the diverse
pool to achieve robustness. Hidden-utility self-play [36] follows the FCP framework and
uses a hidden reward function to model human bias with domain knowledge to solve the
human–AI cooperation problem. A similar work for assistive robots learns a good latent
representation for human policies [52].

3.4. Evolution-Based Training Methods

Evolutionary algorithms are a family of optimization algorithms inspired by the
process of natural selection. They involve generating a population of candidate solutions
and iteratively improving them by applying operators such as mutation, crossover, and
selection, which mimic the processes of variation, reproduction, and selection in biological
evolution. These algorithms are widely used in solving complex optimization problems in
various fields, including engineering, finance, and computer science. Evolutionary-based
DRL is a type of PB-DRL that approaches training from an evolutionary perspective and
often incorporates swarm intelligence techniques, particularly evolution algorithms. In
this subsection, we will focus on recent hybrid DRL algorithms that combine evolutionary

Mathematics 2023, 11, 2234 10 of 17

approaches with deep reinforcement learning to accelerate the training phase. These
algorithms can be used alongside SP or PP algorithms [35].

Population-based training (PBT) introduced in [37] is an online evolutionary process
that adapts internal rewards and hyperparameters while performing model selection by
replacing underperforming agents with mutated versions of better agents. Multiple agents
are trained in parallel, and they periodically exchange information by copying weights and
hyperparameters. The agents evaluate their performance, and underperforming agents are
replaced by mutated versions of better-performing agents. This process continues until a
satisfactory performance is achieved, or a maximum budget is reached.

Majumdar et al. [38] propose multi-agent evolutionary reinforcement learning (MERL)
as a solution for the sample inefficiency problem of PBT in cooperative MARL environments
where the team reward is sparse and agent-specific reward is dense. MERL is a split-
level training platform that combines both gradient-based and gradient-free optimization
methods, without requiring domain-specific reward shaping. The gradient-free optimizer is
used to maximize the team objective by employing an evolutionary algorithm. Specifically,
the evolutionary population maintains a variety of teams and uses evolutionary algorithms
to maximize team rewards (fitness). The gradient-based optimizer maximizes the local
reward of each agent by using a common replay buffer with other team members in the
evolutionary population. Collaborative evolutionary reinforcement learning (CERL) [39] is
a similar work which addresses the sample inefficiency problem of PBT. It uses a collective
replay buffer to share all information across the population.

Deep evolutionary reinforcement learning (DERL) [40] is a framework for creating
embodied agents that combines evolutionary algorithms with DRL, which aims to find a
diverse solutions. DERL decouples the processes of learning and evolution in a distributed
asynchronous manner, using tournament-based steady-state evolution. Similar to PBT [37],
DERL maintains a population to encourage diverse solutions. The average final reward is
used as a fitness function, and a tournament-based selection method is used to choose the
parents for generating children via mutation operations. Liu et al. [53] demonstrated that
end-to-end PBT can lead to emergent cooperative behaviors in the soccer domain. They
also applied an evaluation scheme based on Nash averaging to address the diversity and
exploitability problem.

3.5. General Framework

The policy-space response oracles (PSRO) framework is currently the most widely
used general framework for PB-DRL. It unifies various population-based methods, such as
SP and PP, with empirical game theory to effectively solve games [25]. As shown in Figure 4,
PSRO divides these algorithms into three modules: meta strategy, best-response solution,
and policy zoo expansion. The first module, meta strategy, involves solving the meta-game
using a meta-solver to obtain the meta strategy (policy distribution) of each policy zoo.
The second module, best-response solution, involves each agent sampling policies of other
agents π−i and computing its best response πi with fixed π−i. The third module, policy zoo
expansion, involves adding the best response to the corresponding policy zoo. The process
starts with a single policy. In each episode, one player trains its policy πi using a fixed policy
set, which is sampled from the meta-strategies of its opponents (π′−i ∼ πzoo

−i). At the end
of every epoch, each policy zoo expands by adding the approximate best response to the
meta-strategy of the other players, and the expected utilities for new policy combinations
computed via simulation are added to the payoff matrix.

Mathematics 2023, 11, 2234 11 of 17

Figure 4. Overview of PSRO.

Although PSRO has demonstrated its performance, several drawbacks have been
identified and addressed by recent research. One such extension is Rectified Nash response
(PSROrN) [41], which addresses the diversity issue and introduces adaptive sequences of
objectives that facilitate open-ended learning. The effective diversity of the population is
defined as:

d(πzoo) =
n

∑
i,j=1
bφ(wi, wj)c+ · pi · pj (7)

where n = |πzoo|, φ(x, y) is the payoff function, p is the Nash equilibrium on πzoo, bxc+ is
the rectifier, denoted by bxc+ = x if x ≤ 0 and bxc+ = 0 otherwise. Equation (7) encourages
agents to play against opponents who they can beat. Perhaps surprisingly, the authors
found that building objectives around the weaknesses of agents does not actually encourage
diverse skills. To elaborate, when the weaknesses of an agent are emphasized during
training, the gradients that guide its policy updates will be biased towards improving
those weaknesses, potentially leading to overfitting to a narrow subset of the state space.
This can result in a lack of diversity in the learned policies and a failure to generalize to
novel situations. Several other works have also focused on the diversity aspect of PSRO
frameworks. In [42], the authors propose a geometric interpretation of behavioral diversity
in games (Diverse PSRO) and introduce a novel diversity metric that uses determinantal
point process (DPP). The diversity metric is based on the expected cardinality of random
samples from a DPP in which the ground set is the strategy population. It is denoted as:

Diversity(πzoo) = Eπ′∼PLπzoo

[
|π′|

]
= Tr(I − (Lπzoo + I)−1), (8)

where a DPP defines a probability P, π′ is a random subset drawn from the DPP, and Lπzoo

is the DPP kernel. They incorporate this diversity metric into best-response dynamics to
improve overall diversity. Similarly, [54] notes the absence of widely accepted definitions
for diversity and offers a redefined behavioral diversity measure. The authors propose
response diversity as another way to characterize diversity through the response of policies
when facing different opponents.

Pipeline PSRO [43] is a scalable method that aims to improve the efficiency of PSRO,
which is a common problem of most of PSRO-related frameworks, in finding approximate
Nash equilibrium. It achieves this by maintaining a hierarchical pipeline of reinforcement
learning workers, allowing it to parallelize PSRO while ensuring convergence. The method
includes two classes of policies: fixed and active. Active policies are trained in a hierarchical
pipeline, while fixed policies are not trained further. When the performance improvement

Mathematics 2023, 11, 2234 12 of 17

of the lowest-level active worker in the pipeline does not meet a given threshold within
a certain time period, the policy becomes fixed, and a new active policy is added to the
pipeline. Another work has improved the computation efficiency and exploration efficiency
by introducing a new subroutine of no-regret optimization [55].

PSRO framework has another branch which optimizes the meta-solver concept. Alpha-
PSRO [44] extends the original PSRO paper to apply readily to general-sum, many-player
settings, using an α-Rank [56], a ranking method that considers all pairwise comparisons
between policies, as the meta-solver. Alpha-PSRO defines preference-based best response
(PBR), an oracle that finds policies that maximize their rank against the population. Alpha-
PSRO works by expanding the strategy pool through constructing a meta-game and calcu-
lating a payoff matrix. The meta-game is then solved to obtain a meta-strategy, and finally,
a best response is calculated to find an approximate optimal response. Joint PSRO [57]
uses correlated equilibrium as the meta-solver, and Mean-Field PSRO [58] proposes newly
defined mean-field no-adversarial-regret learners as the meta-solver.

4. Challenges and Hot Topics

In the previous section, we discussed several PB-DRL algorithms that have shown
significant improvements in real-life game scenarios. However, the application of these
algorithms also faces several challenges that need to be addressed to further advance the
field of PB-DRL.

4.1. Challenges

One of the most significant challenges in PB-DRL is the need for increased diver-
sity within the population. Promoting diversity not only helps AI agents avoid checking
the same policies repeatedly, but also enables them to discover niche skills, avoid being
exploited, and maintain robust performance when encountering unfamiliar types of oppo-
nents [22]. As the population grows, it becomes more challenging to maintain diversity
and ensure efficient exploration of the search space. Without adequate diversity, the pop-
ulation may converge prematurely to suboptimal solutions, leading to the stagnation of
the learning process. Overfitting to policies in the policy zoo is a significant challenge to
generalization [25,59]. Although the diversity of a population has been widely discussed
in the evolutionary algorithm community at the genotype level, phenotype level, and
the combination of the previous two cases [60], which typically operate on a fixed set of
candidate solutions, PB-DRL is often used in dynamic and uncertain environments where
the population size and diversity can change over time. Additionally, since policies are
always represented as neural networks, using difference-based or distance-based methods
directly, which are widely used in evolutionary computations, are not suitable choices.
Some heuristic algorithms have been proposed. Balduzzi et al. [41] design an opponents se-
lection method to expand the policy game space to improve diversity. Another approach is
to incorporate different levels of hierarchy within the population to maintain diversity [44].
An interesting work [42] models behavioral diversity for learning in games by using a
determinantal point process as the diversity metric. Other techniques that improve the
diversity of the policy pool can be found in [61–63].

The need for increased efficiency is a significant challenge in PB-DRL, as evaluating
each individual within a growing population becomes computationally expensive, resulting
in a reduced learning rate. PB-DRL is often applied to large-scale environments with high-
dimensional state and action spaces, making the evaluation of each individual within a
population even more computationally expensive. For instance, AlphaStar trained the
league over a period of 44 days using 192 8-core TPUs, 12 128-core TPUs, and 1800 CPUs,
which potentially cost more than 120 billion dollars in renting cloud computing services
for training [5]. One promising approach to improving efficiency in PB-DRL is to develop
more sample-efficient algorithms. This can be achieved through various means, such as
monotonic improvement in exploitability [55], regret bound [64]. Another approach to
improving efficiency in PB-DRL is to use distributed computing techniques [43,65]. These

Mathematics 2023, 11, 2234 13 of 17

techniques can enable faster evaluation of individuals within a population, as well as better
parallelization of the learning process. For example, some recent works named distributed
deep reinforcement learning [66] are often used to accelerate the training process in PB-DRL,
such as SEED RL [67], Gorila [68], and IMPALA [69]. In addition to the technical challenges
of improving efficiency in PB-DRL, there are also practical challenges related to the cost and
availability of computing resources. One possible solution to this challenge is to develop
more energy-efficient algorithms that can run on low-power devices or take advantage of
specialized hardware, such as GPUs or TPUs. Flajolet et al. [70] indicate that the judicious
use of compilation and vectorization allows population-based training to be performed
on a single machine with one accelerator with minimal overhead compared to training a
single agent.

4.2. Hot Topics

Despite these challenges, it is essential to note that this field is rapidly evolving.
Currently, there are several hot topics and future directions in PB-DRL worth exploring,
and researchers are actively engaged in these endeavors.

Games: PB-DRL has demonstrated outstanding performance in many games, including
board games [47], online games [5,11], and more. As a result, game manufacturers have
become interested in exploring several directions. These include:

1. AI bots that can learn to make decisions like humans, making them suitable for use in
tutorials, hosting games, computer opponents, and more.

2. AI non-player characters that train agents to interact with players according to their
own character settings, which can be used for virtual hosts, open-world RPG games,
and other applications.

3. AI teammates that are designed to help and support human players in cooperative
games or simulations. AI teammates can provide assistance, such as cover fire, healing,
or completing objectives, to human players in cooperative games or simulations.

Zero-shot coordination: The zero-shot coordination (ZSC) problem refers to the situa-
tion where agents must independently produce strategies for a collaborative game that
are compatible with novel partners not seen during training [63]. Population-based rein-
forcement learning has been used for this problem, starting with FCP [20], and there is
ongoing research using the keywords “zero-shot human-AI coordination.” Researchers aim
to identify a sufficiently robust agent capable of effectively generalizing human policies.
Many methods have been used in this problem, such as lifetime learning [71], population
diversity [62,63], and model human bias [36].

Robotics: Reinforcement learning has become increasingly prevalent in the robotics
field [72–74]. The use of PB-DRL has also expanded to robots, including robotic manipula-
tion [75], assistance with robots [52], multi-robot planning [76], and robot table tennis [77].
In a recent study, it was shown that PB-DRL could generate varied environments [78],
which is advantageous for developing robust robotics solutions.

Financial markets: Population-based algorithms and concepts have immense potential
for use in financial markets and economic forecasting [79]. Despite the widespread use of
MARL in financial trading, the application of PB-DRL to financial markets appears to be
underutilized in both academic and industry-related research. This is partly due to the
high demands placed on simulation environments when working with PB-DRL. Once an
environment that meets the requirements is created, PB-DRL will show its power.

5. Conclusions

In this paper, we have provided a comprehensive survey of representative population-
based deep reinforcement learning (PB-DRL) algorithms, applications, and general frame-
works. We categorize PB-DRL research into the following areas: naive self-play, fictitious
self-play, population-play, evolution-based training methods, and general framework. We
compare the main ideas of different types of algorithms by summarizing the various types
of PB-DRL algorithms and describing how they have been used in real-life applications.

Mathematics 2023, 11, 2234 14 of 17

Furthermore, we introduce evolution-based training methods to expound on common
ways to adjust hyperparameters or accelerate training. General frameworks for PB-DRL
are also introduced for different game settings, providing a general training process and
theoretical proofs. Finally, we discuss the challenges and opportunities of this exciting
field. We aim to provide a valuable reference for researchers and engineers working on
practical problems.

Author Contributions: Conceptualization, W.L. and P.Z.; methodology, W.L. and P.Z.; software, T.H.;
validation, X.W. and S.Y.; formal analysis, X.W.; investigation, W.L. and X.W.; resources, W.L.; writing—
original draft preparation, W.L.; writing—review and editing, T.H., X.W. and P.Z; visualization, S.Y.;
supervision, L.Z.; project administration, P.Z. and L.Z.; funding acquisition, L.Z. All authors have
read and agreed to the published version of the manuscript.

Funding: The work reported in this paper was supported by the National Key R&D Program of China
(Grant Number: 2021ZD0113502, 2021ZD0113503), Shanghai Municipality Science and Technology
Major Project (Grant Number: 2021SHZDZX0103), and China Postdoctoral Science Foundation (Grant
Number: BX20220071, 2022M720769), and Research on Basic and Key Technologies of Intelligent
Robots (Grant Number: KEH2310017).

Data Availability Statement: Not applicable.

Acknowledgments: Many thanks to FDU IPASS Group for taking the time to proofread this article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018.
2. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M. Playing Atari with Deep

Reinforcement Learning. arXiv 2013, arXiv:1312.5602.
3. Silver, D.; Huang, A.; Maddison, C.J.; Guez, A.; Sifre, L.; Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Panneershelvam,

V.; Lanctot, M.; et al. Mastering the game of Go with deep neural networks and tree search. Nature 2016, 529, 484–489. [CrossRef]
[PubMed]

4. Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai, M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel, T.; et al.
A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play. Science 2018, 362, 1140–1144.
[CrossRef]

5. Vinyals, O.; Babuschkin, I.; Czarnecki, W.M.; Mathieu, M.; Dudzik, A.; Chung, J.; Choi, D.H.; Powell, R.; Ewalds, T.; Georgiev,
P.; et al. Grandmaster level in StarCraft II using multi-agent reinforcement learning. Nature 2019, 575, 350–354. [CrossRef]
[PubMed]

6. Degrave, J.; Felici, F.; Buchli, J.; Neunert, M.; Tracey, B.; Carpanese, F.; Ewalds, T.; Hafner, R.; Abdolmaleki, A.; de Las Casas,
D.; et al. Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 2022, 602, 414–419. [CrossRef]
[PubMed]

7. Fawzi, A.; Balog, M.; Huang, A.; Hubert, T.; Romera-Paredes, B.; Barekatain, M.; Novikov, A.; R Ruiz, F.J.; Schrittwieser, J.;
Swirszcz, G.; et al. Discovering faster matrix multiplication algorithms with reinforcement learning. Nature 2022, 610, 47–53.
[CrossRef]

8. Hernandez-Leal, P.; Kartal, B.; Taylor, M.E. A survey and critique of multiagent deep reinforcement learning. Auton. Agents
Multi-Agent Syst. 2019, 33, 750–797. [CrossRef]

9. Buşoniu, L.; Babuška, R.; De Schutter, B. Multi-agent reinforcement learning: An overview. In Innovations in Multi-Agent Systems
and Applications-1; Springer: Berlin/Heidelberg, Germany, 2010; pp. 183–221.

10. Brown, N.; Sandholm, T. Superhuman AI for multiplayer poker. Science 2019, 365, 885–890. [CrossRef]
11. Berner, C.; Brockman, G.; Chan, B.; Cheung, V.; Debiak, P.; Dennison, C.; Farhi, D.; Fischer, Q.; Hashme, S.; Hesse, C.; et al. Dota 2

with Large Scale Deep Reinforcement Learning. arXiv 2019, arXiv:1912.06680.
12. Czarnecki, W.M.; Gidel, G.; Tracey, B.; Tuyls, K.; Omidshafiei, S.; Balduzzi, D.; Jaderberg, M. Real world games look like spinning

tops. Adv. Neural Inf. Process. Syst. 2020, 33, 17443–17454.
13. Kitchenham, B.; Charters, S. Guidelines for Performing Systematic Literature Reviews in Software Engineering; Elsevier: Amsterdam,

The Netherlands, 2007.
14. Kuhn, H. Extensive games and the problem of information. Contributions to the Theory of Games; Princeton University Press:

Princeton, NJ, USA, 1953; p. 193.
15. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
16. Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [CrossRef] [PubMed]

http://doi.org/10.1038/nature16961
http://www.ncbi.nlm.nih.gov/pubmed/26819042
http://dx.doi.org/10.1126/science.aar6404
http://dx.doi.org/10.1038/s41586-019-1724-z
http://www.ncbi.nlm.nih.gov/pubmed/31666705
http://dx.doi.org/10.1038/s41586-021-04301-9
http://www.ncbi.nlm.nih.gov/pubmed/35173339
http://dx.doi.org/10.1038/s41586-022-05172-4
http://dx.doi.org/10.1007/s10458-019-09421-1
http://dx.doi.org/10.1126/science.aay2400
http://dx.doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://dx.doi.org/10.1016/j.neunet.2014.09.003
http://www.ncbi.nlm.nih.gov/pubmed/25462637

Mathematics 2023, 11, 2234 15 of 17

17. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;
Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [CrossRef] [PubMed]

18. Fujimoto, S.; van Hoof, H.; Meger, D. Addressing Function Approximation Error in Actor-Critic Methods. In 35th International
Conference on Machine Learning; Dy, J., Krause, A., Eds.; PMLR: Cambridge, MA, USA, 2018; Volume 80, pp. 1587–1596.

19. Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal policy optimization algorithms. arXiv 2017,
arXiv:1707.06347.

20. Strouse, D.; McKee, K.; Botvinick, M.; Hughes, E.; Everett, R. Collaborating with humans without human data. Adv. Neural Inf.
Process. Syst. 2021, 34, 14502–14515.

21. Lin, F.; Huang, S.; Pearce, T.; Chen, W.; Tu, W.W. TiZero: Mastering Multi-Agent Football with Curriculum Learning and Self-Play.
arXiv 2023, arXiv:2302.07515.

22. Yang, Y.; Wang, J. An overview of multi-agent reinforcement learning from game theoretical perspective. arXiv 2020,
arXiv:2011.00583.

23. de Witt, C.S.; Gupta, T.; Makoviichuk, D.; Makoviychuk, V.; Torr, P.H.; Sun, M.; Whiteson, S. Is independent learning all you need
in the starcraft multi-agent challenge? arXiv 2020, arXiv:2011.09533.

24. Yu, C.; Velu, A.; Vinitsky, E.; Gao, J.; Wang, Y.; Bayen, A.; Wu, Y. The surprising effectiveness of ppo in cooperative multi-agent
games. Adv. Neural Inf. Process. Syst. 2022, 35, 24611–24624.

25. Lanctot, M.; Zambaldi, V.F.; Gruslys, A.; Lazaridou, A.; Tuyls, K.; Pérolat, J.; Silver, D.; Graepel, T. A Unified Game-Theoretic
Approach to Multiagent Reinforcement Learning. In Proceedings of the Advances in Neural Information Processing Systems 30:
Annual Conference on Neural Information Processing Systems 2017, Long Beach, CA, USA, 4–9 December 2017; Guyon, I., von
Luxburg, U., Bengio, S., Wallach, H.M., Fergus, R., Vishwanathan, S.V.N., Garnett, R., Eds.; Curran Associates Inc.: Red Hook, NY,
USA, 2017; pp. 4190–4203.

26. Lowe, R.; Wu, Y.; Tamar, A.; Harb, J.; Abbeel, P.; Mordatch, I. Multi-Agent Actor-Critic for Mixed Cooperative-Competitive
Environments. In Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, Long Beach, CA, USA, 4–9 December 2017; Guyon, I., von Luxburg, U., Bengio, S., Wallach,
H.M., Fergus, R., Vishwanathan, S.V.N., Garnett, R., Eds.; Curran Associates Inc.: Red Hook, NY, USA, 2017; pp. 6379–6390.

27. Rashid, T.; Samvelyan, M.; Schroeder, C.; Farquhar, G.; Foerster, J.; Whiteson, S. QMIX: Monotonic Value Function Factorisation
for Deep Multi-Agent Reinforcement Learning. In 35th International Conference on Machine Learning; Dy, J., Krause, A., Eds.; PMLR:
Cambridge, MA, USA, 2018; Volume 80, pp. 4295–4304.

28. Sukhbaatar, S.; Szlam, A.; Fergus, R. Learning Multiagent Communication with Backpropagation. In Proceedings of the Advances
in Neural Information Processing Systems 29: Annual Conference on Neural Information Processing Systems 2016, Barcelona,
Spain, 5–10 December 2016; Lee, D.D., Sugiyama, M., von Luxburg, U., Guyon, I., Garnett, R., Eds.; Curran Associates Inc.: Red
Hook, NY, USA, 2016; pp. 2244–2252.

29. Al, S. Some studies in machine learning using the game of checkers. IBM J. Res. Dev. 1959, 3, 210–229.
30. Brown, G.W. Iterative solution of games by fictitious play. Act. Anal. Prod. Alloc. 1951, 13, 374.
31. Heinrich, J.; Lanctot, M.; Silver, D. Fictitious self-play in extensive-form games. In International Conference on Machine Learning;

PMLR: Cambridge, MA, USA, 2015; pp. 805–813.
32. Heinrich, J.; Silver, D. Deep reinforcement learning from self-play in imperfect-information games. arXiv 2016, arXiv:1603.01121.
33. Lockhart, E.; Lanctot, M.; Pérolat, J.; Lespiau, J.; Morrill, D.; Timbers, F.; Tuyls, K. Computing Approximate Equilibria in

Sequential Adversarial Games by Exploitability Descent. In Proceedings of the Twenty-Eighth International Joint Conference on
Artificial Intelligence, IJCAI 2019, Macao, China, 10–16 August 2019; Kraus, S., Ed.; pp. 464–470. [CrossRef]

34. Bansal, T.; Pachocki, J.; Sidor, S.; Sutskever, I.; Mordatch, I. Emergent Complexity via Multi-Agent Competition. In Proceedings
of the International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018.

35. Jaderberg, M.; Czarnecki, W.M.; Dunning, I.; Marris, L.; Lever, G.; Castaneda, A.G.; Beattie, C.; Rabinowitz, N.C.; Morcos, A.S.;
Ruderman, A.; et al. Human-level performance in 3D multiplayer games with population-based reinforcement learning. Science
2019, 364, 859–865. [CrossRef]

36. Yu, C.; Gao, J.; Liu, W.; Xu, B.; Tang, H.; Yang, J.; Wang, Y.; Wu, Y. Learning Zero-Shot Cooperation with Humans, Assuming
Humans Are Biased. arXiv 2023, arXiv:2302.01605.

37. Jaderberg, M.; Dalibard, V.; Osindero, S.; Czarnecki, W.M.; Donahue, J.; Razavi, A.; Vinyals, O.; Green, T.; Dunning, I.; Simonyan,
K.; et al. Population Based Training of Neural Networks. arXiv 2017, arXiv:1711.09846v2.

38. Majumdar, S.; Khadka, S.; Miret, S.; Mcaleer, S.; Tumer, K. Evolutionary Reinforcement Learning for Sample-Efficient Multiagent
Coordination. In 37th International Conference on Machine Learning; Daumé, H., Singh, A., Eds.; PMLR: Cambridge, MA, USA,
2020; Volume 119, pp. 6651–6660.

39. Khadka, S.; Majumdar, S.; Nassar, T.; Dwiel, Z.; Tumer, E.; Miret, S.; Liu, Y.; Tumer, K. Collaborative Evolutionary Reinforcement
Learning. In 36th International Conference on Machine Learning; Chaudhuri, K., Salakhutdinov, R., Eds. PMLR: Cambridge, MA,
USA, 2019; Volume 97, pp. 3341–3350.

40. Gupta, A.; Savarese, S.; Ganguli, S.; Fei-Fei, L. Embodied intelligence via learning and evolution. Nat. Commun. 2021, 12, 5721.
[CrossRef]

41. Balduzzi, D.; Garnelo, M.; Bachrach, Y.; Czarnecki, W.; Perolat, J.; Jaderberg, M.; Graepel, T. Open-ended learning in symmetric
zero-sum games. In International Conference on Machine Learning; PMLR: Cambridge, MA, USA, 2019; pp. 434–443.

http://dx.doi.org/10.1038/nature14236
http://www.ncbi.nlm.nih.gov/pubmed/25719670
http://dx.doi.org/10.24963/ijcai.2019/66
http://dx.doi.org/10.1126/science.aau6249
http://dx.doi.org/10.1038/s41467-021-25874-z

Mathematics 2023, 11, 2234 16 of 17

42. Perez-Nieves, N.; Yang, Y.; Slumbers, O.; Mguni, D.H.; Wen, Y.; Wang, J. Modelling behavioural diversity for learning in
open-ended games. In International Conference on Machine Learning; PMLR: Cambridge, MA, USA, 2021; pp. 8514–8524.

43. McAleer, S.; Lanier, J.B.; Fox, R.; Baldi, P. Pipeline psro: A scalable approach for finding approximate nash equilibria in large
games. Adv. Neural Inf. Process. Syst. 2020, 33, 20238–20248.

44. Muller, P.; Omidshafiei, S.; Rowland, M.; Tuyls, K.; Perolat, J.; Liu, S.; Hennes, D.; Marris, L.; Lanctot, M.; Hughes, E.; et al.
A Generalized Training Approach for Multiagent Learning. In Proceedings of the International Conference on Learning
Representations, Addis Ababa, Ethiopia, 26–30 April 2020.

45. Hernandez, D.; Denamganai, K.; Devlin, S.; Samothrakis, S.; Walker, J.A. A comparison of self-play algorithms under a generalized
framework. IEEE Trans. Games 2021, 14, 221–231. [CrossRef]

46. Tesauro, G. TD-Gammon, a self-teaching backgammon program, achieves master-level play. Neural Comput. 1994, 6, 215–219.
[CrossRef]

47. Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.; Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton, A.; et al.
Mastering the game of go without human knowledge. Nature 2017, 550, 354–359. [CrossRef]

48. Ye, D.; Chen, G.; Zhao, P.; Qiu, F.; Yuan, B.; Zhang, W.; Chen, S.; Sun, M.; Li, X.; Li, S.; et al. Supervised learning achieves
human-level performance in moba games: A case study of honor of kings. IEEE Trans. Neural Netw. Learn. Syst. 2020, 33, 908–918.
[CrossRef] [PubMed]

49. Baker, B.; Kanitscheider, I.; Markov, T.; Wu, Y.; Powell, G.; McGrew, B.; Mordatch, I. Emergent Tool Use From Multi-Agent
Autocurricula. In Proceedings of the International Conference on Learning Representations, Addis Ababa, Ethiopia, 26–30
April 2020.

50. Shamma, J.S.; Arslan, G. Dynamic fictitious play, dynamic gradient play, and distributed convergence to Nash equilibria. IEEE
Trans. Autom. Control 2005, 50, 312–327. [CrossRef]

51. Siu, H.C.; Peña, J.; Chen, E.; Zhou, Y.; Lopez, V.; Palko, K.; Chang, K.; Allen, R. Evaluation of Human-AI Teams for Learned and
Rule-Based Agents in Hanabi. In Advances in Neural Information Processing Systems; Ranzato, M., Beygelzimer, A., Dauphin, Y.,
Liang, P., Vaughan, J.W., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2021; Volume 34, pp. 16183–16195.

52. He, J.Z.Y.; Erickson, Z.; Brown, D.S.; Raghunathan, A.; Dragan, A. Learning Representations that Enable Generalization in
Assistive Tasks. In Proceedings of the 6th Annual Conference on Robot Learning, Auckland, New Zealand, 14–18 December 2022.

53. Liu, S.; Lever, G.; Merel, J.; Tunyasuvunakool, S.; Heess, N.; Graepel, T. Emergent Coordination Through Competition. In
Proceedings of the 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, 6–9 May 2019.

54. Liu, X.; Jia, H.; Wen, Y.; Hu, Y.; Chen, Y.; Fan, C.; Hu, Z.; Yang, Y. Towards unifying behavioral and response diversity for
open-ended learning in zero-sum games. Adv. Neural Inf. Process. Syst. 2021, 34, 941–952.

55. Zhou, M.; Chen, J.; Wen, Y.; Zhang, W.; Yang, Y.; Yu, Y. Efficient Policy Space Response Oracles. arXiv 2022, arXiv:2202.0063v4.
56. Omidshafiei, S.; Papadimitriou, C.; Piliouras, G.; Tuyls, K.; Rowland, M.; Lespiau, J.B.; Czarnecki, W.M.; Lanctot, M.; Perolat, J.;

Munos, R. α-rank: Multi-agent evaluation by evolution. Sci. Rep. 2019, 9, 9937. [CrossRef]
57. Marris, L.; Muller, P.; Lanctot, M.; Tuyls, K.; Graepel, T. Multi-agent training beyond zero-sum with correlated equilibrium

meta-solvers. In International Conference on Machine Learning; PMLR: Cambridge, MA, USA, 2021; pp. 7480–7491.
58. Muller, P.; Rowland, M.; Elie, R.; Piliouras, G.; Pérolat, J.; Laurière, M.; Marinier, R.; Pietquin, O.; Tuyls, K. Learning Equilibria in

Mean-Field Games: Introducing Mean-Field PSRO. In Proceedings of the 21st International Conference on Autonomous Agents
and Multiagent Systems, AAMAS 2022, Auckland, New Zealand, 9–13 May 2022; Faliszewski, P., Mascardi, V., Pelachaud, C.,
Taylor, M.E., Eds.; International Foundation for Autonomous Agents and Multiagent Systems (IFAAMAS), 2022; pp. 926–934.
[CrossRef]

59. McKee, K.R.; Leibo, J.Z.; Beattie, C.; Everett, R. Quantifying the effects of environment and population diversity in multi-agent
reinforcement learning. Auton. Agents Multi-Agent Syst. 2022, 36, 21. [CrossRef]

60. Črepinšek, M.; Liu, S.H.; Mernik, M. Exploration and exploitation in evolutionary algorithms: A survey. ACM Comput. Surv.
(CSUR) 2013, 45, 1–33. [CrossRef]

61. Garnelo, M.; Czarnecki, W.M.; Liu, S.; Tirumala, D.; Oh, J.; Gidel, G.; van Hasselt, H.; Balduzzi, D. Pick Your Battles: Interaction
Graphs as Population-Level Objectives for Strategic Diversity. In Proceedings of the AAMAS’21: 20th International Conference
on Autonomous Agents and Multiagent Systems, Virtual Event, UK, 3–7 May 2021; Dignum, F., Lomuscio, A., Endriss, U., Nowé,
A., Eds.; ACM: New York, NY, USA, 2021; pp. 1501–1503. [CrossRef]

62. Zhao, R.; Song, J.; Hu, H.; Gao, Y.; Wu, Y.; Sun, Z.; Wei, Y. Maximum Entropy Population Based Training for Zero-Shot Human-AI
Coordination. arXiv 2021, arXiv:2112.11701v3.

63. Lupu, A.; Cui, B.; Hu, H.; Foerster, J. Trajectory diversity for zero-shot coordination. In International Conference on Machine
Learning; PMLR: Cambridge, MA, USA, 2021; pp. 7204–7213.

64. Bai, Y.; Jin, C. Provable self-play algorithms for competitive reinforcement learning. In International Conference on Machine
Learning; PMLR: Cambridge, MA, USA, 2020; pp. 551–560.

65. Dinh, L.C.; McAleer, S.M.; Tian, Z.; Perez-Nieves, N.; Slumbers, O.; Mguni, D.H.; Wang, J.; Ammar, H.B.; Yang, Y. Online Double
Oracle. arXiv 2021, arXiv:2103.07780v5.

66. Yin, Q.; Yu, T.; Shen, S.; Yang, J.; Zhao, M.; Huang, K.; Liang, B.; Wang, L. Distributed Deep Reinforcement Learning: A Survey
and A Multi-Player Multi-Agent Learning Toolbox. arXiv 2022, arXiv:2212.00253.

http://dx.doi.org/10.1109/TG.2021.3058898
http://dx.doi.org/10.1162/neco.1994.6.2.215
http://dx.doi.org/10.1038/nature24270
http://dx.doi.org/10.1109/TNNLS.2020.3029475
http://www.ncbi.nlm.nih.gov/pubmed/33147150
http://dx.doi.org/10.1109/TAC.2005.843878
http://dx.doi.org/10.1038/s41598-019-45619-9
http://dx.doi.org/10.5555/3535850.3535954
http://dx.doi.org/10.1007/s10458-022-09548-8
http://dx.doi.org/10.1145/2480741.2480752
http://dx.doi.org/10.5555/3463952.3464139

Mathematics 2023, 11, 2234 17 of 17

67. Espeholt, L.; Marinier, R.; Stanczyk, P.; Wang, K.; Michalski, M. SEED RL: Scalable and Efficient Deep-RL with Accelerated
Central Inference. In Proceedings of the International Conference on Learning Representations, Addis Ababa, Ethiopia, 26–30
April 2020.

68. Nair, A.; Srinivasan, P.; Blackwell, S.; Alcicek, C.; Fearon, R.; De Maria, A.; Panneershelvam, V.; Suleyman, M.; Beattie, C.; Petersen,
S.; et al. Massively parallel methods for deep reinforcement learning. arXiv 2015, arXiv:1507.04296.

69. Espeholt, L.; Soyer, H.; Munos, R.; Simonyan, K.; Mnih, V.; Ward, T.; Doron, Y.; Firoiu, V.; Harley, T.; Dunning, I.; et al. Impala:
Scalable distributed deep-rl with importance weighted actor-learner architectures. In International Conference on Machine Learning;
PMLR: Cambridge, MA, USA, 2018; pp. 1407–1416.

70. Flajolet, A.; Monroc, C.B.; Beguir, K.; Pierrot, T. Fast population-based reinforcement learning on a single machine. In International
Conference on Machine Learning; PMLR: Cambridge, MA, USA, 2022; pp. 6533–6547.

71. Shih, A.; Sawhney, A.; Kondic, J.; Ermon, S.; Sadigh, D. On the Critical Role of Conventions in Adaptive Human-AI Collaboration.
In Proceedings of the 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, 3–7 May 2021.

72. Hwangbo, J.; Lee, J.; Dosovitskiy, A.; Bellicoso, D.; Tsounis, V.; Koltun, V.; Hutter, M. Learning agile and dynamic motor skills for
legged robots. Sci. Robot. 2019, 4, eaau5872. [CrossRef] [PubMed]

73. Lee, J.; Hwangbo, J.; Wellhausen, L.; Koltun, V.; Hutter, M. Learning quadrupedal locomotion over challenging terrain. Sci. Robot.
2020, 5, eabc5986. [CrossRef] [PubMed]

74. Miki, T.; Lee, J.; Hwangbo, J.; Wellhausen, L.; Koltun, V.; Hutter, M. Learning robust perceptive locomotion for quadrupedal
robots in the wild. Sci. Robot. 2022, 7, eabk2822. [CrossRef] [PubMed]

75. OpenAI, O.; Plappert, M.; Sampedro, R.; Xu, T.; Akkaya, I.; Kosaraju, V.; Welinder, P.; D’Sa, R.; Petron, A.; Pinto, H.P.d.O.; et al.
Asymmetric self-play for automatic goal discovery in robotic manipulation. arXiv 2021, arXiv:2101.04882.

76. Riviere, B.; Hönig, W.; Anderson, M.; Chung, S.J. Neural tree expansion for multi-robot planning in non-cooperative environments.
IEEE Robot. Autom. Lett. 2021, 6, 6868–6875. [CrossRef]

77. Mahjourian, R.; Miikkulainen, R.; Lazic, N.; Levine, S.; Jaitly, N. Hierarchical policy design for sample-efficient learning of robot
table tennis through self-play. arXiv 2018, arXiv:1811.12927.

78. Li, D.; Li, W.; Varakantham, P. Diversity Induced Environment Design via Self-Play. arXiv 2023, arXiv:2302.02119.
79. Posth, J.A.; Kotlarz, P.; Misheva, B.H.; Osterrieder, J.; Schwendner, P. The applicability of self-play algorithms to trading and

forecasting financial markets. Front. Artif. Intell. 2021, 4, 668465. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1126/scirobotics.aau5872
http://www.ncbi.nlm.nih.gov/pubmed/33137755
http://dx.doi.org/10.1126/scirobotics.abc5986
http://www.ncbi.nlm.nih.gov/pubmed/33087482
http://dx.doi.org/10.1126/scirobotics.abk2822
http://www.ncbi.nlm.nih.gov/pubmed/35044798
http://dx.doi.org/10.1109/LRA.2021.3096758
http://dx.doi.org/10.3389/frai.2021.668465

	Introduction
	Background
	Game Theory
	Multi-Agent Reinforcement Learning

	Population-Based Deep Reinforcement Learning
	Naive Self-Play
	Fictitious Self-Play
	Population-Play
	Evolution-Based Training Methods
	General Framework

	Challenges and Hot Topics
	Challenges
	Hot Topics

	Conclusions
	References

