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Abstract: Ultrahigh-dimensional grouped data are frequently encountered by biostatisticians working
on multi-class categorical problems. To rapidly screen out the null predictors, this paper proposes a
quantile-composited feature screening procedure. The new method first transforms the continuous
predictor to a Bernoulli variable, by thresholding the predictor at a certain quantile. Consequently, the
independence between the response and each predictor is easy to judge, by employing the Pearson
chi-square statistic. The newly proposed method has the following salient features: (1) it is robust
against high-dimensional heterogeneous data; (2) it is model-free, without specifying any regression
structure between the covariate and outcome variable; (3) it enjoys a low computational cost, with the
computational complexity controlled at the sample size level. Under some mild conditions, the new
method was shown to achieve the sure screening property without imposing any moment condition
on the predictors. Numerical studies and real data analyses further confirmed the effectiveness of the
new screening procedure.
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1. Introduction

With the rapid advancements in science and technology, ultrahigh-dimensional data
are becoming increasingly common across various fields of scientific research: these in-
clude, but are not limited to, biomedical imaging, neuroscience, tomography, and tumor
classifications, where the number of variables or parameters can exponentially increase
with the sample size. In such a situation, an important task is to recover the important
features from thousands or even millions of predictors.

In order to rapidly lower the huge dimensionality of data to an acceptable size, Fan
and Lv [1] introduced the method of sure independence screening, which ranks the im-
portance of predictors according to their marginal utilities. Since then, a series in the
literature has been devoted to this issue, in various scenarios, which can basically be di-
vided into two groups: the model-based and the model-free methods. For the former,
the typical literature includes, but is not limited to, Wang [2], Chang et al. [3], and Wang
and Leng [4] for linear models, Fan et al. [5] for additive models, and Fan et al. [6] and
Liu et al. [7] for varying coefficients models, amongst others. Model-based methods are
computationally efficient, but can suffer from the risk of model misspecification. To avoid
such a risk, researchers developed the model-free methods, without specifying a concrete
model. For example, Zhu et al. [8] proposed a screening procedure named SIRS for the
multi-index model; Li et al. [9] introduced a sure screening procedure via the distance corre-
lation called DCS; for the heterogeneous data, He et al. [10] developed a quantile-adaptive
screening method; Lin et al. [11] proposed a novel approach, dubbed Nonparametric
Ranking Feature Screening (NRS), leveraging the local information flows of the predictors;
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Lu and Lin [12] developed a conditional model-free screening procedure, utilizing the
conditional distance correlation; and Tong et al. [13] proposed a model-free conditional
feature screening method with FDR control. Additionally, Ref. [14] recently introduced a
data-adaptive threshold selection procedure with error rate control, which is applicable to
most kinds of popular screening methods. Ref. [15] proposed a feature screening method
for the interval-valued response.

The literature listed above mainly concentrated on the continuous response; however,
ultrahigh-dimensional grouped data, in which the label of a sample can be seen as a
categorical response, are also very frequently encountered in many scientific research
fields—specifically, for biostatisticians who work on multi-class categorical problems. For
example, in the diagnosis of tumor classification, researchers need to judge the type of
tumor, according to the gene expression level. If we do not reduce the dimension of the
predictors, the established classifier will behave as poorly as random guessing, due to the
diverging spectra and accumulation of noise (Fan et al. [16]); therefore, it makes sense to
screen out the null predictors before further analysis. The following are the existing works
that have made some progress on this issue. Huang et al. [17] proposed a screening method
based on Pearson chi-square statistics, for discrete predictors. Pan et al. [18] set the maximal
mean difference for each pair of classes as a ranking index and, based on this, proposed a
corresponding screening procedure. Mai and Zou [19] built a Kolmogorov–Smirnov type
distance, to measure the dependence between two variables, and used it as a filter for
screening out noise predictors. Cui et al. [20] proposed a screening method via measuring
the distance of the distribution of the subgroup from the whole distribution. Recently,
Xie et al. [21] established a category-adaptive screening procedure, by calculating the
difference between the conditional distribution of the response and the marginal one. All
these aforementioned methods were clearly motivated, and have been examined effectively
for feature screening in different settings.

In this paper, we propose a new robust screening method for ultrahigh-dimensional
grouped data. Our research was partly motivated by an empirical analysis of a leukemia
dataset, consisting of 72 observations and 3571 genes, of which 47 were acute lymphocytic
leukemia (ALL), and 25 were acute myelogenous leukemia (AML). Figure 1 plots the density
function of the first 20 features selected from the 3571 genes of the 47 ALLs, from which
it can be seen that all of them are far from being a regular distribution, most of them
have sharp peaks and heavy tails (e.g., gene 9 and gene 12), and some of them are even
multi-modal (e.g., gene 6 and gene 8), although these samples are from the same ALL group.
This phenomenon challenges most of the existing methods. For example, the method in
Pan et al. [18] might fail, if data are not normally distributed, and the method in Xie et al. [21]
might lose efficiency when the distribution of a predictor is multi-modal. It is known that
quantile-based statistics are not sensitive to outliers and heavy-tailed distributed data;
thus, it was expected that the quantile-based screening method would be robust against
heterogeneous data. Furthermore, compared to point estimation, quantile-based statistics
can usually provide a more detailed picture of a predictor at different quantile levels.
Motivated by the above discussion, we propose a quantile-composited screening approach,
by aggregating the distributional information over many quantile levels. The basic idea of
our method is straightforward. If Xj has no contribution to predicting the category of an
outcome variable, denoted by Y, at the τ-th quantile level, the conditional quantile function
of Xj given Y should be equal to the unconditional one, i.e, qXj |Y(τ) = qXj(τ). Moreover,
if Xj and Y are independent, we have qXj |Y(τ) = qXj(τ)(a.s.) for all τ ∈ (0, 1), where a.s.
means ’almost surely’. Thus, the equality qXj |Y(τ) = qXj(τ) plays a key role in measuring
the independence between Y and Xj. To quantify this kind of independence, we show
that qXj |Y(τ) = qXj(τ) for a given τ is equivalent to the independence between the index
variable I(Xj − qXj(τ) > 0) and the label variable Y. Then, the equality between qXj |Y(τ)

and qXj(τ) is converted to testing the independence between two discrete variables, which
can be easily checked by the Pearson chi-square test statistics. Finally, we aggregate all
the discriminative information over the whole distribution in an efficient way, based on
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which, we establish the corresponding screening procedure. Our newly proposed screening
method enjoys the following salient features. First of all, compared to the existing methods,
it is robust against non-normal data, which are very common in high dimensions. Secondly,
it is model-free, in the sense that we do not need to assume a specific statistical model,
such as the linear or quadratic discriminant analysis model, between the predictor and the
outcome variable. Thirdly, its ranking index has a very simple form, and the computational
complexity is controlled at the sample size level, so that the proposed screening method can
be implemented very quickly. In addition, as a by-product, our new method is invariant, in
regard to the monotonic transformations of the data.

The rest of the paper is organized as follows. Section 2 gives the details of the quantile-
composited screening procedure, including the methodological development, theoretical
properties, and some extensions. Section 3 provides convincing numerical results and two
real data analyses. Technical proofs of the main results are deferred to Appendix A.

gene1 gene2 gene3 gene4 gene5

gene6 gene7 gene8 gene9 gene10

gene11 gene12 gene13 gene14 gene15

gene16 gene17 gene18 gene19 gene20

Figure 1. The sample histograms of the 47 ALLs corresponding to the first 20 features selected from
3571 genes.

2. A New Feature Screening Procedure

Let X = {X1, · · · , Xp} be the p-dimensional predictor, and without loss of generality,
let Y ∈ {1, · · · , K} be the outcome variable indicating which group X belongs to, where K
is allowed to grow with the sample size at some certain rate. Define the index set of active
predictors corresponding to quantile level τ as

Aτ = {1 ≤ j ≤ p : qXj |Y(τ) functionally depends on Y}, (1)

where qXj |Y(τ) = inf{t : P(Xj ≤ t|Y) ≥ τ}. Denote by |Aτ | the cardinality of Aτ ;
|Aτ | is usually less than the sample size n under the sparsity assumption. Denote by
qXj(τ) = inf{t : P(Xj ≤ t) ≥ τ} the τ-th quantile of Xj. Intuitively, if qXj |Y(τ) does
not functionally depend on Y, it should be the case that qXj |Y(τ) = qXj(τ) for all Y:
in other words, Xj has no ability to predict its label Y at the quantile level τ. On the other
hand, if qXj |Y(τ) is far away from qXj(τ) for some Y, Xj will be helpful for predicting the
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category of Y. Hence, the difference between qXj |Y and qXj(τ) determines whether Xj is
a contributive predictor at the τ-th quantile level. The following lemma was of central
importance to our methodological development.

Lemma 1. Let Y be the outcome variable, and let X be a continuous variable; then, we have two con-
clusions:

(1) qXj |Y(τ) = qXj(τ) a.s. if and only if the Bernoulli variable I{X > qXj(τ)} and Y are
independent, where I{·} is the indicator function;

(2) qXj |Y(τ) = qXj(τ) a.s. for ∀τ ∈ (0, 1) if Y and Xj are independent.

The proof of this lemma is presented in Appendix A. Conclusions (1) and (2) imply
that the independence between Xj and Y for ∀τ ∈ (0, 1) is equivalent to the independence
between I{X > qXj(τ)} and Y; consequently, it is natural to apply the Pearson chi-square
statistics, to measure the independence between them. Let Zj(τ) = I{Xj > qXj(τ)}, πyk =

P(Y = k), πjb(τ) = P(Zj(τ) = b), πyk,jb(τ) = P(Y = k, Zj(τ) = b). Then, the dependence
of Xj on the response Y, at quantile level τ, can be evaluated by

Qj(τ) =
K

∑
k=1

1

∑
b=0

(πykπjb(τ)− πyk,jb(τ))
2

πykπjb(τ)
. (2)

Clearly, Qj(τ) = 0 iff Zj(τ) and Y are independent.
Qj(τ) provides a way to identify whether Xj is active at quantile level τ. However, it

is not easy to determine the informative quantiles for every predictor. Moreover, the active
predictors could be contributive at many quantiles instead of a single one. For these reasons,
we propose a quantile-composited screening index, which makes an integration for Qj(τ)
at the interval (0, 1). More specifically, the ranking index is defined as

Qj =
∫ 1−α

α
Qj(τ)wj(τ)dτ, (3)

where wj(τ) is some positive weight function, and α is a value tending to 0 at some certain
rate related to the sample size, which will be specified in the next section. Note that Qj
avoids making integration at the endpoints 0 and 1, because Qj(τ) could be ill-defined
at the two points. Theoretically, Qj = 0 if X is independent of Y, regardless of the choice
of wj(τ), which is easy to prove according to Lemma 1. According to the above analysis,
Qj(τ) is always non-negative for ∀τ ∈ (0, 1), and will equal 0 if Xj is independent of Y.

For the choice of weight wj(τ), the different settings will lead to different values of
Qj. For example, a naive setting is wj(τ) = 1 for τ ∈ (0, 1), which means that all Qj(τ)
are treated equally. Clearly, this is not a good option. Intuitively, if Xj is active, Qj(τ)
should be large for some τ in (0, 1). Then, we should place more weight on these quantile
levels. For this reason, we set wj(τ) = Qj(τ)/

∫ 1−α
α Qj(τ)dτ; then, the resultant Qj has the

following form:

Qj =
∫ 1−α

α
Q2

j (τ)dτ

/ ∫ 1−α

α
Qj(τ)dτ. (4)

In addition, for the precise-definition of Qj, we restrict Qj = 0 when Qj(τ) = 0 for all
τ ∈ (0, 1).

In the following, we give the estimation of Qj. Suppose {Xi, Yi}n
i=1 is a set of i.i.d

samples from (X, Y), where i.i.d means independent and identically distributed. Let q̂Xj(τ)

be the τth sample quantile of Xj and Zij(τ) = I{Xij > q̂Xj(τ)}, πyk, πjb(τ) and πyk,jb(τ)

can be estimated as π̂yk = n−1 ∑n
i=1 I{Yi = k}, π̂jb(τ) = n−1 ∑n

i=1 I{Zij(τ) = b} and
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π̂yk,jb(τ) = n−1 ∑n
i=1 I{Yi = k}I{Zij(τ) = b}, respectively. Then, by plug-in method, Qj(τ)

is estimated as

Q̂j(τ) =
K

∑
k=1

1

∑
b=0

(π̂ykπ̂jb(τ)− π̂yk,jb(τ))
2

π̂ykπ̂jb(τ)
, (5)

and Qj is estimated as

Q̂j =
∫ 1−α

α
Q̂2

j (τ)dτ

/ ∫ 1−α

α
Q̂j(τ)dτ.

Regarding Q̂j(τ), we make the following remarks:

Remark 1. 1. If qXj |Y(τ) = qXj(τ), nQ̂j(τ) follows the χ2 distribution with K− 1 degrees of
freedom [22].

2. Q̂j is invariant to any monotonic transformation on predictors, because Zj(τ) is free of the
monotonic transformation on Xj.

3. The computation of Qj(τ) involves the integration of τ. We can calculate it by an approximate
numerical method as

Q̂j =
s

∑
i=1

Q̂2
j (i/s)

/ s

∑
i=1

Q̂j(i/s).

4. The choice of s. Intuitively, a large s will make the approximation of integration more accurate.
However, our method aims to efficiently separate the active predictors from the null ones,
instead of getting an accurate estimate of Qj. Figure 2 displays the density curves of marginal
utilities of active and inactive predictors versus different choices of s with Example 2 in
Section 3. It can be seen that the choice of s does not affect the distribution of either active
predictors or inactive ones.

5. Figure 2 also shows that the gap between the indices of active predictors and inactive ones is
clear, which means the proposed method is efficient at separating the influential predictors from
the inactive ones well. Moreover, it can also be observed that the marginal utilities of active
predictors are, with a smaller variance, comparable to those of inactive ones, which implies
that the new method is sensitive to the active predictors.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

5

10

15

20

25

30

35

40

Figure 2. Density curves of marginal utilities of active predictors (solid line) and inactive ones (dashed
line) for s = 10(red), 20(green), 50(blue), 100(black). The simulations were repeated 1000 times,
using the model in Example 2 in Section 3 with a balanced response and r = 0.05.

With the estimation of Q̂j, the index set of active predictors can be estimated as
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Â = {1 ≤ j ≤ p : Q̂j ≥ cn−η},

where c and η are two predetermined thresholding values. In practice, we usually take a
hard threshold criterion, to determine the submodel as

Â? = {1 ≤ j ≤ p : Q̂j is among the top dn largest of all},

where dn is a predetermined threshold value. We call the above quantile-composited
screening procedure, based on Q̂j as QCS.

2.1. Theoretical Properties

This section provides the sure screening property of the newly proposed method,
which guarantees the effectiveness of the newly proposed method. The corresponding
technical details of the proof can be found in Appendix A.

We first prove the consistency of Q̂j(τ). To this end, we require the following condition.
(C1): There exist two constants c1, c2(c1 < c2), such that c1/K < πyk < c2/K for

k ∈ {1, 2, . . . , K} with K = O(nγ).
Condition C1 requires that the sample size of each subgroup can be neither too small

nor too large. The condition K = O(nγ) allows that the number of categories can diverge
to infinity at some certain rate, with the increase of sample size. The following theorem
states the consistency of Q̂j(τ).

Theorem 1. For a given quantile τ ∈ (α, 1− α), under condition (C1),

P
(∣∣Q̂j(τ)−Qj(τ)

∣∣ ≥ cnη
)
= K exp({−n1−2γ−2η + nη−2γ/τ̄}), (6)

where τ̄ = min(τ, 1− τ).

This theorem shows that the consistency of Q̂j(τ) can be guaranteed under suitable
conditions. In addition, it reminds us that we cannot select the quantiles either very close
to zero or to one, because the items τ̄ would collapse to zero, which would make the
consistency of Q̂j(τ) problematic. Based on the above theorem, the following theorem
provides the consistency of Q̂j.

Corollary 1. According to the conditions in Theorem 1, if τ̄ = O(nη−1),

P
(

max
1≤j≤p

|Q̂j −Qj| > cn−η

)
≤ pK exp(−O{n1−2η−2γ}). (7)

This theorem states that the gap between Q̂j and Qj will disappear with probabil-
ity tending to 1 as n → ∞. This theorem also shows that our method can address the
dimensionality of order o

(
exp

{
n(1−2γ−2η)

})
.

In the following, we provide the sure screening property of our method.

Theorem 2. Sure screening property: let A = {1 ≤ j ≤ p : Qj > 0}; then, under condition (C1)
and the following condition, minj∈A Qj ≥ 2cn−η ,

P
(
A ⊆ Â

)
≥ 1− snK exp

{
−O(n1−2η−2γ)

}
,

where sn is the cardinality of A.

2.2. Extensions

Up to this point, the new methods have been designed for ultrahigh-dimensional
categorical data. In this section, to make the proposed methods applicable in more settings,
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we give two natural extensions for our method, and in the next section, we use some
numerical simulation, to illustrate the effectiveness of these extensions.

Extension to Genome-Wide Association Studies. We first apply our method to the typical
case of the genome-wide association studies (GWAS), where the predictors are single-
nucleotide polymorphisms (SNPs) in three classes, denoted by {AA, Aa, aa}, and the
response is continuous. Our strategy for this problem is straightforward: define the sample
space {AA, Aa, aa} as {−1, 0, 1}, respectively; then, the marginal utility of Xj at quantile
level τ is defined as

Q̂1,j(τ) =
1

∑
b=−1

1

∑
k=0

(π̂1
yk(τ)π̂

1
jb − π̂1

yk,jb(τ))
2

π̂1
yk(τ)π̂

1
jb

, j = 1, · · · , p, (8)

where Yi(τ) = I(Yi > q̂Y(τ)), π̂1
yk(τ) = n−1 ∑n

i=1 I(Yi(τ) = k), π̂1
jb = n−1 ∑n

i=1 I(Xij = b),

π̂1
yk,jb(τ) = n−1 ∑n

i=1 I(Yi(τ) = k, Xij = b) for b = −1, 0, 1.
Extension to additive models. We can extend our method to the model in which both the

response and predictors are continuous. To make our method applicable, we first slice the
predictors into several segments, according to some threshold values. For example, taking
the quartiles of the predictor as the cut points, then the predictors are transformed to a
balanced four-categorical variable. Specifically, let (Q̂j1, · · · , Q̂jN−1) be N percentiles of
Xj, and define X∗ij = bI{Q̂jb ≤ Xij < Q̂j(b+1)}, where b = 0, 1, · · · , N − 1; here, we define

Q̂j0 = mini Xij and Q̂j(N) = maxi Xij. Then, similar to (9), we define the marginal utility of
Xj at quantile level τ as

Q̂2,j(τ) =
N−1

∑
b=0

1

∑
k=0

(π̂∗yk(τ)π̂
∗
jb − π̂∗yk,jb(τ))

2

π̂∗yk(τ)π̂
∗
jb

, j = 1, · · · , p, (9)

where π̂∗yk(τ) = π̂1
yk(τ), π̂∗jb = n−1 ∑n

i=1 I(X∗ij = b), π̂∗yk,jb(τ) = n−1 ∑n
i=1 I(Yi(τ) = k,

X∗ij = b) for b = 0, 1, · · · , N − 1.

3. Numerical Studies
3.1. General Settings

For this section, we first conducted some Monte Carlo simulations, to compare our
method to those of several competitors. Then, we applied our screening procedure to two real
data examples.

We compared our method to: (1) MV-based sure independence screening (MVS) [20],
which can be seen as the weighted average of the Cramér–von Mises distances between
the conditional distribution function of X given Y = k and the unconditional distribution
function of X; (2) distance correlation–sure independence screening (DCS) [9], which
employs distance correlation as a measure to evaluate the importance of each predictor;
(3) category-adaptive variable screening (CAS) [21], which screens the inactive predictor, by
comparing its marginal distribution to its marginal conditional one; (4) Kolmogorov filter
screening (KFS) [19], which filters the inactive predictors, by comparing the Kolmogorov
distance between the conditional distribution and the unconditional one. Note that DCS is
not efficient for categorical variables. Thus, we transferred the categorical variable into a
multivariate dummy variable, with the i-th coordinate equal to 1, and other coordinates
equal to 0, where i was the category of a sample, e.g., we transformed Y = 3 into (0, 0, 1, 0, 0)
if Y was five-category.

Throughout the simulation, we repeated each experiment 1000 times, and always
set s = 50. To fairly evaluate the performances of the different methods, the following
criteria were employed: (1) MS: the minimum model size of the selected models that are
required to have a sure screening; (2) Ps: the percentage of submodels that contain all
active predictors under a predetermined model size dn over 1000 replications. We let MS(t)
be the result of the t-th numerical experiment, and denoted by MSα the α-level quantile of
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{MS(1),· · · ,MS(1000)}; then, we reported the median of MS (MMS), the interquartile range
(IQR) of MS, and the extreme percentile range (EPR) of MS, namely:

MMS = MS0.5, IQR = MS0.75 −MS0.25, EPR = MS0.95 −MS0.05,

Ps =
1

1000

1000

∑
t=1

I(MS(t) ≤ s)× 100%.

We considered dn = [n/ log n] and s = 2[n/ log n] for a small and large model size,
respectively, where [a] was the integer part of a. By the two criteria, a well-behaved
screening method should have small MS, but with Pa close to 1.

3.2. Monte Carlo Simulations

Example 1. Data were generated in the following manner. For a given Y = k, the
p-dimensional random vector of X|{Y = k} was generated from a mixture distribution (1 −
r)Z + rW, where X ∼ N(µk, Ip), with Ip being the identity matrix and µk = (µk1, · · · , µkp)

>;
W was a random vector, with each component being an independent student’s t-distribution with
one degree of freedom. Here, r was used to check the robustness of our method against the heavy-
tailed distribution. We considered r = 0.05 and 0.15, representing, respectively, a low and high
proportion of the heavy-tailed samples in the data. The categorical variable Y was set to be binary
and multi-category, with both balanced and imbalanced design, by the following scenarios:

Case 1. P(Y = 1) = P(Y = 2) = 0.5, µ1 = (1.5, 0, · · · , 0)> and µ2 = (0, 1.5, 0, · · · , 0)>.

Case 2. The same setup as Case 1, except that P(Y = 1) = 1/3 and P(Y = 2) = 2/3.

Case 3. P(Y = k) = 1/K for k = 1, · · · , 8, and µk = (0>k−1, 2, 0>p−k)
> for k = 1, · · · , 8, where

0d represented a d-dimensional zero-valued vector.

Case 4. The same setup as Case 1, except that P(Y = k) = 2[1 + (k− 1)/(K− 1)]/3K.

The numerical results are reported in Table 1, by setting (n, p) = (50, 1000) for K = 2,
and (n, p) = (160, 2000) for K = 8. From this table, it can be seen that the QCS, MVS, CAS,
and KFS performed comparably well with both Pdn and P2dn equal to 100%. However,
the performance of DCS was unsatisfactory, in that it was sensitive to heavy-tailed data,
and was easily affected by the imbalanced response.

Example 2. In this example, we used a more complex setting to check the effectiveness of the pro-
posed methods. This example was similar to Example 2 in Xie et al. [21]. For a given Y = k, the p-
dimensional random vector of X|{Y = k} was generated in the same way as in Example 1, but the
correlation structure among the predictors was set as Corr(Xi, Xj) = 0.5|i−j|. We considered a five-
categorical response; the mean shifts µk for each class were
µ1 = (1.5, 1.5, 0>p−2)

>, µ2 = (0>5 , 1.5, 1.5, 1.5, 0>p−8)
>, µ3 = (0>10, 1.5, 1.5, 1.5, 1.5, 0>p−14)

>,
µ4 = (0>20, 1.5, 1.5, 1.5, 1.5, 1.5, 0>p−25)

>, µ5 = (0>30, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 0>p−36)
>, so the

corresponding active sets were A = {1, 2, 6, 7, 8, 11, · · · , 14, 21, · · · , 25, 31, · · · , 36}. Y was also
generated in a balanced way, with P(Y = k) = 0.2 for k = 1, · · · , 5, and in an imbalanced way,
with P(Y = k) = 0.1 for k = 1, 2, 3 and P(Y = k) = 0.35 for k = 4.5. We considered n = 200
and p = 1000 or 3000.

Table 2 presents the simulation results. In this example, we can see that QCS performed
better than its competitors: it had the smallest MMS, IQR, and EPR. Secondly, it can be
seen that the increase of dimensionality p had a negative effect on all methods, but that our
method suffered the least.
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Table 1. Simulation results of Example 1.

r = 0.05 r = 0.15
Method

MMS IQR EPR Pdn P2dn MMS IQR EPR Pdn P2dn

Case 1
QCS 2 1 12 94.2 97.3 2 2 21 91.2 95.4
MVS 2 1 6 97.1 98.6 2 1 16.5 93.4 97.0
DCS 7 5 14 86.4 98.0 20 13 44 12.0 65.2
CAS 2 0 5 97.5 98.9 2 1 15 92.1 95.9
KFS 2 2 16 91.2 96.1 2 3 29 86.2 93.1

Case 2
QCS 2 2 23 90.7 94.7 3 4 34 85.8 92.6
MVS 2 1 15 91.6 96.0 2 2 22 90.4 93.7
DCS 7 6 23.5 78.8 94.8 22.5 19 62 13.3 56.1
CAS 2 1 16 93.3 96.0 2 3 24 90.1 93.2
KFS 3 4 35 85.0 91.1 3 5 53 83.0 90.2

Case 3
QCS 8 0 3 98.8 99.3 8 0 10 98 99.3
MVS 8 2 15 96.4 98.3 8.5 3 45 92.3 96.0
DCS 68.5 31 126 0.2 41.2 190.5 103 334 0 0
CAS 8 0 2 99.7 99.9 8 1 6 98.2 98.9
KFS 9.5 4 21 96.0 99.2 11 7 43 90.0 96.3

Case 4
QCS 8 0 11 96.9 98.7 8 2 24.5 94.9 97.0
MVS 9 4 39.5 92.6 96.0 11 14 84 83.5 92.0
DCS 91 63 270.5 0.0 19.2 272 213 630 0.0 0.0
CAS 8 1 6 98.4 99.4 9 4 19 93.1 96.3
KFS 12 10 47 86.6 96.2 14.5 20 98 77.0 91.6

Table 2. Simulation results of Example 2.

r = 0.05 r = 0.15
Method

MMS IQR EPR Pdn P2dn MMS IQR EPR Pdn P2dn

Balanced response, p = 1000
QCS 20 0 1 100 100 20 0 1 99.2 100
MVS 20 0 0 100 100 20 0 1 99.5 100
DCS 33 8 19 74.0 99.7 68.5 21 58 0 66.3
CAS 20 0 0 100 100 20 0 0 100 100
KFS 20 0 2 100 100 20 1 6 99.2 100

Imbalanced response, p = 1000
QCS 20 3 24 92.5 98.0 22 8 51 85.5 95.3
MVS 21 7 31 88.8 97.6 23 14 66 78.4 92.4
DCS 83 83 287 1.7 41.6 203.5 143 420 0 0.7
CAS 26 13 38 80.2 97.3 32 19 55 63.5 94.0
KFS 31 20 64 64.7 91.6 36 29 137 52.4 83.1

Balanced response, p = 3000
QCS 20 0 1 100 100 20 0 2 99.2 100
MVS 20 0 1 100 100 20 0 3 99.2 100
DCS 61 16 56 0 80.4 159.5 50 162 0 0
CAS 20 0 0 100 100 20 0 1 100 100
KFS 20 2 8 96.8 100 21 2 17 95.1 98.8

Imbalanced response, p = 3000
QCS 21 8 80 84.4 93.2 24 27 230 69.9 83.2
MVS 23 15 106 77.1 90.3 29 46 220 60.2 78.2
DCS 228.5 237 908 0 1.2 581 423 1148 0 0
CAS 37 34 109 50.9 81.7 57 62 161 20.5 63.3
KFS 48.5 56 257 36.6 69.2 68.5 80 306 19.1 54.8

Example 3. This example mimicked the scenario that the samples in the same group had multi-
modals. Given Y = k, the random vector of X was generated in the same way as in Example 1,
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except that we fixed r = 0.05, and generated Z from a mixture normal distribution, designed
as follows:

Case 1. Z|{Y = k} ∼ 0.2N(µk, Ip) + 0.8N(−µk, Ip);

Case 2. Z|{Y = k} ∼ 0.3N(µk, Ip) + 0.7N(−µk, Ip);

Case 3. Z|{Y = k} ∼ 0.4N(µk, Ip) + 0.6N(−µk, Ip),

where µkk = 2.5 for k = 1, 2, · · · , K and 0 for other components in µk. In this example, we
only considered a balanced setting for Y. Similarly, we considered (K, n, p) = (2, 50, 1000) and
(8, 160, 2000), respectively.

The simulation results are shown in Table 3. This table shows that the category K of Y
had a greatly negative effect on all the competitors, in that they suffered much efficiency
loss for the screening when we increased K from 2 to 8. In particular, in case 3, where the
distribution of data had two comparable modals, all methods except ours missed the active
predictors completely, even under a large model size 2dn. The above results show that the
newly proposed method is very robust.

Table 3. Simulation results of Example 3.

K = 2 K = 8
Method

MMS IQR EPR Pdn P2dn MMS IQR EPR Pdn P2dn

Case 1
QCS 2 0 3 98.9 99.7 8 0 4 98.9 99.8
MVS 2 0 2 100 100 21 29 141 64.5 83.4
DCS 10 4.5 12 75.0 99.0 147.5 79 238 0 0
CAS 3 3 12.5 92.9 97.4 31 37.5 169.5 50.5 79.5
KFS 2 0 2 99.6 100 22 23 102 67.0 87.2

Case 2
QCS 3 2 14 93.6 97.3 9 3 27.5 94.3 96.9
MVS 4 5 12.5 93.3 98.4 103 126.5 366 3.0 25.5
DCS 13 5 16 49.5 96.5 192.5 92 420 0 0
CAS 35 41 125 11.3 33.0 467 385 1014 0 0
KFS 2 2 11 95.0 97.6 103.5 108 344.5 8.0 28.4

Case 3
QCS 6 10 44.5 74.5 87.6 13 16 86.5 78.1 89.7
MVS 12 13 49 52.1 79.4 346.5 277.5 841 0 0
DCS 15 8 21 28.7 88.2 271 153.5 545.5 0 0
CAS 297.5 207.5 550.5 0 0 1644 317 696.5 0 0
KFS 9 18 55 60.9 79.3 411 332.5 738 0 0

Example 4. This example considered a K-categorical logistic model with

P(Y = k|X) =
exp(X>βk)

1 + ∑K
i=1 exp(X>βk)

, k = 1, 2, · · · , K

where the model settings were configured as follows:

Case 1. K = 2, β2 = 0p and β1 = (β1, · · · , β10, 0>p−10)
> with β j ∼ Uni f orm(1, 2);

Case 2. K = 5, β1 = 0p β2 = (β1, 0>p−1)
>, β3 = (0, β2, β3, 0>p−3)

>; β4 = (0>3 , β4, β5, β6, 0>p−6)
>

and β5 = (0>6 , β7, β8, β9, β10, 0>p−10)
> with β j ∼ Uni f orm(1, 2).

We considered the multivariate normal distribution Xj ∼ N(0, 1) and the student
t-distribution Xj ∼ t3. The correlation structure among the predictors was equal to
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Corr(Xi, Xj) = 0.5|i−j|. We set (n, p) = (150, 1000). The corresponding simulation re-
sults are shown in Table 4, which shows that all the methods performed similarly, but
that our methods behaved slightly better under the t-distribution. In addition, it seems
that the t-distribution led to a more accurate screening result for all methods. The rea-
son may be attributed to the structure of the logistic model. Consider the simplest case,
P(Y = 1|X) = 1/(1 + exp(−X)) and P(Y = 0|X) = 1/(1 + exp(X)): clearly, a larger
|X| will make the classification between positive and negative easier. Consequently, un-
der logistic function, the t-distributed data will result in a more accurate result, because the
t-distribution has a higher probability of generating predictors with large values.

Table 4. Simulation results of Example 4.

K = 2 K = 5
Method

MMS IQR EPR Pdn P2dn MMS IQR EPR Pdn P2dn

Xj ∼ N(0, 1)
QCS 12.5 15 112 77.7 88.3 12 12 101 81.6 90.4
MVS 13 18 165 75.2 84.8 12 14 143 76.6 88.1
DCS 13 18 177 76.0 85.6 18 37 210 65.1 80.0
CAS 12.5 13 153 78.1 87.1 31.5 46.0 172 47.2 72.8
KFS 21 36 281 62.2 78.1 32.5 53 230 48.0 70.4

Xj ∼ t3
QCS 10 15 137 85.6 92.2 10 12 49 92.0 95.2
MVS 10 15 150 85.3 92.4 10 12 67 90.1 94.4
DCS 10 15 133 84.7 91.2 11 23 112 79.0 88.6
CAS 10 14 106 85.2 92.8 14 30 136 72.6 83.6
KFS 12 24 139 79.2 88.5 13 34 174 72.8 82.8

Example 5. This example aimed to check the effectiveness of the two extensions of the new method
in Section 2.2. We considered the following three models:

1. Y = ∑5
i=1 Xi + exp

(
∑10

i=6 Xi

)
+ ε, where Xj ∼ N(0, 1) with Corr(Xi, Xj) = 0.5|i−j| and

ε ∼ N(0, 1);
2. Y = 3 f1(X1) + f2(X2) − 1.5 f3(X3) + f4(X4) + ε, where f1(x) = − sin(2x), f2(x) =

x2 − 25/12, f3(x) = x, f4(x) = exp(−x)− 0.4 sinh(2.5), where Xj was independent of
Uni f orm(−2.5, 2.5);

3. Y = 1.5 log(n)/
√

n(X1 + X2 − 2X10 + 2X20 − 2|X100|) + ε, where Xj was equal to −1
if Zj < q1, 1 if Zj ≥ q3, and 0 otherwise, and where Zj ∼ N(0, 1) with Corr(Zj, Zk) =

0.5|j−k|, and q1 and q3 were the first and third quartiles, respectively, of a standard normal
distribution.

Model 1 was an index model from Zhu et al. [8]. Model 2 was an additive model
from Meier et al. [23]. Model 3 mimicked the SNPs, with equal allele frequencies {−1, 0, 1}
representing {AA, Aa, aa}, respectively; this model has been analyzed in Cui et al. [20].
We report the simulation results in Table 5. It is clear that the proposed method always
demonstrated a superior performance under the three models. More specifically, in Models
1 and 2, DCS did not work, though the predictor was not heavy-tailed. In Model 3,
the performance of DCS and CAS were unsatisfying, with large MS and less probability of
including the active predictors.

Overall, through the above simulations, we can summarize that QCS was the most
robust method: compared to its competitors, it had a very stable performance within
different model settings.

Computational complexity. Before the end of this subsection, we discuss the compu-
tational complexity of our method. Theoretically, the computational complexity of our
method is O(np), which is restricted at the sample size level. To obtain a clearer view of
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the computational complexity of our method, we conducted some simulations, to compare
the computing time of our method to its competitors (see Figure 3). This figure showed
that the computing time of our method linearly increased with the sample size, while the
computing times of the other methods had a quadratic form against n. The simulations
were conducted using Matlab 2013a in a Dell OptiPlex 7060 SFF, equipped with eight
3.20 GHz Intel(R) Core(TM) i7-8700 CPUs 3.20 Ghz and 16.0 GB RAM.

Figure 3. Computing time of different methods based on 100 replications, where QCS is our method,
MVS is the MV-based sure independence screening method in [20], DCS is the distance correlation–
sure independence screening procedure in [9], CAS is the category-adaptive variable screening
in [21], and KFS is the Kolmogorov filter method in [19]. This simulation used Example 1, with
(K, p) = (8, 2000).

Table 5. Simulation results of Example 5.

Method MMS IQR EPR Pdn P2dn

Model 1 QCS 11 10 111 86.2 92.1
MVS 11.5 14 132 82.4 89.5
DCS 957 713 1513 0.4 0.8
CAS 30 78 338 56.7 71.2
KFS 14 18 165 83.2 90.3

Model 2 QCS 4 1 7 98.1 100
MVS 4 1 9 98.0 100
DCS 49 58 195 34.6 64.5
CAS 6 10 35 92.9 98.3
KFS 5 13 72 92.4 94.1

Model 3 QCS 6.5 14 109 88.7 94.2
MVS 7 16 114 86.4 90.8
DCS 13 26 215 76.5 86.6
CAS 17 54 258 60.8 78.9
KFS 25 87 316 58.2 68.4

3.3. Real Data Analyses

For this section, we applied our new screening methods to two cancer datasets. One
was leukemia data, consisting of 72 samples and 3571 genes, of which 47 were acute
lymphocytic leukemia (ALL) and the rest 25 were acute myelogenous leukemia (AML).
Note that the original leukemia data had 73 samples and 7129 genes. The data we analyzed
here had been pre-feature-selected (see details in Dettling M. [24]). The other cancer
dataset comprised small-round-blue-cell tumors (SRBCT) data, consisting of 63 samples
and 2308 genes. Among the 63 subjects, there were four types of tumors, including Burkitt
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lymphoma (BL), having 23 cases, Ewing sarcoma (EWS), having 20 cases, neuroblastoma
(NB), having 12 cases, and rhabdomyosarcoma (RMS), having 8 cases, respectively, so the
data was four-categorical. The two datasets are available on the website http://www.stat.
cmu.edu/~jiashun/Research/software/GenomicsData/, accessed on 5 March 2022.

The purpose of the two datasets was to identify the key genes that have a dominant
effect on predicting the diagnostic category of a tumor. We first employed the screening
methods, to reduce the large p to a suitable scale s. Then, we invoked the penalized linear
discriminant analysis (penLDA) [25], to further select the discriminative predictors from
the sn predictors. The above procedure is the popular two-stage method that is commonly
used in the analysis of ultrahigh-dimensional data. Note that we could also replace the
penLDA in the second stage with other penalized methods, such as sparse discriminant
analysis, as proposed by Clemmensen et al. [26].

We randomly extracted 70% of the samples from each class, as the training data,
and set the rest of the samples as the testing data, in which the training data were used
both to implement the screening procedure and to build the classifier, while the testing
data were used to check the performance of the trained classifier. We repeated the above
procedure for 500 replications, and we report both the training errors and testing errors for
different methods. Note that in the screening stage, we set dn = [n/ log n] and 2[n/ log n],
respectively: thus, dn = 16 and 32 in the leukemia dataset, and dn = 15 and 30 in the SRBCT
dataset. In the second stage, the tuning parameter of the penLDA method was determined
according to the 5-fold cross-validation method. Table 6 displays the corresponding results,
where QCS–penLDA denotes the two-stage method of QCS followed by penLDA; a similar
definition applies to MQS–penLDA, MVS–penLDA, etc.

The numerical results are summarized in Table 6, from which the following conclusion
can be obtained. For the leukemia dataset, all methods except DCS performed reasonably
well, such that all of them could control the testing errors below 1. However, for the SRBCT
data, our method performed significantly better than the other methods: it achieved the
smallest training errors, and testing errors closer to 0. The CAS-based two-stage method
yielded bad results for both the training error and the testing error. The reason may be that
the distribution behind the data was not unimodal.

Table 6. Numerical results of the real data analyses.

No. of Training Errors No. of Testing Errors
Data dn Method

Mean Std Mean Std

Leukemia 16 QCS-penLDA 0.176 0.401 0.794 0.865
MVS-penLDA 0.166 0.383 0.828 0.864
DCS-penLDA 1.188 0.783 1.334 1.082
CAS-penLDA 0.140 0.353 0.814 0.867
KFS-penLDA 0.260 0.478 0.896 0.924

32 QCS-penLDA 0.152 0.359 0.670 0.813
MVS-penLDA 0.130 0.336 0.696 0.808
DCS-penLDA 0.898 0.732 0.974 0.920
CAS-penLDA 0.128 0.334 0.682 0.801
KFS-penLDA 0.210 0.417 0.792 0.873

SRBCT 15 QCS-penLDA 0.100 0.319 0.574 0.818
MVS-penLDA 0.436 1.777 1.180 1.399
DCS-penLDA 1.366 2.753 1.740 1.701
CAS-penLDA 7.236 2.246 5.744 2.174
KFS-penLDA 2.850 1.665 2.852 1.744

30 QCS-penLDA 0.088 1.343 0.206 0.872
MVS-penLDA 0.130 1.710 0.470 1.021
DCS-penLDA 0.320 2.693 0.604 1.458
CAS-penLDA 3.360 1.601 3.864 1.787
KFS-penLDA 0.594 0.831 0.860 0.964

http://www.stat.cmu.edu/~jiashun/Research/software/GenomicsData/
http://www.stat.cmu.edu/~jiashun/Research/software/GenomicsData/
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4. Conclusions

This paper proposes a new quantile-composited feature screening (QCS) procedure,
to rapidly screen out the null predictors. Compared to the existing methods, QCS sheds
light on the following aspects. Firstly, the ranking index is a simple structure, so that
the implementation of the screening procedure is computationally easy. Secondly, QCS
is a quantile-composited method: it can utilize much distributional information, so as to
significantly improve the screening efficiency, but retains the computational cost at a low
level. The simulation and real data analysis also demonstrated the effectiveness of QCS.

In addition, it is worth mentioning that QCS can be further improved. For example,
the selection of the number s of the quantiles is still a problem, which could be the focus of
future work, based on this article.
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Appendix A. Proof of Main Results

Proof of Lemma 1. For Lemma 1(1), we only prove the sufficient; the necessity can be
proved similarly. If qX(τ) = qX|Y(τ), then for any Y = 1, · · · , K,

P(I{X > qX(τ)} = 0, Y = k)

= P(X ≤ qX(τ)|Y = k)P(Y = k)

= P(X ≤ qX|Y(τ)|Y = k)P(Y = k)

= P(X ≤ qX(τ))P(Y = k)

= P(I{X > qX(τ)} = 0)P(Y = k).

For I{X > qX(τ)} = 1, the proof is the same.
To prove Lemma 1(2), we have ∀x0 ∈ R, ∃τ0 s.t. x0 = qX(τ0); then,

P(X ≤ x0, Y = k)

= P(X ≤ qX(τ0), Y = k)

= P(X ≤ qX(τ0)|Y = k)P(Y = k)

= P(X ≤ qX|Y(τ0)|Y = k)P(Y = k)

= P(X ≤ qX|Y(τ0))P(Y = k)

= P(X ≤ qX(τ0))P(Y = k)

= P(X ≤ x0)P(Y = k).

Proof of Theorem 1. We prove this theorem in two steps.
Firstly, we prove the consistency of π̂jb, π̂yk, π̂yk,jb(τ) and π̂ykπ̂jb(τ).
(1) If b = 0, then

http://www.stat.cmu.edu/~jiashun/Research/software/GenomicsData/
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∣∣π̂j0(τ)− πj0(τ)
∣∣ =

∣∣∣∣∣ 1n n

∑
i=1

I(Xij ≤ q̂Xj(τ))− P(Xj ≤ qXj(τ))

∣∣∣∣∣
=

∣∣∣∣ [nτ] + I(nτ > [nτ])

n
− nτ

n

∣∣∣∣
=

∣∣∣∣ I(nτ > [nτ])− (nτ − [nτ])

n

∣∣∣∣ ≤ 1
n

. (A1)

The conclusion for b = 1 can be proved similarly.
(2) By using Hoeffding’s inequality, we obtain

P
(∣∣∣π̂yk − πyk

∣∣∣ > ε
)
≤ 2 exp

{
−2nε2

}
. (A2)

(3) Define Z̃ij(τ) = I(Xij > qXj(τ)), such that

P
(∣∣∣π̂yk,jb(τ)− πyk,jb(τ)

∣∣∣ ≥ ε
)

= P

(∣∣∣∣∣ 1n n

∑
i=1

I{Yi = k}I{Zij(τ) = b} − P(Y = k, Zj(τ) = b)

∣∣∣∣∣ ≥ ε

)

≤ P

(∣∣∣∣∣ 1n n

∑
i=1

I{Yi = k}(I{Zij(τ) = b} − I{Z̃ij(τ) = b})
∣∣∣∣∣ ≥ ε

2

)
(A3)

+P

(∣∣∣∣∣ 1n n

∑
i=1

I{Yi = k}I{Z̃ij(τ) = b} − P(Y = k, Zj(τ) = b)

∣∣∣∣∣ ≥ ε

2

)
(A4)

For (A3), for each j, I{Zij = b} − I{Z̃ij(τ) = b} ≤ 0 for any i, or I{Zij = b} −
I{Z̃ij(τ) = b} > 0 for any i. Using Hoeffding’s inequality, (A3) can be deduced, such that

P

(∣∣∣∣∣ 1n n

∑
i=1

I{Yi = k}(I{Zij(τ) = b} − I{Z̃ij(τ) = b})
∣∣∣∣∣ ≥ ε

2

)

= P

(∣∣∣∣∣ 1n n

∑
i=1

I{Yi = k}(I{Xij ≤ q̂Xj(τ)} − I{Xij ≤ qXj(τ)})
∣∣∣∣∣ ≥ ε

2

)

≤ P

(∣∣∣∣∣ 1n n

∑
i=1

(I{Xij ≤ q̂Xj(τ)} − I{Xij ≤ qXj(τ)})
∣∣∣∣∣ ≥ ε

2

)

= P

(∣∣∣∣∣ 1n n

∑
i=1

I{Xij ≤ q̂Xj(τ)} −
1
n

n

∑
i=1

I{Xij ≤ qXj(τ)}
∣∣∣∣∣ ≥ ε

2

)

= P

(∣∣∣∣∣π̂j0(τ)−
1
n

n

∑
i=1

I{Xij ≤ qXj(τ)}
∣∣∣∣∣ ≥ ε

2

)

= P

(∣∣π̂j0(τ)− πj0(τ)
∣∣+ ∣∣∣∣∣πj0(τ)−

1
n

n

∑
i=1

I{Xij ≤ qXj(τ)}
∣∣∣∣∣ ≥ ε

2

)

≤ P

(
1
n
+

∣∣∣∣∣ 1n n

∑
i=1

I{Xij ≤ qXj(τ)} − τ

∣∣∣∣∣ ≥ ε

2

)

= P

(∣∣∣∣∣ 1n n

∑
i=1

I{Xij ≤ qXj(τ)} − τ

∣∣∣∣∣ ≥ ε

2
− 1

n

)

≤ 2 exp

{
−

n(ε− 2
n )

2

2

}
. (A5)
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For (A4), using Hoeffding’s inequality,

P

(∣∣∣∣∣ 1n n

∑
i=1

I(yi = k)I(Z̃ij(τ) = b)− P(Y = k, Zj(τ) = b)

∣∣∣∣∣ > ε/2

)
≤ 2 exp

{
−nε2

2

}
. (A6)

Consequently, combining the results of (A5) and (A6), it is simple to establish that

P
(∣∣∣π̂yk,jb(τ)− πyk,jb(τ)

∣∣∣ > ε
)
≤ 2 exp

{
−

n(ε− 2
n )

2

2

}
+ 2 exp

{
−nε2

2

}
. (A7)

(4) By employing a similar argument,
∣∣∣π̂ykπ̂jb(τ)− πykπjb(τ)

∣∣∣ can be bounded easily,
as

P
(∣∣∣π̂ykπ̂jb(τ)− πykπjb(τ)

∣∣∣ ≥ ε
)

≤ P
(∣∣∣π̂ykπ̂jb(τ)− π̂ykπjb(τ)

∣∣∣+ ∣∣∣π̂ykπjb(τ)− πykπjb(τ)
∣∣∣ ≥ ε

)
= P

(
π̂yk ·

∣∣∣π̂jb(τ)− πjb(τ)
∣∣∣+ πjb(τ) ·

∣∣∣π̂yk − πyk

∣∣∣ ≥ ε
)

≤ P
(

1
n
+
∣∣∣π̂yk − πyk

∣∣∣ ≥ ε

)
≤ P

(∣∣∣∣∣ 1n n

∑
i=1

I(Yi = k)− P(Y = k)

∣∣∣∣∣ ≥ ε− 1
n

)

≤ 2 exp

{
−2n

(
ε− 1

n

)2
}

, (A8)

where the second inequality holds because
∣∣∣π̂jb(τ)− πjb(τ)

∣∣∣ ≤ 1
n , and where the last

inequality holds due to Hoeffding’s inequality.
Secondly, we prove the consistency of Q̂j(τ)−Qj(τ). Because∣∣Q̂j(τ)−Qj(τ)

∣∣
=

∣∣∣∣∣ K

∑
k=0

1

∑
b=0

(π̂ykπ̂jb(τ)− π̂yk,jb(τ))
2

π̂ykπ̂jb(τ)
−

K

∑
k=0

1

∑
b=0

(πykπjb(τ)− πyk,jb(τ))
2

πykπjb(τ)

∣∣∣∣∣
=

∣∣∣∣∣ K

∑
k=0

1

∑
b=0

(
π̂ykπ̂jb(τ)− 2π̂yk,jb(τ) +

π̂2
yk,jb(τ)

π̂ykπ̂jb(τ)

)

−
K

∑
k=0

1

∑
b=0

(
πykπjb(τ)− 2πyk,jb(τ) +

π2
yk,jb(τ)

πykπjb(τ)

)∣∣∣∣∣
=

∣∣∣∣∣ K

∑
k=0

1

∑
b=0

(π̂ykπ̂jb(τ)− πykπjb(τ)) + 2
K

∑
k=0

1

∑
b=0

(π̂yk,jb(τ)− πyk,jb(τ))

+
K

∑
k=0

1

∑
b=0

(
π̂2

yk,jb(τ)

π̂ykπ̂jb(τ)
−

π2
yk,jb(τ)

πykπjb(τ)

)∣∣∣∣∣
=

∣∣∣∣∣0 + 0 +
K

∑
k=0

1

∑
b=0

(
π̂2

yk,jb(τ)

π̂ykπ̂jb(τ)
−

π2
yk,jb(τ)

πykπjb(τ)

)∣∣∣∣∣
=

∣∣∣∣∣ K

∑
k=0

1

∑
b=0

(
π̂2

yk,jb(τ)

π̂ykπ̂jb(τ)
−

π2
yk,jb(τ)

πykπjb(τ)

)∣∣∣∣∣,
we only need to prove the consistency of ∑K

k=0 ∑1
b=0

(
π̂2

yk,jb(τ)

π̂ykπ̂jb(τ)
−

π2
yk,jb(τ)

πykπjb(τ)

)
.
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When 0 < τ ≤ 1
2 ,

∣∣∣∣∣ K

∑
k=1

1

∑
b=0

(
π̂2

yk,jb(τ)

π̂ykπ̂jb(τ)
−

π2
yk,jb(τ)

πykπjb(τ)

)∣∣∣∣∣
=

∣∣∣∣∣ K

∑
k=1

(
π̂2

yk,j0(τ)

π̂ykπ̂j0(τ)
−

π2
yk,j0(τ)

πykπj0(τ)
+

π̂2
yk,j1(τ)

π̂ykπ̂j1(τ)
−

π2
yk,j1(τ)

πykπj1(τ)

)∣∣∣∣∣
=

∣∣∣∣∣ K

∑
k=1

(
π̂2

yk,j0(τ)

π̂ykπ̂j0(τ)
−

π2
yk,j0(τ)

πykπj0(τ)
+

[π̂yk − π̂yk,j0(τ)]
2

π̂ykπ̂j1(τ)
−

[πyk − πyk,j0(τ)]
2

πykπj1(τ)

)∣∣∣∣∣
=

∣∣∣∣∣ K

∑
k=1

(
π̂2

yk,j0(τ)

π̂ykπ̂j0(τ)
−

π2
yk,j0(τ)

πykπj0(τ)
+

π̂2
yk,j0(τ)

π̂ykπ̂j1(τ)
−

π2
yk,j0(τ)

πykπj1(τ)

+
π̂yk − 2π̂yk,j0(τ)

π̂j1(τ)
−

πyk − 2πyk,j0(τ)

πj1(τ)

)∣∣∣∣∣
≤

∣∣∣∣∣ K

∑
k=1

(
π̂2

yk,j0(τ)

π̂ykπ̂j0(τ)
−

π2
yk,j0(τ)

πykπj0(τ)
+

π̂2
yk,j0(τ)

π̂ykπ̂j1(τ)
−

π2
yk,j0(τ)

πykπj1(τ)

)∣∣∣∣∣ (A9)

+

∣∣∣∣∣ K

∑
k=1

(
π̂yk − 2π̂yk,j0(τ)

π̂j1(τ)
−

πyk − 2πyk,j0(τ)

πj1(τ)

)∣∣∣∣∣. (A10)

For (A9), combining the results of (A1), (A2), (A7) and (A8), we have :

∣∣∣∣∣ K

∑
k=1

(
π̂2

yk,j0(τ)

π̂ykπ̂j0(τ)
−

π2
yk,j0(τ)

πykπj0(τ)
+

π̂2
yk,j0(τ)

π̂ykπ̂j1(τ)
−

π2
yk,j0(τ)

πykπj1(τ)

)∣∣∣∣∣
=

∣∣∣∣∣ K

∑
k=1

(
π̂2

yk,j0(τ)

π̂yk

(
1

π̂j0(τ)
+

1
π̂j1(τ)

)
−

π2
yk,j0(τ)

πyk

(
1

πj0(τ)
+

1
πj1(τ)

))∣∣∣∣∣
=

∣∣∣∣∣ K

∑
k=1

(
π̂2

yk,j0(τ)

π̂ykπ̂j0(τ)π̂j1(τ)
−

π2
yk,j0(τ)

πykπj0(τ)πj1(τ)

)∣∣∣∣∣
=

∣∣∣∣∣ K

∑
k=1

(
π̂2

yk,j0(τ)

π̂ykπ̂j0(τ)π̂j1(τ)
−

π̂2
yk,j0(τ)

π̂ykπ̂j0(τ)πj1(τ)
+

π̂2
yk,j0(τ)

π̂ykπ̂j0(τ)πj1(τ)
−

π2
yk,j0(τ)

πykπj0(τ)πj1(τ)

)∣∣∣∣∣
≤

∣∣∣∣∣ K

∑
k=1

(
π̂2

yk,j0(τ)

π̂ykπ̂j0(τ)
·

πj1(τ)− π̂j1(τ)

π̂j1(τ)πj1(τ)

)∣∣∣∣∣+
∣∣∣∣∣ K

∑
k=1

(
π̂2

yk,j0(τ)

π̂ykπ̂j0(τ)
−

π2
yk,j0(τ)

πykπj0(τ)

)
· 1

πj1(τ)

∣∣∣∣∣
=

πj1(τ)− π̂j1(τ)

π̂j1(τ)πj1(τ)
·
∣∣∣∣∣ K

∑
k=1

(
π̂2

yk,j0(τ)

π̂ykπ̂j0(τ)

)∣∣∣∣∣+ 1
πj1(τ)

·
∣∣∣∣∣ K

∑
k=1

(
π̂2

yk,j0(τ)

π̂ykπ̂j0(τ)
−

π2
yk,j0(τ)

πykπj0(τ)

)∣∣∣∣∣
≤ 1

n(1− τ) · (1− τ − 1
n )
·
∣∣∣∣∣ K

∑
k=1

(
π̂yk,j0(τ)

π̂j0(τ)

)∣∣∣∣∣+ 2

∣∣∣∣∣ K

∑
k=1

(
π̂2

yk,j0(τ)

π̂ykπ̂j0(τ)
−

π2
yk,j0(τ)

πykπj0(τ)

)∣∣∣∣∣
≤ 1

n(1− τ) · (1− τ − 1
n )

+ 2

∣∣∣∣∣ K

∑
k=1

(
π̂2

yk,j0(τ)

π̂ykπ̂j0(τ)
−

π2
yk,j0(τ)

πykπj0(τ)

)∣∣∣∣∣, (A11)

and



Mathematics 2023, 11, 2398 18 of 21

∣∣∣∣∣ K

∑
k=1

(
π̂2

yk,j0(τ)

π̂ykπ̂j0(τ)
−

π2
yk,j0(τ)

πykπj0(τ)

)∣∣∣∣∣
=

∣∣∣∣∣ K

∑
k=1

(
π̂2

yk,j0(τ)

π̂ykπ̂j0(τ)
−

π̂2
yk,j0(τ)

π̂ykπj0(τ)
+

π̂2
yk,j0(τ)

π̂ykπj0(τ)
−

π2
yk,j0(τ)

πykπj0(τ)

)∣∣∣∣∣
=

∣∣∣∣∣ K

∑
k=1

π̂2
yk,j0(τ)

π̂yk

(
1

π̂j0(τ)
− 1

πj0(τ)

)
+

K

∑
k=1

(
π̂2

yk,j0(τ)

π̂ykπj0(τ)
−

π2
yk,j0(τ)

πykπj0(τ)

)∣∣∣∣∣
≤

∣∣∣∣∣
(

1
π̂j0(τ)

− 1
πj0(τ)

)
K

∑
k=1

π̂2
yk,j0(τ)

π̂yk

∣∣∣∣∣
+

1
πj0(τ)

∣∣∣∣∣ K

∑
k=1

(
π̂2

yk,j0(τ)

π̂yk
−

π̂yk,j0(τ)πyk,j0(τ)

π̂yk
+

π̂yk,j0(τ)πyk,j0(τ)

π̂yk
−

π2
yk,j0(τ)

πyk

)∣∣∣∣∣
≤

∣∣∣∣∣
(

πj0(τ)− π̂j0(τ)

π̂j0(τ)πj0(τ)

)
K

∑
k=1

π̂yk,j0(τ)

∣∣∣∣∣
+

1
πj0(τ)

∣∣∣∣∣ K

∑
k=1

[
π̂yk,j0(τ)

π̂yk

(
π̂yk,j0(τ)− πyk,j0(τ)

)
+

πyk,j0(τ)

π̂yk

(
π̂yk,j0(τ)− πyk,j0(τ)

)]∣∣∣∣∣
≤

∣∣∣∣∣πj0(τ)− π̂j0(τ)

π̂j0(τ)πj0(τ)
· π̂j0(τ)

∣∣∣∣∣+ 1
πj0(τ)

∣∣∣∣∣ K

∑
k=1

π̂yk,j0(τ)

π̂yk

(
π̂yk,j0(τ)− πyk,j0(τ)

)∣∣∣∣∣
+

1
πj0(τ)

∣∣∣∣∣ K

∑
k=1

π̂yk,j0(τ)

π̂yk

(
π̂yk,j0(τ)− πyk,j0(τ)

)∣∣∣∣∣
≤

∣∣∣∣∣πj0(τ)− π̂j0(τ)

πj0(τ)

∣∣∣∣∣+ 1
πj0(τ)

K

∑
k=1

∣∣∣π̂yk,j0(τ)− πyk,j0(τ)
∣∣∣+ 1

πj0(τ)

K

∑
k=1

∣∣∣π̂yk,j0(τ)− πyk,j0(τ)
∣∣∣

=
1

nτ
+

2
1− τ

K

∑
k=1

∣∣∣π̂yk,j0(τ)− πyk,j0(τ)
∣∣∣. (A12)

For (A10), ∣∣∣∣∣ K

∑
k=1

(
π̂yk − 2π̂yk,j0(τ)

π̂j1(τ)
−

πyk − 2πyk,j0(τ)

πj1(τ)

)∣∣∣∣∣
=

∣∣∣∣∣ K

∑
k=1

(
π̂yk

π̂j1(τ)
−

πyk

πj1(τ)
+

2πyk,j0(τ)

πj1(τ)
−

2π̂yk,j0(τ)

π̂j1(τ)

)∣∣∣∣∣
=

∣∣∣∣∣ 1
π̂j1(τ)

− 1
πj1(τ)

+ 2

(
πj0(τ)

πj1(τ)
−

π̂j0(τ)

π̂j1(τ)

)∣∣∣∣∣
=

∣∣∣∣∣ 1
π̂j1(τ)

− 1
πj1(τ)

+ 2

(
1− πj1(τ)

πj1(τ)
−

1− π̂j1(τ)

π̂j1(τ)

)∣∣∣∣∣
=

∣∣∣∣∣ 1
π̂j1(τ)

− 1
πj1(τ)

+ 2

(
1

πj1(τ)
− 1

π̂j1(τ)

)∣∣∣∣∣
=

∣∣∣∣∣ 1
π̂j1(τ)

− 1
πj1(τ)

∣∣∣∣∣
≤ 1

n(1− τ) · (1− τ − 1
n )

. (A13)
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Combining the results of (A9)–(A13),∣∣∣∣∣ K

∑
k=1

1

∑
b=0

(
π̂2

yk,jb(τ)

π̂ykπ̂jb(τ)
−

π2
yk,jb(τ)

πykπjb(τ)

)∣∣∣∣∣
≤ 2

(1− τ) · [n(1− τ)− 1]
+

2
nτ

+
4

1− τ

K

∑
k=1

∣∣∣π̂yk,j0(τ)− πyk,j0(τ)
∣∣∣. (A14)

For 1
2 < τ < 1, by employing a similar argument, it can be proved that∣∣∣∣∣ K

∑
k=1

1

∑
b=0

(
π̂2

yk,jb(τ)

π̂ykπ̂jb(τ)
−

π2
yk,jb(τ)

πykπjb(τ)

)∣∣∣∣∣
≤ 2

τ · (nτ − 1)
+

2
n(1− τ)

+
4
τ

K

∑
k=1

∣∣∣π̂yk,j1(τ)− πyk,j1(τ)
∣∣∣. (A15)

For any τ ∈ (0, 1), by (A14) and (A15), it holds that∣∣∣∣∣ K

∑
k=1

1

∑
b=0

(
π̂2

yk,jb(τ)

π̂ykπ̂jb(τ)
−

π2
yk,jb(τ)

πykπjb(τ)

)∣∣∣∣∣
≤ 2

τ̃ · (nτ̃ − 1)
+

2
n(τ)

+
4
τ̃

K

∑
k=1

∣∣∣π̂yk,ja(τ)− πyk,ja(τ)
∣∣∣, (A16)

where τ̃ = max{τ, 1− τ}, τ = min{τ, 1− τ}, and b = I{τ > 1− τ}. For (A7) and (A16),
we can obtain

P
(∣∣Q̂j(τ)−Qj(τ)

∣∣ ≥ ε
)

≤ P

(
2

τ̃ · (nτ̃ − 1)
+

2
n(τ)

+
4
τ̃

K

∑
k=1

∣∣∣π̂yk,jb(τ)− πyk,jb(τ)
∣∣∣ ≥ ε

)

= P

(
K

∑
k=1

∣∣∣π̂yk,jb(τ)− πyk,jb(τ)
∣∣∣ ≥ τ̃

4

(
ε− 2

τ̃ · (nτ̃ − 1)
− 2

n(τ)

))

≤ 2KP
(∣∣∣π̂yk,jb(τ)− πyk,jb(τ)

∣∣∣ ≥ τ̃

4K

(
ε− 2

τ̃ · (nτ̃ − 1)
− 2

n(τ)

))

≤ 4K exp

−
n
[

τ̃
4K

(
ε− 2

τ̃·(nτ̃−1) −
2

n(τ)

)
− 2

n

]2

2


+4K exp


−n
[

τ̃
4K

(
ε− 2

τ̃·(nτ̃−1) −
2

n(τ)

)]2

2

. (A17)

Let τ ∈ (α, 1− α), and by condition (C1), it can be derived that

P
(∣∣Q̂j(τ)−Qj(τ)

∣∣ ≥ ε
)
= K exp({−nK−2ε2 + εK−2/τ̄}). (A18)

Let K = O(nγ) and ε = cn−η , if τ̄ = o(nη−1); then

P
(∣∣Q̂j(τ)−Qj(τ)

∣∣ ≥ cnη
)
= K exp(−O{n1−2η−2γ}). (A19)
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The proof of Corollary 1. Under the conditions in Theorem 1, following (A17) and
(A19), we obtain

P
(∣∣Q̂j −Qj

∣∣ ≥ ε
)

= P

∣∣∣∣∣∣
∫ 1−a

a Q̂2
j (τ)dτ∫ 1−a

a Q̂j(τ)dτ
−
∫ 1−a

a Q2
j (τ)dτ∫ 1−a

a Qj(τ)dτ

∣∣∣∣∣∣ ≥ ε


= P

∣∣∣∣∣∣
∫ 1−a

a Q̂2
j (τ)dτ∫ 1−a

a Q̂j(τ)dτ
−
∫ 1−a

a Q̂j(τ)Qj(τ)dτ∫ 1−a
a Q̂j(τ)dτ

+

∫ 1−a
a Q̂j(τ)Qj(τ)dτ∫ 1−a

a Q̂j(τ)dτ

−
∫ 1−a

a Q̂j(τ)Qj(τ)dτ∫ 1−a
a Qj(τ)dτ

+

∫ 1−a
a Q̂j(τ)Qj(τ)dτ∫ 1−a

a Qj(τ)dτ
−
∫ 1−a

a Q2
j (τ)dτ∫ 1−a

a Qj(τ)dτ

∣∣∣∣∣∣ ≥ ε


= P

(∣∣∣∣∣
∫ 1−a

a Q̂j(τ)
[
Q̂j(τ)−Qj(τ)

]
dτ∫ 1−a

a Q̂j(τ)dτ
+

∫ 1−a
a Q̂j(τ)Qj(τ)dτ

∫ 1−a
a

[
Q̂j(τ)−Qj(τ)

]
dτ∫ 1−a

a Q̂j(τ)dτ
∫ 1−a

a Qj(τ)dτ

+

∫ 1−a
a Q̂j(τ)

[
Q̂j(τ)−Qj(τ)

]
dτ∫ 1−a

a Qj(τ)dτ

∣∣∣∣∣ ≥ ε

)

≤ P

(∫ 1−a
a Q̂j(τ)

∣∣Q̂j(τ)−Qj(τ)
∣∣dτ∫ 1−a

a Q̂j(τ)dτ
+

∫ 1−a
a Q̂j(τ)Qj(τ)dτ

∫ 1−a
a

∣∣Q̂j(τ)−Qj(τ)
∣∣dτ∫ 1−a

a Q̂j(τ)dτ
∫ 1−a

a Qj(τ)dτ

+

∫ 1−a
a Qj(τ)

∣∣Q̂j(τ)−Qj(τ)
∣∣dτ∫ 1−a

a Qj(τ)dτ
≥ ε,

∣∣Q̂j(τ)−Qj(τ)
∣∣ < ε

4

)
+P
(∣∣Q̂j(τ)−Qj(τ)

∣∣ ≥ ε

4

)
≤ P

(
ε

4
+

ε

4
·

∫ 1−a
a Q̂j(τ)Qj(τ)dτ∫ 1−a

a Q̂j(τ)dτ
∫ 1−a

a Qj(τ)dτ
+

ε

4
≥ ε,

∣∣Q̂j(τ)−Qj(τ)
∣∣ < ε

4

)
+P
(∣∣Q̂j(τ)−Qj(τ)

∣∣ ≥ ε

4

)
≤ P

 ε

2
+

ε

4
·

√∫ 1−a
a Q̂2

j (τ)dτ
∫ 1−a

a Q2
j (τ)dτ∫ 1−a

a Q̂j(τ)dτ
∫ 1−a

a Qj(τ)dτ
≥ ε,

∣∣Q̂j(τ)−Qj(τ)
∣∣ < ε

4


+P
(∣∣Q̂j(τ)−Qj(τ)

∣∣ ≥ ε

4

)
≤ P

(
ε

2
+

ε

4
·
∫ 1−a

a Q̂j(τ)dτ
∫ 1−a

a Qj(τ)dτ∫ 1−a
a Q̂j(τ)dτ

∫ 1−a
a Qj(τ)dτ

≥ ε,
∣∣Q̂j(τ)−Qj(τ)

∣∣ < ε

4

)
+P
(∣∣Q̂j(τ)−Qj(τ)

∣∣ ≥ ε

4

)
= P

( ε

2
+

ε

4
· 1 ≥ ε,

∣∣Q̂j(τ)−Qj(τ)
∣∣ < ε

4

)
+ P

(∣∣Q̂j(τ)−Qj(τ)
∣∣ ≥ ε

4

)
= P

(∣∣Q̂j(τ)−Qj(τ)
∣∣ ≥ ε

4

)
≤ K exp(−O{n1−2η−2γ}).

Proof of Theorem 2. If A * Â, then there must exist some k ∈ A, such that

Q̂k < cn−η . It follows from condition (C2) that
∣∣∣Q̂k −Qk

∣∣∣ > cn−η for some k ∈ A, indicat-
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ing that the events satisfy
{
A * Â

}
⊆
{∣∣∣Q̂k −Qk

∣∣∣ > cn−κ , for some k ∈ A}, and hence

En =
{

maxk∈A

∣∣∣Q̂k −Qk
∣∣∣ ≤ cn−η

}
⊆
{
A ⊆ Â

}
. Consequently,

P
(
A ⊆ Â

)
≥ Pr(En) = 1− P(E c

n) = 1− P
(

min
k∈A
|ω̂k −ωk| ≥ cn−η

)
= 1− snP

{
|ω̂k −ωk| ≥ cn−η

}
≥ 1− snK exp

{
−O(n1−2η−2γ)

}
,

(A20)

where sn is the cardinality of A.
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