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Abstract: Machine learning, a subfield of artificial intelligence, emphasizes the creation of algorithms
capable of learning from data and generating predictions. However, in actuarial science, the in-
terpretability of these models often presents challenges, raising concerns about their accuracy and
reliability. Explainable artificial intelligence (XAI) has emerged to address these issues by facilitating
the development of accurate and comprehensible models. This paper conducts a comparative analy-
sis of various XAI approaches for tackling distinct data-driven insurance problems. The machine
learning methods are evaluated based on their accuracy, employing the mean absolute error for
regression problems and the accuracy metric for classification problems. Moreover, the interpretabil-
ity of these methods is assessed through quantitative and qualitative measures of the explanations
offered by each explainability technique. The findings reveal that the performance of different XAI
methods varies depending on the particular insurance problem at hand. Our research underscores the
significance of considering accuracy and interpretability when selecting a machine-learning approach
for resolving data-driven insurance challenges. By developing accurate and comprehensible models,
we can enhance the transparency and trustworthiness of the predictions generated by these models.

Keywords: machine learning; artificial intelligence; explainable machine learning; accuracy;
interpretability

MSC: 62R07

1. Introduction

Actuarial science, seeking risk modeling through mathematical and statistical tech-
niques, faces new challenges every day, both in the volume of existing information to
improve its modeling capacity and the nature of the different problems. The techniques as-
sociated with artificial intelligence (AI) and machine learning (ML) provide a series of tools
whose purpose is to improve the processes of product design, pricing, reservations and
the establishment of market niches practically and realistically [1]. However, a significant
limitation exists in the practical application of complex models. The insurance industry is
essential to the global economy when managing risks and public money, so its management
is highly regulated. Owing to the stringent regulatory environment, non-replicable and
non-auditable models pose considerable challenges, notwithstanding the benefits they con-
fer regarding process efficiency or their robust predictive capabilities. Therefore, the main
problems related to applying AI and ML techniques tend to be concentrated in the review
and audit processes. As they are considered black boxes, it is impossible to guarantee that
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a review process is adequate and presents an accessible development. Another common
complaint concerns explaining the relationships to a non-technical person or an expert in
the developed system and why the model is adequate. However, we cannot establish what
relationships were created or why besides the model. Then, it is challenging to convey or
communicate these complex models’ benefits effectively.

In general, explainable artificial intelligence (XAI) defines methods and techniques
to explain and understand the results or solutions proposed by ML models. In addition,
XAI provides mechanisms that help identify the relationship’s importance or strength
between the variables input and target. The development of the XAI allows different
users to formalize the definition of interpretability and reliability of AI models, which are
an intermediate objective to verify various criteria in the end users of the results in the
models made and informed decision making. The potential applications of explainable AI
techniques would make it possible to understand and evaluate the capacity of the proposed
models’ results, thus facilitating the understanding and monitoring of the adequacy of
these models. Therefore, these techniques allow us to translate into simple words that the
general relationships establish the model or at least the relevance of the variables in the
solution of the solved problem.

In actuarial science, conventional models and techniques are firmly established and
still in use. However, an increasing trend towards integrating artificial-intelligence-based
methods was observed in recent studies. Machine learning, particularly in the insurance sec-
tor, has expanded, encompassing everything from ANOVA methodologies to classification
models using ensemble model techniques [2]. Tools such as the Markov decision process
(MDP) [3] and artificial neural networks [4] are increasingly applied to boost accuracy and
computational efficiency.

The interest in utilizing explainability strategies as a concluding phase in constructing
machine learning models is increasing. These strategies encompass a range of techniques,
including, but not limited to, the implementation of graphical analysis tools, such as
LIME [5], SHAP [6], and partial dependence plots (PDPs) [7]. They present a visual rep-
resentation of how variables affect the model’s predictions. These approaches contribute
towards a comprehensive understanding of the model’s overall structure based on a combi-
nation of localized explanations for individual predictions [8]. Machine learning techniques
applied to real-world finance and insurance issues must be transparent and repeatable
to withstand audits and reviews. A significant challenge is creating a framework that
simplifies the explainability analysis for complex or black-box models [9]. By enhancing the
understandability of machine learning models, explainability techniques are instrumental
in creating more transparent, accountable, and trustworthy AI systems. Their use could
pave the way for the greater acceptance and utilization of machine learning models across
various sectors and industries. Furthermore, this expansion in the use of explainability
techniques signifies a critical evolution in machine learning, highlighting the need for
models that not only predict well but are also interpretable and explainable [10]. Emphasis
should be placed on the alternatives grounded in model-agnostic approaches, which enable
the assessment of relationships between variables in an aggregated manner, thereby fos-
tering a comprehensive understanding of the models under consideration [11]. However,
less investigation was performed for other sensitive domains, such as the judicial system,
finance and academia, in contrast with the domains of healthcare [12], industry [13] or
other domains [14].

Our study introduces an innovative evaluation framework within the actuarial con-
text, thoroughly assessing prevalent methods for explaining machine learning algorithms.
Unlike previous studies, we examine these explainability techniques across various clas-
sification and regression problems and under diverse data scenarios. Our framework
provides a comprehensive understanding of the implications of these algorithms in ac-
tuarial science. This new approach represents a significant advancement in the clarity,
transparency, and utility of machine learning explainability techniques in the actuarial
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domain, thereby outperforming the capabilities offered by conventional methods and
previous scientific investigations.

The paper is organized as follows. In Section 2, the datasets are described, together
with the machine learning and the XAI approach employed. Finally, in Section 3, we
summarize and discuss the obtained results. Finally, Section 4 collects some conclusions
and outlines future work perspectives.

2. Materials and Methods

This paper addresses the problem of identifying variables that may affect a machine
learning model’s decision (segmentation, pricing, and forecasting) in an actuary problem.
We use XAI techniques to rank variables according to their relevance in decision making.
The proposed approach is summarized in Figure 1.

Figure 1. Approach outline.

The actuarial context poses unique challenges in defining and formulating problems.
The first step is to clearly define the problem at hand. Once the problem is defined, machine
learning (ML) can be leveraged to formulate the problem and build several datasets that
represent different situations. A range of ML models can then be applied to solve the
formulated problem, with an evaluation conducted according to the selected metrics. The
filter process involves the removal of models with inadequate accuracy. To aid with global
explanations, feature relevance is carefully considered in all predictions.

Evaluating machine learning algorithms under alternative scenarios is vital for un-
derstanding their functionality and potential enhancements. Detailed experimentation
aids in feature determination and eliminating redundancies, leading to precision. Data
normalization, feature selection, and outlier removal enhance model accuracy and robust-
ness. A systematic examination across different scenarios informs the development of
domain-specific models, such as those in actuarial science. This analysis also helps form
best practices for real-world applications, supporting critical decision-making processes.

2.1. Datasets

This proposal is validated based on three insurance datasets. The first dataset is the
Prudential Life Insurance [15] dataset, an anonymized collection of policyholder informa-
tion used in a 2016 Kaggle competition to predict risk categories for insurance applicants.
It contains various features, such as age, gender, medical history, and employment infor-
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mation, to aid in building accurate predictive models. The second one is the Insurance
dataset [16]; this dataset contains examples of beneficiaries currently enrolled in a health
insurance plan, with features indicating the insured individual’s characteristics and the
total medical expenses charged for the calendar year. Finally, the Actuarial Loss Prediction
Competition 2020/21 dataset [17] is used, which contains anonymized insurance policy
and claim data for predicting claim payments and loss ratios. The dataset is intended
to support the development of models that accurately forecast insurance losses, helping
insurers make informed pricing and underwriting decisions.

2.1.1. Prudential Dataset

This dataset comes from the “Prudential Life Insurance Assessment” competition,
published on the Kaggle platform in November 2005. Prudential is an insurer specializing
in the life insurance segment worldwide and promotes the development of techniques to
streamline the pricing process. Specifically, this contest sought to facilitate the rating of
customers who purchase life insurance linked to products or purchases. In these processes,
customers provide information for risk classification and insurance eligibility, considering
variables such as age, gender and, in many cases, medical information that is corroborated
by examinations.

The problem focuses on developing a classification model that accurately predicts
the risk level of the potential client, using a more automated approach, allowing for
greater efficiency in the risk selection and pricing process. The dataset provided for the
development of the contest contains a training set and a testing set, on which the outcome
is blindly evaluated. For our analysis, we made exclusive use of the dataset provided for
training, which includes 128 variables describing the attributes of life insurance applicants
(See Table 1), with an extension of 59,381 records. The task consists of predicting the
variable “Response”, an ordinal measure of risk with eight levels for each Id in the dataset.

Table 1. Prudential dataset variables.

Variable Description

Id Unique identifier associated with an application
Product_Info_1-7 Set of normalized variables related to the requested product
Ins_Age Standardized age of the applicant
Ht Applicant’s standard height
Wt Applicant’s standardized weight
BMI Applicant’s normalized BMI

Employment_Info_1-6 Set of normalized variables related to the applicant’s employment
history

InsuredInfo_1-6 Set of normalized variables that provide information about the
requester

Insurance_History_1-9 Set of normalized variables related to the applicant’s insurance history
Family_Hist_1-5 Set of normalized variables related to the applicant’s family history

Medical_History_1-41 Set of standardized variables relating to the applicant’s medical
history

Medical_Keyword_1-48 Set of dummy variables related to the presence or absence of a
medical keyword associated with the application

Response Target variable, an ordinal variable related to the final decision
associated with a request

In order to understand the structure of the database, some approaches were proposed,
such as identifying the number of products for which the request is made and their weight
in the database. As shown in Table 2, the most requested product is D3, followed by D1
and D2, with 64% of the requests concentrated in type D.
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Table 2. Product frequency.

Product Count % Data Product Count % Data

A1 2363 3.98% C1 285 0.48%
A2 1974 3.32% C2 160 0.27%
A3 977 1.65% C3 306 0.52%
A4 210 0.35% C4 219 0.37%
A5 775 1.31% D1 6554 11.04%
A6 2098 3.53% D2 6286 10.59%
A7 1383 2.33% D3 14,321 24.12%
A8 6835 11.51% D4 10,812 18.21%
B1 54 0.09% E1 2647 4.46%
B2 1122 1.89%

Total 59.381

The response variable has about 33% of the observations in category 8, followed by
category 6 with 19% and 7 with 13%, with the lowest participation being in category 3 with
less than 2% (see Figure 2).

Figure 2. Predicted variable’s behavior.

Finally, to understand the potential linear relationships that could exist between
the continuous variables, a correlation analysis was developed, which corroborates the
high relationship (0.85) between the variables Weight and BMI. In addition, as part of the
exploratory analysis, the NAs were evaluated for each variable. The highest rates were
obtained for the variables Medical_History{32,25,15} and Family_Hist_5. There are no
missing values in the continuous variables, and it is only striking that Employment Info,
which intuitively should be a reported field, has NAs.

Furthermore, four distinct working scenarios were devised to tackle the issue at hand,
considering four separate datasets derived from the original testing base. These scenarios
encompass variable selection as well as the transformation of the response variable, thereby
offering a comprehensive approach to address the problem under investigation.

1. Dataset 1: The dataset is treated as numeric fields considering dummy variables for
Product_in f o. All missing values are replaced by zero.

2. Dataset 2: The dataset is treated as numeric fields considering dummy variables for
Product_in f o and the creation of the variable Sum Medical_Keyword that sums the
word count to reduce the processing fields. All missing values are replaced by zero.

3. Dataset 3: Dataset treated as numeric fields considering dummy variables for Product
info2, creation of the variable Sum_Medical_Keyword that sums the word count, to re-
duce processing fields. Variables with missing values higher than 50% are eliminated.
All missing values are replaced by zero.

4. Dataset 4: The complete base is treated as numeric fields considering dummy variables
for Product info2, the creation of the variable Sum Medical_Keyword that sums the
word count, to reduce processing fields. Variables with missing values greater than
50% are eliminated. All missing values are replaced by zero.
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Thus, the problem can be categorized into two primary groups: datasets 1 and 4
represent an eight-category classification challenge, while datasets 2 and 3 embody a binary
classification problem, distinguishing between favorable and unfavorable outcomes.

2.1.2. Health Insurance Dataset

The main purpose of this problem is to predict surcharges related to a health insurance
dataset. The original dataset has 1338 observations. It has six variables in addition to the
target variable. Of the explanatory variables, three categorical and three numerical variables
were identified, of which three observations were eliminated due to inconsistencies in the
value of the objective variable: age of the insured, gender of the insured (female or male),
body mass index (BMI), number of children, smoker (yes) or non-smoker (no), and place of
residence (northeast, northwest, southeast, and southwest). Figure 3 shows the predicted
variable’s behavior, with a minimum of 1.121, a mean of 13.270, a median equivalent of
9.382 and a maximum of 63.770. Among the descriptive variables, the participation of
insured persons without children and non-smokers stands out as an equivalence between
men and women. A relationship is also identified between the value of the surcharge and
the number of children as well as smokers.

Figure 3. Predicted variable’s behavior.

Furthermore, four distinct working scenarios were devised to tackle the issue at hand,
taking into account four separate datasets derived from the original testing base in the
same manner as the Prudential Life Insurance dataset.

• Dataset 1: considering age, gender (as dummy), body mass index, number of children,
smoking (as dummy), and region (common-1 dummies).

• Dataset 2: taking the basis of dataset 1, excluding the variables where no significant
parameters were identified in a linear regression exercise.

• Dataset 3: taking the basis of dataset 1, normalizing the numerical variables.
• Dataset 4: taking the basis of dataset 3, excluding the variables where no significant

parameters were identified in a linear regression dataset.
• Dataset 5: based on dataset 1, excluding the values that were detected as outliers in

the cost of surcharges.

2.1.3. Claims Dataset

The main objective of this problem is to predict the final total cost per claim of a group
of occupational risk policies. We use a subset of an insurance dataset from OpenML ((ID
42876) https://www.openml.org/d/42876 (accessed on 1 March 2023)) synthetically
generated by Colin Priest. It describes workers’ compensation claims regarding their
ultimate loss, the initial claim amount, and other information. However, this exercise does
not seek to deepen or contextualize the problem in greater detail since the objective focuses
on the models’ prediction and interpretability.

The original database, comprising 90,000 records, was developed without regional or
legal context for the 2020/21 claims prediction competition, promoted by the Institute of

https://www.openml.org/d/42876


Mathematics 2023, 11, 3088 7 of 20

Actuaries of Australia, the Institute and Faculty of Actuaries, and the Singapore Actuarial
Society. It encompasses 14 explanatory variables (see Table 3) in addition to the target
variable, and contains 36,176 observations. A total of 105 observations were excluded due
to missing values and an extreme value four times higher than the subsequent maximum.
Among the explanatory variables, two are dates, five are categorical or textual, and five are
numerical. The final dataset consists of 36,176 observations, with three instances removed
because of inconsistencies in the objective variable’s value.

Table 3. Claims dataset variables.

Variable Description

ClaimNumber Unique policy identifier.
DateTimeOfAccident Date and time of accident.
DateReported Date that accident was reported.
Age Age of worker.
Gender Gender of worker.
MaritalStatus Martial status of worker.
DependentChildren The number of dependent children.
DependentsOther The number of dependants excluding children.
WeeklyWages Total weekly wage.
PartTimeFullTime Binary (P) or (F).
HoursWorkedPerWeek Total hours worked per week.
DaysWorkedPerWeek Number of days worked per week.
ClaimDescription Free text description of the claim.
InitialIncurredClaimCost Initial estimate by the insurer of the claim cost.
UltimateClaimCost Total claim payments by the insurance company.

In addition to the original variables, three new features are created to help explain the
target variable (total value of the claim): (1) days elapsed between the date of the claim
and the date of notice of claim, (2) year in which the loss occurred, and (3) month in which
the loss occurred. It should be noted that the categorical variables were processed using
OneHotEncoding for inclusion in the models.

As can be seen in Figure 4, a growth in the increase in the initial costs of claims over
time is identified, as well as an increase in the dispersion of these in recent years. The
average cost in thousands has grown significantly, which is economically related to the fact
that health inflation in the last decade has grown above the average inflation in most of the
world economies.

Figure 4. InitialClaimCost evolution.

Four distinct working scenarios were conceived with similar objectives as the previous
datasets, yielding four separate resultant datasets as outcomes.

• Dataset 1: considering age, gender (M), marital status (single and married), dependent
children, other, weekly salary, part-time work (yes), hours worked per week, the
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month of occurrence, year of occurrence and days elapsed between occurrence and
notice of loss.

• Dataset 2: taking the basis of dataset 1, the variables that in a linear regression exercise
were not found to have significant parameters are excluded.

• Dataset 3: considering the normalized dataset excluding variables, no significant
parameters were identified in a linear regression exercise.

• Dataset 4: considering dataset 1 and excluding the values that were detected as outliers
in the cost of the claim.

2.2. Methods

In the following, we briefly present some well-established and popular techniques for
solving classifications and regression problems.

2.2.1. Machine Learning Methods

Many different machine learning methods could be used to identify the source of a
dataset and classify the source correctly. For our purposes, we chose the following ones:

• General linear models: general linear models (GLMs) are a family of statistical models
(linear regression, ANOVA, and logistic regression) that analyze continuous outcomes
while accounting for the effects of one or more predictor variables [18].

• Decision trees [19]: Establishes monotonous transformations of independent predictive
variables with a determination of a recursive algorithm, divided into hyperrectangles,
where each observation contained will have the same estimated value. The transfor-
mation results in a set of independent, monotonous variables, with the same estimated
values for each observation contained in the hyper rectangles [20].

• Artificial neural networks: A neural network is a computational, parallel model com-
posed of adaptive processing units with a high interconnection in them [21]. These
computational models use processing units called neurons that process the informa-
tion received through a connection called synapses, all in hidden layers that finally
generate an output of either prediction or classification.

• Ensemble methods: bagging, random forests, and boosting form powerful machine
learning tools that integrate multiple models to enhance predictive performance. Bag-
ging, or bootstrap aggregation, ref. [22] uses various data samples to train multiple
models, and final predictions are obtained by averaging the individual models’ predic-
tions, often reducing variance and improving robustness. Random forest, an instance
of bagging, employs multiple decision trees, each casting a vote for a given instance’s
predicted label, enhancing the model’s overall accuracy through the combination of
diverse tree predictions [23]. Boosting, on the other hand, is an additive method that
progressively improves a model’s predictive capability by combining numerous weak
predictors to form a stronger one, reducing prediction error [24].

2.2.2. Explainability Methods

Improving model transparency involves two approaches, model-specific explanations,
which detail the factors used in predictions, and model-agnostic explanations, which
provide general insights into how any model operates as the following:

• Variable importance (VI) [25] is a technique that measures the global contribution of
each feature in a prediction model by analyzing the absolute value of feature weights.
While determination methods may vary, making scores incomparable, the order of
variables can still be used to compare established relationships.

• Permutation-based variable importance (perm) [26] is a model-agnostic method for evaluat-
ing feature significance in machine learning models. By randomly shuffling individual
feature values and measuring the resulting decrease in model performance, this tech-
nique determines the relative importance of each feature based on the performance
drop, revealing the most crucial features for accurate predictions.
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• SHAP [27] is a game-theoretic approach for explaining machine learning model out-
puts using Shapley values. It assigns a SHAP value to each feature, representing its
contribution to the model output. The method is model agnostic, consistent, and fast,
making it suitable for various models and large datasets.

• Feature importance ranking measure (FIRM) [28] is a univariate feature selection tech-
nique that ranks features based on their variances, assuming a linear relationship
between features and the target variable. While computationally efficient and easy to
implement, FIRM does not consider feature interactions and may not be suitable for
all data types or models.

2.3. Evaluation

There exist several attributes that, when present within a computational model, can
substantially enhance its interpretability and elucidate the underlying decision-making
processes for actuaries in the context of risk assessment and management [29]. These key
characteristics include but are not limited to the following:

• Feature importance: Determine which features significantly impact the predictions
and whether this feature’s importance aligns with domain knowledge and expert
intuition. To calculate the score based on the intersection of rankings, we can define
the equation as

FIscore(E) = |{ fi | fi ∈ RE and fi is among the top k values in RD}| (1)

where E is the explainability method, RE is the ranking of features provided by the
explainability method E, represented as f1, f2, ..., fn, and RD is the ranking of features
provided by domain experts.

• Consistency: The explanations should be consistent across different instances and
similar inputs. This helps build trust in the explanations provided by the ML models.
This score is based on the correlation of the explainability method results after its
applications to different algorithms in the same scenario (Equation (2)):

Cscore(E) =
1

m(m− 1)/2

m−1

∑
i=1

m

∑
j=i+1

corrSpearman(E(Ai), E(Aj)) (2)

where Cscore(E) is the score of the explainability technique E, m is the number of
different machine learning algorithms applied, and E(Ai) and E(Aj) are the results
of applying E to algorithms Ai and Aj, respectively. corrSpearman() is the Spearman
correlation coefficient between these results. The sums iterate over all unique pairs
of different machine learning algorithms, and the whole equation averages over the
number of these pairs.

• Stability and robustness: Check the stability of the explanations and the overall model
across different training samples or data perturbations. Robust models should produce
consistent results, even when the input data changes. Then, the correlation of the
explainability technique among the different scenarios is computed (Equation (3)):

Rscore(E) =
1

n(n− 1)/2

n−1

∑
i=1

n

∑
j=i+1

corr(E(Si), E(Sj)) (3)

where Score(E) is the score of the explainability technique E, n is the number of
different scenarios, and E(Si) and E(Sj) are the results of applying E to the scenarios
Si and Sj, respectively. corr() is the Pearson correlation coefficient between these
results. The sums iterate over all unique pairs of different scenarios, and the whole
equation averages over the number of these pairs.
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• Computation time and efficiency: Some explainable ML techniques can be computa-
tionally expensive. The trade-offs between computation time and the quality of the
explanations provided has to be evaluated using Equation (4):

TO = w1 · T + w2 · (1− Fscore) (4)

where T denotes the computation time, Fscore the quality of the explanation, and the
weights w1 and w2 can be adjusted according to specific requirements. This equation
assumes that a lower TO score is better (since lower computation time and higher
Fscore are desired). If Fscore is perfect (equals 1), its contribution to TO is zero. If Fscore is
poor (approaching zero), its contribution to TO increases.

• Fairness and bias: It is necessary to evaluate the models for potential biases or the unfair
treatment of certain groups, especially regarding sensitive attributes [30]. In this study,
the general idea is to identify a set of fairness criteria (age, gender and race) and then
evaluate whether the explanations provided satisfy these criteria for each sensitive
feature (Equation (5)):

FAscore =
n

∑
i=1

wi · Fi (5)

where n is the total number of relevant fairness criteria, and wi is the weight assigned
to the ith fairness criterion based on its relevance or importance. Fi is a binary variable
indicating whether the model satisfies the ith fairness criterion (1 for satisfying the
criterion, 0 for not satisfying it).

• Regulatory compliance: Ensure that the explainable ML techniques and models you
choose adhere to relevant actuarial and insurance regulations, such as the GDPR and
CCPA. Measuring regulatory compliance with an explainability technique is largely
a qualitative and procedural process rather than a quantitative one. It will depend
heavily on the regulation specifics and the explainability technique’s technical aspects.
The number of regulations complied with from a specific setcould be considered a
basic measure of regulatory compliance. However, it is important to remember that
not all regulations are of equal importance or relevance, and not complying with
a single critical regulation could potentially have significant consequences. Thus,
weighting the regulations according to their importance or relevance to the problem is
more informative when computing the compliance score:

Cscore =
n

∑
i=1

wi · Ci (6)

where n is the total number of relevant regulations. wi is the weight assigned to the
ith regulation, based on its relevance or importance. Ci is a fuzzy variable indicating
compliance with the ith regulation (1 for compliance, 0 for non-compliance).

After assessing each of the factors individually, we employed a ranking aggregation
approach to provide an overall comparison of the models. This is based on the concept that
while raw scores can vary across different metrics, the relative ranking of models within
each criterion provides valuable insight into their performance. The models were ranked
for each factor, with the best-performing model receiving the highest rank. Specifically, if
there were n models under consideration, the best model for a given criterion received a
rank of n, the second best a rank of n− 1, and so on, with the worst model receiving a rank
of 1. These ranks were then aggregated across all the factors to provide an overall ranking
of models. This ranking aggregation approach allows us to integrate insights from multiple
factors into a single comparative framework. According to our multi-factor evaluation,
the model with the highest overall rank score is considered the best model. This method
assumes that all factors are equally important. If some factors are more important than
others, it is necessary to assign weights to the ranks before aggregating them.
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3. Results

This section presents the findings from our comprehensive analysis of the three distinct
datasets, as previously described. The examination of these datasets allows us to draw
meaningful conclusions and insights that contribute to our understanding of the underlying
patterns and relationships. By evaluating the outcomes from each dataset, we aim to
showcase the implications of our research and facilitate a better comprehension of the
subject matter under investigation.

3.1. Prudencial Dataset

The optimal result for dataset 1 is achieved using boosting. In contrast, for datasets
2 and 3, random forest yields the most favorable outcomes, while dataset 4 exhibits the
least desirable results, with no model attaining even 50% accuracy. It appears that the
elimination of certain variables in this scenario directly impacts the categorization of the
Response, as categories such as 1, 3, and 8 are devoid of cases in the testing exercises. The
results are compared using the accuracy indicator from the testing outcomes for each model,
taking into account the four proposed work scenarios (refer to Table 4). The best model for
each scenario is highlighted in bold, while the second best is presented in italics.

Table 4. Machine learning models accuracy on the test set. The best model in bold.

Model 1 2 3 4

GLM 0.093 0.762 0.759 0.205
Decision Trees 0.482 0.781 0.781 0.474
Random Forest 0.236 0.803 0.802 0.213

XgBoost 0.523 0.772 0.773 0.156

As anticipated, datasets 2 and 3 exhibit better response levels since they involve binary
classification problems, as opposed to the more complex prediction capacity required for
multi-class classification problems. The boosting model delivers the best result for the
original problem, aligning with the competition outcomes, and appears to be the most
suitable model, despite not being directly comparable to the problem statement.

Notably, dataset 4 demonstrates a considerably low accuracy level, with no model
identifying all categories during the testing phase, typically capturing only 5 to 6 categories.
The least represented categories, 1 and 3, were not identified in this phase, suggesting
that some variables eliminated due to missing values may hold crucial information for the
classification process.

Interestingly, a model such as the classification tree model, which allows for variable
importance evaluation through coefficients, ranks second for datasets 1 to 3, outperformed
by more challenging-to-interpret models, like random forest and XGBoost.

As expected, accuracy results for binary classification are favorable in more inter-
pretable models like decision tree classifiers, though surpassed by more sophisticated
techniques. In the case of 8-category classification bases, specifically for dataset 1, ac-
ceptable and consistent results are achieved, with the best technique aligning with those
obtained by the competition winners, from which the base was extracted.

3.1.1. Explainable Results

All models, excluding GLM, generally exhibit a predominance of shared variables,
such as BMI, WT, Medical_History_4, and Product_info 4, albeit in varying orders. The
best-performing models demonstrate a similar ranking, which is further elaborated upon
below. Concerning variable relevance, shared variables prevail for dataset 1, including
BMI, WT, Medical_History_4, and Product_info 4, with BMI being the most significant for
models other than GLM (see Figure 5).
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Concerning variable importance, common variables dominate for dataset 1, such as
BMI, WT, Medical_History_4, and Product_in f o_4. Notably, BMI is the most crucial factor
for models excluding GLM.

Figure 5. VIPs dataset 1. Left to right, up to down. (a) VIP GLM; (b) VIP decision tree classifier;
(c) VIP random forest; and (d) XG boost.

Related to the importance of the variables in the different models of dataset 2, BMI,
WT and Medical_History_4 and Product_info 4 predominate, being the most important
for models other than GLM, BMI, with the participation of additional variables such as
Medical_History_39 and Ins_Age.

The most relevant variables in dataset 3 are like those described in dataset 2, con-
sidering the same order in each model. There are no novelties regarding the importance
of the variables in the dataset 4 models, considering BMI, WT Medical_History_4, and
Product_info as the most important for models other than GLM and BMI, with the partici-
pation of additional variables such as Medical_History 39 and Ins_Age.

In general, and considering the limitation of information related to product, medical
history, family information, whose actual content is unknown, about variables relevant to
life coverage, such as BMI and weight, which, together with the age of a person, could give
a signal of good or bad health, closely related to the risk of mortality. On the other hand,
there are three variables whose content is unknown, but they seem to have information char-
acteristic of the population analyzed in any of the approaches, such as Medi-cal_History_4,
Product_info 4 and Medical_History 39, being common variables in terms of the analysis
of the alternatives provided by means of the databases constructed.

3.1.2. Evaluation

According to feature importance, the first dimension in our evaluation framework (see
Section 2.3), at least three of the five most relevant variables per model and per scenario are
within the a priori most relevant groups (see Table 5).
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Table 5. FIscore Evaluation of each model according to VI explainability measure.

Scenario GLM Decision Tree Random Forest Boosting

1 0.2 0.6 0.8 0.6
2 0.2 0.6 0.6 0.8
3 0.2 0.6 0.6 0.6
4 0.2 0.6 0.8 0.8

Regarding consistency, only boosting achieves a correlation of at least 0.5 among two
or more explainability techniques across all datasets. For instance, decision trees reach this
consistency level in two datasets (3 and 4), while GLM and random forest attain it in only
one dataset (2 and 4, respectively).

Concerning stability and robustness, the between-variable importance (VI) of each
model is computed for the four scenarios (see Table 6). A similar analysis was conducted
by comparing the results using dataset 1. VI with AI techniques yields high correlations,
exceeding 75%, whereas GLM models produce notably lower VI values.

Table 6. FIscore Evaluation of each model according to VI explainability measures.

GLM Decision Tree Random Forest Boosting

Minimum Correlation 0.25 0.78 0.72 0.86
Maximum Correlation 0.59 0.92 0.96 0.93

The model measure attains the best results regarding computational cost and avail-
ability. While the firm and shap techniques apply to every ML technique, their execution
is slow. In contrast, the execution of perm is fast, but it is not available for all models and
data scenarios.

From a regulatory compliance perspective, this dataset adheres to the GDPR, as it is
anonymized and precludes the association of characteristics for inferring personal infor-
mation. Moreover, in insurance pricing ease, we have a model for defining homogeneous
groups that, although only partially replicable, would yield similar results when repeated.
This is further reinforced by the XAI analysis, which facilitates understanding and review
by the regulator.

Regarding fairness and bias, all analyses reveal that BMI, Wt, and certain health-
related variables influence the classification process. For example, if we consider that the
rating process aims to evaluate the allocation of insurance risk associated with financial
products, the identified relevance reaffirms these characteristics, despite their seemingly
discriminative nature. Furthermore, the dataset does not include variables penalized for
discrimination in insurance pricing, such as sex.

3.2. Health Insurance Results

After running the parameter optimization process for each group of techniques, the
parameterization that gave the best results for each of the models in each dataset is selected.
The results obtained can be seen in the following Table 7.

In dataset 2 (see Table 8), the algorithms were tested with the same dataset after a
previous feature selection process. As a result, their results remained the same. They even
worsened slightly, except for the neural networks, which significantly improved. However,
reducing the dataset, even more, does not bring significant improvements for a problem
with a small dataset.

The results are similar in the scenarios with normalized data with (Table 9) or without
outliers (Table 10). However, the predictive power of the neural networks is even more
outstanding, obtaining the best MAE values in the scenario without outliers.
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Table 7. Health insurance machine learning results. Dataset 1.

Method Cross Validation Test
R2 MAE R2 MAE

Random Forests 0.85 2447.96 0.88 2326.47
Bagging 0.84 2593.46 0.88 2295.47

ANN 0.82 2587.77 0.87 2378.30
Decision Tree 0.78 3318.35 0.85 3027.99
Boosting Trees 0.74 3471.32 0.84 2888.02

Linear Reg. 0.68 4267.66 0.77 4194.54

Table 8. Health insurance machine learning results. Dataset 2.

Method Cross-Validation Test
R2 MAE R2 MAE

Random Forests 0.84 2660.93 0.88 2403.53
Bagging 0.85 2595.70 0.88 2294.15

ANN 0.83 2239.63 0.87 2208.04
Decision Tree 0.79 3305.79 0.86 2993.71
Boosting Trees 0.74 3353.79 0.82 2933.78

Linear Reg. 0.70 4597.26 0.72 4933.10

Table 9. Health insurance machine learning results. Dataset 3.

Method Cross-Validation Test
R2 MAE R2 MAE

Random Forests 0.85 0.211 0.88 0.19
Bagging 0.85 0.210 0.88 0.19

ANN 0.82 0.182 0.86 0.18
Decision Tree 0.78 0.274 0.85 0.25
Boosting Trees 0.75 0.268 0.81 0.25

Linear Reg. 0.69 0.351 0.77 0.25

Table 10. Health insurance machine learning results. Dataset 4.

Method Cross-Validation Test
R2 MAE R2 MAE

Random Forests 0.83 0.213 0.85 0.20
Bagging 0.82 0.213 0.86 0.19

ANN 0.82 0.210 0.83 0.20
Decision Tree 0.81 0.246 0.84 0.23
Boosting Trees 0.79 0.206 0.82 0.25

Linear Reg. 0.69 0.365 0.71 0.34

The performance results obtained in the scenario without outliers (Table 11) are
worse regarding R2 in both the cross validation and test. They are better in MAE in cross
validation (slight overlearning) but worse in the test step. The best results are obtained by
neural networks that take advantage of not having to handle these extreme cases to obtain
good results.
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Table 11. Health insurance machine learning results. Scenario 5.

Method Cross-Validation Test
R2 MAE R2 MAE

Random Forests 0.68 2267.03 0.58 2641.42
Bagging 0.67 2320.13 0.60 2435.21

ANN 0.64 1879.13 0.57 2046.13
Decision Tree 0.60 2878.58 0.57 2971.81
Boosting Trees 0.55 2865.61 0.45 3054.34

Linear Reg. 0.61 2743.45 0.58 2601.31

In most cases, decision forests (random or bagging) achieve the best results both
in cross validation and evaluation. The optimized models that achieve the best results
are complex models without a reduced capability to provide explanations. Artificial
neural networks achieve good predictive results with the best MAE in the dataset with
feature selection (Scenario 2) or without outliers (Scenario 5). These techniques present
outstanding predictive performance (MAE) with lower performance in description power
(R2) and difficulty explaining the results. In addition, self-explainable techniques like linear
regression or decision trees achieve the worst results, showing poor performance in any
scenario. However, the poor performance of the boosting algorithms is remarkable; these
methods need a considerable volume of data to achieve good performance.

Explainability Results

According to this method, if we study the correlation between the results of the
variables’ relevance and the results of the different algorithms (see Table 12), the result is
very similar, presenting very high correlations (average = 0.97). From another point of view,
analyzing the relevance of the variables for the same algorithm but for different datasets,
the result is also very high, with the highest differences compared to scenario 5. Artificial
neural networks are the most stable in terms of the correlation of results.

Table 12. Correlation of feature importance provided by the same algorithm in different datasets.

Scenarios RF Bagging ANN DT Boosting

Esc 1 vs. Esc 2 0.9997 0.9997 0.9948 1.0000 0.9659
Esc 1 vs. Esc 3 0.9995 0.9996 0.9946 1.0000 0.9743
Esc 1 vs. Esc 4 0.9984 0.9998 0.9912 0.9999 0.9919
Esc 1 vs. Esc 5 0.8842 0.8544 0.9601 0.8721 0.9184
Esc 2 vs. Esc 3 0.9999 0.9999 0.9891 1.0000 0.9984
Esc 2 vs. Esc 4 0.9986 0.9998 0.9807 0.9999 0.9783
Esc 2 vs. Esc 5 0.8749 0.8527 0.9424 0.8711 0.8936
Esc 3 vs. Esc 4 0.9990 1.0000 0.9972 0.9999 0.9847
Esc 3 vs. Esc 5 0.8725 0.8581 0.9664 0.8721 0.9091
Esc 4 vs. Esc 5 0.8754 0.8582 0.9815 0.8768 0.8886

Average 0.9502 0.9422 0.9798 0.9492 0.9503
Std. Dev 0.0633 0.0744 0.0181 0.0656 0.0429

Table 13 reflects different results for the models obtained. However, the relevance of
smoker.no is as the most important in all models, and BMI and age are third place in several
of the models.

Analyzing the features that significantly impact predictions, it is noteworthy that at
least three of the five most relevant variables per model fall within the a priori relevant
groups. Moreover, the explanations are consistent across different instances and similar
inputs, as all correlations between various techniques in each scenario exceed 85%. This
demonstrates that the explainability techniques align with domain knowledge in this case.
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Table 13. Variable importance by model.

Model Children Age bmi smoker.no Southeast Female

Random Decision Forest 1.25% 11.37% 14.63% 68.27%
Bootstrap Decision Forest 1.19% 11.45% 17.88% 66.96%

Neural Network 1 16.14% 12.82% 51.73% 3.99% 4.31%
Neural Network 2 3.31% 17.21% 12.04% 56.23% 3.26%

Decision Tree 3.40% 16.38% 24.56% 39.94%

The model measure achieves the most optimal results in terms of computational cost
and availability. While the firm and shap techniques apply to all machine learning tech-
niques, their execution is slow. In contrast, the perm technique executes quickly but is
unavailable for all models and data scenarios.

All models concur that BMI, age, and smoking condition influence the fitting process
(see Figure 6). Considering that the rating process aims to evaluate the allocation of
insurance risk associated with financial products, the identified relevance reaffirms these
characteristics, despite their seemingly discriminative nature. Conversely, the dataset
includes variables such as sex and paternity, which are penalized as discriminatory for
insurance pricing, but reflect actual conditions according to experience.

The database adheres to the GDPR, as it is anonymized and precludes the association
of characteristics for inferring personal information.

Figure 6. VIPs dataset 1. Up to down, Left to right (a) VIP regression; (b) VIP artificial neural network;
(c) VIP random forest; and (d) VIP boosting.

3.3. Claim Results

The results of our analysis, as presented in Table 14, reveal some interesting insights.
Firstly, it is clear that the performance of the machine learning algorithms varies across the
different datasets. For example, regression trees performed best in dataset 1, with an error
rate of 11,538.02, while Bagging achieved the lowest error rate in dataset 3, with an error
rate of 0.423. On the other hand, boosting performed the best in dataset 4, with an error
rate of 2960.106.

It is worth noting that neural networks consistently performed well across all datasets.
This highlights the versatility and robustness of neural networks, making them a viable
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option for a wide range of applications. Another interesting observation is the relatively
high error rates in datasets 1 and 2 compared to datasets 3 and 4. This can be attributed
to datasets 1 and 2 being multi-class classification problems, which are generally more
challenging than binary classification problems, such as those in datasets 3 and 4.

Our results demonstrate the importance of carefully considering the problem and
selecting an appropriate machine learning algorithm to achieve optimal results. While there
is no one-size-fits-all solution, the versatility of neural networks and the varied strengths of
different algorithms in different datasets highlight the importance of conducting thorough
experimentation and analysis to identify the best solution for each problem.

Table 14. MAE results by model.

Dataset Regression Trees Neural Networks Bagging Boosting

1 11,538.02 11,680.67 11,476.85 11,314.6
2 12,002.64 11,648.35 11,958.65 11,710.33
3 0.424 0.414 0.423 0.414
4 3857.927 2974.121 3022.765 2960.106

Explainability Results

The analysis of the prediction techniques used in the study show that the ANN model
with linearly significant and untransformed variables had a preponderance for the insured’s
age and marital status, whereas work-related variables were less relevant. However, this
model included a variable that was previously discarded in the other datasets: the year of
occurrence, which is potentially related to inflation or the growth of the average cost of the
claim over time. Additionally, the boosting model, which considered the normalized base
without outliers or variables with no linear relationship, reinforced the importance of the
most relevant variables from the previous relationships, such as weekly income, year of
occurrence, age, and gender.

It should be noted that the incidence of the variables in the models cannot be un-
derstood solely from the results obtained from each algorithm. Despite the limitations
of information, such as the type of work or cause of the accident, the study was able to
clearly identify the influence of weekly income, age, and year of occurrence. The cost of an
accident at work is directly related to the injured worker’s salary (income), which is usually
related to their experience level, making sense that age matters. Furthermore, the year
provides a reference to the influence of the value of money over time or the inflationary
effect in wages. The results of the study are presented in Figure 7.

The boosting machine learning (ML) algorithm demonstrated its effectiveness in
generating consistent and robust explanations through various explainability techniques.
The high level of correlation among the results of these techniques further strengthens
the credibility of the explanations. Moreover, the variable selection process achieves
high consistency and robustness across different datasets, indicating the reliability of
the approach.

In terms of computational cost and availability, the model measure outperforms the
firm and shap techniques, which are slow. In contrast, the perm technique executes quickly
but is not universally available for all models and datasets.

From a regulatory compliance perspective, the model provides a suitable fit that may
only be partially replicable, but repetition would lead to similar results. The XAI analysis
further facilitates understanding any review by the regulator, reinforcing the model’s
reliability. The analysis of the results reveals the significance of the weekly income, age,
and year of occurrence as influential variables in solving the problem. These variables align
with the criteria of a claims specialist, as the cost of the accident claim is directly related
to the salary (income) of the injured worker, which in turn is usually associated with the
worker’s experience level. It makes sense that age matters in such cases, and the year of
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occurrence refers to the influence of the value of money over time or the inflationary effect
on salaries. Therefore, no weight is given to any discriminant variable.

Figure 7. VIP results.

4. Conclusions

There is a lack of consensus on the best approach to developing explainable machine-
learning methods for data-driven insurance problems. Therefore, this paper addresses this
issue by comparing different explainable machine learning methods for solving classifica-
tion and regression problems in the actuarial context. The goal is to develop accurate and
interpretable models, enhancing the transparency and trustworthiness of the predictions
generated by these models. Three insurance datasets were used to validate the proposed
approach and assess the quality of the explanations provided by each method. XAI tech-
niques were employed to facilitate an understanding of the relationships established by the
models and their intuitive contrast depending on the context of the problem. We further
enhanced the robustness of our approach by applying these algorithms in various data
scenarios, including contexts with and without outliers, as well as binary classification
problems. This exhaustive and versatile application under diverse conditions underscores
our framework’s adaptability and potential utility in elucidating the functionality of ma-
chine learning within actuarial science. Overall, the machine learning algorithms showed
varying performance across the different datasets. However, boosting techniques effectively
generated consistent and robust explanations through various explainability techniques.
For example, the variable selection process achieved high consistency and robustness across
different datasets, indicating the reliability of the approach.

The research shows that different XAI methods vary in accuracy, implying that organi-
zations must carefully select the appropriate method for each problem. An accurate model
can significantly improve decision making, ranging from risk assessment to customer seg-
mentation. Moreover, by employing explainable AI (XAI) methods, insurance companies
can ensure higher transparency and trust in their predictive models. This could lead to
more acceptance from stakeholders, such as regulators and customers.

The results demonstrate that the most noticeable method is SHAP, which provides
insights into feature relevance through local and global feature importance measures due to
its consistency, interpretability, and model-agnostic nature. Firstly, it aligns with actuarial
practice by providing a fair and consistent allocation of a prediction across its features,
similar to how actuaries distribute risk. Secondly, SHAP facilitates interpretability and
transparency by explaining the influence of each feature on the output of any machine
learning model, which is crucial in actuarial work that often requires clear explanations
for stakeholders and regulatory authorities. Lastly, being model-agnostic, SHAP can be
applied to any machine learning model, offering invaluable flexibility in actuarial contexts,
where different models might be used depending on the problem.

The findings of this study contribute to the ongoing development of explainable
machine-learning methods for data-driven insurance problems and provide a roadmap for
future research in this area. However, the choice of an explainability technique should be
context dependent, considering the model’s complexity, data characteristics, computational
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resources, and specific task needs. Implementing a process to continuously evaluate the
performance of different XAI methods as new data become available and as the business
context changes will help ensure that the selected method remains optimal over time.
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