
Citation: Tovbis, E.; Krutikov, V.;
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Abstract: For solving non-smooth multidimensional optimization problems, we present a family of
relaxation subgradient methods (RSMs) with a built-in algorithm for finding the descent direction that
forms an acute angle with all subgradients in the neighborhood of the current minimum. Minimizing
the function along the opposite direction (with a minus sign) enables the algorithm to go beyond the
neighborhood of the current minimum. The family of algorithms for finding the descent direction
is based on solving systems of inequalities. The finite convergence of the algorithms on separable
bounded sets is proved. Algorithms for solving systems of inequalities are used to organize the
RSM family. On quadratic functions, the methods of the RSM family are equivalent to the conjugate
gradient method (CGM). The methods are intended for solving high-dimensional problems and are
studied theoretically and numerically. Examples of solving convex and non-convex smooth and
non-smooth problems of large dimensions are given.

Keywords: minimization method; relaxation subgradients method; conjugate subgradients; Kaczmarz
algorithm

MSC: 90C30

1. Introduction

The beginning of research in the field of subgradient methods for minimizing a
convex, but not necessarily differentiable, function was laid in the works [1,2], the results
of which can be found in [3]. There are several directions for constructing non-smooth
optimization methods. One of them [4–6] is based on the construction and use of function
approximations. A number of effective approaches in the field of non-smooth optimization
are associated with a change in the space metric as a result of space dilation operations [7,8].
Distance-to-extremum relaxation methods for minimization were first proposed in [9] and
developed in [10]. The first relaxation-by-function methods were proposed in [11–13].

The need for methods for solving complex non-smooth high-dimensional minimiza-
tion problems is constantly growing. In the case of smooth functions, the conjugate gra-
dient method (CGM) [3] is one of the universal methods for solving ill-conditioned high-
dimensional problems. The CGM is a multi-step method that is optimal in terms of the
convergence rate on quadratic functions [3,14].

CGM generates search directions that are more consistent with the geometry of the
minimized function. In practice, the CGM shows faster convergence rates than gradient
descent algorithms, so CGM is widely used in machine learning. The original CGM, known
as the Hestenes–Stiefel method [15], was introduced in 1952 for solving linear systems.
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There are several modifications of the Hestenes–Stiefel method, such as the Fletcher–Reeves
method [16], Polak–Ribiere method [17], or Dai–Yuan method [18], which mainly differ in
the way the conjugate gradient update parameter is calculated.

Fletcher and Reeves justified the convergence of the CGM for quadratic functions
and generalized it for the case of non-quadratic functions. The Polak–Ribiere method is
based on an exact procedure for searching along a straight line and on a more general
assumption about the approximation of the objective function. At each iteration of the
Polak–Ribiere or Fletcher–Reeves methods, the function and its gradient are calculated
once, and the problem of one-dimensional optimization is solved. Thus, the complexity
of one step of the CGM is of the same order as the complexity of the step of the steepest
descent method. It was proven in [19] that the Polak–Ribiere method is also characterized
by a linear convergence rate in the absence of returns to the initial iteration, but it has an
advantage over the Fletcher–Reeves method in solving problems with general objective
functions and is less sensitive to rounding errors when conducting a one-dimensional
search. The Dai–Yuan algorithm converged globally, provided the line search made the
standard Wolfe conditions hold.

Miele and Cantrell [20] generalized the approach of Fletcher and Reeves by proposing
a gradient method with memory. The method is based on the use of two selectable mini-
mization parameters in each of the search directions. This method is efficient in terms of the
number of iterations required to solve the problem, but it requires more computations of the
function values and gradient components than the Fletcher–Reeves method. The idea of the
memory gradient method was further extended to the multi-dimensional search methods
that are used mostly for unconstrained optimization in large-scale problems [21–26].

The improved CGM [27], Fletcher–Reeves (IFR), and Dai–Yuan methods mixed together
with the second inequality of the strong Wolfe line search can be used to construct two new
conjugate parameters. In online CGM, Xue et al. [28] combined the IFR method with the
variance reduction approach [29]. This algorithm achieves a linear convergence rate under
the strong Wolfe line search for the smooth and strongly convex objective function.

Dai and Liao [30] introduced CGM based on a modified conjugate gradient update
parameter. Modifications of this method were later presented in [31–34].

In [35], an improved CG algorithm with a generalized Armijo search technique was pro-
posed. A modified Fletcher–Reeves CGM for monotone nonlinear equations was described
in [36]. Nonlinear CGM was considered an adaptive momentum method combined with
the steepest descent along the search direction in [37]. In [38], the author used an estimate
of the Hessian to approximate the optimal step size. The paper in [39] proposed a CGM on
Riemannian manifolds. CG algorithms for stochastic optimization were introduced in [40–42].
Algorithms of this type use a small part of samples for large-scale learning problems.

Preconditioning is another technique to speed up the convergence of CG descent.
The idea of preconditioning is to make a change in variables using an invertible matrix.
The authors in [43] proposed a non-monotone scaled CG algorithm for solving large-scale
unconstrained optimization problems, which combines the idea of a scaled memoryless
Broyden–Fletcher–Goldfarb–Shanno (BFGS) method with the non-monotone technique.
Inexact preconditioned CGM with an inner–outer iteration for a symmetric positive definite
system was proposed in [44]. In [45], the authors developed an optimizer that uses CG
with a diagonal preconditioner.

In [46], the authors combined the limited memory technique with a subspace minimiza-
tion conjugate gradient method and presented a limited memory subspace minimization
conjugate gradient algorithm that, by the first step, determines the search direction, and
by the second step, applies the quasi-Newtonian method in the subspace to improve the
orthogonality of gradients.

The idea of the spectral CG method is based on combining the idea of CG methods with
spectral gradients. Li et al. [47] proposed a spectral three-term conjugate gradient method
and proved the global convergence of this algorithm for uniformly convex functions. This
work was further developed in [48].
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The practical application of the conjugate gradient method is very wide and includes,
for example, structured prediction problems and neural network learning [29], contin-
uum mechanics [49], signal and image recovery problems [32,36], COVID-19 regression
models [50], robot motion control problems [50], psychographic reconstruction [51], and
molecular dynamics simulations [52].

For a more detailed review of conjugate gradient methods, see [40,53].
It seems relevant to create multi-step universal methods for solving non-smooth

problems that are applicable in terms of computer memory resources for solving high-
dimensional minimization problems [54–57]. In this work, we propose a family of multi-
step RSMs for solving large-scale problems. With a certain organization of the methods of
the family, such as the CGM, they enable us to find the minimum of a quadratic function in
a finite number of iterations.

The subgradient method is an algorithm that was originally developed by Shor [1] for
minimizing a non-differentiable convex function. The issue of subgradient methods is their
speed, and several approaches can be used to speed them up.

Incremental subgradient methods were studied in [58–62]. The main difference with
the standard subgradient method is that at each iteration, x is changed incrementally
through a sequence of steps. In [60], a class of subgradient methods for minimizing a
convex function that consists of the sum of many component functions was considered.
In [63], the authors presented a family of subgradient methods that dynamically incorporate
knowledge of the geometry of the data observed in earlier iterations to perform more
informative gradient-based learning. An adaptive subgradient method for the split quasi-
convex feasibility problems was developed in [64]. Proximal subgradient methods were
presented in [65,66]. The authors in [65] proposed a model with a proximal conjugate
subgradient (PCS-TT) method for solving the non-convex rank minimization problem by
using properties of Moreau’s decomposition. A conjugate subgradient projection model
as applied to continuous road network design problems was presented in [67]. The paper
in [68] described a conjugate subgradient algorithm that minimizes a convex function
containing a least squares fidelity term and an absolute value regularization term. This
method can be applied to the inversion of ill-conditioned linear problems. A non-monotone
conjugate subgradient type method without any line search was described in [69].

The principle of organization in a number of the RSMs [70] is that, in a particular
RSM, there is an independent algorithm for finding the descent direction, which makes it
possible to go beyond some neighborhood of the current minimum. In [70,71], the problem
of finding the descent direction in RSM was formulated as the problem of solving systems
of inequalities on separable sets. The use of a particular model of subgradient sets makes
it possible to reduce the original problem to the problem of estimating the parameters of
a linear function from information about subgradients obtained during the operation of
the minimization algorithm, and mathematically formalize it as a problem of minimizing
the quality functional. This makes it possible to use the ideas and methods of machine
learning [72] to find the descent direction in RSM [70,71,73,74].

Thus, a specific new learning algorithm will be used as the basis of a new RSM
method. The properties of the minimization method are determined by the learning
algorithm underlying it. The aim of this work is to develop a family of methods for solving
systems of inequalities (MSSIs) and, on this basis, to create a family of multi-step RSMs
(MRSMs) for solving large-scale smooth and non-smooth minimization problems. Known
methods [73,74] are special cases of the MRSM family presented here.

It Is proven that the algorithms of the MSSI family converge in a finite number of
iterations on separable sets. On strictly convex functions, the convergence of the MRSM
algorithms is theoretically substantiated. It is proven that MRSM algorithms on quadratic
functions are equivalent to the CGM.

In the practical implementation of RSM, several problems arise in combining the use
of information about the function, both for minimization and for the internal algorithm
for finding the descent direction. If, in CGM, the goal of a one-dimensional search is
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high accuracy, then, in RSM, the goal is to keep the step of a one-dimensional search
proportional to the distance to the extremum, which eliminates looping and enables the
learning algorithm to find a way out of a wide neighborhood of the current minimum. In
accordance with the noted principle, we use a one-dimensional minimization procedure in
which the rate of step decrease is controlled.

The described algorithms are implemented. A numerical experiment was carried
out to select efficient versions from a family of algorithms. For the selected versions, an
extensive experiment was carried out to compare them on smooth functions with various
versions of the CGM. It was found that, along with the CGM, the proposed algorithms can
be used to minimize smooth functions. The proposed methods are studied numerically on
large-scale tests for solving convex and non-convex non-smooth optimization problems.

The rest of this paper is organized as follows: In Section 2, we state the problem of
our study. In Section 3, we describe the method for solving systems of inequalities. In
Section 4, we present a subgradient minimization method. In Section 5, we implement the
proposed minimization algorithm. In Section 6, we perform a series of experiments with
the implemented method. In the last section, we provide a short conclusion of the work.

2. The Problem Formulation

Let us solve a minimization problem for a convex function f (x) in Rn. In the RSM, the
successive approximations are constructed according to the expressions [13]:

xk+1 = xk − γksk+1, γk = argmin
γ∈R

f (xk − γsk+1) (1)

where the descent direction sk+1 is chosen as a solution for the system of inequalities [13]:

(s, g) > 0, ∀g ∈ G (2)

Here, G = ∂ε f (xi) is the ε-subgradient set at point xi. Denote by S(G) the set of
solutions to (2) and the subgradient set in x by ∂ f (x) ≡ ∂ f0(x). Iterative methods (learning
algorithms) are used to solve systems of inequalities (2) in the RSM. Since elements of
the ε-subgradient set are not explicitly specified, subgradients calculated on the descent
trajectory of the minimization algorithm are used instead.

The solution vector s* of the system (2) forms an acute angle with each of the subgra-
dients of the set G. If the subgradients of some neighborhood of the current minimum of
(1) act as the set G, then iteration (1) for sk = s∗ provides the possibility of going beyond
this neighborhood with a simultaneous decrease in the function. It seems relevant to search
for efficient methods for solving (2).

In [70,71,73,74], the authors proposed the following approach to reduce the system (2)
to an equivalent system of equalities. Let G ⊂ Rn belong to some hyperplane, and its vector
η(G) closest to the origin be also the vector of the hyperplane closest to the origin. In this
case, the solution of the system (s, g) = 1, ∀g ∈ G is also a solution for (2). It can be found
as a solution to the system [70,71,73,74]:

(s, gi) = yi, i = 0, 1, . . . , k, yi ≡ 1. (3)

Figure 1 shows the projection of a subgradient set in the form of a segment [A,B] lying
on a straight line in the plane of vectors z1 and z2. The vector η(G) ∈ G lies in this plane and
is the normal of the hyperplane (s*, g) = 1 formed by the vectors g at s∗ = η(G)/||η(G)||2.

The problem of solving the system (3) is one of the most common data analysis
problems for which gradient minimization methods are used. The minimization function is
formulated as:

Fk(s) = (yk − (s, gk))/2.

To minimize it, various gradient-type methods are used. In a similar way, a solution is
sought in the problems of constructing approximations by neural networks.
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Figure 1. The set G belongs to the hyperplane.

In [70], for solving system (3), a gradient minimization method was proposed—the
Kaczmarz algorithm [75]:

sk+1 = sk +
1− (sk, gk)

(gk, gk)
gk. (4)

The method (4) provides an approximation sk+1 that satisfies the equation (s, gk) = 1,
i.e., the last-received training equation from (3).

Figure 2 shows iterations (4) in the plane of vectors gk, s*, assuming that the set G
represented by the segment [A,B] belongs to the hyperplane. The dashed line Wk in Figure 2
is the projection of the hyperplane (gk, s) = 1 for vectors s. In the case when the set G
belongs to the hyperplane, the hyperplane of vectors s (s, g) = 1 formed with some g ∈ G
contains the vector s*.
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In [71], to solve the system of inequalities (2), the descent direction correction scheme
was used based on the exact solution of the last two equalities from (3) for the pair of
indices k−1 and k, which can be realized by correction along the vector pk orthogonal to
vector gk−1.

sk+1 = sk +
1− (sk, gk)

(pk, gk)
pk, (5)

pk = gk − αk
(gk, gk−1)

‖gk−1‖2 gk−1 (6)

Here, αk is the space dilation parameter. It is assumed here that before operations (5)
and (6) are performed, the initial conditions (gk−1, sk−1) = 1 and (gk−1, gk) ≤ 0 are satisfied,
which is shown in Figure 3.
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Figure 3 shows iterations (6) and (5) in the plane of vectors gk and gk−1. As a result of
the operation, the vector s2

k+1 will be found—the projection of the vector s* in the plane of
the vectors gk and gk−1. The projections of the hyperplanes (gk, s) = 1 and (gk−1, s) = 1 are
shown as dashed lines Wk and Wk−1. The vector s1

k+1 is the projection into the plane of the
result of iteration (4).

On separable sets, iterations (6) and (5) lead to an acceleration in the convergence
of the method for solving systems of inequalities. In the minimization method, under
conditions of a rapidly changing position of the current minimum, the subgradients used
in (6) and (5) in many cases do not belong to separable sets, which leads to the need to
update the process (6), (5) with the loss of accumulated information.

In this paper, we consider a linear combination of solutions s1
k+1 and s2

k+1 as a descent
vector s0

k+1. This enables us to form a family of methods for solving systems of inequalities.
On this basis, a family of subgradient MRSMs is constructed. Practical implementations
with a special choice of the solution s0

k+1 turn out to be more efficient, capable of covering
wider neighborhoods of the current approximation using a rough one-dimensional search.
The wider the neighborhood is, the greater the progress towards the extremum, and the
higher the stability of the method to roundoff errors, noise, and the ability to overcome
small local extrema. In this regard, the minimization methods studied in this work are of
particular importance, in which, unlike the method from [11] and its modification [13], the
built-in algorithms for solving systems of inequalities enable us to use the subgradients
of a fairly wide neighborhood of the current minimum approximation and do not require
exact one-dimensional descent.

3. A Family of Methods for Solving Systems of Inequalities

In the family of algorithms presented below, successive approximations of the solution
to the system of inequalities (2) are constructed by correcting the current approximation.

Let us denote the vector closest to the origin of the coordinates in the set G as: ηG ≡ η(G),
ρG ≡ ρ(G) =||η(G)||, µG = η(G)/||η(G)||, s∗ = µG/ρG, RG ≡ R(G) = max

g∈G
||g||. Let us

make an assumption concerning the set G.

Assumption 1. The set G is non-empty, convex, closed, bounded RG < ∞, satisfying the separa-
bility condition, i.e., ρG > 0.

Figure 4 shows the separable set and its elements.
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Under the assumption made, since the vector ηG is a vector of minimal length in G,
taking into account the convexity of the set, the inequalities (ηG, g) ≥ ρ2

G and ∀g ∈ G will
hold. Under these conditions, the vectors ηG, µG, and s* are solutions to (2), and the vectors
g ∈ G satisfy the constraints:

1 ≤ (s∗, g) ≤ RG/ρG, ∀g ∈ G (7)

The vector s* is one of the solutions to system (2). The following algorithm searches
for an approximation of s* using linear combinations of iterations (4) and (6), (5).

Algorithm 1 for αk = 0 implements a scheme based on the Kaczmarz algorithm [73],
denote it as A0. For αk = 1, it implements an algorithm for solving systems of inequalities
from [74].

Algorithm 1: A(αk).

Input: initial approximation s0
Output: solution s*
1. Assume k = 0, gk−1 = 0.
2. Choose arbitrary gk ∈ G so that

(sk, gk) ≤ 0 (8)

If such a vector does not exist, then s* = sk ∈ S(G), stop the algorithm.
3. Estimate sk+1:

sk+1 = sk +
1− (sk, gk)

(pk, gk)
pk, (9)

where the correction vector pk, taking into account the condition:

(gk, gk−1) < 0 (10)

Which is given by:
pk = gk, (11)

if (10) does not hold, then

pk = gk − αk
(gk, gk−1)

‖gk−1‖2 gk−1, (12)
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if (10) holds.
The value αk is limited by:

0 ≤ αk ≤ 1 (13)

4. Assign k = k + 1. Go to step 2.

Since the algorithm is designed to find a solution to system (2) in the form of a vector
s*, we will study the behavior of the residual vector ∆k = s∗ − sk.

Lemma 1. Let the sequence {sk} be obtained as a result of the use of Algorithm 1. Then, for k = 0, 1,
2, . . . , we have the following estimates:

(sk+1, gk) = 1, k = 0, 1, 2, . . . (14)

(pk, pk) ≤ (pk, gk) ≤ (gk, gk), k = 0, 1, 2, . . . (15)

(∆k, gk−1) ≥ 0, k = 0, 1, 2, . . . (16)

(∆k, pk) ≥ (∆k, gk) ≥ 1− (sk, gk) ≥ 1, k = 0, 1, 2, . . . (17)

Proof of Lemma 1. Let us prove (14). Consider the cases of transformation (9) combined
with (11) and (12). According to (9) and (11)

(sk+1, gk) = (sk, gk) +
1− (sk, gk)

(gk, gk)
(gk, gk) = 1

According to (9), (12)

(sk+1, gk) = (sk, gk) +
1− (sk, gk)

(pk, gk)
(pk, gk) = 1

Thus, equality (14) always holds. In the case of transformation (12) with αk = 1, the
vectors pk and gk−1 are orthogonal:

(pk, gk−1) = (gk, gk−1)−
(gk, gk−1)

‖gk−1‖2 (gk−1, gk−1) = 0

Therefore, the equality (sk+1, gk−1) = 1 is preserved. This case corresponds to the
exact solution of the last two equalities in (3).

Let us prove (15). Inequalities (15) will hold in the case (11). In the case (12), we carry
out transformations proving (15):

(pk, pk) = (gk, gk)− 2αk
(gk, gk−1)

2

‖gk−1‖2 + αk
2 (gk, gk−1)

2

‖gk−1‖2

Hence, from (13) and (12) follows:

(pk, pk) ≤ (gk, gk)− 2αk
(gk, gk−1)

2

‖gk−1‖2 + αk
(gk, gk−1)

2

‖gk−1‖2 = (gk, gk)− αk
(gk, gk−1)

2

‖gk−1‖2 = (pk, gk) ≤ (gk, gk)

Let us prove (16). For k = 0, (16) is satisfied due to g−1 = 0. For k > 0, (16) follows from
(7) and (14):

(∆k, gk−1) = (s∗, gk−1)− (sk, gk−1) ≥ 1− (sk, gk−1) ≥ 1− 1 = 0
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Let us prove (17). The first of the inequalities in (17) holds as an equality for (11), and
in case (12), taking into account the sign under condition (10) and inequality (16), we obtain:

(∆k, pk) = (∆k, gk)− αk
(gk, gk−1)

‖gk−1‖2 (∆k, gk−1) ≥ (∆k, gk)

The second inequality in (17) follows from constraints (7). The last inequality in (17)
follows from condition (8). �

The following theorem states that transformation (12) provides a direction pk to the
solution point s* with a more acute angle compared to gk.

Theorem 1. Let the sequence {sk} be obtained as a result of the use of Algorithm 1. Then, for k = 0,
1, 2 . . . , we have the estimate:

(∆k, pk)

(∆k, ∆k)
0.5(pk, pk)

0.5 ≥
(∆k, gk)

(∆k, ∆k)
0.5(gk, gk)

0.5 (18)

Proof of Theorem 1. Consistently using (17) and (15), we obtain (18):

(∆k, pk)

(∆k, ∆k)
0.5(pk, pk)

0.5 ≥
(∆k, gk)

(∆k, ∆k)
0.5(pk, pk)

0.5 ≥
(∆k, gk)

(∆k, ∆k)
0.5(gk, gk)

0.5

�

Lemma 2. Let the set G satisfy Assumption 1. Then,sk ∈ S(G) if

‖∆k‖ < 1/RG (19)

Proof of Lemma 2. Using (19) and the scalar product property, we obtain an estimate in
the form of a strict inequality for vectors from G:

|(∆k, g)|=|(s∗ − sk, g)|≤ ‖s∗ − sk‖ × ‖g‖ ≤ ‖s∗ − sk‖ × RG < RG/RG = 1.

Hence, taking into account the constraint (7), we obtain the proof. �

The following theorem substantiates the finite convergence of Algorithm 1.

Theorem 2. Let the set G satisfy Assumption 1. Then, to estimate the convergence rate of the
sequence {sk}, k = 0, 1, 2 . . . to the point s* generated by Algorithm 1 up to the moment of stopping,
the following observations are true:

(∆k, ∆k) ≤ (∆k−1, ∆k−1)−
1

R2
G

(20)

‖ ∆k ‖ 2 ≤ (‖ s0 ‖ +ρG
−1)2 − k/R2

G (21)

for ρG
−1 we have the estimate:

ρG
−1 ≥ (

k

∑
j=0

(gj, gj)
−1)0.5− ‖ s0 ‖≥

k0.5

RG
− ‖ s0 ‖ (22)

and for some value k, satisfying the inequality:

k ≤ k∗ ≡
(

RG ‖ s0 ‖ +
RG
ρG

)2
+ 1
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we will obtain the vector sk ∈ S(G).

Proof of Theorem 2. Using (9), we obtain an equality for the squared norm of the residual
∆k+1:

(∆k+1, ∆k+1) = (∆k, ∆k)− 2(∆k, pk)
1− (sk, gk)

(pk, gk)
+ (pk, pk)

(1− (sk, gk))
2

(pk, gk)
2

We transform the right side of the resulting expression, considering inequalities (17),
replacing (∆k, pk) with 1− (sk, gk):

(∆k+1, ∆k+1) ≤ (∆k, ∆k)− 2
(1− (sk, gk))

2

(pk, gk)
+ (pk, pk)

(1− (sk, gk))
2

(pk, gk)
2

In the resulting expression, we replace the factor (pk, pk), according to (15), by a larger
value (pk, gk). As a result, we obtain:

(∆k+1, ∆k+1) ≤ (∆k, ∆k)−
(1− (sk, gk))

2

(pk, gk)
≤ (∆k, ∆k)−

1
(gk, gk)

≤ (∆k, ∆k)−
1

R2
G

Here, the last two inequalities are obtained considering (8) and the definition of
RG. With the indexing taken into account, we prove (20). Using recursively (20) and
the inequality:

‖ s∗ − s0 ‖2 ≤ (‖ s0 ‖ + ‖ s∗ ‖)2 = (‖ s0 ‖ +ρ−1
G )2

which follows from the properties of the norm, we obtain estimate (21). Estimate (22) is a
consequence of (21).

According to (21) ‖ ∆k ‖→ 0. Therefore, at some step k, inequality (19) will be satisfied
for the vector sk, i.e., a vector sk ∈ S(G) will be obtained that is a solution to system (2).
As an upper bound for the required number of steps, we can take k*, equal to the value k
at which the right side of (21) vanishes, increased by 1. This provides an estimate for the
required number of iterations k*. �

In the minimization algorithm, s0 = 0 is set. In this case, (22) will take the form:

ρG ≤
(

k

∑
j=0

(gj, gj)
−1

)−0.5

≤ RG
k0.5 (23)

Inequalities (23) will hold as long as it is possible to find a vector gk ∈ G, satisfying the
condition (8). In the minimization algorithm, under the condition of exact one-dimensional
descent, there will always be gk satisfying condition (8). Therefore, estimates (23) will
be used in the rules for updating the algorithm for solving systems of inequalities in the
minimization method under constraints on the parameters of subgradient sets.

4. A Family of Subgradient Minimization Methods

The idea of organizing a minimization algorithm is to construct a descent direction
that provides a solution to a system of inequalities of type (2) for subgradients in the
neighborhood of the current minimum. Such a solution will allow, by means of one-
dimensional minimization (1), to go beyond this neighborhood, that is, to find a point with
a smaller value of the function outside the neighborhood of the current minimum.

Let the function f (x), x ∈ Rn be convex. Denote d(x) = ρ(∂ f (x)) as the length
of the vector of the minimum length of the subgradient set at the point x, D(z) =
{x ∈ Rn| f (x) ≤ f (z)}.
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Note 1. For a function convex on Rn, if the set D(x0) is bounded, for points x∗ ∈ D(x0)satisfying
the condition d(x∗) < d0, the following estimate is correct [13]:

f (x∗)− f ∗ ≤ Dd0 (24)

where D is the diameter of set D(x0), d0 is a given value, f ∗ = inf
x∈Rn

f (x).

The minimization algorithm must build a sequence of approximations of which the
limit points x* satisfy the condition d(x*) < d0 for a given value of d0. This will provide,
according to (24), the specified accuracy of minimization with respect to the function. For
these purposes, the parameters are set in the algorithm in such a way as to ensure the
search for points x* that satisfy the condition d(x*) < d0. The connection between d0 and the
parameters of the algorithm will be established in more detail in Theorem 3.

When solving a minimization problem with a built-in algorithm for solving systems of
inequalities in an exact one-dimensional search along a direction, according to the necessary
condition for the minimum of a one-dimensional function, there is always a subgradient
that satisfies condition (8). Therefore, criteria for updating the method for solving systems
of inequalities are necessary, sufficient, but not excessive, for convergence to limit points
x* satisfying the condition d(x∗) < d0. For these purposes, relations (23) will be used,
signaling the solution of a system of inequalities with given characteristics sufficient to exit
the neighborhood of the current minimum.

Let us describe the minimization method with a built-in Algorithm 1 for finding points
x∗ ∈ Rn such that d(x∗) ≤ E0, where E0 > 0.

In Algorithm 2, in steps 2, 4, and 5, there is a built-in algorithm for solving inequalities.
Algorithm 2 for αk = 0 was obtained in [73] and uses the method for solving the inequalities
with the Kaczmarz Formula (4) (we denote it as M0). Algorithm 2 for αk = 1 was obtained
in [74].

Algorithm 2: MA(αk).

Input: initial approximation point x0
Output: minimum point x*
1. Set the initial approximation x0 ∈ Rn, integer k = j = 0.
2. Assign j = j + 1, qj = k, sk = 0, gk−1 = 0, Σk = 0.
3. Set ε j, mj.
4. Calculate the subgradient gk ∈ ∂ f (xk), which satisfies (sk, gk) ≤ 0. If gk = 0, then x* = xk, stop
the algorithm.

5. Obtain a new approximation sk+1 = sk +
1− (sk, gk)

(pk, gk)
pk, where

pk =


gk, i f (gk, gk−1) ≥ 0,

gk − αk
(gk, gk−1)

‖gk−1‖2 gk−1, i f (gk, gk−1) < 0.

The value of αk is bounded 0 ≤ αk ≤ 1 similarly to (13).
6. Calculate a new approximation of the criterion Σk+1 = Σk + (gk, gk)

−1.
7. Calculate a new approximation of the minimum point
xk+1 = xk − γksk+1, γk = argmin

γ∈R
f (xk − γsk+1).

8. Set k = k + 1.
9. If 1/

√
Σk < ε j, then go to step 2.

10. If k− qj > mj, then go to step 2; otherwise, go to step 4.

The index qj, j = 0, 1, 2, . . . was introduced to denote the numbers of iterations k, at
which, in step 2, when the criteria of steps 9 and 10 are met, the algorithm for solving
inequalities is updated (sk = 0, gk−1 = 0). According to (21) and (22), the algorithm for
solving the system of inequalities with s0 = 0 has the best convergence rate estimates.
Therefore, when updating in step 2 of Algorithm 2, we set sk = 0. The need for updating
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arises due to the fact that as a result of the shifts in step 7, the subgradient sets in the
neighborhood of the current point of the minimum are changed, which leads to the need to
solve the system of inequalities based on new information.

By virtue of exact one-dimensional descent along the direction (−sk+1) in step 7, at a
new point xk+1, the vector gk+1 ∈ ∂f (xk+1), such that (gk+1,sk+1) ≤ 0, always exists according
to the necessary condition for a minimum of one-dimensional function (see [13]). Therefore,
regardless of the number of iterations k, the condition (gk,sk) ≤ 0 of step 4 will always
be satisfied.

The proof of the convergence of Algorithm 2 is based on the following lemma.

Lemma 3 ([13]). Let the function f(x) be strictly convex on Rn, the set D(x0) be bounded, and the se-
quence {xk}∞

k=0 be such that f (xk+1) = min
α∈[0,1]

f (xk + α(xk+1− xk)). Then, lim
k→∞
‖ xk+1− xk ‖= 0.

Under the conditions of an exact one-dimensional search, the conditions of Lemma 3
will be satisfied in iterations of Algorithm 2.

Denote by Wε(G) = {z ∈ Rn|‖z− x‖ ≤ ε, ∀x ∈ G} the ε-neighborhood of the set G, by
Uδ(x) = {z ∈ Rn|‖ z− x ‖≤ δ} the δ-neighborhood of the point x, zj = xqj , Qj = Σqj , j =
1, 2, . . . , i.e., the points xk and the values of the Σk, corresponding to the indices k at the
time of updating in step 2 of Algorithm 2.

Theorem 3. Let the function f(x) be strictly convex on Rn and the set D(x0) be bounded, and the
parameters εj and mj specified in step 2 of Algorithm 2 are fixed:

ε j = E0 > 0, mj = M0 (25)

Then, if x* is the limit point of the sequence {xqj}∞
j=1 generated by Algorithm 2; then,

d(x∗) ≤ max{E0, R(x0)/
√

M0} ≡ d0 (26)

where R(x0) = max
x∈D(x0)

max
v∈∂ f (x)

‖ v ‖. In particular, if M0 ≥ R2(x0)E−2
0 , then d(x∗) ≤ E0.

Proof of Theorem 3. Let conditions (25) be satisfied. The existence of limit points of the
sequence {zk} follows from the fact that the set D(x0) is bounded and zj ∈ D(x0). Assume
that the statement of the theorem is false: suppose that the subsequence zjs → x∗ , but

d(x∗) = d∗ > d0 > 0 (27)

Assume that
ε = (d∗ − d0)/2. (28)

Denote W∗ε = Wε(∂ f (x∗)). Choose δ > 0, so that

∂ f (x) ⊂W∗ε ∀x ∈ Uδ(x∗) (29)

Such a choice is possible due to the upper semicontinuity of the point-set mapping
∂ f (x) (see [13]).

Choose a number K, such that for js > K, the following will hold:

zjs ∈ Uδ/2(x∗), xk ∈ Uδ(x∗), qjs ≤ k ≤ qjs + M0 (30)

i.e., such a number K that the points xk remain in the neighborhood Uδ(x∗) for at least M0
steps of the algorithm. Such a choice is possible due to the assumption of convergence
zjs → x∗ and the result of Lemma 3, the conditions of which are satisfied under the
conditions of Theorem 3 and an exact one-dimensional descent in step 7 of Algorithm 2.
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According to assumption (27), the choice conditions of ε in (28), δ in (29), and K, which
ensures (30), for js > K, the inequality will hold:

ρ(W∗ε ) ≥ ρ(∂ f (x∗))− ε = d∗ − (d∗ − d0)/2 > d0 (31)

For js > K, due to the validity of relations (30), it follows from (29): gk ∈W∗ε , qjs ≤ k ≤
qjs + M0. Algorithm 2 includes Algorithm 1. Therefore, taking into account the estimates
from (23), depending on the steps of Algorithm 2 (step 9 or step 10), the update occurs at
some k, and one of the inequalities will be satisfied:

ρ(W∗ε ) ≤∑−0.5
k ≤ ε j ≤ E0 ≤ d0 (32)

ρ(W∗ε ) ≤ R(x0)/
√

mj ≤ R(x0)/
√

M0 ≤ d0 (33)

The last transition in the inequalities follows from the definition of d0 in (26). However,
(31) contradicts both (32) and (33). The resulting contradiction proves the theorem.

According to estimate (26), for any limit point of the sequence {zj} generated by
Algorithm 2, d(x∗) < d0 will be satisfied, and therefore, estimate (24) will be valid. �

The following theorem defines the conditions under which Algorithm 2 generates a
sequence {xk} converging to a minimum point.

Theorem 4. Let the function f(x) be strictly convex, the set D(x0) be bounded, and

ε j → 0, mj → ∞ (34)

Then, any accumulation point of the sequence {xqj}generated by Algorithm 2 is a minimum
point of the function f(x) on Rn.

Proof of Theorem 4. Assume that the statement of the theorem is false: suppose that the
subsequence zjs → x∗ , but in this case, there exists d0 > 0, such that inequality (27) is satisfied.
As before, we set ε according to (28). We choose δ > 0, such that (29) will be satisfied. By
virtue of conditions (34), there is K0, such that when j > K0, the relation will hold:

max{ε j, R(x0)/
√

mj} ≤ d0 (35)

Denote E0 = d0 and denote by M0 the minimum value mj with j > K0. This renaming
allows us to use the proofs of Theorem 3. Let us choose an index K > K0, such that (30)
holds for js > K, i.e., a number K such that the points xk remain in neighborhood Uδ(x*) for
at least M0 steps of the algorithm. According to assumption (27), conditions for choosing ε
in (28), δ in (29), and k in (30) for js > K inequality (31) will hold. For js > K, due to (30), from
(29) follows gk ∈ W∗ε , qjs ≤ k ≤ qjs + M0. Algorithm 2 contains Algorithm 1. Therefore,
taking into account the estimates from (23), depending on the step number of Algorithm 2
(step 9 or step 10) in which the update occurs at some k, one of the inequalities (32) and (33)
will be satisfied, where the last transition in inequalities follows from the definition of E0
and M0. However, (31) contradicts both (32) and (33). The resulting contradiction, taking
into account (35) and (34), proves that the limit point can only be the minimum point. �

5. Correlation with the Conjugate Gradient Method

Let us show that the presented Algorithm 2 has the properties of the conjugate gradient
method, and successive approximations of the minimum of both methods are the same on
quadratic functions. Denote by ∇ f (x) the gradient of a function, which, in the case of a
differentiable convex function, coincides with the subgradient and is the only element of
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the subgradient set [13]. Denote by m a number of iterations (m≤ n) at which the minimum
point is not reached. Iterations of Algorithm 2 for k = 1, 2, . . . , m can be written as follows:

xk+1 = xk − γksk+1, γk = argmin
γ∈R

f (xk − γsk+1). (36)

sk+1 = sk +
1− (sk, gk)

(pk, gk)
pk, gk = ∇ f (xk), g0 = 0, s1 = 0 (37)

pk =


gk, i f (gk, gk−1) ≥ 0,

gk − αk
(gk, gk−1)

‖gk−1‖2 gk−1, i f (gk, gk−1) < 0.
(38)

The value of αk is limited 0 ≤ αk ≤ 1.
Let us establish a connection between Algorithm 2 and the CGM, the iteration of which

has the form:

xk+1 = xk − γksk+1, γk = argmin
γ

f (xk − γsk+1), k = 1, . . . , m, (39)

s2 = g1, sk+1 = gk +
(gk, gk)

(gk−1, gk−1)
sk, k = 2, . . . , m, gk = ∇ f (xk) (40)

Theorem 5. Let the function f(x), x ∈ Rn, be quadratic, and its matrix of second derivatives is
strictly positive definite; then, provided that the initial points in the algorithms (36)–(38), (39), and
(40) are equal x1 = x1, they generate an identical sequence of approximations of the minimum, and
their characteristics satisfy the relations:

(a) pk = gk, (b) sk+1 = sk+1/(gk, gk), (c) xk+1 = xk+1, k = 1, 2, . . . , m (41)

In this case, the minimum will be found after no more than n steps.

Proof of Theorem 5. We will use induction. As a result of iterations (36)–(38), for k = 1,
due to g0 = 0 and s1 = 0, we have p1 = g1 and s2 = g1/(g1, g1). As a result of iterations
(39) and (40), for k = 1, we have s2 = g1. Consequently, equalities (41(a)) and (41(b)) are
satisfied for k = 1. Due to the exact one-dimensional descent and the collinearity of the
descent directions, equality (41(c)) will hold for k = 1.

Assume that equalities (41) are satisfied for k = 1, 2, . . . , l, where l > 1. Let us show that
they are satisfied for k = l + 1. According to (41(a)), the gradients of the CGM algorithms
(39), (40), and (36)–(38) coincide due to the identity of the points (41(c)) at which they
are calculated, and the gradients used in the CGM and, hence, in (36)–(38), are mutually
orthogonal [3]. Thus, in (38), for k = l + 1, as a result of the orthogonalization of vectors gl +1
and gl, we obtain pl+1 = gl+1. This proves (41(a)) for k = l + 1.

According to the condition of exact one-dimensional descent, the equality (sl+1, gl+1) = 0
follows. Therefore, the transformation (37), taking into account (41(a)) for k = l + 1, (41(b))
for k = l, and (40), takes the form:

sl+2 = sl+1 +
gl+1

(gl+1, gl+1)
=

sl+1
(gl , gl)

+
gl+1

(gl+1, gl+1)
=

sl+2
(gl+1, gl+1)

This implies (41(b)). Due to the exact one-dimensional descent and the collinearity of the
descent directions, equality (41(c)) will hold for k = l + 1.

From the above proof of the equivalence of sequences generated by the CGM algorithms
and (36)–(38), taking into account the property of the termination of the process of minimization
by the CGM method after no more than n steps [3], the proof of the theorem follows. �
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6. Implementation of the Minimization Algorithm

Algorithm 2 is implemented according to the RSM implementation technique [70,71,73,74].
Consider a version of Algorithm 2 that includes a one-dimensional minimization procedure
along the direction s. This procedure: (a) constructs the current approximation of the
minimum xm; (b) constructs a point y from a neighborhood xm such that for g1 ∈ ∂ f (y), the
inequality (s, g1) ≤ 0 holds. The subgradient g1 is used to solve the system of inequalities.
Calling the procedure will be denoted as follows:

OM({x, s, gx, fx, h0}; {γm, fm, gm, γ1, g1, h1})

The input parameters are the point of the current approximation of the minimum x,
descent direction s, g x ∈ ∂ f (x), fx = f (x), and the initial step h0. It is assumed that the
necessary condition (gx, s) > 0 for the possibility of descent in direction s is satisfied. The
output parameters include γm, which is a step to the point of the obtained approximation
of the minimum x+ = x− γms, fm = f (x+), gm ∈ ∂ f (x+), γ1, which is a step along s, such
that at the point y+ = x − γ1s for g1 ∈ ∂ f (y+), the inequality (g1, s) ≤ 0 holds and h1,
which is an initial descent step calculated in the procedure for the next iteration. In the
algorithm presented below, vectors g1 ∈ ∂ f (y+) are used to solve a set of inequalities, and
points x+ = x− γms are used as points of approximations of a minimum.

Algorithm of one-dimensional descent (OM). Let it be required that to find an approxi-
mation of the minimum of the one-dimensional functionφ(β) = f (x−β s), where x is some
point, and s is the descent direction. Take an ascending sequence β0 = 0 and βi = h0qi−1

M
for i ≥ 1. Denote zi = x− βis, ri ∈ ∂ f (zi), l as the minimum number i at which the relation
(ri, s) ≤ 0 is satisfied for the first time, i = 0, 1, 2, . . .. Let us set the parameters of the segment
[γ0, γ1] of localization of the one-dimensional minimum: γ0 = βl−1, f0 = f (zl−1), g0 = rl−1,
γ1 = βl , f1 = f (zl), g1 = rl . Let us find the point of minimum γ* of the one-dimensional
cubic approximation of the function on the segment of localization. Calculate:

γm =


qγ1γ1, i f l = 1 and γ∗ ≤ qγ1γ1,
γ1, i f γ1 − γ∗ ≤ qγ(γ1 − γ0),
γ0, i f l > 1 and γ∗ − γ0 ≤ qγ(γ1 − γ0),
γ∗, otherwise.

(42)

Calculate the initial descent step for the next iteration:

h1 = h0qm(γ1/h0)
1/2 (43)

In (42), a rough search for the minimum on the interval is carried out, and when
choosing γ0 or γ1 instead of γm, the calculation of the function and the gradient is not
required. We use parameters qγ = 0.2 and qγ1 = 0.1 and coefficients qM > 1 and qm < 1.

Minimization algorithm. In the implementation of Algorithm 2 proposed below, the
method for solving inequalities is not updated, and the exact one-dimensional descent is
replaced by an approximate one.

Let us explain the steps of the algorithm. The OM procedure returns two subgradients
g̃k+1 and gk+1. The first of them is used to solve the inequalities in step 2, and the second
one is used in step 3 to correct the direction of descent using Equation (4) in order to provide
the necessary condition (sk+1, gk) > 0 for the possibility of descent in the direction (−sk+1).
Iteration (4) in (45) for (s̃k+1, gk) < 1 is a correction (4) by the Kaczmarz algorithm. This
transformation is carried out in order to direct the descent according to the subgradient of
the current approximation of the minimum.

Unlike the idealized case, Algorithm 3 does not provide updates. Although the
rationale for the convergence of idealized versions of RSM is made under the condition
of exact one-dimensional descent, the implementation of these algorithms is carried out
with one-dimensional minimization procedures in which the initial step, depending on
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progress, can increase or decrease, which is determined by the given coefficients qM > 1
and qm < 1. These coefficients should be chosen so that the step length (43) decrease in
the one-dimensional minimization procedure corresponds to the rate of reduction in the
distance to the minimum point. The minimum iteration step cannot be less than some
fraction of the initial step, the value of which is given in (42) by the parameters qγ = 0.2 and
qγ1 = 0.1. We used these values in our calculations.

Algorithm 3: MOM(αk).

Input: initial approximation x0, initial step of one-dimensional descent h0, maximum allowed
number of iterations N, argument minimization precision εx, gradient minimization precision εg
Output: minimum point x*

1. Set the initial approximation x0 ∈ Rn, the initial step of one-dimensional descent h0. Set k = 0,
g0 = g̃0 ∈ ∂ f (x0), gk−1 = 0, f0 = f (x0), s0 = s̃0 = 0. Set the stop parameters: maximum
allowed number of iterations N, argument minimization precision εx, gradient minimization
precision εg.

2. Obtain an approximation

s̃k+1 = sk +
1− (sk, g̃k)

(pk, g̃k)
pk, (44)

where pk =


g̃k, i f (g̃k, gk−1) ≥ 0,

g̃k − αk
(g̃k, gk−1)

‖gk−1‖2 gk−1, i f (g̃k, gk−1) < 0.

3. Obtain the descent direction

sk+1 =

{
s̃k+1, i f (s̃k+1, gk) ≥ 1,
s̃k+1 + gk(1− (s̃k+1, gk))/(gk, gk), i f (s̃k+1, gk) < 1.

(45)

4. Perform a one-dimensional descent along the normalized direction

wk+1 = sk+1(sk+1, sk+1)
−1/2:

OM({xk, wk+1, gk, fk, hk}; {γk+1, fk+1, gk+1, γ̃k+1, g̃k+1, hk+1}).
5. Calculate the minimum point approximation xk+1 = xk − γk+1wk+1.

6. If k > N or ‖xk+1− xk‖ ≤ εx or ‖ gk+1‖ ≤ εg, then x* = xk+1, stop the algorithm; otherwise, k = k + 1,
and go to step 2.

Consider ways to set parameters αk. With a numerical implementation with αk = 1,
the number of iterations is either less than it is when αk = 0, or greater. Unplanned stops
often occur in (44) due to the proximity to the zero of the (pk, g̃k) values. Denote by εp a
value from a segment [0, 1]. In step 2 of the algorithm, we will use the following method
for setting the parameter αk:

If (pk, pk) ≤ εp(g̃k, g̃k), then αk = 1− εp; otherwise, αk = 1 (46)

We also used the second choice of parameter αk:

If (pk, pk) ≤ εp(g̃k, g̃k), then αk = 0; otherwise, else αk = 1 (47)

In the next section, we will select an appropriate parameter εp from the set εp ∈{
0.5; 0.1; 10−3; 10−4; 10−8; 10−15 }, with which the main computational experiment will

be carried out.

7. Numerical Experiment

In Algorithm 3, the coefficients of decrease qm < 1 and increase qM > 1 of the initial step
of the one-dimensional descent at iteration play a key role. Values qm close to 1 provide a
low rate of step decrease and, accordingly, a low rate of method convergence. A small rate
of step decrease eliminates the looping of the method due to the fact that the subgradients of
the function involved in solving the inequalities are taken from a wider neighborhood. The
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choice of the parameter qm must be commensurate with the possible rate of convergence of
the minimization method. The higher the speed capabilities of the algorithm, the smaller
this parameter can be chosen. For example, in RSM with space dilation [71,73], qm = 0.8 is
chosen. For smooth functions, the choice of this parameter is not critical and can be taken
from the interval [0.8, 0.98]. The convergence rate practically does not depend on the step
increase parameter, so it can be taken as qM ∈ [1.5, 3].

The computational experiment is preceded by the choice of a parameter εp for the
proposed Algorithm 3, which is used in Formulas (46) and (47). After that, we will conduct
the main testing of the method with the selected parameter εp and its comparison with the
known methods of conjugate gradients according to the following scheme:

1. Testing on smooth and non-smooth test functions with known characteristics of level
surface elongation.

2. Testing on non-convex smooth and non-smooth test functions.
3. Testing on known smooth test functions.

We used the following methods:

AMMI—the distance-to-extremum relaxation method of minimization [10];
sub—Algorithm 3 with (46);
subm—Algorithm 3 with more precise one-dimensional descent and (46);
subg—Algorithm 3 with (47);
subgm—Algorithm 3 with (47) and exact one-dimensional descent;
sub0—Algorithm 3 with αk = 0;
sgrFR—the conjugate gradient method (Fletcher–Reeves method [3]) with exact one-
dimensional descend;
sgr—method sgrFR with one-dimensional minimization procedure OM;
sgrPOL—the Polak–Ribiere–Polyak method [17];
sgrHS—the Hestenes–Stiefel method [15];
sgrDY—the Dai–Yuan method [18].

We used the following test groups. Each group has its own stopping criterion.
The first group of tests includes smooth and non-smooth functions with a maximum

ratio of level surfaces elongation along the coordinate axes equal to 100:

f1(x) =
n
∑

i=1
xi

2 · (1 + (i− 1)(100− 1)/(n− 1))2, x0,i = 1, x∗i = 0, i = 0, 1, 2, . . . , n, ε = 10−8

f2(x) =
n
∑

i=1
|xi| · (1 + (i− 1)(100− 1)/(n− 1)), x0,i = 1, x∗i = 0, i = 0, 1, 2, . . . , n, ε = 10−4

The stopping criterion is
f (xk)− f ∗ ≤ ε (48)

The second group of tests includes the Extended White and Holst function, which is
not convex:

fGW(x) =
n/2

∑
i=1

[100(x2i − x3
2i−1)

2
+ (1− x2i−1)

2], x0 = (−1.2, 1, . . . ,−1.2, 1), ε = 10−10

The non-smooth non-convex function derived from it:

fNW(x) =
n/2

∑
i=1

(10
∣∣∣x2i − x3

2i−1

∣∣∣+∣∣∣1− x2i−1

∣∣∣) , x0 = (−1.2, 1, . . . ,−1.2, 1), ε = 10−4

The Raydan1 function is biased to obtain a new function with a zero minimum value:

fGR(x) =
n

∑
i=1

i
10

(exp(xi)− xi − 1), x0 = ( 2, 2, . . . , 2), ε = 10−10



Mathematics 2023, 11, 2264 18 of 24

We transform this function into a non-smooth one as follows:

fNR(x) =
n

∑
i=1

ai
10

max { exp(xi)− 1 , −xi}, x0 = ( 1, 1, . . . , 1), ε = 10−4

ai = 1 +
i− 1
n− 1

(amax − 1), amax = 100, i = 1, 2, . . . , n

Here, the coefficients ai are bounded and not equal to
√

i. Criterion (48) is used as a
stopping criterion for these functions.

The third group of tests is composed of functions from [76]. We chose the functions
that were difficult to minimize by gradient methods, which was revealed by the study
in [53]. The stopping criteria:

‖∇ f (xk)‖ ≤ 10−6,
| f (xk+1)− f (xk)|

1+| f (xk)|
≤ 10−16 (49)

Several experiments were carried out for each function. The number of iterations and
the number of function and gradient calculations were counted.

Denote:

S1 is a sum of resulting scores for dimensions 100, 200, . . . , and 1000;
S2 is a sum of resulting scores for dimensions 100, 500, 1000, 2000, 3000, 5000, 7000, 8000,
10,000, and 15,000.

The results for the dimensions Ti = 100,000 × i are given separately for changing i. We
will use these notations for arbitrary functions.

For the functions from [76], the following notation is used: the Diagonal 9 function:
(Diagonal9); the LIARWHD function (CUTE): (LIARWHD); the Quadratic QF2 function:
(QF2); the DIXON3DQ function (CUTE): (DIXON3DQ); the TRIDIA function (CUTE):
(TRIDIA); the Extended White and Holst function: (WHolst); and the Raydan 1 function:
(Raydan1).

As a result for the methods, we will use it—the number of iterations, nfg—the number
of functions and gradient calculations necessary to solve the problem with a given stopping
criterion for a specific function.

Preliminarily, based on an experiment on some of the above functions, we study the
dependence of Algorithm 3 (sub, subg, and sub0), using Formulas (46) or (47), on the
parameter εp chosen from the set εp ∈

{
0.5; 0.1; 10−3; 10−4; 10−8; 10−15 }. The results for

the costs (nfg—the number of calculations of the function and the gradient) are given in
Table 1.

Table 1. Results of S1 calculations for Algorithm 3 with different values of εp parameters.

Function Method αk = 0 εp
0.5 10−1 10−3 10−4 10−8 10−15

Diagonal9 sub 25,194 15,666 12,396 11,627 11,627 11,627 11,627
Diagonal9 subg 25,194 24,494 12,678 11,627 11,627 11,627 11,627
f1 sub 12,451 9347 9298 9298 9298 9298 9298
f1 subg 12,451 9316 9298 9298 9298 9298 9298
fNR sub 64,051 17,740 17,749 17,749 17,749 17,749 17,749
fNR subg 64,051 17,803 17,749 17,749 17,749 17,749 17,749
f2 sub 291,378 103,681 103,600 103,600 103,600 103,600 103,600
f2 subg 291,378 103,518 103,618 103,618 103,618 103,618 103,618

When αk = 0, the methods spend significantly more computations of the function and
gradient. When αk = 1, the method is not operational due to unplanned stops. Therefore,
these variants are not considered during testing. According to the results of Table 1, starting
from εp = 10−3, the results stabilize and are almost always the best. In further studies,
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we used εp = 10−8, which reflects some geometric mean of the effective interval for both
methods (46) and (47). Given the equivalence of the sub and subg methods, we carried out
subsequent studies with only one of them for a given objective function.

The results for the first group of tests are presented in Table 2. The cell shows the
number of iterations (upper number) and the number of function and gradient evaluations
(lower number).

Table 2. Results for the first group of tests (upper number is the number of iterations, lower number
is the number of function and gradient evaluations).

Function Method S1 S2 T1 T2 T3 T4 T5

f1 subg 5512
9308

6141
10,442

728
1189

747
1229

754
1268

760
1312

766
1343

f1 subgm 4679
9426

5759
11,603

713
1438

730
1472

740
1492

748
1508

753
1519

f1 sgrPOL 5319
10,706

5985
12,055

713
1438

730
1472

740
1492

748
1508

753
1519

f1 sgrFR 4673
9414

5756
11,597

713
1438

730
1472

740
1492

748
1508

753
1519

f1 sgr - - 1515
2373

1580
2484

1597
2525

1626
2591

1647
2624

f1 AMMI 4980 6347 713 730 740 748 753

f2 subg 144,036
288,123

153,651
307,413

20,148
40,345

58,196
116,463

58,978
118,043

59,758
119,604

59,481
119,063

f2 AMMI 42,382 94,278 24,563 35,788 31,395 33,517 41,528

For example, part of the calculations on function f 1 was carried out for the sgr method,
which is the sgrFR method with the one-dimensional OM procedure. The results here are
two times worse than for sgrFR, and for other functions, it was sometimes not possible
to solve the problem. This result is presented in order to emphasize the effectiveness of
choosing the descent direction in the new method, where, in contrast to the CGM, it is
possible to obtain a rapidly converging method for inexact one-dimensional descent, which
is important when solving non-smooth minimization problems. To solve smooth problems,
there are many efficient variants of the CGM.

Here, we should note the quality of the descent direction of the new method. With
inexact one-dimensional descent, the subg cost is less than that of the sgrFR method. The
method proposed in the paper is stable with both minimization procedures, and its results are
almost equivalent to the results of the sgrFR method, which is a finite method for minimizing
quadratic functions. In this case, the sgrFR method acts as a reference method. Since the
results for other CGMs on this function are completely identical, we do not present them here.

On a non-smooth function, the AMMI method [10] acts as a reference, in which only
one calculation of the function and gradient is required at each iteration. As follows
from the results of Table 2, the number of iterations on large-dimensional functions differs
insignificantly. The running cost of calculating the function and the gradient in the transition
from a smooth quadratic function to a non-smooth one for functions at n = 500,000 with
equal proportions of the level line elongation for these methods is 119,063/1343 = 88.65
for the subg method, and 41,528/753 = 55.15 for the AMMI method. Considering that the
conditions here are ideal for the AMMI method, since the minimum value of the function
and its degree of homogeneity is known, and the calculations were carried out for functions
at high dimensionalities, such a result for the subg method can be considered excellent.

The minimization results for the second group of tests are given in Table 3.
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Table 3. Results for the second group of tests (upper number is the number of iterations, lower
number is the number of function and gradient evaluations).

Function Method S1 S2 T1 T2 T3 T4 T5

fGW subg 813
2397

889
2669

102
306

112
348

177
567

224
224

134
421

fGW subgm 223
568

199
533,

20
51

26
71

27
73

22
60

19
49

fGW sgrFR 772
1643

794
1705

55
125

53
121

41
97

48
109

42
97

fNW subg 226,786
454,889

247,632
497,799

33,801
68,149

29,192
58,640

33,209
66,776

33,784
67,926

34,230
68,818

fGR subg 1365
2313

3927
6594

1823
3168

2546
4431

3318
5826

3610
6333

3883
6808

fGR subgm 1664
3394

4898
9879

2491
4994

3232
6674

4449
8909

4356
8725

5089
10,191

fGR sgrFR 1372
2803

4432
8938

2813
5637

3994
7999

4086
8003

6059
12,131

4422
8855

fNR subg 31,592
63,235

34,625
69,341

38,959
77,939

39,706
79,436

40,009
80,047

40,203
80,439

40,591
81,213

On smooth variants of functions, the subgm and subg methods are commensurate with
sgrFR in terms of the cost of calculating the number of functions and gradient values. There-
fore, taking into account these and previous tests, along with the CGM, when minimizing
smooth functions, these methods can be used.

The subg method also handles non-smooth variants of functions (function fNW is
non-smooth and non-convex).

The minimization results for the third group of smooth test functions are given in
Table 4. A dash means that no calculations were made. The sign NaN marks the problems
that could not be solved by this method.

Table 4. Results for the third group of tests (upper number is the number of iterations, lower number
is the number of function and gradient evaluations).

Function Method S1 S2 T1 T3 T5

Diagonal9 sgrFR 23,431
46,941

83,952
167,999

9322
18,660

31,151
62,317

48,236
97,511

Diagonal9 sgrPOL 9714
19,518

10,743
21,590

2912
5841

5805
11,626

6642
13,304

Diagonal9 sgrHS 5554
11,190

10,806
21,715

3221
6459

6396
12,812

6640
13,300

Diagonal9 sgrDY 9343
18,763

41,835
83,766

9409
18,834

20,408
40,830 NaN

Diagonal9 subm 4872
9817

9768
19,629

3931
7889

7262
14,553

10,083
20,197

Diagonal9 sub 5912
11,627

10,345
19,324

4318
7668

9214
16,589

10,866
19,781

LIARWHD sgrFR 1244
2569

947
1996

72,001
144,015

7412
14,836

146
306

LIARWHD sgrPOL 207
485

247
587

52
121

31
74

80
173

LIARWHD sgrHS 166
404

183
462

32
76

21
53

17
47

LIARWHD sgrDY 1275
2629

1069
2239

210
435

176
364

182
378

LIARWHD subm 228
544

269
640

24
64

30
75

37
87

LIARWHD sub 644
1325

719
1498 - - -

Quadratic QF2 sgrFR 14,320
28,677

28,988
58,022

11,233
22,473

13,222
26,452

29,820
59,648
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Table 4. Cont.

Function Method S1 S2 T1 T3 T5

Quadratic QF2 sgrPOL 2104
4246

6546
13,139

3196
6399

7056
14,120

8392
16,792

Quadratic QF2 sgrHS 2161
4359

6574
13,195

5706
11,420

6096
12,200

11,337
22,683

Quadratic QF2 sgrDY 5231
10,494

48,603
97,248

72,001
144,009

31,542
63,092

36,438
72,884

Quadratic QF2 subm 4161
8360

13,920
27,890

4687
9382

15,664
31,337

21,891
43,792

Quadratic QF2 sub 2453
4227

6656
11,227

3156
5304

4977
8247

7496
12,540

DIXON3DQ sgrFR 2750
5538

25,800
51,645

50,001
100,008 - -

DIXON3DQ sgrPOL 2750
5538

25,800
51,645

50,001
100,008 - -

DIXON3DQ sgrHS 2750
5538

25,800
51,645

50,001
100,008 - -

DIXON3DQ sgrDY 2750
5538

25,800
51,645

50,001
100,008 - -

DIXON3DQ subm 2750
5538

25,800
51,645

50,001
100,008 - -

DIXON3DQ sub 13,179
22,335

249,981
417,396 NaN - -

TRIDIA sgrFR 2390
4815

7190
14,424

3746
7499

6539
13,086

8470
16,949

TRIDIA sgrPOL 2392
4819

7191
14,426

3746
7499

6539
13,086

8470
16,949

TRIDIA sgrHS 2389
4813

7189
14,422

3746
7499

6539
13,086

8469
16,947

TRIDIA sgrDY 2395
4825

7192
14,428

3747
7501

6539
13,086

8470
16,949

TRIDIA subm 2397
4829

7197
14,438

3747
7501

6540
13,088

8470
16,949

TRIDIA sub 4413
7405

16,905
28,169

11,922
19,700

23,467
38,984

32,270
53,801

WHolst sgrFR 1429
2957

1624
3365

65
145

61
137

49
111

WHolst sgrPOL 220
548

240
587

23
59

22
56

26
62

WHolst sgrHS 190
483

192
485

25
64

22
58

16
43

WHolst sgrDY 676
1461

594
1310

52
120

387
789

63
138

WHolst subm 268
659

235
605

27
65

34
87

23
57

WHolst sub 254
616

270
664

108
226

179
419

289
661

Raydan1 sgrFR 1708
3475

5863
11,800

4013
8037

10,548
21,109

9273
18,558

Raydan1 sgrPOL 1691
3442

4906
9887

2533
5077

4489
8989

5807
11,626

Raydan1 sgrHS 1731
3524

4871
9818

2593
5198

4501
9012

8041
16,097

Raydan1 sgrDY 2371
4803

6321
12,717

6104
12,219 NaN NaN

Raydan1 subm 2100
4266

6475
13,033

3541
7094

6748
13,507

8101
16,215

Raydan1 sub 1722
3032

5756
9876

3153
5432

6175
10,918

9552
17,070

Based on the results for this group of tests, we can conclude that subm and sub methods
are applicable for minimizing smooth large-scale functions.

In general, the following conclusions can be drawn from the results of the experiment:

1. The choice of the parameters of the method, which ensures its stable operation, is
carried out.
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2. On tests with known parameters of level surface elongation, the behavior of the method
and its comparison with other methods, confirming its effectiveness, were studied.

3. The method was studied on non-smooth, including non-convex, functions.
4. On commonly accepted tests of smooth functions, the method was compared with

variants of the CGM, which enables us to conclude that it is applicable along with the
CGM for minimizing smooth functions.

8. Conclusions

In our work, we proposed a family of iterative methods for solving systems of inequal-
ities, which are generalizations of the previously proposed algorithms. The developed
methods were substantiated theoretically and the estimates of their convergence rate were
obtained. On this basis, a family of relaxation subgradient minimization algorithms was
formulated and justified, which is applicable to solving non-convex problems as well.

According to the properties of convergence on quadratic functions of high dimension,
with large spreads of eigenvalues, the developed algorithm is equivalent to the conjugate
gradient method. The new method enables us to solve non-smooth non-convex large-scale
minimization problems with a high degree of elongation of level surfaces.
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