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Abstract: In this article, we classify the developable surfaces in three-dimensional Euclidean space R3

that are foliated by general ellipses. We show that the surface has constant Gaussian curvature (CGC)
and is foliated by general ellipses if and only if the surface is developable, i.e., the Gaussian curvature
G vanishes everywhere. We characterize all developable surfaces foliated by general ellipses. Some of
these surfaces are conical surfaces, and the others are surfaces generated by some special base curves.
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1. Introduction

The study of some classes of surfaces with particular properties in Euclidean space
R3, such as constant angle surfaces, ruled surfaces, canal surfaces, minimal surfaces, cyclic
surfaces, and developable surfaces, is one of the major objectives of classical differential
geometry [1,2]. A cyclic surface or circular surface is a one-parameter family of regular,
fixed-radius circles positioned around a curve that acts as a spine curve [3,4]. Therefore, it
is possible that almost all interesting properties had been discovered before the middle of
the 20th century. However, this topic has recently attracted attention in several domains
(especially architecture, computer-aided design, etc. (see [5,6])). Particular cyclic surfaces
have been considered in earlier papers, that is, the canal surface of a space curve, torus, and
cylindrical surface are special cyclic surfaces [7,8]. In spatial kinematics, the movement of a
one-parameter family of circles with a defined radius generates a cyclic surface, while the
movement of a one-parameter family of lines generates a ruled surface [9–11]. The well-
known examples of cyclic surfaces are tubes and surfaces of revolution [12]. Nitsche [13]
studied cyclic surfaces with nonzero constant mean curvature, and he proved that the only
such surfaces are the surfaces of revolution discovered by Delaunay [14].

Let s be an arc-length parameter of the curve α = α(s), which is perpendicular to
every s-plane of the foliation. Suppose that the tangent, principal normal and binormal
vectors of the curve α are denoted {T,N,B} and the planes of the foliation are not parallel.
Therefore, we can parameterize the cyclic surface Ψ(s, t) by

X(s, t) = β(s) + λ(s)
[
µ(s) cos[t]N+ ν(s) sin[t]B

]
, t ∈ [0, 2π], (1)

where µ = µ(s), ν = ν(s) and λ = λ(s) > 0 are functions of s, β = β(s) denotes the
center of each ellipse of the foliation, and the Frenet equations of the curve α are

T′ = σN, N′ = −σT+ ω B, B′ = −ω N. (2)
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where the prime ′ denotes the derivative with respect to the s-parameter, and σ and ω
are the curvature and torsion of α, respectively. We assume that σ 6= 0 because α is not a
straight line, and let

β′(s) = aT+ bN+ cB (3)

where a, b, and c are smooth functions on s. Without loss of generality, we can assume that
µ(s) = 1. Now, we can discuss the following particular cases of the general case:

(1): Lopez [15–17] studied a cyclic surface foliated by a smooth, one-parameter family
of circles in three-dimensional Euclidean space R3, which results directly from our work
when ν(s) = 1. In [15], he studied the CGC surface in R3 foliated by circles. In [16,17],
he studied surfaces that satisfy a special Linear Weingarten (LW) condition of linear type
as σ1 = ε1 σ2 + ε2 and ε3 M + ε4 G = ε5, where εi, i = 1, 2, . . . , 5 are real numbers, and
σ1 and σ2 denote the principal curvatures, while M and G denote the mean and Gaussian
curvatures at each point of the surface. Also, he proved that A surface of revolution is the only
CGC cyclic surface [15].

(2): When ν(s) = ε0 6= 1, where ε0 is an arbitrary constant, the surface (1) is a surface
foliated by general ellipses, which were studied by Ali and Hamdoon [18]. They proved
that, with constant Gaussian curvature G, the following are equivalent:

(a): The surface foliated by general ellipses is a CGC surface.
(b): The surface foliated by general ellipses is developable.
(c): The surface foliated by general ellipses is a cylindrical surface that is part of a generalized

cone or a part of a generalized cylinder.
In this article, we will discuss and classify the surface foliated by general ellipses in

the form (1) such that ν(s) is not a constant function, and we will show the following main
results for zero Gaussian curvatures in R3:

Theorem 1. The surface (1) foliated by general ellipses is flat if and only if it is a part of a conical
surface or one of the following surfaces: (31), (48), (56), (60), or (64).

Theorem 2. The surface foliated by general ellipses is a CGC surface (1) if and only if G = 0.

Theorem 3. Let Π be a CGC surface foliated by pieces of ellipses in parallel planes. Then,
(1): G = 0.
(2): Π must be parameterized, up a rigid motion of R3, as

X(s, t) =
(

ε1 s + ε0, ε1 s + ε0, s
)
+
(

ζ1 s + ζ0

) (
cos[t], ν0 sin[t], 0

)
, (4)

where ε0, ε1, ε0, ε1, ζ0, ζ1, ν0 ∈ R.

As a corollary of both Theorems 2 and 3, we obtain the following.

Corollary 1. All surfaces foliated by general ellipses with constant Gauss curvatures must be
surfaces of revolution.

Remark 1. A conical surface or quadratic surface is a locus of points in the three-dimensional
space whose coordinates in a Cartesian coordinate system X(s, t) = (x, y, z) satisfy an algebraic
equation of degree two:

3

∑
i,j= 1

aij xi xj +
3

∑
k = 0

ak xk = 0,

where (x1, x2, x3) = (x, y, z), while aij and ak are constant coefficients. A conical surface intersects
every plane in a (proper or degenerate) conic section. Moreover, the cone consisting of all tangents
from a fixed point to a conical surface cuts every plane in a conic section, and the points of
contact of this cone with the surface form a conic section [19]. There are 17 standard-form types
of conical surfaces. An elliptic paraboloid, generalized cone, ellipsoid, sphere, hyperboloid of one
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sheet, hyperboloid of two sheets, and hyperbolic paraboloid are some special conical surfaces. For
generalized cylinders, for example, an elliptic cylinder, hyperbolic cylinder, parabolic cylinder, and
circular cylinder are also special types of conical surfaces [20].

Note: The calculations for our problem are very complicated, so Mathematica was used
for computations.

2. Gaussian Curvatures

Consider Π, a surface in R3 parameterized by X = X(θ1, θ2), and let U denote the
unit normal vector field on Π. The tangent vectors to the parametric curves of the surface
X(θ1, θ2) are

Xθ1 =
∂X

∂ θ1
, Xθ2 =

∂X

∂ θ2

and the unit normal on this surface is given by

U =
Xθ1 × Xθ2

‖Xθ1 × Xθ2‖

where × refers to the cross-product. The Gaussian curvature G is

G =
det
(
Hij
)

det
(
Gij
) , (5)

where
Gij = 〈Xθi ,Xθj〉, Hij = 〈Xθiθj ,U〉, i, j = 1, 2. (6)

To prove our results, it is necessary to transform the equation G = constant to an expres-
sion as a linear combination of the trigonometric functions {cos[i t], sin[i t]}, where i is a
positive integer. Because the multi-linearity of the determinant shows that the denominator
of G is a trigonometric polynomial, of the form required by linearization, we can write the
above equation in the following interesting form:

8

∑
i = 0

(
Ei(s) cos[i t] + Fi(s) sin[i t]

)
= 0 (7)

where Ei(s) and Fi(s) are functions of only the variable s. Then, all these coefficients, Ei and
Fi, must equal zero. The next step is to calculate the explicitly form of the coefficients Ei and
Fi using a series of operations. Although the scalar curvature G can be explicitly computed,
for instance, using the Mathematica program, its expression is somewhat cumbersome.
However, the key to our demonstrations is that G can be written as

G =
P
(

cos[i t], sin[i t]
)

Q
(

cos[i t], sin[i t]
) =

∑4
i = 0

(
Υi cos[i t] + Λi sin[i t]

)
∑8

i = 0
(
Ωi cos[i t] + Ψi sin[i t]

) . (8)

Given that the Gaussian curvature G is assumed to be constant, (8) transforms into

P (cos[i t], sin[i t])− G Q (cos[i t], sin[i t]) = 0. (9)

Equation (9) is a linear combination of the functions {cos[i t], sin[i t]}; then, the correspond-
ing coefficients must vanish. Here, it is not necessary to give the (long) expression of G
but only the coefficients of higher order for the trigonometric functions. Assuming the
curvature never vanishes, we can use ω(s) = v(s) σ(s) and b(s) = ξ(s) σ(s), where v
and ξ are functions of s.
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3. Proof of Theorem 1

In this section, we assume that G = 0 on the surface X(t, s). From (9), we have

P(cos[i t], sin[i t]) =
4

∑
i=0

(Γi cos[i t] + Σi sin[i t]) = 0.

Explicit computations of the coefficients Γi and Σi show that the equation Σ4 = 0 leads to

v′ =
ν2 v

[
2 ν a ξ σ2 + ν′

(
2 a2 + 3 λ2 σ2)]+ 2

(
c + v a

) (
a ν′ − ν ξ σ2)

ν (ν2 − 1) λ2 σ2 . (10)

Equation Γ4 = 0 is

ν′′ =
1

ν λ2 σ2

(
c σ2

[
c− 2 (ν2 − 1) a v

]
+ ν2 σ2

[
ν2 v2 (a2 + λ2 σ2)− 2 a2 v2

−σ2 ξ2 − λ2 σ2 (1 + v2)]+ a2(v2 σ2 − ν′2
)
+ σ ν ν′

(
2 a v σ + r2 σ′

))
.

(11)

From the condition Σ3 = 0, we obtain

c′ =
1

ν λ2 σ2

([
c + v a

] [
ν σ
(

4 a σ ξ + λ
[
4 σ λ′ + λ σ′

])
−2 ν′

(
2 a2 − λ2 σ2

)]
− ν v

[
a ν ν′

(
3 λ2 σ2 − 4 a2

)
+ λ2 σ2 a′

+ν2 σ
(

4 σ ξ, a2 − λ2 σ a′ + λ a
[
4 σ λ′ + λ σ′

])])
.

(12)

As a result of the equation Γ3 = 0, we now have

ξ ′ =
1

ν2 λ2 σ4

(
4 a2 σ2

[
(ν2 − 1) c v− ξ ν ν′

]
− 2 a3

[
(ν2 − 1)2 σ2 v2 − ν′2

]
+ν λ σ2

[
4 ν ξ σ2 λ′ + λ ν′

(
ξ σ2 + a′

)]
− σ a

[
2 σ c2 + 2 σσ λ2 ν′2

−ν4 σ3 λ2 v2 + ν2 σ3
[
(v2 + 1) λ2 − 2 ξξ2

]
+ λ ν ν′

(
4 σ λ′ + λ σ′

)])
.

(13)

Now, based on the formula Γ2 = 0, it leads to

λ′′ =
1

ν2 λ3 σ4

(
3 a3

[
v σ2 (ν2 − 1)

(
2 c−v a

)
− 2 ν ξ σ2 ν′ + a ν′2

]
+σ a2

(
3 σ
(
ν2 σ2 ξ2 − c2)− 6 ν λ σ ν′ λ′ + λ2

[
v2 σ3 (ν2 − 1) (2 ν2 − 1)

−4 σ ν′2 − ν ν′ σ′
])

+ λ2 σ3
(

σ c2 −v2 λ2 σ3 ν4 + σ λ2 ν′2 + 2 ν λ σ ν′ λ′

+ν2
[
λ2 σ3 (v2 + 1) + σ

(
σ2 π2 + 3 λ′2 − ξ a′

)
+ λ λ′ σ′

])
+λ a σ2

[
6 ξ ν2 σ2 λ′ + λ

(
v c σ2 (2− 3 ν2) + ν

[
3 ξ σ2 ν′ + ν σ ξ σ′ + ν′ a′

])])
.

(14)

A straightforward computation for the condition Σ2 = 0 leads to the following important
condition

ν λ2 σ2
[
(ν2 − 1)v a− c

]
a′ = ∆ (15)
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where

∆ = ν′
(
a2 − σ2 λ2)[6 v a2 (ν2 − 1)−v λ2 σ2 ν2 − 6 a c

]
+ν σ

(
c + v a

)[
ξ σ
(
σ2 λ2 − 6 a2)− λ a

(
6 σ λ′ + λ σ′

)]
+v σ ν3

[
2 ξ σ a

(
3 a2 − σ2)− σ3 λ3 λ′ + λ a2 (6 σ λ′ + λ σ′

)]
.

(16)

The condition (15) gives us two possibilities:

3.1. When c 6= (ν2 − 1)v a ⇒ a′ =
∆

ν λ2 σ2
[
(ν2 − 1)v a− c

]
In this case, the equation Σ1 = 0, becomes(

a2 − λ2 σ2
) [

ν σ2 (ξ a + r λ′
)
−
(
a2 − r2 σ2) ν′

]
= 0. (17)

Again, from the above condition, we obtain the following two possibilities:

3.1.1. When a 6= ±σ λ ⇒ ν′ =
ν σ2 (ξ a + λ λ′

)
a2 − λ2 σ2

Substituting ν′ from the above equation and ν′′ from (11), the compatibility condition

ν′′ =
dν′

ds
implies

2 c
(
3 a2 − σ2 λ2)+ a v

[
(3 ν2 − 2) σ2 λ2 − 6 (ν2 − 1) a2

]
= 0. (18)

The above condition yields two cases:

(3.1.1.1): When a 6= ±σ λ√
3
⇒ c =

a v
[
(3 ν2 − 2) λ2 σ2 − 6 (ν2 − 1) a2

]
2
(
λ2 σ2 − 3 a2

) . The com-

putation of the coefficient Γ0 = 0 leads v a = 0 ⇒ γ = 0, a contradiction with
c 6= (ν2 − 1)v a.

(3.1.1.2): When a =
σ λ√

3
. Again, the condition a′ =

da
ds

gives λ′ = −
√

3 σ ξ. Sub-

stituting in the conditions λ′′ =
dλ′

ds
and ν′′ =

dν′

ds
, we obtain the following conditions,

respectively:

6 c2 + 2
√

3 (2− 3 ν2) c λ σ v + (ν2 − 1) (ν2 − 2) λ2 σ2 v2 = 0,

6 c2 − 4
√

3 (ν2 − 1) c λ σ v + 2 (ν2 − 1)2 λ2 σ2 v2 = 0.

The following condition results from subtracting the two conditions above

ν2 λ σ v
[√

3 c− (ν2 − 1) λ σ v
]
= 0.

Now, there exist two cases:
(a): v = 0. Then Γ0 = 0 ⇒ c = 0 which contradicts c 6= (ν2 − 1)v a.

(b): c =
(ν2 − 1) λ σ v√

3
⇒ a =

λ σ√
3

which contradicts c 6= (ν2 − 1)v c again.

3.1.2. a = ±σ λ

Substituting a = ±σ λ and a′ from case (3.1), in the condition a′ =
da
ds

, we have

(
σ ξ + r′

) [
(5− 4 ν2) λ σ v + 5 c

]
= 0.
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According to the above condition, let us distinguish the two possibilities:

(3.1.2.1): When λ′ = −σ ξ. Using λ′′ in (14), the compatibility condition λ′′ =
dλ′

ds

results in c =
(3 ν2 − 4) λ σ v

4
. On the other hand, the condition c′ =

dc
ds

gives

ν σ v
[
(5 ν2 − 6) σ ξ ν− (5 ν2 − 12) λ ν′

]
= 0,

which implies two cases:
(a): v = 0 ⇒ c = 0, which contradicts c = (ν2 − 1)v a.

(b): ν′ =
(5 ν2 − 6) σ µξ ν

(5 ν2 − 12) λ
. Using ν′′ from (11), the compatibility condition ν′′ =

dν′

ds
becomes

800 ν4 ξ2 − λ2 (5 ν2 − 12)2
[
32 +

(
32− 40 ν2 + 5 ν4)v2

]
= 0,

which leads to

ξ = ±
λ (5 ν2 − 12)

√(
40 ν2 − 32− 5 ν4

)
v2 − 32

20
√

2 ν2
.

Now, applying ξ ′ =
dξ

ds
, we arrive at the following:

(
85 ν4 − 264 ν2 + 144

)
λ σ v = 0.

Because the function ν(s) is not constant, v = 0. Therefore ξ is imaginary, which is a
contradiction.

(3.1.2.2): λ′ 6= −σ ξ ⇒ c =
(4 ν2 − 5) λ σ v

5
. So Γ1 = 12 ν2 σ2 (σ ξ + λ′) λ4 , which

is impossibly equal to zero.

3.2. When c = (ν2 − 1)v a, Then ∆ = 0 and 2 ν2 λ2 σ vv
[
ν σ2 (ξ a + r λ′

)
−
(
a2−

λ2 σ2
)

ν′
]
= 0

The above condition suggests two possibilities:

3.2.1. v = 0

If we substitute v = 0 into equation Γ1 = 0, one can obtain the following condition:

[
ν σ2 ξ a− a2 ν′ + λ σ2 (λ ν

)′] (4 a
(
λ2 σ2 − a2

)
ν′

+ν σ
[
4 a2 σ ξ − λ2 σ

(
σ2 ξ + a′

)
+ λ a

(
4 σ λ′ + λ σ′

)])
= 0,

(19)

which yields two cases:
(3.2.1.1): ν σ2 ξ a = a2 ν′ − λ σ2 (λ ν

)′. Again, we consider two subcases:

(I): When a 6= 0 ⇒ ξ =
a2 ν′ − λ σ2 (λ ν

)′
ν a σ2 . Now, we rewrite ν′′ as follows:

ν′′ =
ν′ σ′

σ
− ν σ2 − σ2 (λ ν)′ 2

ν a2 . (20)

Rewrite again the above equation in the following form:

λ′ = −λ ν′

ν
± a

σ

√
ν′ σ′

ν σ
− σ2 − ν′′

ν
. (21)
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Hence, the compatibility condition λ′′ =
dλ′

ds
gives the following ordinary differential

equation (ODE):

σ ν′′′ +
(

4 σ3 − σ′′
)
+

3 σ3

ν

( ν

σ

)′ (ν′

σ

)′
= 0. (22)

If we apply the following transformation,

φ(s) = 2
∫

σ(s) ds, ν(s) =
√

B(φ)

Equation (22) becomes
d3B(φ)

dφ3 +
dB(φ)

dφ
= 0. (23)

The general solution (GS) of the above equation is

B(φ) = ε1 + ε2 sin[φ] + +ε3 cos[φ] ⇒ ν(s) =
√

ε1 + ε2 sin[φ(s)] + +ε3 cos[φ(s)]. (24)

Solving Equation (21), we obtain

a(s) =
ε1 λ′(s) +

[
ε2 λ′(s)− ε3 σ(s) λ(s)

]
sin[φ(s)] +

[
ε3 λ′(s) + ε2 σ(s) λ(s)

]
cos[φ(s)]√

ε2
3 + ε2

2 − ε2
1

. (25)

Then, we have the following solution:

b(s) =
ε1 σ(s) λ(s) +

[
ε2 λ′(s)− ε3 σ(s) λ(s)

]
cos[φ(s)]−

[
ε3 λ′(s) + ε2 σ(s) λ(s)

]
sin[φ(s)]√

ε2
3 + ε2

2 − ε2
1

, (26)

and c(s) = ω(s) = 0, where ε1, ε2, and ε3 are arbitrary constants, while σ(s) and λ(s) are
arbitrary functions of s.

For this solution, the base curve α is a plane curve, and the position vector takes the
following form:

α(s) =
∫ (

cos
[∫

σ[s] ds
]

, sin
[∫

σ[s] ds
]

, 0
)

ds. (27)

After the computation of the Frenet frame of base curve α, the position vector X1(s, t) =
(x1, x2, x3) of the developable surface is given by

x1 = λ(s)

 ε2√
ε2

3 + ε2
2 − ε2

1

− cos[t]

 sin
[
ψ[s]

]
+

(ε1 + ε3) cos
[
ψ[s]

]√
ε2

3 + ε2
2 − ε2

1

,

x2 = λ(s)

 ε2√
ε2

3 + ε2
2 − ε2

1

+ cos[t]

 cos
[
ψ[s]

]
+

(ε1 − ε3) sin
[
ψ[s]

]√
ε2

3 + ε2
2 − ε2

1

,

x3 = λ(s) sin[t]
√

ε1 + ε2 sin[2 ψ(s)] + ε3 cos[2 ψ(s)],

(28)

where ψ(s) =
∫

σ(s) ds. The above surface, in Cartesian coordinates, is given by:

(ε1 − ε3) x2
1 − 2 ε2 x1 x2 + (ε1 + ε3) x2

2 + x2
3 = 0.

Now, we can write the following Lemma:

Lemma 1. The developable surface (28) foliated by general ellipses represents a conical surface in
Euclidean 3-space.
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(II): When a(s) = 0, the condition in the case (3.2.1.1) leads to ν(s) =
ν0

λ(s)
, where ν0

is an arbitrary constant. Now, we can rewrite the equation of ξ ′ as the following:

ξ ′

ξ
=

3 λ′

λ
.

The GS of the above ODE is ξ(s) = ξ0 λ3(s), where ξ0 is an arbitrary constant. Hence, the
equation of λ′′ becomes

λ′′

λ′
=

2 λ′

λ
+

σ′

σ
+

σ2 λ
(
1 + ξ2

0 λ4)
λ′

.

The GS of the above ODE is

λ(s) = ±2

[
λ0 ±

√
λ2

0 + 4 ξ2
0 sin

[
2
∫

σ dσ
]

(
1 + cos

[
4
∫

σ dσ
]) (

λ2
0 − 4 ξ2

0 tan2
[
2
∫

σ dσ
])]1/2

, (29)

where λ0 is an arbitrary constant. Hence, all coefficients Γi and Σi vanish. In this case, we
have:

a(s) = c(s) = ω(s) = 0, b(s) = ξ0 λ3(s) σ(s), ν(s) =
ν0

λ(s)
, (30)

where λ(s) is given by (29) and σ(s) is an arbitrary function of s, while λ0, ξ0, and ν0 are
arbitrary constants. Therefore, the parametrization of the tangent vector of the curve C(s)
is given by

β′(s) = ξ0 λ3(s) σ(s)N.

Hence, there exists C0 ∈ R3 such that

β(s) = C0 + ξ0

∫
λ3(s) σ(s)N(s) ds,

The parametrization of this surface is given by

X2(s, t) = C0 + ξ0
∫

λ3(s) σ(s)N ds + λ(s) cos[t] N+ ν0 sin[t]B, (31)

λ(s) is given by (29), and σ(s) is an arbitrary function of s while λ0, ξ0 and ν0 are arbitrary
constants.

(3.2.1.2): 4 a
(
λ2 σ2− a2

)
ν′ + ν σ

[
4 a2 σ ξ − λ2 σ

(
σ2 ξ + a′

)
+ λ a

(
4 σ λ′ + λ σ′

)]
= 0.

This case splits into two subcases:

(I): When a 6= ±σ λ

2
⇒ ξ =

4 a3 ν′ − 4 λ σ2 a
(
λ ν
)′
+ σ λ2 ν

(
σ a′ − a σ′

)
ν σ2

(
4 a2 − σ2 λ2

) . Thus the

equation Γ0 = 0 becomes(
a2 − σ2 λ2) [a2 (σ ν′ − ν σ′

)
+ ν σ a a′ − λ σ3 (λ ν

)′]
= 0.

The previous equation has two solutions:

(I-A): a = ±σ
√

ν2 λ2 + a0

ν
and a0 6= 0 is an arbitrary constant. Now, we examine

the following cases:



Mathematics 2023, 11, 3200 9 of 17

(I-A.1): ν2 λ2 + a0 6= 0. We have the following conditions:

σ
(
a0 + ν2 λ2)[ν σ +

(
ν′

σ

)′]
+ ν

(
λ ν
)′ 2

= 0,

λ′′ =
σ′ λ′

σσ
+

a0
(
λ σ2 ν2 − 2 λ ν′2 − 4 ν ν′ λ′

)
+ λ ν4 (σ2 λ2 − 2 λ′2

)
ν2
(
a0 + ν2 λ2

) .
(32)

Now, all coefficients Γi and Σj are zero and we obtain the following solution:

a(s) =
σ(s)

√
ν2(s) λ2(s) + a0

ν(s)
, b(s) =

a0 ν′(s)− ν3(s) rλ(s) λ′(s)
ν2(s)

√
ν2(s) λ2(s) + a0

,

ν(s) = ε1 cos[φ(s)] + ε2 sin[φ(s)], ω(s) = c(s) = 0,

λ(s) =
λ1 cos[φ(s)] + λ2 sin[φ(s)](

ε1 cos[φ(s)] + ε2 sin[φ(s)]
)2
− λ2

0

, φ(s) =
∫

σ(s) ds,

(33)

where a0 =

(
λ1 ε2 − ε1 λ2

)2 − λ2
0
(
λ2

1 + λ2
2
)

λ2
0
(
ε2

1 + ε2
2 − λ2

0
) , while σ(s) is an arbitrary function of s and

λ1, λ2, λ0, ε1, and ε2 are arbitrary constants. Therefore, the parametrization of the tangent
vector of the curve β(s) is given by

β′(s) =

√
ν2 λ2 + λ0 σT

ν
+

[
λ0 ν′ − ν3 λ λ′

]
N

ν2
√

ν2 λ2 + λ0
.

Hence, there exists C0 ∈ R3 such that

β(s) = C0 −
√

ν2 λ2 + λ0 N

ν
,

The parametrization of this surface is given by

X3(s, t) = C0 +

(
λ(s) cos[t]−

√
ν2(s) λ2(s) + λ0

ν(s)

)
N+ λ(s) ν(s) sin[t]B. (34)

The above surface can be expressed by the Cartesian equation below:

x2
3 +

(
ε2 x1 − ε1 x2

)2 − λ2
0
(

x2
1 + x2

2
)
+

(
λ1 ε2 − ε1 λ2

)2 − λ2
0
(
λ2

1 + λ2
2
)

λ2
0
(
ε2

1 + ε2
2 − λ2

0
)

=
2
[(

λ1 ε2 − ε1 λ2
) (

ε2 x1 − ε1 x2
)
− λ2

0
(
λ1 x1 + λ2 x2

)]
λ0

√
ε2

1 + ε2
2 − λ2

0

.

(35)

From the above discussion, we proved the following Lemma:

Lemma 2. The developable surface (34) foliated by general ellipses represents a conical surface in
Euclidean 3-space.

(I-A.2): ν2 λ2 + α0 = 0 ⇒ ν(s) =
ν0

λ(s)
, where α0 = −ν2

0 is an arbitrary negative

constant. This case leads to a = b = c = 0, which is a contradiction again.
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(I-B): a(s) = ±σ λ. The equation of λ′′ can be written as

λ′′

λ′
=

2 λ′

λ
+

σ′

σ
+

σ2 λ

λ′
.

The GS of the above ODE is

λ(s) =
λ0

cos
[ ∫

σ(s) ds
]
+ λ1 sin

[ ∫
σ(s) ds

] , (36)

where λ0 and λ1 are arbitrary constants of integration. Therefore, the equation of ν′′

becomes
ν′′

ν
+

(1 + λ2
2) σ2 λ2

λ2
1

=
ν′

ν

[
σ′

σ
− 2 λ′

λ
− ν′

ν

]
. (37)

The GS of the above equation is

ν(s) = ν0

√
cos

[ ∫
σ(s) ds

]
+ ν1 sin

[ ∫
σ(s) ds

]√
cos

[ ∫
σ(s) ds

]
+ λ1 sin

[ ∫
σ(s) ds

]
. (38)

where ν0 and ν1 are arbitrary constants of integration. Now, all coefficients Γi and Σi are
equal to zero. Then, we obtain the following solution:

a(s) = σ(s) λ(s), b(s) = −λ′(s), c(s) = ω(s) = 0, (39)

where the functions λ(s) and ν(s) are in (36) and (38), respectively, while σ(s) is an arbitrary
function of s, and λ0, λ1, ν0, and ν1 are arbitrary constants. Therefore, the parametrization
of the tangent vector of the curve β(s) is given by

β′(s) = λ(s) σ(s)T− λ′(s)N.

Since ω(s) = 0, α(s) is a plane curve, and it is easy to prove there exists C0 ∈ R3 such that

β(s) = C0 − λ(s)N.

The explicit parametrization of this surface is given by

X4(s, t) = C0 + λ(s)
(

cos[t]− 1
)
N+ λ0 ν0

√√√√√ cos
[ ∫

σ(s) ds
]
+ ν1 sin

[ ∫
σ(s) ds

]
cos

[ ∫
σ(s) ds

]
+ λ1 sin

[ ∫
σ(s) ds

] sin[t] b. (40)

The position vector X4(s, t) = (x1, x2, x3) of this developable surface is given by

x1 =
λ0 sin

[ ∫
σ(s) ds

] (
1− cos[t]

)
cos

[ ∫
σ(s) ds

]
+ λ1 sin

[ ∫
σ(s) ds

] ,

x2 =
λ0 λ1

λ1 + cot
[ ∫

σ(s) ds
] + λ0 cos[t]

1 + λ1 tan
[ ∫

σ(s) ds
] ,

x3 = λ0 ν0

√√√√√ cos
[ ∫

σ(s) ds
]
+ ν1 sin

[ ∫
σ(s) ds

]
cos

[ ∫
σ(s) ds

]
+ λ1 sin

[ ∫
σ(s) ds

] sin[t].

(41)

The above surface satisfies the following equation:

ν1 λ1 x2
1 + λ0 (λ1 − ν1) x1 − (λ1 + ν1) x1 x2 + x2

2 + ν−2
0 x2

3 = λ2
0.
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Then, we have the following Lemma:

Lemma 3. The developable surface (41) foliated by general ellipses represents a conical surface in
Euclidean 3-space.

(II): When a = ±σ λ

2
, the condition in the case (3.2.1.2) becomes

(
ν λ
)′ [3 λ ν′ + 4 ν λ′ + 2 σ ν ξ

]
= 0,

which yields two cases:

(II-A): ν(s) =
ν0

λ(s)
, where ν0 is an arbitrary constant. Now, the condition ν′′ =

d2ν

ds2

yields ξ = − λ′

2 σ
. Hence, the equation of λ′′ becomes

λ′′

λ′
=

2 λ′

λ
+

σ′

σ
+

σ2 λ

λ′
.

The GS of the above ODE is

λ(s) =
λ0

cos
[ ∫

σ(s) ds
]
+ λ1 sin

[ ∫
σ(s) ds

] , (42)

where λ0 and λ1 are arbitrary constants. Hence, all coefficients Γi and Σi are equal to zero.
Therefore, the parametrization of the tangent vector of the curve β(s) is given by

β′(s) =
σ λT

2
− λ′N

2
.

Since ω(s) = 0, α(s) is a plane curve, and it is easy to prove that there exists C0 ∈ R3 such
that

β(s) = C0 −
λN

2
.

The parametrization of this surface is given by

X5(s, t) = C0 + r(s)
(

cos[t]− 1
2

)
N+ b0 sin[t]B, (43)

where λ0, λ1, and ν0 are arbitrary constants while σ(s) is an arbitrary function of s such
that ω(s) = 0. The position vector X5(s, t) = (x1, x2, x3) of this developable surface is
given by 

x1 =
λ0 sin

[ ∫
σ(s) ds

] (
1− 2 cos[t]

)
2
(

cos
[ ∫

σ(s) ds
]
+ λ1 sin

[ ∫
σ(s) ds

]) ,

x2 =
λ0 λ1

λ1 + cot
[ ∫

σ(s) ds
] + λ0 cos[t]

1 + λ1 tan
[ ∫

σ(s) ds
] ,

x3 = ν0 sin[t].

(44)

The above surface satisfies the following equation:(
λ1 x1 − x2

)2

λ2
0

+
x2

3
λ2

0
= 1.
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Then, the following lemma is proved:

Lemma 4. The developable surface (44) foliated by general ellipses represents a conical surface in
Euclidean 3-space.

(II-B): ξ =
3 λ ν′ + 4 ν λ′

2 σ ν
. Now, the equations of ν′′ and r′′ yields the following

conditions: 
ν′′

ν
+

4 ν′

ν
+

8 λ′

λ
− σ′

σ
+

ν

ν′

(
σ2 +

4 rλ′2

λ2

)
,

λ′′

λ
− 5 λ′

λ
− 6 ν′

ν
− σ′

σ
− λ

λ′

(
σ2 +

3 ν′2

ν2

)
.

(45)

The GS of the above equations are

ν(s) =

√
c1 + c2 sin

[
2
∫

σ(s) ds
]
+ c3 cos

[
2
∫

σ(s) ds
]
,

λ(s) =
c4

ν(s)
exp

1
2

tanh

 c2 + (c1 − c3) tan
[ ∫

σ(s) ds
]

√
c2

3 + c2
2 − c2

1


.

(46)

Hence, all coefficients Γi and Σj are equal to zero. In this case, we have:

a(s) =
σ(s) λ(s)

2
, b(s) = −

(
2 λ′(s) +

3 λ(s) ν′(s)
2 ν(s)

)
, ω(s) = c(s) = 0, (47)

where σ(s) is an arbitrary function of s while ci, i = 1, . . . , 4 are arbitrary constants.
Therefore, the parametrization of the tangent vector of the curve β(s) is given by

β′(s) = −
(

λ(s)N
2

)′
−

3
[
λ(s) ν(s)

]′
N

2 ν(s)
.

Hence, there exists C0 ∈ R3 such that

β(s) = C0 −
λ(s)N

2
−
∫ 3

[
λ(s) ν(s)

]′
N

2 ν(s)
ds.

The parametrization of this surface is given by

X6(s, t) = C0 −
∫(3

[
λ(s) ν(s)

]′
2 ν(s)

)
N ds + λ(s)

(
cos[t]− 1

2

)
N+ λ(s) ν(s) sin[t]B. (48)

3.2.2. When v 6= 0, Then ν σ2 (ξ a + λ λ′
)
−
(
a2 − λ2 σ2

)
ν′ = 0

Let us consider two cases: (3.2.2.1): When a 6= 0, then ξ =
a2 ν′ − λ σ2 (λ ν

)′
ν a σ2 . If we

rewrite the equation of v′, then we obtain

v′

v
= − 3 ν ν′

ν2 − 1
⇒ ν =

√
b0 + v2/3

v1/3 , (49)
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where b0 is an arbitrary non-zero constant. Now, the condition ν′′ =
dν′

ds
leads to the

following condition:

Ω a2 = σ3
[
ν0 λ v′ − 3 v λ′

(
b0 + λv2/3

)]2
, (50)

where

Ω(s) = 9 σ3 v2
(

b0 + v2/3
)2(

b0 v4/3 − 1
)

+3 b0 v
(

b0 + v2/3
)
[σ v′′ − σ′ v′]− b0 σ v′ 2

(
4 b0 + 5 v2/3). (51)

The above equation divides into two cases:

(I): Ω(s) 6= 0 ⇒ a =
σ3/2

[
b0 λ v′ − 3 v λ′

(
b0 + v2/3

)]
√

Ω(s)
. Substituting in Γ3 = 0,

we obtain the following condition:

9 σ v
[
σ v v′′ −

(
3 v σ′ + 5 σ v′

)
v′′
]

=
[
9 σ v

(
v σ′′ − 5 σ′ v′

)
− 40 σ2 v′ 2 + 27 v2 σ′ 2 + 36 σ4 (v2 + v4)]v′.

(52)

Now, all coefficients, Γi and Σi, are equal to zero. Integrating twice, the above condition
gives

v′ = 3 σ v
√

c1 v4/3 + c2 v2/3 −v2 − 1. (53)

Hence, we have

a(s) =
b0 λ(s)v′(s)− 3 v(s) λ′(s)

[
b0 + v2/3(s)

]
3 c0 v5/3(s)

,

b(s) =
b0 λ′(s)v′(s) + 3 σ2(s)v(s)

[
b0 + (b0 c2 + 1)v2/3(s) + b2

0 v4/3(s)
]

3 c0 σ(s)v5/3(s)
,

c(s) = b0 a(s)v1/3(s), ν(s) =
√

1− b0 v−2/3(s),

(54)

where c0 =
√

b3
0 + c1 b2

0 − c2 b0 − 1, b0, c1, and c2 are arbitrary constants, while σ(s) and
λ(s) are arbitrary functions of s such that the curvature and torsion of the base curve α(s)
are related by the following equation:

d
ds

ln
[

ω(s)
σ(s)

]
= 3 σ(s)

√
c1

(
ω(s)
σ(s)

)4/3

+ c2

(
ω(s)
σ(s)

)2/3

−
(

ω(s)
σ(s)

)2

− 1. (55)

The parametrization of this surface is given by

X7(s, t) =
∫ [

a(s)T+ b(s)N+ b0a(s)v1/3(s)B
]
ds + λ(s)

[
cos[t]N+

√
1− b0 v−2/3(s) sin[t]B

]
. (56)

(II): When Ω(s) = 0, the condition (50) leads to the following two conditions:

b0 λ v′ = 3 v λ′
(

b0 + v2/3
)

, (57)

3
(

v′′

v′
− σ′

σ

)
−
(

4 b0 + 5 λ2/3

b0 + λ2/3

)
v′

v
=

9 σ2 v
(
b0 + v2/3) (1− b0 v4/3)

b0 v′
. (58)
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Now, all coefficients Γi and Σi are equal to zero. In this case, we have:

b(s) = − b0 a(s)v′(s)
3 σ
[
b0 v + v5/3(s)

] , c(s) = b0 a(s)v1/3(s),

λ(s) =
r0 v1/3(s)√
b0 + v2/3(s)

, ν(s) =

√
b0 + v2/3(s)

v1/3(s)
, ω(s) = σ(s)v(s)

(59)

where a(s) and σ(s) are arbitrary functions of s and the functions v(s) and σ(s) are related
by the condition (58), while b0 and r0 are arbitrary constants. Therefore, the parametrization
of the tangent vector of the curve β(s) is given by

β′(s) = a(s)
[
T− b0 v′(s)N

3 σ(s)
[
b0 v + λ5/3(s)

] + b0 v1/3(s) bB
]
.

Under the condition (58), we can prove that

d
ds

[
T

λ(s)
− b0 v′(s)N

3 σ(s) λ(s)
[
b0 v + v5/3(s)

] + b0 v1/3(s)B
λ(s)

]
= 0.

Hence, there exists C0 ∈ R3 such that

β(s) = C0 + η(s)
[
T− b0 v′(s)N

3 σ(s)
[
b0 v + λ5/3(s)

] + b0 v1/3(s)B
]
,

where λ(s) η(s) =
∫

λ(s) a(s) ds, and the developable surface is given by

X8(s, t) = C0 + η(s)T+
(

η(s) b(s) + λ(s) cos[t]
)
N+

(
b0 η(s)v1/3 + r0 sin[t]

)
B, (60)

where σ(s) and ω(s) are functions of s satisfying the relation (58) while r0 and b0 are arbi-
trary constants.

(3.2.2.2): a = 0 ⇒ ν =
b0

λ
. When we rewrite the equation of ξ ′, we obtain

ξ ′

ξ
=

3 λ

λ
.

So we have ξ = µ0 λ3, where µ0 is an arbitrary non-zero constant. Again, rewrite the
equation of v′, and then obtain the following:

v′

v
=

3 b2
0 λ′

λ (b2
0 − λ2)

. (61)

Therefore, λ =
b0 v1/3

√
r2

0 + r0 v2/3 + λ4/3√
v2 − r3

0

, where r0 is an arbitrary constant. Substitut-

ing into the equation of λ′′ =
λ′

ds
, we obtain

3
(

v′′

v′
− σ′

σ

)
−
(

4 r0 − 5 v2/3

r0 −v2/3

)
v′

v
=

9 σ2 v

v′

[(
1 + r0 v4/3) (r0 −v2/3)+ b4

0 µ2
0 v4/3

r0 −v2/3

]
. (62)

Now, all coefficients Γi and Σi are equal to zero. Therefore, we have

a(s) = c(s) = 0, b(s) = µ0 σ(s) λ3(s),

λ(s) = b0 v1/3)(s)

√
r2

0 + r0 v2/3)(s) + v4/3)(s)
v2(s)− r3

0
, ν(s) =

b0

λ(s)
,

(63)
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where the functions σ(s) and ω(s) are related via the condition (62) while b0, µ0, and r0 are
arbitrary constants. Then, the parametrization of the tangent vector of the curve β(s) is
given by

β′(s) = µ0 λ3(s) σ(s)N.

Hence, there exists C0 ∈ R3 such that

β(s) = C0 + µ0

∫
λ3(s) σ(s)N(s) ds,

The explicit parametrization of this surface is given by

X9(s, t) = C0 + µ0
∫

λ3(s) σ(s)N ds + λ(s) cos[t] N+ b0 sin[t]B, (64)

where the functions σ(s) and ω(s) are related by the condition (62) while r0, µ0, and b0 are
arbitrary constants. From the above discussion, the main Theorem 1 is proved.

4. Proof of Theorem 2

In this section, we assume that the surface (1) has a non-zero constant Gaussian
curvature G0. In this case, Equation (9) can be written in the form

8

∑
i = 0

Γi(s) cos[i t] + Σi(s) sin[i t] = 0

One begins to compute the coefficients Γi and Σi. The first coefficient

Σ8 = 2 (b2 − 1) G0 σ v λ5 ν′
(

σ2 (ν2 − 1
) [(

ν2 − 1
)

v2 − 1
]
− ν′2

)
.

The vanishing of the coefficient Σ8 yields two possibilities:

4.1. v(s) = ±

√
ν′2 + σ2

(
ν2 − 1

)
σ
(
ν2 − 1

) 6= 0

The computation of the coefficient Γ8 leads to

2 G2
0 λ5 ν′2

[
ν′2 + σ2 (ν2 − 1

)]
= 0,

which implies ν′2 + σ2 (ν2 − 1
)
= 0, a contradiction with v(s) 6= 0.

4.2. v(s) = 0

Now, Γ8 = −1
2

G0 λ5
[
ν′2 − (1 − bν2) σ2

]2
= 0 gives νν′ = ±σ

√
1− ν2, where

|ν| < 1. In this case, we have

Γ6 = 8 G0 (ν
2 − 1) σ2 λ3

[(
a
√

1− ν2 − σ ξ b
)2
− c2

]
,

Σ6 = 16 G0 (1− ν2) σ2 λ3 γ
(

a
√

1− ν2 − σ ξ ν
)

.

For vanishing coefficients Γ6 and Σ6, we obtain the following:

c(s) = 0, a(s) =
σ ξ ν√
1− ν2

.
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The computation of Γ4 = 0 leads to λ′ =
(2 ν2 − 1) σ λ

2 ν
√

1− ν2
. The coefficient Γ2 =

32 G0 ν2 λ3 σ4 ξ2

ν2 − 1
= 0 implies ξ = 0 and then

(
a, b, c

)
=
(
0, 0, 0

)
, which is a contradiction. Therefore, the

proof of the Theorem 2 is completed.

5. Proof of Theorem 3

Let M be a surface in R3 with zero Gauss curvature G and foliated by a piece of ellipses
in parallel planes. Without loss of generality, we assume that the planes of the foliation are
parallel to the (x1 − x2)-plane. Let

X(s, t) =
(

f (s) + r(s) cos[t], g(s) + b(s) r(s) sin[t], s
)

, s ∈ I, v ∈ J, (65)

be a local parametrization of M. If we put G =
P
W

in the computations of the Gauss
curvature G, it yields

P =
4

∑
i=0

(Γi cos[i t] + Σi sin[i t]) = 0.

A computation yields the following non-zero coefficients :
Γ1 = −4 b2 f ′′, Σ1 = −4 b g′′,

Γ2 = 2 b
(
2 b′ r′ + r b′′

)
, Γ4 =

r b′2

2
,

Γ0 = −
r
(
b′2 + 4 b b′′

)
+ 8 b

(
b r′
)′

2
.

(66)

In view of the above expression of P = 0, it follows that b′ = 0, and so b = b0, where b0
is an arbitrary constant. Then, Γ0 = −4 b2 r′′. So we must have r′′ = f ′′ = g′′ = 0. As a
consequence, there are constants r0, r1, f0, f1, g0, and g1 such that

r(s) = r1 u + r0,
f (s) = f1 u + f0,
g(s) = g1 u + g0,

(67)

that is, the functions f , g, and r are linear on s, and so, the surface is a generalized cone.
Therefore, the proof of Theorem 3 is completed.

6. Conclusions

From the above discussion, we have proved the following important theorems:
(1): The surface (1) foliated by general ellipses is flat if and only if it is a part of a conical

surface or it takes one of the following forms: (31), (48), (56), (60), and (64).
(2): The surface foliated by general ellipses is a CGC surface (1) if and only if G = 0.
In general, if the surface (1) foliated by general ellipses is flat, then the parame-

terizations of this surface can take one of the following nine forms: X(s, t) = Xi(s, t),
i = 1, 2, . . . , 9, where Xi(s, t) takes the forms in the Equations (28), (31), (34), (40), (43),
(48), (56), (60), and (64) respectively. Four of these surfaces are conical surfaces, as intro-
duced in Lemmas 1–4. The other five surfaces take the forms in the Equations (31), (48),
(56), (60) and (64). For the surfaces X(s, t) = X2(s, t) and X(s, t) = X6(s, t), the base
curves are plane curves with arbitrary curvature functions. Furthermore, in the surfaces
X(s, t) = X7(s, t), X(s, t) = X8(s, t), and X(s, t) = X9(s, t), the base curves are special
types of space curves where the curvatures and torsions are related via the conditions (55),
(58) and (62), respectively.

All results introduced by Lopez [15–17] are special cases of our present work when
ν(s) = 1. Also, when ν(s) = ε0 6= 1, where ε0 is an arbitrary constant, the surface
(1) is a surface foliated by general ellipses, which are studied by Ali and Hamdoon [18].
They proved that The surface foliated by general ellipses is a cylindrical surface that is part of a
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generalized cone or a part of a generalized cylinder. However, our results are a generalization of
these results because a generalized cone and a generalized cylinder are special types of con-
ical surfaces. Recently, many authors considered circular (cyclic) surfaces with a constant
radius in Euclidean and Minkowski 3-space. They studied some geometrical properties
such as: Singularities and striction curves compared with those of ruled surfaces (see, for
example, [7–11]). However, our work is different from these papers in two ways: (1): We
considered the circular surfaces foliated by general ellipses, which are generalizations of
circles. (2): We obtained a complete solution of a flat problem of cyclic surfaces foliated by
general ellipses. Ali [21] studied the constant mean curvature surfaces foliated by ellipses in
three-dimensional Euclidean space R3. In future work, we hope to study the CMC surfaces
foliated by general ellipses in Euclidean space R3 or in Minkowski space R3
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