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Abstract: This paper deals with p-location problem solving processes based on a decomposition,
which separates the creation of a uniformly deployed set of p-location problems from the solution
of the p-location problem for that specific instance. The research presented in this paper is focused
on methods of construction of uniformly deployed sets of solutions and the examination of their
impact on the efficiency of subsequent optimization algorithms. The approaches to the construction
are used for the constitution of predetermined families of uniformly deployed sets of p-location
problem solutions, which have standard sizes. We introduce two methods of uniformly deployed
set construction: the first one is based on composition, followed by an enlargement process; and
the second one makes use of voltage graphs. The construction approaches are completed by an
algorithm, which adjusts the set of solutions to the sizes of a solved instance. The influence of a set
construction approach on solving process efficiency is studied on real-world benchmarks, which
include both the p-median objective function and the generalized disutility function. The solving
process is performed alternatively using the swap or path-relinking based methods. Results of the
computational study obtained by all combinations of the mentioned approaches are presented and
evaluated in the concluding part of the paper to make the studied characteristics visible.
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1. Introduction

The term “p-location problem” is used within this paper to denote a large family of
location problems, which correspond to tasks of deploying a determined number of facilities
in a given finite set of feasible places so that the objective function of the facility deployment
takes the minimal or maximal value. The class of p-location problems includes well-known
p-median problems as well as non-standard problems arising from their generalization. As
far as the classical formulation is concerned, work [1] introduces discrete network location
models with definitions of p-median and p-center, etc. Definitions of weighted versions of
these problems can be found in [2]. Related problems concerning dispersion of p facilities
are referred to in [3-5]. Work [6] is a survey on location models in the public sector, which
comprises the deployment of fire brigades or police stations and the design of the medical
emergency service system.

A survey of ambulance location models with definitions of the most important prob-
lems can be found in [7]. Papers [8,9] study ambulance location problems represented
as a generalization of the covering problem. The references [10,11] contain the studies
of modified versions of ambulance location and relocation problems. In papers [12-14],
various versions of the p-median problem are studied.

All the listed variants of the problem have one common property: their solution can
be described by a binary m-dimensional vector containing exactly p unit components.

The original p-median and weighted p-median problems are easy to model by means
of linear integer programming with classical allocation constraints, and solve via a standard
integer programming method [4,15]. Nevertheless, this approach proved to be ineffective
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when bigger instances of the problems have to be solved. This inefficiency was mitigated
to some extent by developing so called radius formulation of the problems [16-19]. Despite
much progress in developing exact methods, the unpredictable computational time of the
branch-and-bound method focuses researchers’ attention on various kinds of evolutionary
metaheuristics.

Genetic algorithms were studied in [20,21]. A scatter search algorithm was reported in [22].

This research is motivated by recent findings [23] that even a simple heuristic can
reach a near-to-optimal solution. Due to the special feature of the set of all feasible solutions
of the p-location problem, a special heuristic can be used to exclude inadmissible solutions
from the starting uniformly deployed set. These are replaced by a smaller set of better
solutions, continuing to the point when the most recent set contains only the best pair of
found solutions. The starting set of solutions was obtained by a manually created subset of
solutions and their step-by step augmentation using integer programming tools. Another
approach to the starting set creation was proposed in [24], where a new approach based on
graph theory was used.

It was found that the efficiency of the heuristics depends on preliminary information
about the objective function course on the set of feasible solutions. Such a finding may help
in the determination of promising initial solutions for a searching process based on the
neighborhood search, or it can provide metaheuristics imitating evolutionary processes
or social behavior of species with a set of initial problem solutions. For example, genetic
algorithms [20,21] start with a population of problem solutions, which should differ as
much as possible. A scatter search algorithm [22] maintains two parts of a reference set
of solutions, where the first part contains a collection of good solutions and the other
one represents a maximally diversified set of solutions. In addition, a swarm particle
optimization algorithm [23,25] needs a set of good initial positions for the swarm particles.
This paper focuses on a way to create a diverse set of solutions. Diversification of the set
of problem solutions is a substantial part of all of the above-mentioned metaheuristics.
The phase of diversification prevents the searching processes from reaching a so called
homogeneous population, which is equivalent to being trapped at a local minimum.

Information about objective function values of the p-location problem can be obtained
by sampling the objective function at solutions of a small subset of all feasible solutions.

To obtain relevant information, we try to cover the set of all feasible solutions with
a limited number of samples, so that a distance between any pair of solutions is greater
than a given constant. Such a set of solutions is called uniformly deployed over the set
of all solutions. One way to achieve an admissible uniformly deployed set is to use the
iterative process. Thus, a step-by step process maximizes the subset cardinality, subject to
the condition that the mutual distance between any pair of solutions exceeds a given limit.

A standard approach to creating a uniformly deployed set (UDS) for a given number
of possible facility locations and a given number of facilities entails creating a basic set and
the subsequent step-by-step augmentation of this set by ongoing solutions.

This way of creating a UDS is very expensive when it comes to computational time
demanded, especially in the concluding augmentation steps. Usage of set construction
methods in combination with a fast heuristic may erase the effect of the UDS creation on
solving process efficiency [26-28].

Nevertheless, a standard kit of UDS for public use allows for the removal of the
computational burden of UDS generation from the solving process applied to an instance
of the solved problem [29]. This paper is devoted to the kit construction and its exploitation
for neighborhood and path-relinking-based searches. Special attention is paid to the basic
set creation in the process of individual UDS construction and to the adjustment of a kit set
to the size of a given p-location problem.

2. The p-Location Problem and Uniformly Deployed Set

The p-location problem may be tackled as a challenge of deploying p facilities in a set
of m suitable places so that a given objective function reaches the minimal value. These



Mathematics 2023, 11, 2418

3of 14

kinds of networks are usually associated with network nodes. The decision at a facility
located at a place i is modelled by a binary variable y;, which takes the value of one if a
facility is located at place i, with the zero value corresponding to the opposite decision. This
way, the solving process of the p-location problem can be formulated as a search in a finite
domain consisting of some vertices of a unit hypercube in the m-dimensional Euclidean
space, where each feasible solution corresponds to a vertex described by zero-one vector y,
which has exactly p non-zero components. Thus, (1) may describe the set Y of all feasible
solutions of the problem.

Y= {y: yi €{0, 1}, ;yi :P} 1)

Here, we present the two most frequent examples of the p-location problem, which
can be applied to the design of a public service system. We assume that the public service
system provides services to a set of users. Their locations also correspond to network nodes,
and they are denoted by integers from 1 to n. A userj=1... nis assigned by a weight
b;, which can stay for the frequency of the visits at the user j and d;; denotes the network
time-distance between locations i and j.

The standard weighted p-median problem formulation considers that each user de-
mand is satisfied by the nearest located service center, and the minimized user’s disutility
is expressed by the average time-distance from a user to the nearest located service center.
This problem is described by (2).

n
min{Fs(y) =) bmin{d; : i=1,...,m;y;=1}:ye€ Y} ()
j=1

However, if the service system satisfies randomly emerging demands for service, then
the rule of the nearest service center cannot be followed due to possible center occupancy
by an earlier request. In such a case, the system operates as a queuing system with p
service lines.

The generalized problem formulation considers a set of {i1(j), ..., i;(j)} of r nearest
center locations to a user j and it is assumed that the demand of user j is satisfied from
center location i(j) with probability gy.

In this case, the minimized user’s disutility is expressed by the expected average time-
distance from a user to the nearest available service center [30]. The associated generalized
p-location problem can be briefly formulated as follows.

n r
min{Fg(y) =Y b)) quming{d;j : i=1,...,m;y;=1}: ye Y} (3)
=1 k=1

In the above objective function expression, the operation min{range} returns the k-th
minimal value of the range.

Further, we devote our attention to specifics of the set Y of feasible hypercube vertices
corresponding with feasible solutions of the problems (2) and (3) [27]. To study the structure
of the set of the unit hypercube vertices, we use the well-known notion of Hamming
distance. Hamming distance H(x, y) between two hypercube vertices described by vectors
y and x is given by (4).

H(y, x) = ) lyi — x| 4)
i=1

It is obvious that the value H(x, y) is an integer, and it varies from the value of two
up to the value of 2p for any pair distinct vectors. The case H(y, x) = 2 corresponds with
the instance when all but two components of y and x are identical. This means that the
associated solutions differ only in one service center location. The Hamming distance can
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be used to define various topologies on the set Y. The smallest neighborhood of a point y
can be defined as a set of x€Y, which satisfies the constraint H(y, x) = 2. This neighborhood
consists of p(m — p) neighboring solutions.

It can be seen that integer value t = p — H(y, x)/2 is equal to the number of located
centers contained in both solutions y and x. To obtain relevant information about the
objective function on Y with minimal computational effort, we try to constitute a subset of
Y, the cardinality of which is adequate for a given purpose and in which the elements of Y
are uniformly deployed over the set of all solutions. In the ideal case, the subset elements
must satisfy the conditions that the mutual distance between two solutions is greater than
or equal to a given limit and that it is impossible to enlarge the subset by another solution
under the distance condition.

The UDS of p-location problem solutions can be presented as a maximal subset S of
feasible solutions of Y so that the condition H(y, x) > h is fulfilled for each x, y € S and
for given h. For practical use, we also accept breaking the condition of maximality and
replacing it with a request that the subset cardinality reaches a sufficient value. This weaker
definition is applied in situations when we search for a subset, the cardinality of which
exceeds a demanded size, and the condition H(y, x) > h is fulfilled for the maximal possible
value of h.

3. Fast Minimization Heuristics for the p-Location Problem

Within the paper, the contribution of the uniformly deployed sets to the efficiency
of simple minimization heuristics is studied. Attention is paid to the neighborhood and
path-relinking-based searches introduced in [31]. The swap algorithm equipped with the
best admissible strategy represents the mode of neighborhood search, which consists of
the solutions meeting the constraint H(y, x) = 2. In the swap algorithm described below,
an individual solution given by an m-dimensional zero-one vector y is represented by a
set L of center locations occupied by a center, i.e., L ={I € {1, ..., m}: y; = 1}. The same
representation will be used in the path-relinking search. The denotation f(L) stands for the
values of F°(y) or F&(y) computed for vector y, which corresponds to L. The algorithm Swap
comes from an initial solution L and performs according to the following steps:

Swap(L)

Initializef“ =f =f(L),P={1,...,m} — Land go to 1.

For each location I € L do step 2 and then go to 4.

For each unoccupied location g € P do step 3.

Put L = (L — {i}) U {g}and compute f(L), if f(L) < f, then put f = f(L) and L" = L.

If f* < f then terminate, return solution L" and its objective function value f as the
output, elseputf =f,L=L,P={1... m} —Landgoto 1.

L= o

The original version of the path-relinking method presented by [17] proceeds along
one of the shortest paths, which links a pair of input solutions. The procedure examines the
solutions on the inspected paths and returns the best feasible solution on the path. Having
demonstrated the performance of the original path-relinking method in an m-dimensional
unit hypercube, the inspected path is presented by an alternating sequence of the hyper-
cube vertices and edges connecting the neighboring vertices. A hypercube edge connects
two vertices, which differ only in one component. Hence, the Hamming distance of these
vertices is equal to one. It follows from this fact that the number of unit components of the
succeeding vertices of the inspected path cannot equal p and hence at least every second
vertex of the path does not belong to the set Y.

To skip the examination of the idle vertices, we proposed a special version of the
path-relinking method for the p-location problems, which inspects only feasible solutions
on the shortest paths [31].

To achieve this effect, we replaced the original inversion operation with a swap
operation, where the neighbor of the current solution lying on the shortest path on the
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surface of the hypercube is searched for. Since the swap operation preserves the number of
occupied locations, each inspected solution has exactly p occupied locations.

In the suggested form of the path-relinking approach, two lists L; and L, are used.
The lists of the p service center locations correspond with the two input solutions. In the
next method description, the lists will be handled as ordinary sets. To describe the method
in a concise way, we introduce auxiliary sets P; C L; and P, C L, defined by P1 =L; — Lp
and Py = Ly — L;. The algorithm Path-RelinkingMethod(L1, L;) is described below, and the
algorithm returns the resulting solution L*, which is the best-found solution met on the
inspected path.

Path-RelinkingMethod(L,, Ly)

0. Initialize the best-found solution L” and the auxiliary sets P; and P, by L" = argmin{f(L;),
f(Lo)}, Py=1Ly — Ly and Py =Ly — Ly.

1. Find locationsi € Py andj € P; to minimize the function f((P — {i}) U {j}) and update
Ly, P;,Pyand L' according to Ly = (L1 — {i'Hu {j*}, Py=P; —{i'},P, =P, — {j*} and
L" = argmin{f (L"), f(L1)},

2. If I Py | =1 Py | =1, then stop the process and return L*, else exchange L1 with L, Py
with P,, and go to 1.

Both methods inspect a neighborhood of a current solution denoted by either L or L;.
The neighborhood is determined by all p-location problem solutions, which can be obtained
by one exchange of a location included in the solution with a location, which belongs
to P or Py, respectively. The time necessary for one neighborhood inspection depends
mostly on the time needed for the computation of objective function (2) or (3) of a solution
of the neighborhood. The fact that the solution from the neighborhood differs only in
one location can be used for a considerable complexity reduction. While computing the
functions F° and F$ in accordance with (2) or (3) has the complexity O(np) or O(npr), the
used implementation reduces the computational complexity to O(n) or O(nr), respectively.

4. Kit of Uniformly Deployed Sets

The computation of satisfactorily large UDS for an individual problem characterized
by the number m of possible center locations and by the number p of located centers turned
out to be quite time-demanding [27]. To avoid the load of solving process, we proposed
the concept of a UDS kit, which allows the separation of the activities associated with
generating a uniformly distributed set from the solving of the p-location problem.

The principle of a UDS kit is based on a separation of the computational effort con-
nected with the p-location problem solution into two parts. The first one accounts for the
creation of a general structure—a UDS. The second part represents the solving process.
Even if a UDS of the p-location problem solutions depends only on two parameters p and m
of the problem instance, the number of possible combinations of the parameter values is too
large to create a corresponding UDS for each of these combinations in advance. That is why
a finite range M of numbers m is determined. Furthermore, a finite range P, for eachm € M
is designed (in this paper we state M = {75, 100, 200, ..., 1000} and P, = {10, 20, ..., m/3})
and then a kit of uniformly deployed sets is established so that a uniformly deployed set
Smp is created for each m € M and p € Py,. For practical reasons, the Sy, creation is subject
to a demand for a minimal number of elements. Such a kit may be created independently
of its further exploitation.

If there is a need to solve a p-location problem instance with parameters m and p,
which do not belong to the ranges M and Py, then a tight approximation m € M and p € Py,
of the parameters must be found so that m < m and p < p. The corresponding member S,
of the kit must be adjusted to fit the number p of locations, which determines a feasible
solution for the problem instance. The adjustment can be simply performed by removing
the p — p last elements of each p-tuple contained in S;;p. After the adjustment, the minimal
Hamming distance of a pair of p-location problem solutions is 2(p — t), where t denotes the
minimal number of common locations contained in each solution of the pair.
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It was proved that this reduction does not affect the efficiency of the algorithms based
on the neighborhood search, but it may considerably spoil the resulting quality of the used
path-relinking-based algorithm.

This defect can be explained by the fact that no solution of the reduced set Sy, after
the reduction contains any of the m — m locations, which were missing in solutions of
the original kit member S;,. As the path-relinking method examines the shortest path
between the input vertices of a unit m-dimensional hypercube, it is unable to leave the
m-dimensional sub-space and explore any solution outside the sub-space.

To remove this defect of kit usage, we propose an extension method, which incorpo-
rates the surplus possible service center locations into solutions of the chosen kit set. The
following extension algorithm assumes that the solutions of the set S are represented by
zero-one m-dimensional vectors yk fork=1,..., I1S|, where the last m-m components are
equal to zero. In the algorithm below, the symbols Y; and Q are defined by (5) and (6),
respectively.

Extension(S, m, m)

0. Compute Y;fori=1... maccording to (5); compute Q according to (6) and define
Q' = min{m-m, Q}; initialize t = m.
1. Foreachk=1... |S| perform the following cycle
foreachI=1... m perform the following command
if (y* =1) and (Y; > 1) and (t < m + Q') then do
yik=0;ytk=1;Yi=Yi71;t=t+1,

S|
Y=Yy )
k=1
Q= i max{0, Y;} (6)
i=1

The above extension algorithm inserts Q" unused locations into elements of the input
uniformly deployed set, unless diminishing the Hamming distance among the solutions.

After having adjusted the kit set to the size of the solved p-location problem, the
Swap and the Path-relinking algorithms can exploit the UDS in the following ways. Let an
adjusted uniformly deployed set S be given, and then the following steps are performed.

(a) Compute f(L) for each LES and initialize L” by the solution with the lowest value of
the objective function.
(b) Run the algorithm Swap(L*).

An adjusted uniformly deployed set S can be used as an initial swarm in searching
strategies using the path-relinking-based inspection as a tool for the best-found-solution
improvement. Let the expression Path-RelinkingMethod(L1, L,) denote the resulting solution
returned by the path-relinking method applied to input solutions L and L,. Let the set
S consists of solutions Ly, Ly, ..., L|g| ordered by a permutation U in a sequence, which
satisfies f(Lyq)) < f(Lu@) < ... <f(Luqsi))- Then, a search based on the path-relinking
method can be suggested as follows.

0. Initialize L" by solution L.
1. Perform command L" = Path—RelinkingMethod(L*, Ly) repeatedly fork=2... |SI.
2. Return the resulting solution L.

5. Composition Approach to Uniformly Deployed Set Construction

For given integers m € M and p € Py, the corresponding uniformly deployed set Sy,
is constructed according to the following process.

First, an attempt at maximal uniformly deployed set S!; construction was performed
for the g-location problem defined for g2 possible center locations for any integer g from
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the range {2, 3, ... , 31} so that arbitrary two g-tuples contain at most one conjoint element,
i.e., t =1. Second, a basic UDS for given meM and peP,, was composed of k g-tuples of Slq
and of k(p — q) other locations, where k and g were determined so that k(p — ) + g*> < m
holds. Each pair of p-tuples of the basic set have at most one common location.

The resulting basic set can be submitted to the time-restricted process augmentation,
which solves the linear programming problem described by the models (7)-(11) in each
step of the augmentation. The initial value of parameter t equals one. If the cardinality of
the augmented set did not reach a given threshold, the parameter ¢ is incremented, and the
augmentation process continues. This augmentation process can be applied to an arbitrary
basic uniformly deployed set regardless of its value of t.

Let the basic set of p-location problem solutions satisfy the property that no pair
of solutions may contain more than ¢+ common locations; thus, the minimal Hamming
distance of the solutions equals 2(p — t). The basic set is iteratively augmented by the
problems (7)—(11). The optimal solution y of the problems (7)-(11) is added to the current set
S under the condition that the value (7) of the optimal solution equals zero. This augmenting
process stops either if the optimal value of (7) is positive or the given cardinality of the
set S is achieved or the computational time limit is exceeded. The model was originally
published in [27].

Let s be an element of the set S. The solution s is represented by a set of p center
locations. The solution can be described by m-dimensional zero-one vector es, where the
i-th component ¢;; equals one if the location 7 is an element of the set s. Otherwise, the
component ¢;; takes the value of zero. Let us use a series of binary variables y; € {0, 1}
fori=1... m to describe an additional solution y, that could extend the current set S.
Furthermore, we use an additional series of variables z, where variable z; is associated with
the solution s and gives the number of common locations of the solution s and y reduced
by the value of ¢.

Minimize Z Zs 7)
ses
m
Subject to Y yi=1p 8)
i=1
m
Y esiyi<t+zs forseS ©)
i=1
yi€{0,1} fori=1, ..., m (10)
zs> 0 forse$S (11)

The expression (7) stands for the total of surpluses above the value t of conjoint
locations of the solution modelled by y and the input solution s € S. In the case when the
expression (7) takes the value of zero, then an arbitrary solution from S and the solution
modelled by y have at most t common locations. Constraint (8) assures the feasibility of the
solution described by the vector y. Constraint (9) ensures connections between the solution
y and the additional variables zs for s€ S. The left part of (9) for a solution s expresses the
number of locations common for solutions s and y. If the value exceeds ¢, the associated
variable z; must get a value greater than or equal to the surplus.

6. Graph-Based Approach to Uniformly Deployed Set Construction

In this section, we present the construction of uniformly deployed sets from a special
class of digraphs called monopoles. The advantage of this approach is that UDS with
given parameters can be computed directly. The origins of this method trace back to the
topological graph theory [32] and it serves for the construction of large graphs and digraphs
with given properties.
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For our purposes, we use the smallest possible digraph - monopole, which contains
only one vertex v and p edges ey, e, ... , ey. Each edge has an assigned value a(e;) = a;,
which is called the voltage of the edge. In origin, the voltages are elements of an appropriate
(usually abelian) group. However, we consider the elements of the set Z,, ={0, 1, ..., m — 1}.
Such a digraph is called a voltage digraph G = (V, E, a), where V = {v} is the vertex set,
E ={ey, e, ..., ey} is the set of edges and a:E—Z;, is an assignment of voltages. From G
and Z;,, we can create a derived digraph G;; = (Vi, Ep), where Vy,, = {vg, v1, ... , v—1} and
the edge (v;, ZJ]') belongs to the set E;; if and only if, there is an edge ¢ in E, and voltage a
from Z,, such that mod(i + a,m) = j (where mod(x,m) represents the remainder after dividing
x by m). An example of the construction for G4 and Z, is depicted in Figure 1.

S O T
o
T
U o

Figure 1. Voltage digraph G and its derived digraph Gy.

In the paper [33], we introduced a construction of the Hoffmann-Singleton graph
from the voltage graph. It follows from the properties of the Hoffmann-Singleton graph
(each pair of neighboring vertices has no conjoint neighbor, and each pair of non-adjacent
vertices has exactly one conjoint neighbor) that the rows of its adjacency matrix form the
uniformly deployed set with parameters m =50, p =7, and ¢ = 1. It is known that these
graphs (strongly regular graphs with some special parameters) occur rarely. However, if
we use weaker conditions for such objects, then we can construct derived digraphs with
appropriate properties. These conditions can be stated as follows:

0. The derived digraph has m vertices.
1.  Each vertex has out-degree p.
2. Each pair of vertices has at most t common successors.

Condition 1 ensures that the adjacency matrix of the derived digraph has m rows
(elements of UDS) and m columns (candidates for service centers location). Condition 2
ensures that each row of the adjacency matrix contains exactly p ones. Condition 3 ensures
that each pair of rows has at most ¢ ones on the same position. If the voltage graph is
monopole with p loops and we use the set Z,,;, then conditions 1 and 2 are fulfilled. The
choice of appropriate voltages can ensure that each pair of vertices in G;; has at most
t common successors. We introduce a simple and fast procedure that computes such p
element subset of Z,,. It is possible to show that for all v;, vj € Vi a pair (v, vy) is the
edge in Gy, if and only if a pair (v}, vy) is the edge in Gy, (where x = mod(i + k, m) and
y = mod(j + k, m)). Hence, it is enough to consider common successors of the vertices vy,
vj. Let us suppose that vy and v; have t common successors - say vx1, Uk2, ... , U Then,
there are voltages ki, kp, ... , ks and s1, s, ... , st on loops of G such that all equations in
(12) hold.

ki = mod(j +s1,m), ko = mod(j+ sy, m), ..., k = mod(j + s¢, m) (12)
From Equations (12) we have the expression (13).
j = mod(ky — s1,m) = mod(ky — sp,m) = ... = mod(ky — sy, m) (13)

The number of common successors of vertices vy and v; is given by the number of
computations mod(k — s, m) with voltages that have result j. If k, s < m/2, then mod(k — s, m)



Mathematics 2023, 11, 2418

9of 14

<m/2 for k > s, and mod(k — s, m) > m/2 for s > k. If we choose all voltages less than
m/2, then it is enough to check the repetition of values k-s for k > s. This can be done in
t-sequences: a t-sequence is an increasing sequence {ai}?:() such that

1. ap = 0,a;=1.
2. For k> 2, a; is the minimum value such that fori € {1, ... , k — 1}, the value a; — g;
occurs between values a; — a; (Wherel <i<j <k)atmostt — 1 times.

From the definition of a t-sequence, we also obtain a simple algorithm for the compu-
tation of its values. Examples of the first 4 = 15 members of f-sequences for t = 1, 2, 3, 4 can
be seen below:

t=1 0,1,3,7,12,20, 30, 44, 65, 80, 96, 122, 147, 181, 203

t=2 0,1,2,4,7,11, 16, 22, 30, 38, 48, 61, 73, 86, 103

t=3 0,1,2,3,5,8,12,16,21, 27, 33,40, 48,57, 71

t=4 0,1,2,3,4,6,9,13,17,22,27,33, 39,46, 53

If we want to construct a derived digraph G, then we need to find such a ¢t-sequence
in which a, 1 <m/2. The values ag, a1, ... , a,_1 are voltages on loops and the rows of
the adjacency matrix of G, form a uniformly deployed set for parameters m, p. More
information about the construction of uniformly deployed sets can be found in [24].

7. Computational Study

Further experiments were aimed at exploration of the impact of the way in which the
kit sets are suggested on the efficiency of the above-described fast minimization heuristics.

The instances used in experiments represent eight self-governing regions of the Slovak
Republic. Since these regions are characterized by high geographical variability, these
benchmarks are convenient for this type of testing. In the Bratislava and Trnava regions,
plains and industry dominate. The Nitra region is typical agricultural flatland. The Kosice
region represents a mix of industry and agriculture. The Trenéin region is characterized
by hills and industry. Zilina and Banska Bystrica are regions covered by mountains
with several industrial centers. The PreSov region is a typical rural region covered by
mountains. Each region is characterized by a set of dwelling places and the population of
the associated community. The dwelling places correspond to nodes of the regional road
network, which was used to compute network distances for each pair of nodes. A current
medical emergency system was used to derive the number of service centers, which can be
located at the set of road network nodes. Each node was considered as a possible service
center location and each node-dwelling place j with population b; was taken as a possible
system user, in which volume of demands is proportional to the size of the population.
In the remainder of the paper, the regions are denoted by abbreviations of the names of
regional capitals. We use BA for Bratislava, BB for Banska Bystrica, KE for Kosice, NR for
Nitra, PO for Presov, TN for Tren&in, TT for Trnava, and ZA for Zilina. The number m of
possible center locations and the number p of centers that need to be located are plotted
in Table 1 for the individual regions. The coefficients b; used in the objective functions of
the mathematical models (2) and (3) were determined as the sizes of the dwelling place
population given in hundreds of inhabitants. If the generalized problem Formulation (3) is
considered, then the number 7 of the nearest service centers taken into account was set at
the value of three. The coefficients g; were given in percentage: g1 = 77.063, g = 16.476, and
g3 =100 — g1 — g2. These parameter settings come from simulation experiments with the
emergency service system of the Slovak Republic [34]. The benchmark sizes are reported
in Table 1 together with objective function values F* and F$ of optimal solutions for both
formulations (2) and (3) according to [26,28]. The used kit was established for domains
M ={75,100, 200, ..., 1000} and P, = {10, 20, ... , m/3}; the corresponding sizes m and p of
the uniformly deployed sets withdrawn from the kit are also reported in Table 1.
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Table 1. Benchmark descriptions.

Optimal Solution

Region m 14 m 14 = =
BA 87 14 75 20 19,325 26,650
BB 515 36 500 40 29,873 44,752
KE 460 32 400 40 31,200 45,588
NR 350 27 300 30 34,041 48,940
PO 664 32 600 40 39,073 56,704
TN 276 21 200 30 25,099 35,275
TT 249 18 200 20 28,206 41,338
ZA 315 29 300 30 28,967 42,110

To verify the hypothesis concerning the fast heuristics described in Section 3, we
implemented them in the programming language JAVA, each in two versions. Versions
denoted by “Swap” and “Path-relinking” solve problems described by (2) and “SwapG” and
“Path-relinkingG” were designed for solving problems described by (3).

We used two series of uniformly deployed sets for the experiments. The first series
was derived by reduction of the kit sets obtained by the process described in Section 5
and it is reported as “kit standard” in the remainder of the paper. The standard kit sets
for the above-mentioned ranges were created for the threshold of 90 p-tuples, where the
computational time was restricted to ten minutes. The final values of parameter ¢, for which
the limit was reached, correspond also to the maximal number of common locations in
two p-tuples. The values of t and uniformly deployed set cardinalities | S| are reported
in Table 2. The second series denoted by the title “kit graph” was obtained from the
graph-based approach described in Section 6.

Table 2. Characteristics of the derived kit sets.

“Kit Standard” “Kit Graph”
Region m p

IS1 m p t ISl m p t
BA 87 14 158 75 20 7 75 75 20 13
BB 515 36 206 500 40 4 500 500 40 9
KE 460 32 200 400 40 5 400 400 40 14
NR 350 27 202 300 30 4 300 300 30 8
PO 664 32 147 600 40 3 600 600 40 7
TN 276 21 217 200 30 6 200 200 30 14
TT 249 18 205 200 20 3 200 200 20 11
ZA 315 29 202 300 30 4 300 300 30 8

To make the following comparison of the kit construction more robust, we generated
ten different starting sets of solutions by random permutation of m original locations of the
input uniformly deployed set, making use of the proposition that arbitrary permutation
does not change parameters of the obtained set. This way, we obtained two series of ten
starting sets, one for the original set denoted “kit standard” and the other for the original
set called “kit graph”.

The tested approaches were applied to both problems (2) and (3) with each starting
set from both series “kit standard” and “kit graph”.

Each uniformly deployed set coming from a kit was submitted to the extension
described in Section 4. The results of the experiments are reported in Tables 3-6.
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Table 3. Average results of the weighted p-median problem-solving process for starting series

“kit standard”.
“Swap” “Path-Relinking”
Benchmark OptObj — " — "

P min F avg gap T [S] P min F avg gap T [s]
BA 19,325 19,325 19,325.0 0.00 0.01 19,325 19,589.2 1.37 0.04
BB 29,873 29,873 29,894.6 0.07 0.89 29,873 30,066.4 0.65 4.49
KE 31,200 31,200 31,240.7 0.13 0.56 31,200 31,319.4 0.38 2.58
NR 34,041 34,041 34,132.3 0.27 0.24 34,041 34,143.9 0.30 1.25
PO 39,073 39,073 39,106.6 0.09 1.22 39,080 39,304.7 0.59 3.15
N 25,099 25,099 25,112.0 0.05 0.09 25,099 25,648.0 2.19 0.45
TT 28,206 28,206 28,222.6 0.06 0.06 28,206 28,226.6 0.07 0.29
ZA 28,967 28,967 28,978.8 0.04 0.22 28,967 29,004.6 0.13 1.32

Table 4. Average results of the weighted p-median problem-solving process for starting series

“kit graph”.
“Swap” “Path-Relinking”
Benchmark OptObj — " i .

F min F avg gup T [S] P min F avg gap T [S]
BA 19,325 19,325 19,325.0 0.00 0.01 19,325 19,462.3 0.71 0.02
BB 29,873 29,873 29,901.2 0.09 0.87 29,873 29,875.4 0.01 10.92
KE 31,200 31,200 31,230.6 0.10 0.59 31,200 31,2104 0.03 5.31
NR 34,041 34,041 34,077.3 0.11 0.21 34,041 34,126.5 0.25 1.86
PO 39,073 39,073 39,105.8 0.08 1.29 39,073 39,082.5 0.02 12.71
TN 25,099 25,099 25,106.8 0.03 0.09 25,099 25,110.7 0.05 0.44
TT 28,206 28,206 28,255.8 0.18 0.06 28,206 28,206.0 0.00 0.27
ZA 28,967 28,967 28,982.2 0.05 0.22 28,967 28,978.7 0.04 2.04

Table 5. Average results of the generalized weighted p-median problem-solving process for starting
series “kit standard”.

“SwapG” “Path-RelinkingG”
Benchmark OptObj . " - "

P min F avg gap T [s] F min F avg gap T [s]
BA 26,650 26,650 26,650.0 0.00 0.02 26,650 26,966.9 1.19 0.15
BB 44,752 44,752 44,765.3 0.03 3.39 44,752 44,885.8 0.30 18.6
KE 45,588 45,588 45,632.8 0.10 2.05 45,590 45,754.6 0.37 10.63
NR 48,940 48,940 48,9794 0.08 0.93 48,963 49,037.0 0.20 5.11
PO 56,704 56,704 56,782.7 0.14 427 56,721 56,954.5 0.44 12.46
TN 35,275 35,275 35,275.1 0.00 0.35 35,275 35,760.7 1.38 2.02
TT 41,338 41,338 41,491.6 0.37 0.2 41,338 41,456.3 0.29 1.22
ZA 42,110 42,110 42,129.6 0.05 0.67 42,110 42,140.3 0.07 5.34

Table 3 contains results obtained by Swap and Path-relinking heuristics using uniformly
deployed sets of “kit standard”. Table 4 contains results obtained by Swap and Path-relinking
heuristics using uniformly deployed sets of “kit graph”.

Table 5 contains results obtained by SwapG and Path-relinkingG heuristics using uni-
formly deployed sets of “kit standard”. Table 6 contains results obtained by SwapG and
Path-relinkingG heuristics using uniformly deployed sets of “kit graph”.
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Table 6. Average results of the generalized weighted p-median problem-solving process for starting
series “kit graph”.

“SwapG” “Path-RelinkingG”
Benchmark OptObj — " — "

P min F avg gap T [s] P min F avg gap T [s]
BA 26,650 26,650 26,650.0 0.00 0.02 26,650 26,799.6 0.56 0.08
BB 44,752 44,752 44,787.6 0.08 3.55 44,752 44,755.3 0.01 449
KE 45,588 45,588 45,669.0 0.18 2.08 45,588 45,641.0 0.12 22.06
NR 48,940 48,940 48,996.8 0.12 0.82 48,947 48,973.7 0.07 7.76
PO 56,704 56,704 56,784.3 0.14 418 56,705 56,811.8 0.19 52.82
N 35,275 35,275 35,305.9 0.09 0.35 35,275 35,3174 0.12 1.88
TT 41,338 41,338 41,4309 0.22 0.22 41,338 41,4169 0.19 1.2
ZA 42,110 42,110 42,127.1 0.04 0.72 42,110 42,115.6 0.01 8.14

Each of the tables has the same structure, in which each row corresponds to a group
of benchmarks derived from the associated self-governing region of the Slovak Republic.
The figures reported in a row were obtained by averaging or other processing of the ten
associated instants. The columns of each table form three groups, where the first of them
contains only two columns denoted by titles “Benchmark” and “OptObj”. The column
“Benchmark” comprises denotations of the individual groups of benchmarks and the
column “OptObj” reports on the objective function values of the optimal solutions for
the corresponding problem formulation and the assigned self-governing region. It must
be noted that the randomly generated starting sets of the p-location problem solution
impact only the results of tested heuristics; the optimal solution is not influenced by them.
The remaining two sections of the columns summarize the results obtained by the swap
or path-relinking-based heuristics adapted for the problem formulation. Each of these
two parts consists of a quadruple of columns denoted subsequently by titles “F """, “F8”,
“gap” and “T [s]”. The entries in the columns “F™"” and “F*8” refer subsequently to the
best and average objective function values obtained by the application of the associated
heuristic to the series of ten uniformly deployed sets. The entries in the column named
“gap” describe the average deviation of the objective function value of the solution resulting
from the tested heuristics expressed in percentage of the optimal objective function value.
The averaged associated computational time in seconds is plotted in the column denoted
by “T [s]”.

Computation of the heuristic processes was performed on a standard personal com-
puter with parameters Intel® Core™ i7-4790 CPU@3.60 GHz and 8 GB RAM. The tested
heuristics were coded in the Java language and run in the environment NetBeans IDE 8.2.

The experiments with tested heuristics confirmed the previously formulated hypoth-
esis concerning heuristics’ ability to achieve a near-to-optimal result. Furthermore, the
process of extension proved to be successful when used to adapt a kit set to the size of the
solved instance. The path-relinking-based approaches with the extension are able to reach
near-to-optimal solutions. It can be noticed that the gap exceeded the value of two per cent
only in one case and the value of one per cent in three cases of 32 ones.

Comparing the ways in which the kit sets were constructed, it can be stated that there
is almost no difference in solution accuracy and computational time for the swap method.
It can consist in the way of kit set usage, where the kit set provides the method only with a
starting solution and then does not influence the further process of the swap algorithm.

More important variances can be observed in the table sections reporting the results of
the path-relinking-based method. Despite the fact that very good results were obtained by
the path-relinking-based method for both kit set constructions, the kit sets obtained by the
graph approach allow a slightly more accurate solution to be obtained. This contribution
of kit graph construction is paid for with a greater computational time demanded by the
heuristics. The computational time differences may originate in different cardinalities of
the kit standard and kit graph sets in the individual instances.
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8. Conclusions

The research effort described in this paper is devoted to the idea of exploitation of
preliminarily prepared uniformly deployed sets for the p-location problem. The concept
of a kit of uniformly deployed sets enables the partition of the workload connected with
a p-location problem solution into two parts, where the first part can be processed inde-
pendently on the kind and size of the p-location problem, which is actually solved. In this
paper, our effort was concentrated on the methods of kit construction and their adjustment
to specific p-location problems. We introduced a new method of kit construction based
on a graph approach and compared it to the standard method of kit construction. The
usability of the kit constructions was proved by experiments conducted with real-world
benchmarks. Based on the study, we can conclude that both presented kit constructions and
extension methods perform excellently in connection with the swap and path-relinking-
based methods. It was confirmed that the connection represents a useful solving tool for
a large family of p-location problems. Future research in this field will be aimed at more
sophisticated exploitation of the found kit characteristics for accelerating the subsequent
optimization processes.
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