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Swarm intelligence algorithms represent a rapidly growing research domain and
have recently attracted a great deal of attention. They have been successfully applied
in engineering, transportation, planning and scheduling, logistics and supply chains,
and a broad range of other domains. They often find high-quality solutions with less
computational effort than other optimization methods.

With the advancement of swarm intelligence algorithms, new variants and improve-
ments are continuously proposed to accommodate different types of problems and applica-
tion domains. The research and application of these algorithms provide an efficient and
flexible approach to tackling real-world problems, while also driving the development of
optimization algorithms and advancing theoretical investigations.

This Special Issue aims to highlight the latest results on swarm intelligence and its
combination with real-world problems and other fields, such as engineering problems,
vehicle swarm motion, viscoelastic Maxwell-type DVA, deep learning, loss of the network,
echo cancellation scenarios, etc.

Contribution [1] proposes a novel discrete differential evolution (DE) algorithm to
calculate the deficiency number of the tiles. In detail, to decrease the difficulty of com-
puting the deficiency number, some pretreatment mechanisms are first put forward to
convert it into a simple combinatorial optimization problem with varying variables by
changing its search space. Subsequently, employing the superior framework of DE, a novel
discrete DE algorithm is specially developed for the simplified problem through devising
proper initialization, a mapping solution method, a repairing solution technique, a fitness
evaluation approach, and mutation and crossover operations. Contribution [2] introduces
chaotic mapping into the PPE algorithm to propose a new algorithm, the Chaotic-based
Phasmatodea Population Evolution (CPPE) algorithm, and apply CPPE to stock predic-
tion. The results show that the predicted curve is relatively consistent with the real curve.
In [3], the viscoelastic Maxwell-type DVA model with an inverter and multiple stiffness
springs is investigated with the combination of the traditional theory and an intelligent
algorithm, providing a theoretical and computational basis for the optimization design
of DVA. An improved multi-strategy Harris Hawks optimization (MSHHO) algorithm is
proposed in paper [4]. Through experiments on 33 benchmark functions and 2 engineering
application problems, it has been shown that the improved algorithm performs well in
terms of optimization accuracy, convergence speed, and stability. Contribution [5] proposes
a new convex combination based on grey wolf optimization and LMS algorithms, to save
area and achieve high convergence speed by maximally exploiting the best features of each
algorithm, presenting a customized time-multiplexing control scheme to dynamically vary
the number of search agents.

An enhanced moth-flame optimization algorithm named MFO-SFR is developed to
solve global optimization problems in paper [6]. The MFO-SFR algorithm introduces an
effective stagnation finding and replacing (SFR) strategy to effectively maintain population
diversity throughout the optimization process. The high performance of the algorithm
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is verified through experiments on the CEC2018 benchmark and mechanical engineering
problems in the CEC2020 test-suite. In paper [7], a partition-based random search method
is proposed, in which the entire feasible domain is partitioned into smaller and smaller
subregions iteratively. Promising regions are partitioned faster than unpromising regions,
thus exploiting promising areas earlier than unpromising areas. By cooperating with
local search to refine the obtained solutions, the proposed method demonstrates good
performance in many benchmark functions with multiple global optima. Aiming at the
characteristics of complex networks structure and multiple design variables of energy-
harvesting non-orthogonal multiple-access cognitive relay networks (EH-NOMA-CRNs),
the authors of [8] utilized the proposed hybrid strategy to improve the Bat algorithm
(HSIBA) to optimize the performance of EH-NOMA-CRNs. Contribution [9] formulates
the cooperative attack defence evolution of large-scale agents in high-dimensional environ-
ments as a multi-population high-dimensional stochastic mean-field game (MPHD-MFG),
significantly reducing the communication frequency and computational complexity, and
tractably solving the MPHD-MFG with a generative-adversarial-network (GAN)-based
method using the MFGs underlying variational primal-dual structure. Contribution [10]
proposes a tunicate swarm algorithm based on Tent–Lévy flight (TLTSA) to avoid con-
verging prematurely or failing to escape from a locally optimal solution. The 16 unimodal
benchmark functions, 14 multimodal benchmark functions, 6 fixed-dimension functions,
and 3 constrained practical problems in engineering are selected to verify the performance
of the TLTSA.

The authors in [11] propose an Oppositional Pigeon-Inspired Optimizer (OPIO) al-
gorithm to overcome the drawback of premature convergence and local stagnation. The
proposed algorithm would be used to determine the load demand of a power system, by
sustaining the various equality and inequality constraints, to diminish the overall gener-
ation cost. To overcome unmanned aerial vehicle swarm motion error, a near-field array
beam-forming model with array element position error is constructed in [12], and the Taylor
expansion of the phase difference function is used to approximately simplify the model.
The improved Newton maximum entropy algorithm is proposed to estimate and compen-
sate for the phase errors. The maximum entropy objective function is established, and the
Newton iterative algorithm is used to estimate the phase error iteratively. Contribution [13]
studies the cavity morphology characteristics and proposes a deep learning (DL)-based
morphology classification method using 3D ground-penetrating radar (GPR) data, and
experimental results are validated using the 3D GPR road modelling data obtained from
the gprMax3D system. Contribution [14] provides HHO-NN (Harris Hawk Optimization-
Neural network), a novel algorithm based on Harris Hawk optimization (HHO) that is
capable of fast convergence when compared to previous evolutionary algorithms that
automatically search for meaningful multilayered perceptron neural network (MPNN)
topologies for optimal bidding. Contribution [15] presents an efficient optimization tech-
nique named the honey badger algorithm (HBA) for specifying the optimum size and
location of capacitors and different types of DGs to minimize the total active power loss
of the network. The combined power loss sensitivity (CPLS) factor is deployed with the
HBA to accelerate the estimation process by specifying the candidate buses for optimal
placement of DGs and capacitors in an RDS.

To make the Whale Optimization algorithm compatible with several challenging
problems, two major modifications are proposed in [16]: the first one is opposition-based
learning in the initialization phase, while the second is the inculcation of the Cauchy
mutation operator in the position-updating phase. The proposed variant is named the
Augmented Whale Optimization Algorithm (AWOA) and tests over two benchmark suits.
Contribution [17] proposes a contextual semantic-guided entity-centric graph convolu-
tional network (CEGCN) model that enables entity mentions to obtain semantic-guided
contextual information for more accurate relational representations. This model develops a
self-attention-enhanced neural network to concentrate on the importance and relevance of
different words to obtain semantic-guided contextual information, employs a dependency
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tree with entities as global nodes, and adds virtual edges to construct an entity-centric
logical adjacency matrix (ELAM). The authors in [18] introduce a new approach to en-
hance optimization algorithms when solving the piecewise linearization problem of a
given function. Eight swarm intelligence algorithms are selected to be experimentally
compared. Contribution [19] introduces a strategy to enrich swarm intelligence algorithms
with the preferences of the Decision Maker (DM) represented in an ordinal classifier based
on interval outranking. The hybridizing strategy is applied to two swarm intelligence algo-
rithms, i.e., Multi-objective Grey Wolf Optimization and Indicator-based Multi-objective
Ant Colony Optimization for continuous domains. The resulting hybrid algorithms are
called GWO-InClass and ACO-InClass. In the survey, Contribution [20] sheds light on
population-based deep reinforcement learning (PB-DRL) algorithms, their applications,
and general frameworks. They introduce several independent subject areas, including
naive self-play, fictitious self-play, population-play, evolution-based training methods, and
the policy-space response oracle family. These methods provide a variety of approaches to
solving multi-agent problems and are useful in designing robust multi-agent reinforcement
learning algorithms that can handle complex real-life situations.

This Special Issue has published a total of 20 articles, comprising 19 research articles
and 1 review article. The collective body of work presented herein expands the application
boundaries of swarm intelligence algorithms and fosters future research in swarm intel-
ligence and its integration with real-world problems. We find the selection of papers in
this Special Issue to be highly inspiring, and we extend our gratitude to the editors and
reviewers for their dedicated efforts and valuable assistance throughout this process.
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