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1. Introduction

Fixed point theory is one of the most glorious and prominent theories in functional
analysis and has extensive applications in other fields. Additionally, the basic and elemen-
tary theorem in this theory is Banach contraction principle [1], in which the contractive
mapping is defined on a complete metric space. The self-contractive mapping given in this
principle is naturally continuous although it is not useful if the mapping is discontinuous.
The crucial disadvantage of this theorem is how we apply self-contractive mapping if it is
discontinuous. This problem was resolved by Kannan [2] in the past, where a fixed point
theorem without continuity was proved. Later on, Reich [3] combined Banach contraction
and Kannan’s contraction and presented a result in 1971. Fisher [4] initiated rational ex-
pressions in contractive inequality and presented a result in the background of complete
metric spaces. For more features in this way, we mention the researchers in [5–7].

In all of the above results, the concept of metric space plays a substantial and significant
role, which was instinctively initiated by M. Frechet [8] in 1906. Thereafter, many authors
have generalized the concept of metric by either weakening the metric axioms or altering
the domain and range of it. Czerwik [9] weakened the triangular inequality of metric
space by putting a non-negative constant s ≥ 1 on the right hand side of it and gave the
idea of b-metric space. In [10], Branciari initiated the idea of rectangular metric space and
extended the conception of metric space by putting rectangular inequality on the place of
the triangle inequality. The rectangular inequality associates the distance of four elements.
Jleli et al. [11] introduced a new and fascinating space, which is famous as an F-metric
space in which the triangle inequality is satisfied inside a continuous function. F-metric
space is a generalization of classical metric space, b-metric space and Branciari metric space.
Subsequently, Al-Mazrooei et al. [12] used the notion of F-metric space and proved some
results for rational inequality that includes some non-negative constants.

In these extensions of metric space, we take the distance between elements of one set.
So, a question arises naturally of how the distance between points of two distinct sets can be
discussed. Such problems of computing distance can be confronted in different fields of the
mathematics. In spite of that fact, Mutlu et al. [13] gave the notion of bipolar metric space
to resolve such issues. Additionally, this updated notion of bipolar metric space leads to
the development and progress of fixed point results in fixed point theory. However, a lot of
decisive work has been investigated the existence for fixed points of self- and multivalued
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mappings in the setting of bipolar metric space (see [14–24]) and references therein). Very
recently, Rawat et al. [25] unified the above two innovative concepts, namely F-metric space
and bipolar metric space, and introduced the concept of F-bipolar metric space and proved
the Banach contraction principle in this newly introduced metric space.

In this research work, we utilize the notion of F-bipolar metric space, which is more
general metric space than F-metric space and bipolar metric space and establish fixed
point results for Reich and Fisher type contractions. In this way, we generalize the main
results of Rawat et al. [25] in F-bipolar metric space, Mutlu et al. [13] in bipolar metric
space, and Jleli et al. [11] and Al-Mazrooei et al. [12] in F-metric space. As applications of
our leading results, we study conditions for the existence and uniqueness of an integral
equation. Moreover, we apply our result to investigate the existence of the unique solution
in homotopy theory.

2. Preliminaries

An outstanding Banach fixed point theorem [1] is stated in the following manner.

Theorem 1 ([1]). Let (W, ς) be a complete metric space and let = : W→W. If there exists some
non-negative real number λ ∈ [0, 1) such that

ς(=`,=h̄) ≤ λς(`, h̄),

for all `, h̄ ∈W, then the mapping = has a unique fixed point.

Kannan [2] presented the following theorem in which the given mapping is not
necessarily continuous.

Theorem 2 ([2]). Let (W, ς) be a complete metric space and let = : W→W. If there exists some
non-negative real number λ ∈ [0, 1

2 ) such that

ς(=`,=h̄) ≤ λ(ς(`,=`) + ς(h̄,=h̄)),

for all `, h̄ ∈W, then the mapping = has a unique fixed point.

In 1971, Reich [3] combined the Banach contraction principle and Kannan fixed point
theorem as follows.

Theorem 3 ([3]). Let (W, ς) be a complete metric space and let = : W→W. If there exist some
non-negative real numbers λ1, λ2 ∈ [0, 1) such that λ1 + 2λ2 < 1 and

ς(=`,=h̄) ≤ λ1ς(`, h̄) + λ2(ς(`,=`) + ς(h̄,=h̄)),

for all `, h̄ ∈W, then the mapping = has a unique fixed point.

In [4], Fisher gave a result for contractive inequality consisting of rational expression
as follows:

Theorem 4 ([4]). Let (W, ς) be a complete metric and let = : W → W. If there exist some
non-negative real numbers λ1, λ2 ∈ [0, 1) such that λ1 + λ2 < 1 and

ς(=`,=h̄) ≤ λ1ς(`, h̄) + λ2
ς(`,=`)ς(=h̄, h̄)

1 + ς(`, h̄)
,

for all `, h̄ ∈W, then there exists a unique point `∗ ∈W such that =`∗ = `∗.

In 2018, Jleli et al. [11] gave an absorbing extension of a metric space in the following
fashion.
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Let F be a family of continuous functions f : (0,+∞) → R satisfying the follow-
ing conditions:

(F1) f is non-decreasing,
(F2) for each sequence {tn} ⊆ R+, limn→∞ αn = 0 if and only if limn→∞ f (αn) = −∞.

Definition 1 ([11]). Let W 6= ∅ and let ς : W×W → [0,+∞). Assume that there exists some
( f , α) ∈ F × [0,+∞) in such a way

(i) ς(`, h̄) = 0 if and only if ` = h̄,
(ii) ς(`, h̄) = ς(h̄, `),
(iii) for every p ∈ N, p ≥ 2, and for every (un)

p
n=1 ⊂W with (u1, up) = (`, h̄), we have

ς(`, h̄) > 0⇒ f (ς(`, h̄)) ≤ f

(
p−1

∑
n=1

ς(un, un+1)

)
+ α.

Then, (W, ς) is alleged to be an F-metric space.

Example 1 ([11]). Let W = R. Define ς : W×W→ [0,+∞) by

ς(`, h̄) =
{

(`− h̄)2 if (`, h̄) ∈ [0, 3]× [0, 3]
|`− h̄| if (`, h̄) 6∈ [0, 3]× [0, 3],

with f (t) = ln(t) and α = ln(3), then (W,ς) is an F-metric space.

On the other hand, Mutlu et al. [13] gave the conception of bipolar metric space
as follows.

Definition 2 ([13]). Let W and Q be nonempty sets and let ς : W×Q → [0,+∞) be a given
function. If the function ς verifies

(bi1) ς(`, h̄) = 0 if and only if ` = h̄,
(bi2) ς(`, h̄) = ς(h̄, `), if `, h̄ ∈W∩Q,
(bi3) ς(`, h̄) ≤ ς(`, h̄/) + ς(`/, h̄/) + ς(`/, h̄);

for all (`, h̄), (`/, h̄/) ∈W×Q. Then, the triple (W,Q, ς) is said to be a bipolar metric space.

Example 2 ([13]). Let W and Q be the family of all singleton and compact subsets of R respectively.
Define ς : W×Q→ [0,+∞) by

ς(`, Ξ) = |`− inf(Ξ)|+ |`− sup(Ξ)|

for {`} ⊆W and Ξ ⊆ Q, then (W,Q, ς) is a bipolar metric space.

Definition 3 ([13]). Let (W1,Q1, ς1) and (W2,Q2, ς2) be two bipolar metric spaces. A map-
ping = : W1 ∪ Q1 ⇒ W2 ∪ Q2 is said to be a covariant mapping, if =(W1) ⊆ W2 and
=(Q1) ⊆ Q2. Similarly, a mapping = : W1 ∪ Q1 ⇒ W2 ∪ Q2 is said to be a contravariant
mapping, if =(W1) ⊆ Q2 and =(W2) ⊆ Q1.

To make distinction between these mappings, we will represent covariant mapping as
= : (W1,Q1) ⇒ (W2,Q2) and contravariant mapping as = : (W1,Q1) � (W2,Q2).

Very recently, Rawat et al. [25] unified the above two innovative conceptions, specifi-
cally F-metric space and bipolar metric space, and provided the idea of F-bipolar metric
space in this way.

Definition 4 ([25]). Let W and Q be nonempty sets and let ς : W×Q→ [0,+∞). Assume that
there exists some ( f , α) ∈ F × [0,+∞) such that
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(D1) ς(`, h̄) = 0 if and only if ` = h̄,
(D2) ς(`, h̄) = ς(h̄, `), if `, h̄ ∈W∩Q,
(D3) for every p ∈ N, p ≥ 2, and for every (un)

p
n=1 ⊂W and (vn)

p
n=1 ⊂ Q with (u1, vp) = (`, h̄),

we have

ς(`, h̄) > 0⇒ f (ς(`, h̄)) ≤ f

(
p−1

∑
n=1

ς(un+1, vn) +
p

∑
n=1

ς(un, vn)

)
+ α.

Then (W,Q, ς) is called an F-bipolar metric space.

Example 3. Let W={1, 2} and Q = {2, 7}. Define ς : W×Q→ [0,+∞) by

ς(1, 2) = 6, ς(1, 7) = 10, ς(2, 7) = 2, ς(2, 2) = 0.

Now since
10 = ς(1, 7) > ς(1, 2) + ς(2, 7) = 6 + 2 = 8,

so the triangle inequality of bipolar metric space is not satisfied and thus, (W,Q, ς) is not a bipolar
metric space. Now it can be easily seen that ς satisfies the first two axioms (D1 and D2) of F-bipolar
metric space. We only satisfy the third axiom (D3).

Case 1. ς(1, 2) > 0 implies

ln(6) = ln(ς(1, 2)) ≤ ln(ς(1, 7) + ς(2, 7) + ς(2, 2)) = ln(12),

Case 2. ς(2, 7) > 0 implies

ln(2) = ln(ς(2, 7)) ≤ ln(ς(2, 2) + ς(1, 2) + ς(1, 7)) = ln(16),

thus, the axiom (D3) is satisfied in both Case 1 and Case 2 with f (t) = ln(t) ∈ F and α = 0.
Case 3. ς(1, 7) > 0 implies

ln(10) = ln(ς(1, 7)) ≤ ln(ς(1, 2) + ς(2, 2) + ς(2, 7)) + α = ln(8) + α,

thus the axiom (D3) is satisfied with f (t) = ln(t) ∈ F and α > 1.
Thus, all the conditions of an F-bipolar metric space are satisfied and (W,Q, ς) is an

F-bipolar metric space.

Remark 1 ([25]). Taking Q = W, p = 2n, v = v2−1 and v = u2 in the above Definition 4, we

establish a sequence
(
v

)2n
=1 ∈W with (v1, v2n) = (`, h̄) such that assertion (iii) of Definition 1

is satisfied. Hence, every F-metric space is an F-bipolar metric space, but the converse is not true
in general.

Definition 5 ([25]). Let (W,Q, ς) be an F-bipolar metric space.

(i) An element ` ∈ W∪Q is said to be a right point if ` ∈ Q and a left point if ` ∈ W.
Additionally, ` is said to be a central point if it is both a right and left point.

(ii) A sequence h̄n on the set Q is said to be a right sequence and a sequence (`n) on W is called a
left sequence. In an F-bipolar metric space, a right or a left sequence is said to be a sequence.

(iii) A sequence (`n) is said to converge to an element `, if and only if (`n) is a right sequence,
` is a left point and limn→∞ ς(`, `n) = 0, or (`n) is a left sequence, ` is a right point
and limn→∞ ς(`n, `) = 0. A bisequence (`n, h̄n) on (W,Q, ς) is a sequence on the set
W×Q . If the sequences (`n) and (h̄n) are convergent, then the bisequence (`n,h̄n) is also
convergent, and if (`n) and (h̄n) converge to a common element, then the bisequence (`n,h̄n) is
called biconvergent.

(iv) A bisequence (`n, h̄n) in an F-bipolar metric space (W,Q, ς) is called a Cauchy bisequence,
if for each ε > 0, there exists n0 ∈ N, such that ς

(
`n, h̄p

)
< ε, for all n, p ≥ n0.
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Definition 6 ([25]). An F-bipolar metric space (W,Q, ς) is said to be complete, if every Cauchy
bisequence in (W,Q, ς) is convergent.

3. Main Results

Definition 7. Let (W,Q, ς) be an F-bipolar metric space. A mapping = : (W,Q, ς)� (W,Q, ς)
is said to be Reich type contraction if there exist some constants λ1, λ2, λ3 ∈ [0, 1) such that
λ1 + λ2 + λ3 < 1 and

ς(=h̄,=`) ≤ λ1ς(`, h̄) + λ2ς(`,=`) + λ3ς(=h̄, h̄), (1)

for all (`, h̄) ∈W×Q.

Theorem 5. Let (W,Q, ς) be a complete F-bipolar metric space and let= : (W,Q, ς)� (W,Q, ς)
be contravariant Reich type contraction, then the mapping = : W ∪Q →W ∪Q has a unique
fixed point, provided that the mapping = : (W,Q, ς) � (W,Q, ς) is continuous.

Proof. Let `0 be an arbitrary point in W. Define the bisequence (`n, h̄n) in (W,Q, ς) by

h̄n = =`n and `n+1 = =h̄n

for all n = 1, 2, . . . Now by (1), we have

ς(`n, h̄n) = ς(=h̄n−1,=`n, )

≤ λ1ς(`n, h̄n−1) + λ2ς(`n,=`n) + λ3ς(=h̄n−1, h̄n−1)

= λ1ς(`n, h̄n−1) + λ2ς(`n, h̄n) + λ3ς(`n, h̄n−1),

which implies that

ς(`n, h̄n) ≤
λ1+λ3

1− λ2
ς(`n, h̄n−1). (2)

Moreover,

ς(`n, h̄n−1) = ς(=h̄n−1,=`n−1, )

≤ λ1ς(`n−1, h̄n−1) + λ2ς(`n−1,=`n−1) + λ3ς(=h̄n−1, h̄n−1)

= λ1ς(`n−1, h̄n−1) + λ2ς(`n−1, h̄n−1) + λ3ς(`n, h̄n−1),

which implies that

ς(`n, h̄n−1) ≤
λ1+λ2

1− λ3
ς(`n−1, h̄n−1). (3)

Setting ϑ = max
{

λ1+λ3
1−λ2

, λ1+λ2
1−λ3

}
< 1. Then by (2) and (3), it is easy to see that

ς(`n, h̄n) ≤ ϑ2nς(`0, h̄0). (4)

Similarly, we have
ς(`n+1, h̄n) ≤ ϑ2n+1ς(`0, h̄0), (5)

for all n = 1, 2, . . . Let ( f , α) ∈ F × [0, ∞) be such that (D3) is satisfied. Let ε > 0 be fixed.
By (F2), there exists δ > 0 such that

0 < t < δ implies f (t) < f (ε)− α. (6)

Now, from (4) and (5), we obtain
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p−1

∑
j=n

ς
(
`j+1, h̄j

)
+

p

∑
j=n

ς
(
`j, h̄j

)
≤

(
ϑ2n + ϑ2n+2 + . . . + ϑ2p

)
ς(`0, h̄0) +

(
ϑ2n+1 + ϑ2n+3 + . . . + ϑ2p−1

)
ς(`0, h̄0)

≤ ϑ2n
∞

∑
n=0

ϑnς(`0, h̄0) =
ϑ2n

1− ϑ
ς(`0, h̄0),

for p > n. Since limn→∞
ϑ2n

1−ϑ ς(`0, h̄0) = 0, so there exists n0 ∈ N, such that

0 <
ϑ2n

1− ϑ
ς(`0, h̄0) < δ,

for n ≥ n0. Hence, for p > n ≥ n0, using (F1) and inequality (6), we have

f

(
p−1

∑
j=n

ς
(
`j+1, h̄j

)
+

p

∑
j=n

ς
(
`j, h̄j

))
≤ f

(
ϑ2n

1− ϑ
ς(`0, h̄0)

)
< f (ε)− α. (7)

From (D3) and inequality (7), we find that ς
(
`n, h̄p

)
> 0 implies

f
(
ς
(
`n, h̄p

))
≤ f

(
p−1

∑
j=n

ς
(
`j+1, h̄j

)
+

p

∑
j=n

ς
(
`j, h̄j

))
+ α < f (ε).

Similarly, for n > p ≥ n0, ς
(
`n, h̄p

)
> 0 implies

f
(
ς
(
`n, h̄p

))
≤ f

(
n−1

∑
j=p

ς
(
`j+1, h̄j

)
+

n

∑
j=p

ς
(
`j, h̄j

))
+ α < f (ε).

Then, by (F1), ς
(
`n, h̄p

)
< ε, for all p, n ≥ n0. Thus, (`n, h̄n) is a Cauchy bisequence in

(W,Q, ς). As (W,Q, ς) is complete, so (`n, h̄n) biconverges to a point ω ∈ W ∩Q. Thus,
(`n) → ω, (h̄n) → ω. Moreover, since the contravariant mapping = is continuous, so we
have

(`n)→ ω implies that (h̄n) = (=`n)→ =ω.

Additionally, since (h̄n) has a limit ω in W∩Q and the limit is unique. Thus, =ω = ω. So,
= has a fixed point.

Now, if v is another and distinct fixed point of =, then =v = v yields that
v ∈W∩Q. Then,

ς(ω, v) = ς(=ω,=v) ≤ λ1ς(v, ω) + λ2ς(v,=v) + λ3ς(=ω, ω)

= λ1ς(v, ω),

which is a contradiction, except ω = v.

Corollary 1 ([25]). Let (W,Q, ς) be a complete F-bipolar metric space and let = : (W,Q, ς)
� (W,Q, ς) be a contravariant mapping. If there exists some constant λ ∈ [0, 1) and

ς(=h̄,=`) ≤ λς(`, h̄),

for all (`, h̄) ∈W×Q, then the mapping = : W∪Q→W∪Q has a unique fixed point, provided
that the mapping = : (W,Q, ς) � (W,Q, ς) is continuous.

Proof. Take λ1 = λ, λ2 = λ3 = 0 in Theorem 5.
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Remark 2. If f (t) = ln(t), for t > 0 and α = 0 in the above Corollary, then F-bipolar metric space
reduced to bipolar metric space and we derive main result of Mutlu et al. [13] as a direct consequence.

Remark 3. If W = Q in the above Corollary, then F-bipolar metric space reduced to F-metric space
and we derive the main result of Jleli et al. [11] as a direct consequence.

Corollary 2. Let (W,Q, ς) be a complete F-bipolar metric space and let = : (W,Q, ς)� (W,Q, ς)
be a contravariant mapping. If there exists some constant η < 1

3 and

ς(=h̄,=`) ≤ η(ς(`, h̄) + ς(`,=`) + ς(=h̄, h̄)),

for all (`, h̄) ∈W×Q, then the mapping = : W∪Q→W∪Q has a unique fixed point, provided
that the mapping = : (W,Q, ς) � (W,Q, ς) is continuous.

Proof. Take λ1 = λ2 = λ3 = η in Theorem 5.

Corollary 3. Let (W,Q, ς) be a complete F-bipolar metric space and let = : (W,Q, ς)� (W,Q, ς)
be a contravariant mapping. If there exists some constant η < 1

2 and

ς(=h̄,=`) ≤ η(ς(`,=`) + ς(=h̄, h̄)),

for all (`, h̄) ∈W×Q, then the mapping = : W∪Q→W∪Q has a unique fixed point, provided
that the mapping = : (W,Q, ς) � (W,Q, ς) is continuous.

Proof. Take λ1 = 0, λ2 = λ3 = η in Theorem 5.

Now, we state a theorem that is a natural extension of Theorem 5 in this way.

Theorem 6. Let (W,Q, ς) be a complete F-bipolar metric space and let= : (W,Q, ς)� (W,Q, ς)
be a contravariant mapping. If there exists some constant 0 < η < 1 such that

ς(=h̄,=`) ≤ η max{ς(`, h̄), ς(`,=`), ς(=h̄, h̄)}, (8)

for all (`, h̄) ∈W×Q, then the mapping = : W∪Q→W∪Q has a unique fixed point, provided
that the mapping = : (W,Q, ς) � (W,Q, ς) is continuous.

Proof. Let `0 be an arbitrary point in W. Define the bisequence (`n, h̄n) in (W,Q, ς) by

h̄n = =`n and `n+1 = =h̄n

for all n = 1, 2, . . . Now, by (8), we have

ς(`n, h̄n) = ς(=h̄n−1,=`n, )

≤ η max{ς(`n, h̄n−1), ς(`n,=`n), ς(=h̄n−1, h̄n−1)}
= η max{ς(`n, h̄n−1), ς(`n, h̄n), ς(`n, h̄n−1)}
= η max{ς(`n, h̄n−1), ς(`n, h̄n)}. (9)

If max{ς(`n, h̄n−1), ς(`n, h̄n)} = ς(`n, h̄n), then we have

ς(`n, h̄n) ≤ ης(`n, h̄n),

which is a contradiction to the fact that 0 < η < 1. Thus, max{ς(`n, h̄n−1), ς(`n, h̄n)} =
ς(`n, h̄n−1). Hence, by (9), we have

ς(`n, h̄n) ≤ ης(`n, h̄n−1). (10)
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Likewise,

ς(`n, h̄n−1) = ς(=h̄n−1,=`n−1, )

≤ η max{ς(`n−1, h̄n−1), ς(`n−1,=`n−1), ς(=h̄n−1, h̄n−1, )}
= η max{ς(`n−1, h̄n−1), ς(`n−1, h̄n−1), ς(`n, h̄n−1)}
= η max{ς(`n−1, h̄n−1), ς(`n, h̄n−1)}.

If max{ς(`n−1, h̄n−1), ς(`n, h̄n−1)} = ς(`n, h̄n−1), then we have

ς(`n, h̄n−1) ≤ ης(`n, h̄n−1),

which is a contradiction to the fact that 0 < η < 1. Thus, max{ς(`n−1, h̄n−1), ς(`n, h̄n−1)} =
ς(`n−1, h̄n−1). Hence, by (9), we have

ς(`n, h̄n−1) ≤ ης(`n−1, h̄n−1). (11)

Now, by (10) and (11), it is easy to see that

ς(`n, h̄n) ≤ η2nς(`0, h̄0).

Similarly,
ς(`n+1, h̄n) ≤ η2n+1ς(`0, h̄0).

The remaining part of the proof is the same as of Theorem 5.

Definition 8. Let (W,Q, ς) be an F-bipolar metric space. A mapping = : (W,Q, ς)� (W,Q, ς)
is said to be rational contraction if there exist some constants λ1, λ2 ∈ [0, 1) such that
λ1 + λ2 < 1 and

ς(=h̄,=`) ≤ λ1ς(`, h̄) + λ2
ς(`,=`)ς(=h̄, h̄)

1 + ς(`, h̄)
, (12)

for all (`, h̄) ∈W×Q.

Theorem 7. Let (W,Q, ς) be a complete F-bipolar metric space and let= : (W,Q, ς)� (W,Q, ς)
be contravariant rational contraction, then the mapping = : W∪Q→W∪Q has a unique fixed
point, provided that the mapping = : (W,Q, ς) � (W,Q, ς) is continuous.

Proof. Let `0 and h̄0 be arbitrary points in W and Q, respectively. Define the bisequence
(`n, h̄n) in (W,Q, ς) by

h̄n = =`n and `n+1 = =h̄n

for all n = 1, 2, . . . Now, by (12), we have

ς(`n, h̄n) = ς(=h̄n−1,=`n, )

≤ λ1ς(`n, h̄n−1)

+λ2
ς(`n,=`n)ς(=h̄n−1, h̄n−1)

1 + ς(`n, h̄n−1)

= λ1ς(`n, h̄n−1) + λ2
ς(`n, h̄n)ς(`n, h̄n−1)

1 + ς(`n, h̄n−1)

≤ λ1ς(`n, h̄n−1) + λ2ς(`n, h̄n),

which implies that

ς(`n, h̄n) ≤
λ1

1− λ2
ς(`n, h̄n−1). (13)
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Moreover,

ς(`n, h̄n−1) = ς(=h̄n−1,=`n−1, )

≤ λ1ς(`n−1, h̄n−1)

+λ2
ς(`n−1,=`n−1)ς(=h̄n−1, h̄n−1, )

1 + ς(`n−1, h̄n−1)

= λ1ς(`n−1, h̄n−1) + λ2
ς(`n−1, h̄n−1)ς(`n, h̄n−1)

1 + ς(`n−1, h̄n−1)

≤ λ1ς(`n−1, h̄n−1) + λ2ς(h̄n−1, `n),

which implies that

ς(`n, h̄n−1) ≤
λ1

1− λ2
ς(`n−1, h̄n−1). (14)

Now, if we take λ1
1−λ2

= ϑ, then (13) and (14) become

ς(`n, h̄n) ≤ ϑς(`n, h̄n−1) (15)

and
ς(`n, h̄n−1) ≤ ϑς(`n−1, h̄n−1). (16)

Thus, by (15) and (16), we have

ς(`n, h̄n) ≤ ϑ2nς(`0, h̄0). (17)

Similarly,
ς(`n+1, h̄n) ≤ ϑ2n+1ς(`0, h̄0), (18)

for all n = 1, 2, . . . Let ( f , α) ∈ F × [0, ∞) be such that (D3) is satisfied. Let ε > 0 be fixed.
By (F2), there exists δ > 0 such that

0 < t < δ implies f (t) < f (ε)− α. (19)

From (17) and (18), we obtain

p−1

∑
j=n

ς
(
`j+1, h̄j

)
+

p

∑
j=n

ς
(
`j, h̄j

)
≤

(
ϑ2n + ϑ2n+2 + . . . + ϑ2p

)
ς(`0, h̄0) +

(
ϑ2n+1 + ϑ2n+3 + . . . + ϑ2p−1

)
ς(`0, h̄0)

≤ ϑ2n
∞

∑
n=0

ϑnς(`0, h̄0) =
ϑ2n

1− ϑ
ς(`0, h̄0),

for p > n. Since limn→∞
ϑ2n

1−ϑ ς(`0, h̄0) = 0, so there exists n0 ∈ N, such that

0 <
ϑ2n

1− ϑ
ς(`0, h̄0) < δ,

for n ≥ n0. Hence, for p > n ≥ n0, using (F1) and inequality (19), we have

f

(
p−1

∑
j=n

ς
(
`j+1, h̄j

)
+

p

∑
j=n

ς
(
`j, h̄j

))
≤ f

(
ϑ2n

1− ϑ
ς(`0, h̄0)

)
< f (ε)− α. (20)

By (D3) and inequality (20), we find that ς
(
`n, h̄p

)
> 0 implies
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f
(
ς
(
`n, h̄p

))
≤ f

(
p−1

∑
j=n

ς
(
`j+1, h̄j

)
+

p

∑
j=n

ς
(
`j, h̄j

))
+ α < f (ε).

Similarly, for n > p ≥ n0, ς
(
`n, h̄p

)
> 0 implies

f
(
ς
(
`n, h̄p

))
≤ f

(
n−1

∑
j=p

ς
(
`j+1, h̄j

)
+

n

∑
j=p

ς
(
`j, h̄j

))
+ α < f (ε).

Then, by (F1), ς
(
`n, h̄p

)
< ε, for all p, n ≥ n0. Thus, (`n, h̄n) is a Cauchy bisequence in

(W,Q, ς). As (W,Q, ς) is complete, so (`n, h̄n) biconverges to a point ω ∈ W ∩ Q. So
(`n) → ω, (h̄n) → ω. Additionally, since the contravariant mapping = is continuous,
we have

(`n)→ ω implies that (h̄n) = (=`n)→ =ω.

Moreover, since (h̄n) has a limit ω in W∩Q and the limit is unique. Thus, =ω = ω. So, =
has a fixed point.

Now, if v is another distinct fixed point of=, then=v = v yields that v ∈W∩Q. Then,

ς(ω, v) = ς(=ω,=v) ≤ λ1ς(v, ω) + λ2
ς(v,=v)ς(=ω, ω)

1 + ς(v, ω)

= λ1ς(v, ω),

which is a contradiction, except ω = v.

Remark 4. If W = Q in the above theorem, then F-bipolar metric space reduced to F-metric space
and we derive the main result of Al-Mazrooei et al. [12] as a direct consequence.

Example 4. Let W ={9, 10, 18, 20} and Q ={3, 5, 11, 18}. Define the usual metric ς: W×Q→
[0,∞) by

ς(`, h̄) = |`− h̄|.

Then, (W,Q, ς) is a complete F-bipolar metric space. Define the contravariant mapping = :
W∪Q �W∪Q by

=(`) =
{

18, if ` ∈W∪{11}
9, otherwise.

Then, all the conditions of Theorem 7 are satisfied with λ1 = 4
5 and λ2 = 1

6 . Hence, by Theorem 7,
= has a unique fixed point, which is 18 ∈W∩Q.

4. Application
4.1. Integral Equations

In this section, we study conditions for the existence and uniqueness of an inte-
gral equation.

Theorem 8. Let us consider the integral equation

ϕ(`) = g(`) +
∫
W∪Q

K(`, h̄, ϕ(`))dh̄,

where W∪Q is a Lebesgue measurable set. Assume that

(i) K :
(
W2 ∪Q2)× [0, ∞)→ [0, ∞) and f ∈ L∞(W) ∪ L∞(Q),

(ii) There is a continuous function Υ : W2 ∪Q2 → [0, ∞) such that

|K(`, h̄, ϕ(h̄))− K(`, h̄, φ(h̄))| ≤ Υ(`, h̄)

{
λ1|φ(h̄)− ϕ(h̄)|

+λ2
|φ(h̄)−Iφ(h̄)||Iϕ(h̄)−ϕ(h̄)|

1+|φ(h̄)−ϕ(h̄)|

}
,
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for all `, h̄ ∈
(
W2 ∪Q2), and I : L∞(W) ∪ L∞(Q)→ L∞(W) ∪ L∞(Q)

(iii)
∥∥∫

W∪Q Υ(`, h̄)ςh̄
∥∥ ≤ 1, i.e., sup`∈W∪Q

∫
W∪Q|Υ(`, h̄)|ςh̄ ≤ 1.

Then, the integral equation has a unique solution in L∞(W) ∪ L∞(Q).

Proof. Let Ξ = L∞(W) and Θ = L∞(Q) be two normed linear spaces, where W and Q are
Lebesgue measurable sets and m(W∪Q) < ∞. Let d : Ξ×Θ→ [0, ∞) be given as

d(ξ, ζ) = ‖ξ − ζ‖∞,

for all ξ, ζ ∈ Ξ×Θ. Then, (Ξ, Θ, d) is a complete F-bipolar metric space. Define I : Ξ∪Θ→
Ξ ∪Θ by

I(ϕ(`)) = g(`) +
∫
W∪Q

K(`, h̄, ϕ(`))dh̄,

for ` ∈W∪Q. Now, we have

d(I(ϕ(`)), I(φ(`))) = ‖I(ϕ(`))− I(φ(`))‖

=

∣∣∣∣∫
W∪Q

K(`, h̄, ϕ(`))dh̄−
∫
W∪Q

K(`, h̄, φ(`))dh̄
∣∣∣∣

≤
∫
W∪Q

|K(`, h̄, ϕ(`))− K(`, h̄, φ(`))|dh̄

≤
∫
W∪Q

Υ(`, h̄)

{
λ1|φ(h̄)− ϕ(h̄)|

+λ2
|φ(h̄)−I(φ(h̄))||I(ϕ(h̄))−ϕ(h̄)|

1+|φ(h̄)−ϕ(h̄)|

}
dh̄

≤
{

λ1‖φ(h̄)− ϕ(h̄)‖
+λ2

‖φ(h̄)−I(φ(h̄))‖‖I(ϕ(h̄))−ϕ(h̄)‖
1+‖φ(h̄)−ϕ(h̄)‖

} ∫
W∪Q

|Υ(`, h̄)|dh̄

≤
{

λ1‖φ− ϕ‖
+λ2

‖φ−I(φ)‖‖I(ϕ)−ϕ‖
1+‖φ−ϕ‖

}
sup

`∈W∪Q

∫
W∪Q

|Υ(`, h̄)|dh̄

≤ λ1‖φ− ϕ‖+ λ2
‖φ− I(φ)‖‖I(ϕ)− ϕ‖

1 + ‖φ− ϕ‖

= λ1d(φ, ϕ) + λ2
d(φ, I(φ))d(I(ϕ), ϕ)

1 + d(φ, ϕ)
.

Thus, by Theorem 7, I has a unique fixed point in Ξ ∪Θ.

4.2. Homotopy

Theorem 9. Let (W,Q, ς) be a complete F-bipolar metric space and let (Ξ, Θ) be an open subset
of (W,Q) and

(
Ξ, Θ

)
be a closed subset of (W,Q) and (Ξ, Θ) ⊆

(
Ξ, Θ

)
. Suppose L :

(
Ξ ∪Θ

)
×

[0, 1]→W∪Q is a mapping satisfying the assertions:

(hom1) ` 6= L(`, q) for each ` ∈ ∂Ξ ∪ ∂Θ and q ∈ [0, 1], where ∂Ξ and ∂Θ represent the
differential of Ξ and Θ, respectively,

(hom2) for all ` ∈ Ξ, h̄ ∈ Θ and q ∈ [0, 1]

ς(L(h̄, q),L(`, q)) ≤ λ1ς(`, h̄) + λ2
ς(`,L(`, q))ς(L(h̄, q), h̄)

1 + ς(`, h̄)
,

where 0 ≤ λ1+λ2 < 1,
(hom3) there exists M ≥ 0 such that

ς(L(`, r),L(h̄, o)) ≤ M|r− o|,

for all ` ∈ Ξ, h̄ ∈ Θ and r, o ∈ [0, 1].

Then, L(·, 0) has a fixed point if and only if L(·, 1) has a fixed point.
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Proof. Let <1 = {τ ∈ [0, 1] : ` = L(`, τ), ` ∈ Ξ} and <1 = {o ∈ [0, 1] : h̄ = L(h̄, o), h̄ ∈ Θ}.
Since L(·, 0) has a fixed point in Ξ∪Θ, then we find 0 ∈ <1 ∩<2. Thus, <1 ∩<2 6= ∅. Now,
we shall prove that <1 ∩ <2 is both open and closed in [0, 1] and so, by connectedness,
<1 = <2 = [0, 1]. Let

(
{τn}∞

n=1
)
,
(
{on}∞

n=1
)
⊆ (<1,<2) with (τn, on) → (ρ, ρ) ∈ [0, 1] as

n→ ∞. We also claim that ρ ∈ <1 ∩ <2. Since (τn, on) ∈ <1 ∩ <2, for n ∈ N∪ {0}. Hence,
there exists a bisequence (`n, h̄n) ∈ (Ξ, Θ) such that h̄n = L(`n, τn) and `n+1 = L(h̄n, on).
Additionally, we obtain

ς(`n+1, h̄n) = ς(L(h̄n, on),L(`n, τn))

≤ λ1ς(`n, h̄n) + λ2
ς(`n,L(`n, τn))ς(L(h̄n, on), h̄n)

1 + ς(`n, h̄n)

= λ1ς(`n, h̄n) + λ2
ς(`n, h̄n)ς(`n+1, h̄n)

1 + ς(`n, h̄n)

≤ λ1ς(`n, h̄n) + λ2ς(`n+1, h̄n),

which implies that

ς(`n+1, h̄n) ≤
λ1

1− λ2
ς(`n, h̄n).

Additionally,

ς(`n, h̄n) = ς(L(h̄n−1, on−1),L(`n, τn))

≤ λ1ς(`n, h̄n−1) + λ2
ς(`n,L(`n, τn))ς(L(h̄n−1, on−1), h̄n−1)

1 + ς(`n, h̄n−1)

= λ1ς(`n, h̄n−1) + λ2
ς(`n, h̄n)ς(`n, h̄n−1)

1 + ς(`n, h̄n−1)

≤ λ1ς(`n, h̄n−1) + λ2ς(`n, h̄n),

which implies that

ς(`n, h̄n) ≤
λ1

1− λ2
ς(`n, h̄n−1).

Doing the same procedure as performed in Theorem 7, one can simply prove that (`n, h̄n)
is a Cauchy bisequence in (Ξ, Θ). As (Ξ, Θ) is complete, so there exists ρ1 ∈ Ξ ∩Θ such
that limn→∞(`n) = limn→∞(h̄n) = ρ1. Now, we have

ς(L(ρ1, o), h̄n) = ς(L(ρ1, o),L(`n, τn))

≤ λ1ς(`n, ρ1) + λ2
ς(`n,L(`n, τn))ς(L(ρ1, o), ρ1)

1 + ς(`n, λ1)

= λ1ς(`n, ρ1) + λ2
ς(`n, h̄n)ς(L(ρ1, o), ρ1)

1 + ς(`n, ρ1)
.

Applying the limit as n→ ∞, we obtain ς(L(ρ1, o), ρ1) = 0, which implies that L(ρ1, o) =
ρ1. Similarly, L(ρ1, τ) = v1. Thus, τ = o ∈ <1 ∩ <2, and evidently <1 ∩ <2 is a closed set
in [0, 1].

Next, we have to prove that <1 ∩<2 is open in [0, 1]. Suppose (τ0, o0) ∈ (<1,<2), then
there is a bisequence (`0, h̄0) so that `0 = L(`0, τ0), h̄0 = L(h̄0, o0). Since Ξ ∪ Θ is open,
there exists some r > 0 such that Bς(`0, r) ⊆ Ξ ∪Θ and Bς(r, h̄0) ⊆ Ξ ∪Θ, where Bς(`0, r)
and Bς(r, h̄0) represent the open balls with centers `0 and h̄0, respectively, and radius r.
Choose τ ∈ (o0 − ε, o0 + ε) and o ∈ (τ0 − ε, τ0 + ε) such that

|τ − o0| ≤
1

Mn <
ε

2
,

|o− τ0| ≤
1

Mn <
ε

2
,
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and
|τ0 − o0| ≤

1
Mn <

ε

2
.

Hence, we have

h̄ ∈ B<1∪<2(`0, r) = {h̄ : h̄0 ∈ Θ|ς(`0, h̄) ≤ r + ς(`0, h̄0)},

and
` ∈ B<1∪<2(r, h̄0) = {` : `0 ∈ Ξ|ς(`, h̄0) ≤ r + ς(`0, h̄0)}.

Moreover, we have

ς(L(`, τ), h̄0) = ς(L(`, τ),L(h̄0, o0))

≤ ς(L(`, τ),L(h̄, o0)) + ς(L(`0, τ),L(h̄, o0)) + ς(L(`0, τ),L(h̄0, o0))

≤ 2M|τ − o0|+ ς(L(`0, τ),L(h̄, o0))

≤ 2
Mn − 1

+ λ1ς(`0, h̄) + λ2
ς(`0,L(`0, τ))ς(L(h̄, o0), h̄)

1 + ς(`0, h̄)

=
2

Mn − 1
+ λ1ς(`0, h̄) + λ2

ς(`0, `0)ς(h̄, h̄)
1 + ς(`0, h̄)

=
2

Mn − 1
+ λ1ς(`0, h̄)

≤ 2
Mn − 1

+ ς(`0, h̄).

Letting n→ ∞, we obtain

ς(L(`, τ), h̄0) ≤ ς(`0, h̄) ≤ r + ς(`0, h̄0).

By corresponding fashion, we obtain

ς(`0,L(h̄, o)) ≤ ς(`, h̄0) ≤ r + ς(`0, h̄0).

However,

ς(`0, h̄0) = ς(L(`0, τ0),L(h̄0, o0)) ≤ M|τ0 − o0| ≤
1

Mn−1 → 0,

as n→ ∞, which implies that `0 = h̄0. Therefore, for each fixed o, o = τ ∈ (o0 − ε, o0 + ε)
and L(·, τ) : B<1∪<2(`0, r)→ B<1∪<2(`0, r). As all the hypothesis of Theorem 7 hold, L(·, τ)

has a fixed point in Ξ ∩ Θ, which must be in Ξ ∩ Θ. Then, τ = o ∈ <1 ∩ <2 for each
o ∈ (o0 − ε, o0 + ε). Hence, (o0 − ε, o0 + ε) ∈ <1 ∩<2, which gives <1 ∩<2 as open in [0, 1].
The converse can be proved by using the same process.

5. Conclusions

In this research paper, we have used the conception of F-bipolar metric space and
established some theorems for Reich- and Fisher-type contractions. We have derived certain
fixed point results of self-mappings in the background of F-bipolar metric space and bipolar
metric space as outcomes of our main results. The existence and uniqueness of the solution
of the integral equation is proved as applications of our leading results. Furthermore,
the existence of a unique solution in homotopy theory is also investigated.

The established theorems in this paper can be expanded to fuzzy and multivalued
mappings in the setting of F-bipolar metric spaces for future work. Furthermore, one
can obtain common fixed point theorems for these contractions. As applications of the
above-mentioned outlines in the foundation of F-bipolar metric space, certain integral and
differential inclusions can be solved.
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