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Abstract: In a soft environment, we investigated several (classical) structures such as ideals, filters,
grills, etc. It is well known that these structures are applied to expand abstract concepts; in addition,
some of them offer a vital tool to address some practical issues, especially those related to improving
rough approximation operators and accuracy measures. Herein, we contribute to this line of research
by presenting a novel type of soft structure, namely “soft primal”. We investigate its basic properties
and describe its behaviors under soft mappings with the aid of some counterexamples. Then, we
introduce three soft operators (·)�, Cl� and (·)� inspired by soft primals and explore their main
characterizations. We show that Cl� satisfies the soft Kuratowski closure operator, which means
that Cl� generates a unique soft topology we call a primal soft topology. Among other obtained
results, we elaborate that the set of primal topologies forms a natural class in the lattice of topologies
over a universal set and set forth some descriptions for primal soft topology under specific types of
soft primals.

Keywords: soft primal; soft grill; primal soft topology; soft base; soft Kuratowski’s closure
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1. Introduction

The initial phase of the soft sets was diagnosed by Molodtsov [1]. The hypothesis of
Molodtsov’s soft set theory has attracted broad consideration from many distinguished
researchers and intellectuals since it overcomes the drawbacks of traditional mathematical
tools and has great application superiority in coping with uncertainties [2,3]. After suc-
cessfully introducing the notion of soft sets, the soft sets were modified and hybridized to
fuzzy soft sets, soft rough sets, and recently (a, b)-fuzzy soft sets.

Soft set theory has been applied to a variety of mathematical structures, including soft
group theory [4], soft ring theory [5], soft category theory [6], soft algebra [7,8], and so on. In
2011, two methodologies to define soft topology were displayed by Shabir and Naz [9] and
Çaǧman et al. [10]. They differ in the manners of choosing the sets of parameters. Herein,
we follow Shabir and Naz’s approach, which imposed that a set of parameters must be
constant for all soft open sets that produce a soft topology. Following Shabir and Naz’s work,
many researchers and intellectuals constructed a soft version for the classical topological
concepts and notions. For instance, soft separation axioms [11], soft separable spaces [11],
soft connected spaces [12], soft compact spaces [13], soft paracompact spaces [12], soft
extremally disconnected spaces [14], generalizations of soft open subsets [15,16], Vietoris
topology [17], metric spaces [18], and soft Menger spaces [19].

By dropping a certain (part of an) axiom of soft topology, a new (weak) structure can
be established. For example, El-Sheikh and Abd El-Latif [20] came up with the idea of
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supra soft topological spaces by dismissing the finite intersection axiom of a soft topology.
Thomas and John [21] weakened supra soft topological spaces by establishing the concept
of soft generalized topological spaces, which is the family of soft sets that satisfy an
arbitrary union condition of a soft topology. Al-shami [22] introduced the idea of infra soft
topological spaces by ignoring the union axiom of a soft topology. Therefore, this route
attracted a large number of researchers who investigated important principles in the latter
soft structures; for more details, see [23–26].

Another fruitful area of study is how to construct soft topologies over a common
universal set. Terepeta [27] provided two exceptional techniques to generate soft topologies
from crisp topologies. The soft topology constructed using one of the methods is therefore
equal to the enriched soft topology, as demonstrated by Al-shami in [28]. The formulas
provided by Terepeta were refined by Alcantud [29] such that it is now possible to generate
a soft topology from a system of crisp topologies. Ameen and Al Ghour [30] introduced the
so-called soft simple extension of a soft topology. The simple extended soft topology with
respect to a soft topology and a soft set is generated by their (soft) union. Kandil et al. [31]
introduced the concept of ∗-soft topological spaces, which are a mix of soft topological and
soft algebraic structures. The ∗-soft topology is generated by an old soft topology with the
help of a soft ideal. The ∗-soft topologies can be called ideal soft topologies. Likewise, the
concept of soft topology via soft grills appeared in [32]. In this direction, we define the
concept of primal soft topology. This soft topology is constructed via the soft Kuratowski
closure operator with respect to a primal soft topological space. Primal soft topologies are
a natural generalization of the primal crisp topologies established in [33]. Some operators
of primal topological spaces were introduced by Al-Omari et al. [34].

The first reason that we wrote this article is to present a new type of soft structure that
enriches studies on soft settings by creating novel frameworks that allow us to establish new
soft concepts and properties. Second, we generate a new way to produce soft topology inspired
by some soft operators. Finally, we confirm the importance of the soft environments to provide
several sorts of analogs for every classical concept. That is, one can exploit the different types of
belonging relationships between ordinary points and soft sets to define various kinds of soft
operators and then generate some types of soft topologies.

This work is displayed as follows. Following this introduction, we review the def-
initions and conclusions required to comprehend the information in Section 2. Then, in
Section 3, we define the concept of the soft primal and show that soft primals and soft grills
are complementary notions. The basic operations on soft primals are studied. In Section 4,
we give the definition of a primal soft topological space followed by a soft topological
operator �. Then, we study the main properties of �. In addition, we define another soft
operator called Cl� with the help of � and show that Cl� is the soft Kuratowski closure
operator. This means that Cl� generates a unique soft topology, which we call a primal soft
topology. The fundamental properties of primal soft topologies are investigated. We close
Section 4 by defining a soft operator (·)� and elucidate its essential features. Finally, in
Section 5, we summarize the main contributions and offer some suggestions for the future.

2. Preliminaries

Definition 1 ([1]). A soft set over a nonempty set Y is a set-valued function F from a nonempty set of
parameters ∆ to the power set 2Y of Y; it is denoted by the ordered pair (F, ∆). That is, a soft set (F, ∆)
over Y 6= ∅ provides a parameterized collection of subsets of Y, so it may represented as follows:

(F, ∆) = {(λ, F) : λ ∈ ∆ and F(λ) ∈ 2Y};

where each F(λ) is termed a λ-component of (F, ∆). We denote the family of all soft sets over Y
with a set of parameters ∆ by S(Y∆).

Throughout this manuscript, (F, ∆), (G, ∆) denote soft sets over Y.

Definition 2 ([35–37]). A soft set (F, ∆) is as follows:
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(i) Absolute, symbolized by Ỹ, if F(λ) = Y for all λ ∈ ∆.

(ii) Null, symbolized by φ̃, if F(λ) = ∅ for all λ ∈ ∆.

(iii) A soft point if there are λ ∈ ∆ and y ∈ Y with F(λ) = {y} and F(µ) = ∅ for all
µ ∈ ∆− {λ}. A soft point is briefly denoted by yλ. We write yλ ∈ (F, ∆) if y ∈ F(λ).

Definition 3 ([9,35]). We call (F, ∆) a soft subset of (G, ∆) (or (G, ∆) a soft superset of (G, ∆)),
symbolized by (F, ∆)⊆̃(G, ∆) if F(λ) ⊆ G(λ) for each λ ∈ ∆.

Definition 4 ([35]). If G(λ) = Y − F(λ) for all λ ∈ ∆, then we call (G, ∆) a complement of
(F, ∆). The complement of (F, ∆) is symbolized by (F, ∆)c = (Fc, ∆).

Definition 5 ([13,35]). Let (F, ∆) and (G, ∆) be soft sets. Then, the concepts of soft union, soft
intersection, soft difference, and soft product are given respectively by

(i) (F, ∆)
⋃̃
(G, ∆) = (H, ∆), where H(λ) = F(λ)

⋃
G(λ) for all λ ∈ ∆.

(ii) (F, ∆)
⋂̃
(G, ∆) = (H, ∆), where H(λ) = F(λ)

⋂
G(λ) for all λ ∈ ∆.

(iii) (F, ∆) \ (G, ∆) = (H, ∆), where H(λ) = F(λ) \ G(λ) for all λ ∈ ∆.

(iv) (F, ∆)× (G, ∆) = (H, ∆), where H(λ1, λ2) = F(λ1)× G(λ2) for all (λ1, λ2) ∈ ∆× ∆.

Definition 6 ([38]). A soft set (F, ∆) is called finite (or countable) if F(λ) is finite (or countable)
for each λ ∈ ∆. Otherwise, it is called infinite (or uncountable).

The adjusted version of the definition of soft functions is given in the following.

Definition 7 ([39]). Let h : Y → Z and π : ∆ → P be crisp functions. A soft function hπ of
S(Y∆) into S(ZP) is a relation such that each yλ ∈ S(Y∆) is related to one and only one zp ∈ S(ZP)
such that

hπ(yλ) = h(y)π(λ) for all yλ ∈ S(Y∆).

In addition, h−1
π (zp) =

⋃̃
y∈h−1(z)
λ∈π−1(p)

yλ for each zp ∈ S(ZP).

We describe a soft function as injective (or surjective, bijective) if both of its crisp
functions obey this property.

Proposition 1 ([40]). Let hπ : S(Y∆) → S(ZP) be a soft function and let (F, ∆) ∈ S(Y∆) and
(G, ∆) ∈ S(ZP). Then

(i) (F, ∆)⊆̃h−1
π (hπ(F, ∆)).

(ii) If hπ is injective, then (F, ∆) = h−1
π (hπ(F, ∆)).

(iii) hπ(h−1
π (G, P))⊆̃(G, P).

(iv) If hπ is surjective, then hπ(h−1
π (G, P)) = (G, P).

Definition 8 ([9,10]). A subfamily Θ of S(Y∆) is named a soft topology on Y if it obeys the next
stipulations:

(i) Ỹ and φ̃ are elements of Θ.

(ii) Θ is closed under finite soft intersections.

(iii) Θ is closed under arbitrary soft unions.

The notation (Y, Θ, ∆) is named a soft topological space (briefly, STS). A soft set belonging to
Θ is named soft open, and it is named soft closed if its complement is soft open. The family of all
soft closed sets in Y is denoted by Θc. For yλ ∈ Ỹ, the family of all members of Θ containing yλ is
denoted by Θ(yλ).
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Definition 9 ([41]). A soft subset (N, ∆) of an STS (Y, Θ, ∆) is called a soft neighborhood of a soft
point yλ provided that there exists (G, ∆) ∈ Θ such that yλ ∈ (G, ∆)⊆̃(N, ∆).

Definition 10 ([42]). Let F⊆̃S(Y∆) and let {(Y, Θi, ∆) : i ∈ I} be an indexed family of STSs
on Y with an arbitrary index I such that F⊆̃Θi. Then,

⋂̃
i∈IΘi is called the soft topology on Y

generated by F .

Definition 11 ([9]). The soft closure of a soft set (B, ∆) in a STS (Y, Θ, ∆) is defined by

Cl(B, ∆) =
⋂̃{

(F, ∆) : (B, ∆)⊆̃(F, ∆), (F, ∆) ∈ Θc}.

Definition 12 ([43]). A mapping c : S(Y∆)→ S(Y∆) is called a soft (Kuratowski) closure operator
on X if it meets the following conditions for any (F, ∆), (G, ∆) ∈ S(Y∆):

(C1) c(φ̃) = φ̃.

(C2) (F, ∆)⊆̃c(F, ∆).

(C3) c(c(F, ∆)) = c(F, ∆).

(C4) c
(
(F, ∆)∪̃(G, ∆)

)
= c(F, ∆)∪̃c(G, ∆).

Definition 13 ([44]). A subfamily I of S(Y∆) is said to be a soft ideal on Y if it obeys the following
postulates:

(i) If (F, ∆), (G, ∆) ∈ I , then (F, ∆)∪̃(G, ∆) ∈ I .

(ii) If (G, ∆) ∈ I and (F, ∆)⊆̃(G, ∆), then (F, ∆) ∈ I .

Definition 14 ([32]). A subfamily F of S(Y∆) is said to be a soft grill on Y if it satisfies the
following postulates:

(i) φ̃ /∈ F .

(ii) If (G, ∆) ∈ F and (G, ∆)⊆̃(H, ∆), then (H, ∆) ∈ F . That is, F is closed under soft superset
relation.

(iii) If (G, ∆)∪̃(H, ∆) ∈ F , then (G, ∆) ∈ F or (H, ∆) ∈ F .

3. Soft Primal

This segment is allocated to display a novel structure in soft settings, namely soft
primal. The basic characteristics of this structure are demonstrated, and its behavior under
soft functions is described with an elucidative instance.

Definition 15. A subfamily F of S(Y∆) is said to be a soft primal on Y if it satisfies the following
postulates:

(i) Ỹ /∈ F .

(ii) If (G, ∆) ∈ F and (H, ∆)⊆̃(G, ∆), then (H, ∆) ∈ F . That is, F is closed under soft subset
relation.

(iii) If (G, ∆)∩̃(H, ∆) ∈ F , then (G, ∆) ∈ F or (H, ∆) ∈ F .

The next result is easy to prove.

Proposition 2. A subfamily F of S(Y∆) is a soft primal on Y if and only if the following conditions
are satisfied.

(i) Ỹ 6∈ F .

(ii) If (G, ∆) 6∈ F and (G, ∆)⊆̃(H, ∆), then (H, ∆) 6∈ F .

(iii) If (G, ∆) 6∈ F and (H, ∆) 6∈ F , then (G, ∆)∩̃(H, ∆) 6∈ F .
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Theorem 1. If F1 and F2 are two soft primals on Y, then F1 ∪ F2 is a soft primal on Y.

Proof. First, let F1 and F2 be two soft primals on Y. Then Ỹ 6∈ F1 and Ỹ 6∈ F2. So
that Ỹ 6∈ F1 ∪ F2. Second, suppose that (V, ∆) ∈ F1 ∪ F2 and let (U, ∆)⊆̃(V, ∆). Then,
(V, ∆) ∈ F1 or (V, ∆) ∈ F2. This automatically leads to that (U, ∆) ∈ F1 or (U, ∆) ∈ F2. So
(U, ∆) ∈ F1 ∪ F2. Third, let (U, ∆), (V, ∆) be soft subsets such that (U, ∆)∩̃(V, ∆) ∈ F1 ∪
F2. Then, (U, ∆)∩̃(V, ∆) ∈ F1 or (U, ∆)∩̃(V, ∆) ∈ F2. This implies that (U, ∆) ∈ F1 ∪ F2
or (V, ∆) ∈ F1 ∪ F2, as required.

The next example elaborates that the class of soft primals on a set Y is not closed under
the intersection operator in general.

Example 1. Let Y = {y} and ∆ = {δ1, δ2}. Then F1 = {φ̃, {(δ1, ∅), (δ2, {y})}} and F2 =
{φ̃, {(δ1, {y}), (δ2, ∅)}} are two soft primals on a set Y with ∆. Now, F1 ∩ F2 = {φ̃} is not
a soft primal because {(δ1, ∅), (δ2, {y})}∩̃{(δ1, {y}), (δ2, ∅)} = φ̃ ∈ F1 ∩ F2. But neither
{(δ1, ∅), (δ2, {y})} ∈ F1 ∩ F2 nor {(δ1, {y}), (δ2, ∅)} ∈ F1 ∩ F2.

Theorem 2. If G is a soft grill on Y, then the family F = {(H, ∆) : (Hc, ∆) ∈ G} is a soft primal
on Y.

Proof. First, it is obvious that φ̃ 6∈ G, so Ỹ 6∈ F . Second, let (V, ∆) ∈ F , and take any
soft subset (U, ∆) of (V, ∆). By the way of building F , we have (Vc, ∆) ∈ G. Since
(Vc, ∆)⊆̃(Uc, ∆), it follows from the definition of the soft grill that (Uc, ∆) ∈ G. This
automatically means that (U, ∆) ∈ F . Third, let (U, ∆), (V, ∆) be soft subsets such that
(U, ∆)∩̃(V, ∆) ∈ F . Then, (Uc, ∆)∪̃(Vc, ∆) ∈ G. Therefore, (Uc, ∆) ∈ G or (Vc, ∆) ∈ G.
Thus, (U, ∆) ∈ F or (V, ∆) ∈ F . Hence, we get the desired result.

Corollary 1. If G is a soft primal on Y, then the family F = {(H, ∆) : (Hc, ∆) ∈ G} is a soft
grill on Y.

Now, we discuss the condition under which primal structures navigate between soft
and classical settings.

First, we provide the next example to elucidate that Fδ = {F(δ) : (F, ∆) ∈ F},
inspired by a soft primal F , does not institute a (crisp) primal for any fixed parameter
δ ∈ ∆.

Example 2. Let Y = {y, z} and ∆ = {δ1, δ2}. Consider the following soft sets:
(F1, ∆) = {(δ1, ∅), (δ2, {y})};
(F2, ∆) = {(δ1, ∅), (δ2, {z})};
(F3, ∆) = {(δ1, {y}), (δ2, ∅)};
(F4, ∆) = {(δ1, {z}), (δ2, ∅)};
(F5, ∆) = {(δ1, {z}), (δ2, {z})};
(F6, ∆) = {(δ1, {y}), (δ2, {z})};
(F7, ∆) = {(δ1, Y), (δ2, ∅)};
(F8, ∆) = {(δ1, ∅), (δ2, Y)};
(F9, ∆) = {(δ1, Y), (δ2, {z})}; and
(F10, ∆) = {(δ1, {z}), (δ2, {y})}.
Then, F = {φ̃, (Fi, ∆) : i = 1, 2, . . . , 9} is a soft primal on a set Y with ∆. We obtain Fδ1 =
Fδ2 = 2Y. Obviously, Fδ1 and Fδ2 are not (crisp) primal because Y belongs to both of them.

Theorem 3. Let F be a soft primal on a set Y with a set of parameters Ω. Then,

Fδ = {F(δ) : (F, ∆) ∈ F} \ {Y}

is a (crisp) primal on Y for any fixed parameter δ ∈ ∆.
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Proof. It is clear that Y 6∈ Fδ. Let A ∈ Fδ and take any subset B of A. Then, there exists
a soft subset (G, ∆) in F such that G(δ) = A. Now, a soft set (H, ∆), given by H(δ) = B
and H(δ∗) = ∅ for each δ∗ 6= δ, is a soft subset of (G, ∆), so (H, ∆) ∈ F . This means that
H(δ) = B ∈ Fδ. Thus, Fδ is closed under a subset relation. Finally, let A ∩ B ∈ Fδ. Then,
there exists a soft subset (W, ∆) in F such that W(δ) = A ∩ B. Note that there exist soft
subsets (U, ∆) and (V, ∆) such that U(δ) = A, U(δ) = B and U(δ∗) = V(δ∗) = W(δ∗)
for each δ∗ 6= δ. That is, (W, ∆) = (U, ∆)∩̃(V, ∆), so (U, ∆) ∈ F or (V, ∆) ∈ F . This
automatically leads to A ∈ Fδ or B ∈ Fδ. Hence, the proof is complete.

We close this section by showing how the soft primal behaves under soft mappings.

Remark 1. Let hπ : S(Y∆)→ S(ZΩ) be a soft mapping and G be a soft primal on Z with a set of
parameters Ω. The class {h−1

π (G, Ω) : (G, Ω) ∈ G} need not be a soft primal on Y with a set of
parameters ∆ in general. The next example confirms this fact.

Example 3. Let Y = {y1, y2} with a set of parameters ∆ = {δ1, δ2}, and Z = {z1, z2} with a set
of parameters Ω = {ω1, ω2}. Now consider the mappings h : Y → Z and π : ∆→ Ω are defined
as follows

h(y) = z1 for each y ∈ Y; and π(δi) = ωi for each δi ∈ ∆

Let G = S(ZΩ) \ {Z̃} be a soft primal on Z with Ω. Now, (F, Ω) = {(ω1, {z1}), (ω2, {z1})}
be a soft set in G, so {h−1

π (G, Ω) : (G, Ω) ∈ G} is not a soft primal on Y with ∆ because
h−1

π (F, Ω) = Ỹ, which is not a member of any soft primal on Y with ∆.

Theorem 4. Let hπ : S(Y∆) → S(ZΩ) be an injective soft mapping. If G is a soft primal on Z
with a set of parameters Ω, then the class Ψ = {h−1

π (G, Ω) : (G, Ω) ∈ G} \ {Ỹ} is a soft primal
on Y with a set of parameters ∆.

Proof. According to the way of building Ψ, Ỹ 6∈ Ψ, let (W, ∆) be a non-null soft set in
Ψ. Then, there exits a soft subset (G, Ω) in G such that (W, ∆) = h−1

π (G, Ω) 6= Ỹ. Take
any soft subset (U, ∆) of h−1

π (G, Ω), we obtain hπ(U, ∆)⊆̃hπ(h−1
π (G, Ω))⊆̃(G, Ω). This

means that hπ(U, ∆) ∈ G, and by the injectiveness of hπ , we get h−1
π (hπ(U, ∆)) = (U, ∆),

i.e., (U, ∆) is a proper soft subset of Ỹ. Thus, (U, ∆) ∈ Ψ, which means that Ψ is closed
under subset relation. Finally, let (U, ∆)∩̃(V, ∆) be an element of Ψ. This implies that
there exists (H, Ω) ∈ G such that (U, ∆)∩̃(V, ∆) = h−1

π (H, Ω) 6= Ỹ. By the injectiveness
of hπ , we get hπ(U, ∆)∩̃hπ(V, ∆) = hπ(h−1

π (H1, Ω))⊆̃(H, Ω), which automatically means
that hπ(U, ∆)∩̃hπ(V, ∆) ∈ G. By the third condition of the soft primal, hπ(U, ∆) ∈ G or
hπ(V, ∆) ∈ G. Again, by the injectiveness of hπ we get h−1

π (hπ(U, ∆)) = (U, ∆) 6= Ỹ or
h−1

π (hπ(V, ∆)) = (V, ∆) 6= Ỹ. Thus, h−1
π (hπ(U, ∆)) ∈ Ψ or h−1

π (hπ(V, ∆)) ∈ Ψ, which ends
the proof.

Corollary 2. Let hπ : S(Y∆)→ S(ZΩ) be a bijective soft mapping. If G is a soft primal on Z with
a set of parameters Ω, then the class Ψ = {h−1

π (G, Ω) : (G, Ω) ∈ G} is a soft primal on Y with
a set of parameters ∆.

Proof. Since hπ is surjective, h−1
π (H, Ω) = Ỹ iff (H, Ω) = Z̃. This means that Z̃ 6∈ G, so

Ỹ 6∈ Ψ. The second and third stipulations of the soft primal are derived following a similar
argument to the above proof.

It is easy to prove the proposition below.

Proposition 3. Let hπ : S(Y∆) → S(ZΩ) be a bijective soft mapping. If G is a soft primal on Y
with a set of parameters ∆, then the class Ψ = {hπ(G, Ω) : (G, Ω) ∈ G} is a soft primal on Z
with a set of parameters Ω.
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4. Primal Soft Topology

Herein, we first initiate the concept of primal soft topological spaces. Then, we
define a soft operator (·)� using the elements of the soft topology and soft primal. We
scrutinize its essential characterizations and infer some of its relationships associated with
soft topological closure operators. Afterwards, we introduce a soft operator Cl� inspired by
the previous soft operator (·)� and apply this to produce a new soft topology (called primal
soft topology) finer than the original soft topology. Finally, we display a soft operator (·)�
and elucidate its essential features.

Definition 16. The quadruple (Y, Θ, ∆,F ) is said to be a primal soft topological space (briefly,
PSTS), where (Y, Θ, ∆) is a soft topological space and F is a soft primal on Y.

Definition 17. Let (Y, Θ, ∆,F ) be a PSTS. Then, a soft mapping (·)� : S(Y∆)→ S(Y∆) is defined
as follows, (G, ∆)�(Y, Θ, ∆,F ) = {yλ ∈ Ỹ : (Gc, ∆)∪̃(Uc, ∆) ∈ F for each (U, ∆) ∈ Θ(yλ)}
for each soft subset (G, ∆). In brief, we write (G, ∆)� or (G, ∆)�F instead of (G, ∆)�(Y, Θ, ∆,F ).

The next example elucidates that the properties (G, ∆)�⊆̃(G, ∆) and (G, ∆)⊆̃(G, ∆)�

are false in general.

Example 4. Take a soft primal F displayed in Example 2 and let Θ = {φ̃, Ỹ, (F6, ∆), (F10, ∆)} be
a soft topology on a set Y with ∆. One can check that (F6, ∆)˜6⊆(F6, ∆)� = φ̃. On the other hand,
(F1, ∆)� = (F10, ∆)˜6⊆(F1, ∆).

In the following theorem, we provide the main properties of a soft mapping (·)�,
which will be helpful to prove some results given later.

Theorem 5. Let (F, ∆) and (G, ∆) be soft subsets of a PSTS (Y, Θ, ∆,F ). Then, the next state-
ments hold true.

(i) φ̃� = φ̃.

(ii) Cl((F, ∆)�) = (F, ∆)�.

(iii) If (Fc∆) /∈ F , then (F, ∆)� = φ̃.

(iv) If (F, ∆) ∈ Θc, then (F, ∆)�⊆̃(F, ∆).

(v) If (F, ∆)⊆̃(G, ∆), then (F, ∆)�⊆̃(G, ∆)�.

(vi) ((F, ∆)�)�⊆̃(F, ∆)�.

(vii) [(F, ∆)∪̃(G, ∆)]� = (F, ∆)�∪̃(G, ∆)�.

(viii) [(F, ∆)∩̃(G, ∆)]�⊆̃(F, ∆)�∩̃(G, ∆)�.

Proof.

(i) Since φ̃c∪̃(F, ∆) = Ỹ for any soft set (F, ∆) and Ỹ /∈ F , so φ̃� shall be null.

(ii) If yλ ∈ Cl((F, ∆)�) and any (H, ∆) ∈ Θ(yλ), then (F, ∆)�∩̃(H, ∆) 6= φ̃. One find zµ ∈ Ỹ
such that zµ ∈ (F, ∆)�∩̃(H, ∆). Therefore, (Fc, ∆)∪̃(Wc, ∆) ∈ F for all (W, ∆) ∈ Θ(zµ).
This means that (Fc, ∆)∪̃(Hc, ∆) ∈ F and so yλ ∈ (F, ∆)�. Hence, Cl((F, ∆)�)⊆̃(F, ∆)�.
The reverse of the inclusion is always true. Thus, Cl((F, ∆)�) = (F, ∆)�.

(iii) Suppose otherwise that there exists yλ ∈ Ỹ such that yλ ∈ (F, ∆)�. Then, (Fc, ∆)∪̃(Hc, ∆) ∈
F for each (H, ∆) ∈ Θ. However, since (Fc∆) /∈ F , by Proposition 2, (Fc, ∆)∪̃(Hc, ∆) ∈
F for some (H, ∆) ∈ Θ—a contradiction. Thus, (F, ∆)� = φ̃.

(iv) Suppose that (F, ∆) ∈ Θc. Let yλ ∈ (F, ∆)�. Assume yλ /∈ (F, ∆). Then (Fc, ∆) ∈
Θ(yλ). Since yλ ∈ (F, ∆)�, so (Fc, ∆)∪̃(Hc, ∆) ∈ F for each (H, ∆) ∈ Θ(yλ). This
concludes that Ỹ = (F, ∆)∪̃(Fc, ∆) = ((Fc)c, ∆)∪̃(Fc, ∆) ∈ F , a contradiction. Thus,
(F, ∆)�⊆̃(F, ∆).
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(v) Assume that (F, ∆)⊆̃(G, ∆). If yλ ∈ (F, ∆)�, then (Fc, ∆)∪̃(Hc, ∆) ∈ F for all (H, ∆) ∈
Θ(yλ). Since (F, ∆)⊆̃(G, ∆), so (Gc, ∆)∪̃(Hc, ∆) ∈ F . Hence, yλ ∈ (G, ∆)� and thus,
(F, ∆)�⊆̃(G, ∆)�.

(vi) By (ii), (F, ∆)� ∈ Θc, so ((F, ∆)�)c ∈ Θ. Therefore, ((F, ∆)�)�⊆̃(F, ∆)�.

(vii) Since (F, ∆)⊆̃(F, ∆)∪̃(G, ∆) and (G, ∆)⊆̃(F, ∆)∪̃(G, ∆), then, by (iv), (F, ∆)�⊆̃ [(F, ∆)∪̃
(G, ∆)]� and (G, ∆)�⊆̃[(F, ∆)∪̃(G, ∆)]�. It follows that (F, ∆)�∪̃(G, ∆)�⊆̃[(F, ∆)∪̃
(G, ∆)]�. For the converse of the inclusion, if yλ /∈ (F, ∆)�∪̃(G, ∆)�, then yλ /∈ (F, ∆)�

and yλ /∈ (G, ∆)�. This implies that there exist (H, ∆), (W, ∆) ∈ Θ(yλ) such that
(Fc, ∆)∪̃(Hc, ∆) /∈ F and (Gc, ∆)∪̃(Wc, ∆) /∈ F . Set (R, ∆) = (H, ∆)∩̃(W, ∆). Then
(R, ∆) ∈ Θ(yλ) for which (Fc, ∆)∪̃(Rc, ∆) /∈ F and (Gc, ∆)∪̃(Rc, ∆) /∈ F (from
Proposition 2). Since F is soft primal, we get that [(F, ∆)∪̃(G, ∆)]c∪̃(Rc, ∆) =
(Fc, ∆)∩̃(Gc, ∆) ∪̃(Rc, ∆) = (Fc, ∆)∪̃(Rc, ∆)

⋂̃
(Gc, ∆)∪̃(Rc, ∆) /∈ F . Thus, yλ /∈

[(F, ∆)∪̃(G, ∆)]�. Consequently, [(F, ∆)∪̃(G, ∆)]� = (F, ∆)�∪̃(G, ∆)�.

(viii) Since (F, ∆)∩̃(G, ∆)⊆̃(F, ∆) and (F, ∆)∩̃(G, ∆)⊆̃(G, ∆), then, by (iv), [(F, ∆)∩̃ (G, ∆)]
�⊆̃(F, ∆)� and [(F, ∆)∩̃(G, ∆)]�⊆̃(G, ∆)�. Therefore, [(F, ∆)∩̃(G, ∆)]�⊆̃(F, ∆)�∩̃
(G, ∆)�.

As illustrated below, it may not always be possible to achieve the equality of (viii) in
Theorem 5.

Example 5. Consider the Y, ∆,F , (F1, ∆), and (F9, ∆) given in Example 2. Let Θ = {φ̃, Ỹ}.
Obviously, [(F1, ∆)∩̃(F9, ∆)]� = φ̃. On the other hand, (F1, ∆)�∩̃(F9, ∆)� = Ỹ.

Theorem 6. Let (F, ∆) and (G, ∆) be soft subsets of a PSTS (Y, Θ, ∆,F ) such that (F, ∆) is soft
open. Then, (F, ∆)∩̃(G, ∆)�⊆̃[(F, ∆)∩̃(G, ∆)]�.

Proof. Given (F, ∆), (G, ∆) ∈ S(Y∆) such that (F, ∆) ∈ Θ. If yλ ∈ (F, ∆)∩̃(G, ∆)�, then
yλ ∈ (F, ∆) and yλ ∈ (G, ∆)�, and so (Gc, ∆)∪̃(Hc, ∆) ∈ F for all (H, ∆) ∈ Θ(yλ). Since
(F, ∆) ∈ Θ(yλ), then (Gc, ∆)∪̃[(H, ∆)∩̃(F, ∆)]c ∈ F . However, (Gc, ∆)∪̃[(H, ∆)∩̃(F, ∆)]c =
[(F, ∆)∩̃(G, ∆)]c∪̃(Hc, ∆), so it implies that yλ ∈ [(F, ∆)∩̃(G, ∆)]�. Hence, (F, ∆)∩̃(G, ∆)�

⊆̃[(F, ∆)∩̃(G, ∆)]�.

Theorem 7. Let (Y, Θ, ∆,F ) be a PSTS. If Θc⊆̃F , then (G, ∆)⊆̃(G, ∆)� for each (G, ∆) ∈ Θ.

Proof. Since φ̃� = φ̃, clearly φ̃⊆̃φ̃�. Next, we need to find Ỹ�. Since Θc⊆̃F , then we must
have Ỹ = Ỹ�. Indeed, if for some yλ ∈ Ỹ, yλ /∈ Ỹ�. Therefore, there exists (H, ∆) ∈ Θ(xλ)
such that (Hc, ∆) = (Hc, ∆)∪̃Ỹc /∈ F , a contradiction. If (G, ∆) ∈ Θ, by Theorem 6,
(G, ∆) = (G, ∆)∩̃Ỹ�⊆̃[(G, ∆)∩̃Ỹ]� = (G, ∆)�. This leads to the result.

Theorem 8. Let (F, ∆) and (G, ∆) be soft subsets of a PSTS (Y, Θ, ∆,F ). Then, (F, ∆)� \
(G, ∆)� = [(F, ∆) \ (G, ∆)]� \ (G, ∆)�.

Proof. Consider the decomposition

(F, ∆) = [(F, ∆) \ (G, ∆)]
⋃̃
[(F, ∆)∩̃(G, ∆)].

Then applying Theorem 5 (v) and (vii) to it, we obtain

(F, ∆)� = [(F, ∆) \ (G, ∆)]�
⋃̃
[(F, ∆)∩̃(G, ∆)]�

⊆̃ [(F, ∆) \ (G, ∆)]�
⋃̃
(G, ∆)�.

Therefore, (F, ∆)� \ (G, ∆)�⊆̃[(F, ∆) \ (G, ∆)]� \ (G, ∆)�.
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On the other hand, since (F, ∆) \ (G, ∆)⊆̃(F, ∆), by Theorem 5 (v), [(F, ∆) \ (G, ∆)]�⊆̃
(F, ∆)� and so, [(F, ∆) \ (G, ∆)]� \ (G, ∆)�⊆̃(F, ∆)� \ (G, ∆)�. Summing up the obtained
inclusions, we get (F, ∆)� \ (G, ∆)� = [(F, ∆) \ (G, ∆)]� \ (G, ∆)�.

Theorem 9. Let (F, ∆) and (G, ∆) be soft subsets of a PSTS (Y, Θ, ∆,F ) such that (Gc∆) /∈ F .
Then, [(F, ∆)∪̃(G, ∆)]� = (F, ∆)� = [(F, ∆) \ (G, ∆)]�.

Proof. This follows from Theorems 5 and 8.

Definition 18. Let (Y, Θ, ∆,F ) be a PSTS. Then, a soft mapping Cl� : S(Y∆)→ S(Y∆) is defined
as follows Cl�(G, ∆) = (G, ∆)∪̃(G, ∆)� for any soft subset (G, ∆).

Theorem 10. Let (F, ∆) and (G, ∆) be soft subsets of a PSTS (Y, Θ, ∆,F ). Then, the next
statements hold true.

(i) Cl�(φ̃) = φ̃.

(ii) Cl�(Ỹ) = Ỹ.

(iii) (F, ∆)⊆̃Cl�(F, ∆).

(iv) If (F, ∆)⊆̃(G, ∆), then Cl�(F, ∆)⊆̃Cl�(G, ∆).

(v) Cl�[(F, ∆)∪̃(G, ∆)] = Cl�(F, ∆)∪̃Cl�(G, ∆).

(vi) Cl�(Cl�(F, ∆) = Cl�(F, ∆).

Proof.

(i) Since φ̃� = φ̃, so Cl�(φ̃) = φ̃∪̃φ̃� = φ̃.

(ii) This is clear as Cl�(Ỹ) = Ỹ∪̃Ỹ� = Ỹ.

(iii) This is also easy as (F, ∆)⊆̃(F, ∆)∪̃(F, ∆)� = Cl�(F, ∆).

(iv) Suppose (F, ∆), (G, ∆) ∈ S(Y∆) with (F, ∆)⊆̃(G, ∆). By Theorem 5 (v), (F, ∆)�⊆̃
(G, ∆)� and so (F, ∆)∪̃(F, ∆)�⊆̃(G, ∆)∪̃(G, ∆)�. Thus, Cl�(F, ∆)⊆̃Cl�(G, ∆).

(v) By the same technique used in (iv) and applying Theorem 5 (vii), one can easily
conclude that Cl�[(F, ∆)∪̃(G, ∆)] = Cl�(F, ∆)∪̃Cl�(G, ∆).

(vi) To show that Cl�(Cl�(F, ∆)⊆̃Cl�(F, ∆), we implicitly use multiple statements of Theo-
rem 5. Now,

Cl�(Cl�(F, ∆) = Cl�(F, ∆)
⋃̃
(Cl�(F, ∆))�

= Cl�(F, ∆)
⋃̃
[(F, ∆)∪̃(F, ∆)�]�

= Cl�(F, ∆)
⋃̃
(F, ∆)�

⋃̃
((F, ∆)�)�

⊆̃ Cl�(F, ∆)
⋃̃
(F, ∆)�

⋃̃
(F, ∆)�

= Cl�(F, ∆).

The converse is always true by using (iii). Therefore, Cl�(Cl�(F, ∆) = Cl�(F, ∆).

Theorem 11. Let (F, ∆) be a soft subset of a PSTS (Y, Θ, ∆,F ). If (F, ∆)⊆̃(F, ∆)�, then
Cl(F, ∆) = Cl�(F, ∆) = Cl((F, ∆)�) = (F, ∆)�.

Proof. We first prove that Cl(F, ∆) = Cl�(F, ∆). Since by Theorem 14, Θ⊆̃Θ�, then
Cl�(F, ∆)⊆̃Cl(F, ∆). Let yλ /∈ Cl�(F, ∆). Then, we can find (H, ∆) ∈ Θ(yλ) and (R, ∆) ∈ F
containing yλ such that [(H, ∆)∩̃(R, ∆)]∩̃(F, ∆) = φ̃. Then, [[(H, ∆)∩̃(R, ∆)]∩̃ (F, ∆)]� = φ̃
and so, [[(H, ∆)∩̃(F, ∆)] \ (Rc, ∆)]� = φ̃. By Theorem 9, [(H, ∆)∩̃(F, ∆)]� = φ̃, and hence
by Theorem 6, (H, ∆)∩̃(F, ∆)� = φ̃. Since (F, ∆)⊆̃(F, ∆)�, then (H, ∆)∩̃ (F, ∆) = φ̃ implies
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yλ /∈ Cl(F, ∆). This proves that Cl(F, ∆) = Cl�(F, ∆). Then, Theorem 5 (ii) shows that
Cl((F, ∆)�) = (F, ∆)�. Now, if yλ /∈ Cl(F, ∆), then one can find (W, ∆) ∈ Θ(yλ) such that
(F, ∆)∩̃(W, ∆) = φ̃. This means that [(F, ∆)∩̃(W, ∆)]c = Ỹ /∈ F and thus, yλ /∈ (F, ∆)�.
Hence, (F, ∆)�⊆̃Cl(F, ∆) and so, Cl((F, ∆)�)⊆̃Cl(Cl(F, ∆)) = Cl(F, ∆). On the other hand,
since (F, ∆)⊆̃(F, ∆)�, then Cl(F, ∆)⊆̃Cl((F, ∆)�). Therefore, Cl(F, ∆) = Cl((F, ∆)�) =
(F, ∆)�.

Theorem 12. Let (Y, Θ, ∆,F ) be a PSTS. Then, a soft mapping Cl� : S(Y∆)→ S(Y∆) given by
Cl�(G, ∆)� = (G, ∆)∪̃(G, ∆)� for any soft subset (G, ∆) is a Kuratowski’s soft closure operator.

Proof. Theorem 10 guarantees that Cl� satisfies all the postulates in Definition 12. Thus,
Cl� is a Kuratowski’s soft closure operator.

Theorem 13. Let (Y, Θ, ∆,F ) be a PSTS. Then, the family Θ� = {(G, ∆)⊆̃Ỹ : Cl�(Gc, ∆) =
(Gc, ∆)} forms a soft topology on Y.

Proof. It follows from Theorem 1 in [43].

Definition 19. We call a soft topology Θ� produced by the above theorem a primal soft topology. If
it is necessary, we write Θ�F instead of Θ�.

The following examples demonstrate that the set of primal topologies forms a natural
class in the lattice of topologies over a universal set.

Example 6. Let (Y, Θind, ∆) be the indiscrete soft topological space, where Y is any set containing
more than one point and ∆ is any set of parameters, and let yλ0 ∈ Ỹ. Suppose F = {(F, ∆) :
(F, ∆) ∈ S(Y∆), yλ0 /∈ (F, ∆)}. Then, F meets all the axioms mentioned in Definition 15, so it
is a soft primal. Given any (R, ∆) ∈ S(Y∆). If (R, ∆) ∈ F , then (R, ∆)� = φ̃. If (R, ∆) /∈ F ,
then (R, ∆)� = Ỹ. Therefore, each soft set excluding yλ0 is a soft Θ�-closed set together with Ỹ.
Therefore, Θ� = Θinc, where Θinc = {(G, ∆) : (G, ∆) ∈ S(Y∆), yλ0 ∈ (G, ∆)}∪̃{φ̃} (it is called
included soft point topology in Example 2 in [42]).

Example 7. Let ∆ be a set of parameters. If Θ is the soft topology on the set of real numbers R
generated by {

((p, q), ∆); p, q ∈ R; p < q
}

, let F be the family of countable soft subsets of R̃. Obviously, F is a soft primal. For any soft set
(R, ∆) over Y, if (R, ∆) is in F or not, then one can easily check that (R, ∆)� = φ̃. Therefore, all
soft subsets of Ỹ are soft Θ�-closed sets. Hence, Θ� = S(Y∆) is the discrete soft topology.

Theorem 14. Let (Y, Θ, ∆,F ) be a PSTS. Then, a primal soft topology Θ� is finer than a soft
topology Θ.

Proof. If (G, ∆) ∈ Θ, then (Gc, ∆) ∈ Θc. By Theorem 5 (iv), (Gc, ∆)�⊆̃(Gc, ∆). Therefore,
Cl�(Gc, ∆) = (Gc, ∆)∪̃(Gc, ∆)�⊆̃(Gc, ∆). On the other hand, (Gc, ∆)⊆̃Cl�(Gc, ∆) is always
correct. Consequently, Cl�(Gc, ∆) = (Gc, ∆) and so, (G, ∆) ∈ Θ�. Hence, Θ⊆̃Θ�.

Theorem 15. For any PSTS (Y, Θ, ∆,F ), the next results hold.

(i) If F = φ̃, then Θ� = S(Y∆).

(ii) If F = S(Y∆) \ {Ỹ}, then Θ = Θ�.

Proof. (i) Let F = φ̃. It suffices to show that S(Y∆)⊆̃Θ�. Indeed, the converse is correct.
Let (G, ∆) ∈ S(Y∆). By assumption, (G, ∆)� = φ̃ for all (G, ∆) ∈ S(Y∆). Hence,
Cl�(Gc∆) = (Gc∆). By Theorem 13, (Gc, ∆) ∈ Θ�. This proves that Θ� = S(Y∆).
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(ii) We only need to show that Θ�⊆̃Θ. The reverse of the inclusion follows from Theo-
rem 14. Let (G, ∆) ∈ Θ�. Then (Gc, ∆) = Cl�(Gc, ∆) = (Gc, ∆)∪̃(Gc, ∆)�. Therefore,
(Gc, ∆)�⊆̃(Gc, ∆). Let yλ ∈ Ỹ such that yλ /∈ (Gc, ∆). Clearly, yλ /∈ (Gc, ∆)� and so,
there is a (H, ∆) ∈ Θ(yλ) such that (Hc, ∆)∪̃((Gc)c, ∆) = (Hc, ∆)∪̃(G, ∆) /∈ F . Since
F = S(Y∆) \ {Ỹ}, so (Hc, ∆)∪̃(G, ∆) must equal Ỹ and hence, (H, ∆)∩̃(Gc, ∆) = φ̃.
This implies that yλ /∈ Cl(Gc, ∆). Therefore, we obtain that Cl(Gc, ∆)⊆̃(Gc, ∆). This
proves that (Gc, ∆) ∈ Θc. Thus, (G, ∆) ∈ Θ and so Θ� = Θ.

Theorem 16. Let (G, ∆) be a soft subset of a PSTS (Y, Θ, ∆,F ). Then, the next results hold.

(i) (G, ∆) ∈ Θ� iff for any yλ ∈ (G, ∆), there exists (H, ∆) ∈ Θ(yλ) such that (Hc, ∆)∪̃
(G, ∆) 6∈ F .

(ii) If (G, ∆) 6∈ F , then (G, ∆) ∈ Θ�.

Proof.

(i) If (G, ∆) ∈ Θ�, then (Gc, ∆) = Cl�(Gc, ∆) = (Gc, ∆)∪̃(Gc, ∆)�, and so (Gc, ∆)� ⊆̃(Gc, ∆).
Therefore, (G, ∆)⊆̃((Gc, ∆)�)c. This means that for any yλ ∈ (G, ∆), yλ /∈ (Gc, ∆)�,
and so there exists (H, ∆) ∈ Θ(yλ) such that (Hc, ∆)∪̃((Gc)c, ∆) = (Hc, ∆)∪̃ (G, ∆) /∈
F . The claim follows.

The converse can be concluded by reversing the above steps.

(ii) Let (G, ∆) /∈ F and let yλ ∈ (G, ∆). Then, there exists always the soft open set Ỹ containing
yλ such that (G, ∆)∪̃Ỹc = (G, ∆) /∈ F . By (i), we obtain that (G, ∆) ∈ Θ�.

Theorem 17. Let (Y, Θ, ∆,F ) be a PSTS. Then, the family

BF = {(G, ∆)∩̃(F, ∆) : (G, ∆) ∈ Θ and (F, ∆) 6∈ F}

is a soft base for the primal soft topology Θ� on Y.

Proof. We first need to check that BF ⊆̃Θ�. If (B, ∆) ∈ BF , then (B, ∆) = (G, ∆)∩̃(F, ∆)
for some (G, ∆) ∈ Θ and (F, ∆) 6∈ F . Since, by Theorem 14, Θ⊆̃Θ�, so (G, ∆) ∈ Θ�. By
Theorem 16 (ii), (F, ∆) ∈ Θ� and therefore, (B, ∆) ∈ Θ�. We now show that BF is a soft base.
Let yλ ∈ Ỹ and (G, ∆) ∈ Θ�(yλ). By Theorem 16 (i), there exists (H, ∆) ∈ Θ(yλ) such that
(Hc, ∆)∪̃(G, ∆) /∈ F . Set (B, ∆) = (H, ∆)∩̃[(Hc, ∆)∪̃(G, ∆)]. Indeed, yλ ∈ (B, ∆)⊆̃(G, ∆).
Thus, BF is a soft base for Θ�.

Theorem 18. Let (Y, Θ, ∆,F ) and (Y, Θ, ∆,G) be two PSTSs such that F⊆̃G. Then Θ�G ⊆ Θ�F .

Proof. If (F, ∆) ∈ Θ�G , then (Fc, ∆) = (Fc, ∆)∪̃(Fc, ∆)�G implies (Fc, ∆)�G⊆̃(Fc, ∆). Assume
that yλ ∈ Ỹ such that yλ /∈ (Fc, ∆). Then yλ /∈ (Fc, ∆)�G and hence, there exists (H, ∆) ∈
Θ(yλ) such that (Hc, ∆)∪̃(F, ∆) /∈ G. Since F⊆̃G, so (Hc, ∆)∪̃(F, ∆) /∈ F and hence, yλ /∈
(Fc, ∆)�F . Therefore, (Fc, ∆)�F ⊆̃(Fc, ∆). This implies that Cl�(Fc, ∆) = (Fc, ∆)∪̃(Fc, ∆)�F =
(Fc, ∆) and thus, (F, ∆) ∈ Θ�F . This proves that Θ�G ⊆ Θ�F .

Now, we look at a new operator and explore its major properties.

Definition 20. Let (Y, Θ, ∆,F ) be a PSTS. Then, a soft mapping (·)� : S(Y∆) → S(Y∆) is
defined as follows (F, ∆)�(Y, Θ, ∆,F ) = {yλ ∈ Ỹ : [(G, ∆) \ (F, ∆)]c /∈ F for some (G, ∆) ∈
Θ(yλ)} for each soft subset (F, ∆) over Y. In brief, we write (F, ∆)� or (F, ∆)�F instead of
(F, ∆)�(Y, Θ, ∆,F ).
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We shall remark that neither (G, ∆)�⊆̃(G, ∆) nor (G, ∆)⊆̃(G, ∆)� are generally correct,
and counterexamples are not difficult to obtain.

The following conclusions cover a number of fundamental characteristics of how the
operator � behaves.

Theorem 19. Let (F, ∆) be a soft subset of a PSTS (Y, Θ, ∆,F ). Then

(F, ∆)� = Ỹ \ (Fc, ∆)�.

Proof. If yλ ∈ (F, ∆)�, then there exists (H, ∆) ∈ Θ such that [(H, ∆) \ (F, ∆)]c /∈ F . But
[(H, ∆) \ (F, ∆)]c = [(H, ∆)∩̃(Fc, ∆)]c = (Hc, ∆)∪̃(F, ∆) implies yλ /∈ (Fc, ∆)�. Therefore,
yλ ∈ Ỹ \ (Fc, ∆)�.

The converse can be followed by reversing the earlier steps.

The next consequence is a direct outcome of the preceding conclusion.

Corollary 3. For any soft subset (F, ∆) of a PSTS (Y, Θ, ∆,F ), we have

(i) (Fc, ∆)� = [(F, ∆)�]c.

(ii) [(F, ∆)�]c = (Fc, ∆)�.

(iii) (Fc, ∆)�� = [(F, ∆)��]c.

(iv) [(F, ∆)��]c = (Fc, ∆)��.

Lemma 1. For a soft subset (F, ∆) of a PSTS (Y, Θ, ∆,F ), (F, ∆)� ∈ Θ.

Proof. Let (F, ∆) be a soft subset of a PSTS (Y, Θ, ∆,F ). By Theorems 5 (ii) and 19,
(F, ∆)� = Ỹ \ (Fc, ∆)� = Ỹ \ Cl((Fc, ∆)�). Since Cl((Fc, ∆)�) is soft Θ-closed, therefore
(F, ∆)� ∈ Θ.

Theorem 20. Let (F, ∆), (G, ∆) be soft subset of a PSTS (Y, Θ, ∆,F ). Then,

(i) Ỹ� = Ỹ.

(ii) (F, ∆)�⊆̃(F, ∆)��.

(iii) If (F, ∆)⊆̃(G, ∆), then (F, ∆)�⊆̃(G, ∆)�.

(iv) [(F, ∆)∩̃(G, ∆)]� = (F, ∆)�∩̃(G, ∆)�.

(v) (F, ∆)�∪̃(G, ∆)�⊆̃[(F, ∆)∪̃(G, ∆)]�.

Proof.

(i) Applying Theorem 19 to Ỹ, we have Ỹ� = Ỹ \ [Ỹc]� = Ỹ \ [φ̃]� = Ỹ \ φ̃ = Ỹ.

(ii) Let yλ ∈ (F, ∆)�. By Theorem 19, yλ /∈ (Fc, ∆)� and then, by Theorem 5 (vi), yλ /∈
(Fc, ∆)��. From (iv) in Corollary 3, we obtain that yλ /∈ [(F, ∆)��]c implies yλ ∈
(F, ∆)��. Thus, (F, ∆)�⊆̃(F, ∆)��.

(iii) Let yλ ∈ (F, ∆)�. Then [(H, ∆) \ (F, ∆)]c /∈ F for some (H, ∆) ∈ Θ. Since (F, ∆)⊆̃(G, ∆),
then [(H, ∆) \ (F, ∆)]⊇̃[(H, ∆) \ (G, ∆)] and so [(H, ∆) \ (F, ∆)]c⊆̃[(H, ∆) \ (G, ∆)]c.
By Proposition 2, [(H, ∆) \ (G, ∆)]c /∈ F . This means that yλ ∈ (G, ∆)�. Thus,
(F, ∆)�⊆̃(G, ∆)�.

(iv) Since (F, ∆)∩̃(G, ∆)⊆̃(F, ∆) and (F, ∆)∩̃(G, ∆)⊆̃(G, ∆), then by (iii), [(F, ∆)∩̃ (G, ∆)]
�⊆̃(F, ∆)� and [(F, ∆)∩̃(G, ∆)]�⊆̃(G, ∆)�. Therefore, [(F, ∆)∩̃(G, ∆)]�⊆̃(F, ∆)�∩̃
(G, ∆)�. To prove the converse, we let yλ ∈ (F, ∆)�∩̃(G, ∆)�. Then [(H, ∆) \
(F, ∆)]c /∈ F and [(W, ∆) \ (G, ∆)]c /∈ F for some (H, ∆), (W, ∆) ∈ Θ(yλ). Set
(R, ∆) = (H, ∆)∩̃(W, ∆). Then (R, ∆) ∈ Θ(yλ) and, by Proposition 2, we have
[(R, ∆) \ (F, ∆)]c /∈ F and [(R, ∆) \ (G, ∆)]c /∈ F . This implies that

(
(R, ∆) \ [(F, ∆)∩̃
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(G, ∆)]
)c

= [(R, ∆) \ (F, ∆)]c∩̃[(R, ∆) \ (G, ∆)]c /∈ F . Thus, yλ ∈ [(F, ∆)∩̃(G, ∆)]�

and hence, (G, ∆)�∩̃ (G, ∆)�⊆̃[(F, ∆)∩̃(G, ∆)]�. This completes the proof.

(v) This matches the first part of the proof of (iv).

Theorem 21. Let (F, ∆), (G, ∆) be soft subsets of a PSTS (Y, Θ, ∆,F ) such that (Fc, ∆) /∈ F .
The following conclusions hold true:

(i) (F, ∆)� = Ỹ \ Ỹ�.

(ii) [(G, ∆) \ (F, ∆)]� = (G, ∆)�.

(iii) [(G, ∆)∪̃(F, ∆)]� = (G, ∆)�.

Proof.

(i) Since (Fc, ∆) /∈ F , by Theorem 9, (Fc, ∆)� = Ỹ�. Therefore, (F, ∆)� = Ỹ \ (Fc, ∆)� =
Ỹ \ Ỹ�.

(ii) Now, by the use of Theorem 9, we can get [(G, ∆) \ (F, ∆)]� = Ỹ \ ([(G, ∆) \ (F, ∆)]c)� =
Ỹ \ [(Gc, ∆)∪̃(F, ∆)]� = Ỹ \ (Gc, ∆)� = (G, ∆)�.

(iii) Similar to (ii).

Definition 21. Let (G, ∆) be a soft subset of a PSTS (Y, Θ, ∆,F ) and let Θ� be the primal soft
topology on Y. A soft point yλ is called a soft Θ�-interior point of (G, ∆) if there exists (H, ∆) ∈ Θ�

such that yλ ∈ (H, ∆)⊆̃(G, ∆). The set of all soft Θ�-interior points of (G, ∆) is symbolized by
Int�(G, ∆).

Theorem 22. Let (F, ∆) be a soft subset of a PSTS (Y, Θ, ∆,F ). Then (F, ∆)∩̃(F, ∆)� =
Int�(F, ∆).

Proof. Let yλ ∈ (F, ∆)∩̃(F, ∆)�. Then yλ ∈ (F, ∆) and [(H, ∆) \ (F, ∆)]c /∈ F for some
(H, ∆) ∈ Θ(yλ). By Theorem 17, (D, ∆) = (H, ∆)∩̃[(H, ∆) \ (F, ∆)]c ∈ Θ� such that
yλ ∈ (D, ∆)⊆̃(F, ∆). Thus, yλ ∈ Int�(F, ∆).

On the other hand, suppose yλ ∈ Int�(F, ∆). Then, there exists a basic soft Θ�-
open set (W, ∆)∩̃(R, ∆) containing yλ, where (W, ∆) ∈ Θ(yλ) and (R, ∆) /∈ F , such that
yλ ∈ (W, ∆)∩̃(R, ∆)⊆̃(F, ∆). This implies that (R, ∆)⊆̃[(W, ∆) \ (F, ∆)]c. By Proposition 2,
[(W, ∆) \ (F, ∆)]c /∈ F . Therefore, yλ ∈ (F, ∆)∩̃(F, ∆)�.

Theorem 23. Let (Y, Θ, ∆,F ) be a PSTS. The family

Ω = {(F, ∆) : (F, ∆) ∈ S(Y∆), (F, ∆)⊆̃(F, ∆)�}

is a soft topology on Y. Furthermore, Ω = Θ�.

Proof. Suppose Ω = {(F, ∆) : (F, ∆) ∈ S(Y∆), (F, ∆)⊆̃(F, ∆)�}. We need first to prove that
Ω is a soft topology. Clearly, φ̃, Ỹ ∈ Ω as φ̃⊆̃φ̃� and Ỹ⊆̃Ỹ� = Ỹ. Let (F, ∆), (G, ∆) ∈ Ω. By
Theorem 20, (F, ∆)∩̃(G, ∆)⊆̃(F, ∆)�∩̃(G, ∆)� = [(F, ∆)∩̃(G, ∆)]�. Hence, (F, ∆)∩̃(G, ∆) ∈
Ω. Let {(Fi, ∆) : i ∈ I}⊆̃Ω. Again by Theorem 20, (Fi, ∆)⊆̃(Fi, ∆)�⊆̃(⋃̃i∈I(Fi, ∆))� for each
i. Therefore,

⋃̃
i∈I(Fi, ∆)⊆̃[⋃̃i∈I(Fi, ∆)]� and so

⋃̃
i∈I(Fi, ∆) ∈ Ω.

We now show that Ω = Θ�. If (H, ∆) ∈ Ω, then (H, ∆)⊆̃(H, ∆)� and so, by The-
orem 19, (H, ∆)⊆̃Ỹ \ (Hc, ∆)� implies (Hc, ∆)�⊆̃(Hc, ∆). This means that (Hc, ∆) is soft
Θ�-closed, and thus (H, ∆) ∈ Θ�. Now, let (H, ∆) ∈ Θ� and yλ ∈ (H, ∆). By Theorem 17,
there exists (W, ∆) ∈ Θ(yλ) and (F, ∆) /∈ F such that yλ ∈ (W, ∆)∩̃(F, ∆)⊆̃(H, ∆). Evi-
dently, (F, ∆)⊆̃[(W, ∆) \ (H, ∆)]c and then [(W, ∆) \ (H, ∆)]c /∈ F . Therefore, yλ ∈ (H, ∆)�

and so Θ�⊆̃Ω. The conclusion follows.
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This concludes that

Corollary 4. For a soft subset (F, ∆) of a PSTS (Y, Θ, ∆,F ), (F, ∆)⊆̃(F, ∆)� whenever (F, ∆) ∈ Θ.

5. Conclusions and Future Work

Shabir and Naz [9] and Çağman et al. [10] demonstrated, separately, the concept of
a soft topology on a universal set, which is an extension of the classical (crisp) topology.
This topological generalization has grown to be an interesting area of study. Various
methods of constructing soft topologies have appeared in the literature. We have made
a new contribution to the field of soft topology by studying the concept of primal soft
topology. This research is based on the soft primal, which is a complementary notion of
a soft grill. Soft primals can be considered a generalization of soft ideals. We have discussed
some basic operations on soft primals. A primal soft topological space is defined as a soft
topological space along with a soft primal. Then, we have defined and investigated a soft
operator, symbolized by �, with respect to a soft topological space. The operator � is used
to define another soft topological operator called Cl�. Various properties of Cl� have been
discussed. Among the properties, we have seen that Cl� conforms to all the axioms of the
soft Kuratowski’s closure operator, so it naturally generates a soft topology called a primal
soft topology. The uniqueness of the primal soft topology is guaranteed by Theorem 1
in [43]. Some examples have been offered to illustrate that primal soft topologies are natural
(non-trivial) soft topologies. The primal soft topology is finer than the original soft topology.
In addition, we have established the fundamental properties of primal soft topologies.

The results obtained in this paper are preliminary, and future research could give
more insights by exploring further properties of the primal soft topology, such as primal
soft interior, primal soft closure, primal soft limit points, etc. Additionally, the separation
axioms, compactness, and connectedness of primal soft topologies are also possible lines
of research on this topic. On the other hand, we applied ideal structures to set up some
generalized rough approximation spaces for the purpose of improving approximation
operators (lower and upper) and increasing the value of accuracy of the decision made;
see [45]. This work opens up the door for possible contributions to this trend by combining
primal structures with generalized rough approximation spaces in classical and soft settings.
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13. Aygünoğlu, A.; Aygün, H. Some notes on soft topological spaces. Neural Comput. Appl. 2012, 21, 113–119. [CrossRef]
14. Asaad, B.A. Results on soft extremally disconnectedness of soft topological spaces. J. Math. Comput. Sci. 2017, 17, 448–464.

[CrossRef]
15. Al-Ghour, S. Between the classes of soft open sets and soft omega open sets. Mathematics 2022, 10, 719. [CrossRef]
16. Al-shami, T.M.; Mhemdi, A.; Abu-Gdairid, R. A Novel framework for generalizations of soft open sets and its applications via

soft topologies. Mathematics 2023, 11, 840. [CrossRef]
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